
Kaisa Joki | Adil M. Bagirov | Napsu Karmitsa | Marko M.

Mäkelä

New Proximal Bundle Method for Non-
smooth DC Optimization

TUCS Technical Report

No 1130, February 2015

New Proximal Bundle Method for Non-
smooth DC Optimization

Kaisa Joki
University of Turku, Department of Mathematics and Statistics
FI-20014 Turku, Finland
kaisa.joki@utu.fi

Adil M. Bagirov
Faculty of Science and Technology, Federation University Australia
University Drive, Mount Helen, PO Box 663, Ballarat, VIC 3353, Australia
a.bagirov@federation.edu.au

Napsu Karmitsa
University of Turku, Department of Mathematics and Statistics
FI-20014 Turku, Finland
napsu@karmitsa.fi

Marko M. Mäkelä
University of Turku, Department of Mathematics and Statistics
FI-20014 Turku, Finland
makela@utu.fi

TUCS Technical Report

No 1130, February 2015

Abstract

In this paper, we develop a version of the bundle method to locally solve un-
constrained difference of convex (DC) programming problems. It is assumed
that a DC representation of the objective function is available. Our main idea
is to use subgradients of both the first and second components in the DC
representation. This subgradient information is gathered from some neigh-
borhood of the current iteration point and it is used to build separately an
approximation for each component in the DC representation. By combining
these approximations we obtain the so-called nonconvex cutting plane model
of the original objective function. We design the proximal bundle method for
DC programming based on this approach and prove the convergence of the
method to an ε-critical point. This algorithm is tested using some academic
test problems.

Keywords: Nonsmooth optimization, Nonconvex optimization, Proximal
bundle methods, DC functions, Cutting plane model

TUCS Laboratory
Turku Optimization Group (TOpGroup)

1 Introduction

We design an algorithm for solving a minimization problem of the form

minimize f(x)

subject to x ∈ R
n,

(1)

where f : Rn → R is a difference of convex (DC) functions. This problem is
called the unconstrained DC programming problem. The function f defined
on R

n is called a DC function if it can be decomposed as the difference of
two convex functions:

f(x) = f1(x) − f2(x), (2)

where f1 and f2 are convex functions on R
n. In what follows, the functions

f1 and f2 are called convex DC components of f and we assume that

dom fi = {x ∈ R
n | |fi(x)| < +∞} = R

n for i = 1, 2. (3)

Since the convex DC components of f are assumed to be finite on R
n, the

function f is also finite on the whole R
n. In addition, the function f is

typically nonconvex and it needs not to be differentiable. It is worth not-
ing that if f is nonsmooth, then at least one of the functions f1 and f2 is
a nonsmooth convex function. Such DC functions constitute a large and
interesting subclass of nonsmooth nonconvex functions.

The class of DC functions is very broad. Any twice continuously differ-
entiable function can be represented as a DC function. Moreover, any con-
tinuous function can be approximated by the sequence of DC functions [39].
Many optimization problems of potential interest can be expressed into the
form of a DC program such as production-transportation planning, location
planning, engineering design, cluster analysis, multilevel programming and
multi-objective programming [7, 20, 32]. DC optimization algorithms have
been proved to be particularly successful for analyzing and solving a variety
of highly structured problems. Although in many optimization problems it
is not easy to extract DC model of functions, there are some problems where
such models can be written explicitly. Such problems include cluster analy-
sis, nonparametric regression using piecewise linear functions and supervised
data classification problems [7, 8] to name a few. Moreover, in [13], a special
algorithm is developed to find the best DC representation of polynomials.

DC programming problems have been mainly considered in global opti-
mization and some algorithms have been designed to find global solutions to
such problems (see, e.g., [2, 21, 22, 39]). However, so far a little attention has
been paid to the development of local solution methods for specifically DC
programming problems. Such methods are often needed as a part of global
optimization solvers, since they typically utilize local methods.

1

In this paper, our aim is to design a version of the bundle method to
locally solve the unconstrained DC programming problem (1). The bundle
method and its variations are among the most efficient methods in nonsmooth
optimization (see [31] and references therein). To date these methods have
been designed based only on the convex model of a function, also in the
nonconvex case. To our best knowledge versions of the bundle methods
based on the explicitly known structures of a problem have not been studied
in depth before.

The novelty of our proximal bundle method is that the DC decomposi-
tion of the objective function is utilized explicitly in the model construction.
Due to this the main idea is to approximate the subdifferentials of both DC
components with a bundle. This means that we are maintaining two sepa-
rate bundles which consists of subgradients from some neighborhood of the
current iteration point. This subgradient information is used to construct
separately a classical convex cutting plane model (see, e.g., [26, 29, 34]) for
each DC component. Combining these approximations we obtain a piecewise
affine nonconvex cutting plane model of the original objective function.

The algorithm of our proximal bundle method is based on the bundle
methods introduced in [14, 15, 16] and it especially combines the features
of those bundle methods with suitable modifications. Since the trust region
approach is used in the form of the classical proximity parameter (see, e.g.,
[26, 34]), we need not to perform any line search procedure to determine a step
size. In addition, the global convergence of the new method is established
to an ε-critical point after a finite number of steps. The results of numerical
experiments also show the good performance of the new method.

The rest of the paper is organized as follows: In Section 2 the main
concepts used throughout the paper are described. Section 3 describes the
new cutting plane model for DC functions. A minimization algorithm PBDC
(Proximal Bundle method for DC functions) based on such models is studied
in Section 4 and its convergence is proved in Section 5. Section 6 presents
computational results using academic test problems and Section 7 contains
some concluding remarks.

2 Preliminaries

In this section we recall some concepts and basic results from nonsmooth
analysis and DC programming. For more details about these subjects we refer
to [2, 8, 10, 17, 31, 33, 36]. The following notations will be used throughout
the paper.

We denote by ‖ · ‖ the norm in the n-dimensional real Euclidean space
R

n and by xT y the usual inner product of vectors x and y. The open ball
with center x ∈ R

n and radius r > 0 is denoted by B(x; r). The distance

2

between a point x ∈ R
n and a nonempty set S ⊂ R

n is defined as

d(x, S) = inf {‖x − s‖ | s ∈ S} .

Let S be a subset of Rn. A function f : Rn → R is said to be Lipschitz
continuous on S, if there exist a constant L > 0 such that

|f(y) − f(x)| ≤ L‖y − x‖ for all x, y ∈ S.

A function f : R
n → R is in turn locally Lipschitz continuous at a point

x ∈ R
n, if there exist a constant L > 0 and some ε > 0 such that

|f(y) − f(z)| ≤ L‖y − z‖ for all y, z ∈ B(x; ε).

A function f : Rn → R is said to be convex, if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for all x, y ∈ R
n and λ ∈ [0, 1].

Since a convex function is locally Lipschitz continuous on R
n by

Rademacher’s theorem, it is differentiable almost everywhere. The subdif-
ferential (or generalized gradient) of a convex function f at a point x ∈ R

n

is the set [33]

∂cf(x) =
{

ξ ∈ R
n | f(y) ≥ f(x) + ξT (y − x) for all y ∈ R

n
}

(4)

and each vector ξ ∈ ∂cf(x) is called a subgradient of f at x. The
subdifferential ∂cf(x) is a nonempty, convex and compact set such that
∂cf(x) ⊂ B(0; L), where L > 0 is the Lipschitz constant of f at x. The
subdifferential ∂cf(x) is a generalization of the classical derivative because if
f is both convex and differentiable at some point x ∈ R

n, then the subgra-
dient is unique and equals to the gradient, i.e. ∂cf(x) = {∇f(x)} [33].

We also define the ε-subdifferential of a convex function f which approxi-
mates the subdifferential. For ε ≥ 0, the ε-subdifferential of a convex function
f at a point x ∈ R

n is given by [33]

∂εf(x) =
{

ξε ∈ R
n | f(y) ≥ f(x) + ξT

ε (y − x) − ε for all y ∈ R
n
}

. (5)

Each vector ξε ∈ ∂εf(x) is called an ε-subgradient of f at x. The set ∂εf(x)
contains now in a condensed form the subgradient information from some
neighborhood of x as the following theorem shows.

THEOREM 2.1. [8] Let f : Rn → R be a convex function with Lipschitz
constant L > 0 at a point x ∈ R

n. If ε ≥ 0, then

∂cf(y) ⊂ ∂εf(x) for all y ∈ B
(

x; ε
2L

)

. (6)

3

A DC function f defined by (2) is also locally Lipschitz continuous on R
n,

i.e. it is Lipschitz continuous on every bounded set [14]. Now, the generalized
subdifferential of a locally Lipschitz continuous function f : Rn → R at a
point x ∈ R

n is defined by [10]

∂f(x) = conv{ξ ∈ R
n | there exists {xi} ⊂ R

n \ Ωf such

that xi → x and ∇f(xi) → ξ},

where conv denotes the convex hull of a set and Ωf is the set where f is not
differentiable. Especially ∂f(x) = ∂cf(x) for convex f defined on R

n [10].
In what follows, we denote the subdifferential of a convex DC component fi

by ∂fi(x) for i = 1, 2.
Generally a point x∗ ∈ R

n is a local minimizer of the problem (1) if
f(x∗) = f1(x

∗) − f2(x
∗) is finite and there exists an ε > 0 such that

f1(x
∗) − f2(x

∗) ≤ f1(x) − f2(x) for all x ∈ B(x∗; ε).

Since we made the assumption (3), the finiteness of f is always fulfilled. For a
DC function we can also specify the following necessary optimality condition
for local optimality and this condition is sufficient in that case when the DC
component f2 is a polyhedral convex function, that is, f2 is of the form

f2(x) = max
i=1,...,m

{

aT
i x − bi

}

,

where ai ∈ R
n and bi ∈ R for i = 1, . . . , m.

THEOREM 2.2. [2, 38] Let f1 and f2 be convex functions. If x∗ ∈ R
n is a

local minimizer of f = f1 − f2, then

∂f2(x
∗) ⊆ ∂f1(x

∗). (7)

Furthermore, the condition (7) guarantees local optimality if f2 is a polyhedral
convex function.

The optimality condition (7) above is usually hard to be verified and for
that reason it can be relaxed to the form [2, 18, 38]

∂f2(x
∗) ∩ ∂f1(x

∗) 6= ∅. (8)

A point x∗ ∈ R
n which satisfies (8) is said to be a critical point of f . In a

similar way, we can define an ε-critical point. Let ε ≥ 0, a point x∗ ∈ R
n is

said to be an ε-critical point of f defined by (2) if it satisfies [35]

∂εf2(x
∗) ∩ ∂εf1(x

∗) 6= ∅. (9)

It is worth pointing out that the condition (9) reduces to (8), when ε = 0.
Because conditions (8) and (9) are only necessary optimality conditions for

4

the unconstrained DC programming problem (1), a critical or an ε-critical
point of f is not necessarily a local minimizer. However, each local minimizer
of f can be found among the set of critical points of f and, similarly, also
among the set of ε-critical points of f . In what follows, an optimization
method is said to be globally convergent, if starting from any arbitrary point
x0 ∈ R

n it generates a sequence {xk} converging to an ε-critical point x∗,
that is, xk → x∗ whenever k → ∞.

In general, when dealing with a DC function f defined by (2), the subdif-
ferentials of DC components f1 and f2 cannot be used to derive the subdiffer-
ential of f at some point x ∈ R

n, because from subdifferential calculus it only
follows that for a nonsmooth DC function f we have ∂f(x) ⊆ ∂f1(x)−∂f2(x)
[10]. However, if a DC component f2 is differentiable at a critical point
x∗ ∈ R

n, then ∂f(x∗) = ∂f1(x
∗) − ∂f2(x

∗) and especially

∂f2(x
∗) ⊆ ∂f1(x

∗),

since ∂f2(x
∗) = {∇f2(x

∗)} [10]. This indicates that 0 ∈ ∂f(x∗) and thus the
corresponding critical point x∗ satisfies also the condition of substationarity.
A point x ∈ R

n is called substationary if 0 ∈ ∂f(x). For a locally Lipschitz
function substationarity is a necessary condition for local optimality and, in
the convex case, it is sufficient for global optimality.

For a DC function f it is also possible to formulate the following global
optimality condition. Unfortunately, this condition is rather difficult to uti-
lize in solution methods for DC functions.

THEOREM 2.3. [19] Let f1 and f2 be convex functions. A DC function
f = f1 − f2 attains its global minimum at a point x∗ ∈ R

n, if and only if

∂εf2(x
∗) ⊆ ∂εf1(x

∗) for all ε ≥ 0.

3 Cutting plane model for DC functions

In this section we propose a new cutting plane model, which is used to find
a search direction in our bundle algorithm PBDC. The distinctive feature
of the new model is that it utilizes explicitly a DC decomposition of the
objective function f defined by (2). This differs from other bundle methods,
which usually do not require some specific structure of a nonconvex objective
function.

The main idea is to use subgradients of both the DC components f1 and
f2. This subgradient information is gathered from some neighborhood of the
current iteration point and it is used to construct separately an approxima-
tion for each convex DC component. Then by combining these approxima-
tions we obtain a cutting plane model of the original objective function. For
this reason, we particularly assume that a DC decomposition of the objective

5

function f is available. It is worth noting that in general this DC decomposi-
tion is not unique, but our objective function has infinite number of different
DC decompositions.

Characteristic to bundle methods is also to assume that at each point x ∈
R

n we can compute the function value f(x) and one unspecified subgradient
ξ ∈ ∂f(x). Now we make similar assumptions because we require that at
each point x ∈ R

n we can evaluate the function values of the DC components
f1(x) and f2(x). Moreover, our method requires at each point x ∈ R

n two
subgradient calculations, namely ξ1 ∈ ∂f1(x) and ξ2 ∈ ∂f2(x).

We denote by xk the current iteration point (or stability center) which
corresponds to the best estimate of the minimum found so far by the al-
gorithm. Furthermore, we have at our disposal two collections of auxiliary
points yj from previous iterations. One collection is for the DC component f1

together with subgradients ξ1,j ∈ ∂f1(yj) for j ∈ Jk
1 and, similarly, the other

is for the DC component f2 together with subgradients ξ2,j ∈ ∂f2(yj) for
j ∈ Jk

2 . Here Jk
1 and Jk

2 are nonempty sets of indices for the DC components
f1 and f2, respectively, and these index sets need not to be similar. This
means that at each iteration we maintain two separate bundles containing
available information and these sets are denoted by

Bk
i =

{(

yj, fi(yj), ξi,j

) ∣

∣

∣ j ∈ Jk
i

}

for i = 1, 2,

where the subscript tells the DC component in question. The current itera-
tion point xk is assumed to be included in both bundles Bk

1 and Bk
2 with a

suitable index and this is an important requirement in future considerations.
In what follows, we assume that for a point x0 ∈ R

n the set

F0 = {x ∈ R
n | f(x) ≤ f(x0)} (10)

is compact, where x0 is the starting point used in our algorithm. In addition,
(overestimated) Lipschitz constants of the convex DC components f1 and f2

are assumed to be known on the set Fε = {x ∈ R
n | d(x, F0) ≤ ε} with some

ε > 0. We denote these constants by L1 > 0 and L2 > 0, respectively. It is
easy to show that in this case the original function f is Lipschitz continuous
on the set Fε with a constant L1 + L2.

The idea is to utilize the DC decomposition of the objective function f
in the model construction. Since DC components fi for i = 1, 2 are convex,
we can first construct a convex piecewise linear approximation of the DC
component fi by

f̂k
i (x) = max

j∈Jk
i

{

fi(yj) + (ξi,j)
T (x − yj)

}

for all x ∈ R
n.

This approximation is the classical cutting plane model used in convex bundle
methods (see, e.g., [26, 29, 31, 34]) and it can be rewritten in an equivalent

6

form

f̂k
i (x) = max

j∈Jk
i

{

fi(xk) + (ξi,j)
T (x − xk) − αk

i,j

}

,

when we use the current iteration point xk and the linearization error

αk
i,j = fi(xk) − fi(yj) − (ξi,j)

T (xk − yj) for all j ∈ Jk
i .

It is worth noting that in most nonconvex bundle methods (see, e.g., [25]) we
need to use subgradient locality measures instead of linearization errors, since
for a nonconvex funtion the linearization error can be negative. However, in
our case the linearization error is always nonnegative, that is, αk

i,j ≥ 0 and
therefore we can use it as it is. This property follows from the convexity of
fi and also implies that

f̂k
i (x) ≤ fi(x) for all x ∈ R

n and i = 1, 2. (11)

Since the linearization error is dependent on the current iteration point,
it has to be updated every time when we obtain a new iteration point xk+1

differing from the current iteration point xk. However, the linearization error
can be updated by using the formula

αk+1
i,j = αk

i,j + fi(xk+1) − fi(xk) − ξT
i,j(xk+1 − xk)

and therefore it is sufficient to store only the subgradients ξi,j ∈ ∂fi(yj) and
the linearization errors αk

i,j. Especially we do not need to keep track of the
auxiliary points yj together with the function values fi(yj) and thus from
now on the bundles Bk

i will consist of a set of pairs (ξi,j, αk
i,j), that is,

Bk
i =

{(

ξi,j, αk
i,j

) ∣

∣

∣ j ∈ Jk
i

}

for i = 1, 2.

To approximate the original objective function f we substitute in the
formula (2) the functions fi with their cutting plane models f̂i. Thus, our
piecewise linear nonconvex cutting plane model of f is defined by

f̂k(x) = f̂k
1 (x) − f̂k

2 (x)

and it can be rewritten in an equivalent form

f̂k(xk + d) = f(xk) + max
j∈Jk

1

{

(ξ1,j)
T d − αk

1,j

}

+ min
j∈Jk

2

{

−(ξ2,j)
T d + αk

2,j

}

, (12)

7

-4 -2 2 4

50

100

150f1(x)

f̂k
1 (x)

-4 -2 2 4

50

100

150

f2(x)

f̂k
2 (x)

Figure 1: The convex cutting plane models of the DC components

where the new variable d = x − xk is the search direction (’displacement’)
at the current iteration point xk. Moreover, we are going to denote by

∆k
1(d) = max

j∈Jk
1

{

(ξ1,j)
T d − αk

1,j

}

and ∆k
2(d) = min

j∈Jk
2

{

−(ξ2,j)
T d + αk

2,j

}

(13)

the piecewise affine functions in the approximation (12).
Figure 1 illustrates the convex cutting plane models of the DC compo-

nents f1(x) = max{x4 + 4, 15x} and f2(x) = 9x2 + 6x + 9, when the lin-
earizations of both models are formed at points x = −2.5, −1, 1.5 and 3. The
overall approximation of the objective function f = f1 − f2 is in turn shown
in Figure 2 and the model f̂k(x) describes quite well the actual behavior of f .

The search direction dk
t can now be computed by solving the problem

minimize P k(d) = ∆k
1(d) + ∆k

2(d) + 1
2t

‖d‖2

subject to d ∈ R
n,

(14)

where t > 0 is the proximity parameter used in most bundle methods. The
term 1

2t
‖d‖2 is a stabilizing term and it is used to guarantee the existence of

the solution dk
t and also to keep the approximation local enough [29]. Note

that even though the problem (14) is quadratic, it is still a nonsmooth non-
convex DC optimization problem because ∆k

1(d) + 1
2t

‖d‖2 is convex, while

-4 -2 2 4

-40

-20

20

40

f(x)

f̂k(x)

Figure 2: The nonconvex cutting plane model of the objective function

8

∆k
2(d) is a polyhedral concave function. Nevertheless, in the objective func-

tion P k(d) the DC component −∆k
2(d) is polyhedral convex and in this case

the problem (14) can be solved globally quite easily by using an approach
described in [1, 2, 36] and also utilized in [14]. In the approach we start with
noticing that for all d ∈ R

n the objective function P k(d) can be rewritten as

P k(d) = min
i∈Jk

2

{

P k
i (d) = ∆k

1(d) − (ξ2,i)
T d + αk

2,i +
1

2t
‖d‖2

}

and hence the problem (14) takes the form

min
d∈Rn

min
i∈Jk

2

{

P k
i (d)

}

= min
i∈Jk

2

min
d∈Rn

{

P k
i (d)

}

. (15)

Due to this we can change the order of minimizations and solve first for each
i ∈ Jk

2 the subproblem

minimize P k
i (d) = ∆k

1(d) − (ξ2,i)
T d + αk

2,i + 1
2t

‖d‖2

subject to d ∈ R
n,

(16)

which is the inner problem in (15). In what follows, we denote by dk
t (i) the

subproblem minimizer and the global minimizer dk
t of (14) can be obtained

by selecting the ’best’ solution from among all the subproblem minimizers.
In other words, the search direction dk

t is given by

dk
t = dk

t (i∗) where i∗ = arg min
i∈Jk

2

{

P k
i

(

dk
t (i)

)

}

.

Thus, the global minimization of the problem (14) requires the solution of |Jk
2 |

subproblems. For this reason, the size of the bundle Bk
2 has to be bounded

by an appropriate upper bound: the larger the bundle Bk
2 is, the more time-

consuming it is to obtain the global solution. Especially each of the sub-
problems (16) is a nonsmooth strictly convex quadratic problem of the type
usually encountered in bundle methods. In addition, the nonsmoothness does
not cause any difficulties, because for each i ∈ Jk

2 the subproblem (16) can
be reformulated as a smooth quadratic subproblem

minimize v + 1
2t

‖d‖2

subject to (ξ1,j − ξ2,i)
T d − (αk

1,j − αk
2,i) ≤ v for all j ∈ Jk

1

v ∈ R, d ∈ R
n.

(17)

By duality it is equivalent to the quadratic subproblem

minimize 1
2
t‖
∑

j∈Jk
1

λjξ1,j − ξ2,i‖
2 +

∑

j∈Jk
1

λjα
k
1,j − αk

2,i

subject to
∑

j∈Jk
1

λj = 1

λj ≥ 0 for all j ∈ Jk
1 ,

(18)

9

which is usually easier to solve than the corresponding primal subproblem.
The following theorem shows that the optimal primal solution (vk

t (i), dk
t (i))

is related to the optimal dual solutions λk
t,j(i) for j ∈ Jk

1 .

THEOREM 3.1. For each i ∈ Jk
2 , the problems (17) and (18) are equiv-

alent, and they have unique solutions (vk
t (i), dk

t (i)) and λk
t,j(i) for j ∈ Jk

1 ,
respectively, such that

dk
t (i) = −t

∑

j∈Jk
1

λk
t,j(i)ξ1,j − ξ2,i

vk
t (i) = −

1

t
‖dk

t (i)‖2 −
∑

j∈Jk
1

λk
t,j(i)α

k
1,j + αk

2,i.

Proof. See [31], pp. 115–117.

Next, we look closer the value ∆k
1(d) + ∆k

2(d). As in [14], it can be seen
as an approximation to the function

hk(d) = f(xk + d) − f(xk)

and at d = 0 the value ∆k
1(d) + ∆k

2(d) interpolates f . In a similar way, the
separate values ∆k

1(d) and ∆k
2(d) can be interpreted as a predicted change

of the DC components f1 and −f2, respectively. Some simple properties of
∆k

1(d) and ∆k
2(d) are presented below.

LEMMA 3.2. The following properties hold:

(i) ∆k
1(d) ≤ f1(xk + d) − f1(xk);

(ii) ∆k
2(d) ≥ −f2(xk + d) − (−f2(xk));

(iii) For any t > 0 we have ∆k
1(dk

t) + ∆k
2(dk

t) ≤ −
1

2t
‖dk

t ‖2 ≤ 0.

Proof. (i) Since f1 is convex, the inequality (11) holds and we have

f̂k
1 (xk + d) = max

j∈Jk
1

{

f1(xk) + (ξ1,j)
T d − αk

1,j

}

≤ f1(xk + d).

From this it is easy to derive that

max
j∈Jk

1

{

(ξ1,j)
T d − αk

1,j

}

≤ f1(xk + d) − f1(xk),

which confirms the claim.
(ii) The property follows by the same way as in (i). The only difference

is that the last inequality is multiplied by −1 and after that maximization is
converted to minimization.

10

(iii) We notice first that for the problem (14) the vector d = 0 yields the
objective function value

∆k
1(0) + ∆k

2(0) +
1

2t
‖0‖2 = max

j∈Jk
1

{

−αk
1,j

}

+ min
j∈Jk

2

{

αk
2,j

}

= 0,

where the last equality follows from the requirement that the current iteration
point xk is included in both bundles Bk

i , i = 1, 2. In other words, for both fi,
i = 1, 2, we have some ̄ ∈ Jk

i such that αk
i,̄ = 0. Moreover, for all the other

j ∈ Jk
i , the linearization error αk

i,j is nonnegative, that is, αk
i,j ≥ 0. Thus, the

optimal objective function value of the problem (14) is always smaller than
or equal to zero, that is,

∆k
1(dk

t) + ∆k
2(dk

t) +
1

2t
‖dk

t ‖2 ≤ 0

and this yields the result.

From Lemma 3.2 we see, for example, that when ∆k
1(d) is nonpositive, the

real descent in the value of f1 is always less than or equal to the predicted
one. On the other hand, if ∆k

1(d) is positive, then the real increase in f1

is always greater than or equal to the predicted change ∆k
1(d). Thus, the

cutting plane model of f1 yields approximations, which are too optimistic in
the case of minimization.

When we consider the function −f2, we get somewhat opposite results.
First of all, if the value ∆k

2(d) is nonpositive, then the real decrease in the
function −f2 is always greater than or equal to the predicted one. This
means that the model −f̂2 of the function −f2 actually underestimates the
real descent. In addition, when the value ∆k

2(d) is positive, we can be sure
that the real increase in the value of −f2 is always less than or equal to the
predicted one.

Lemma 3.2 also ensures that the overall approximation ∆k
1(dk

t)+∆k
2(dk

t) of
the change is always nonpositive for the solution dk

t . For this reason, it can be
used as a predicted descent of the objective function f at the current iteration
point xk. It is also worth pointing out that one of the approximations ∆k

i (dk
t)

for i = 1, 2 can be positive if the other one is negative enough. This is due to
the fact that only the overall approximation needs to be nonpositive. Thus,
it is possible that one of the DC components increases while the other one
decreases.

4 Minimization algorithm

In this section we describe a new proximal bundle method (PBDC) for non-
smooth DC optimization. The main novelty of our bundle method is that it
uses the new cutting plane model introduced in the previous section. Due

11

to this we utilize explicitly the DC decomposition of the objective function
f . The PBDC algorithm is based on the bundle methods introduced in
[14, 15, 16] and it especially combines the features of the ’main iterations’ of
those bundle methods with suitable modifications.

The core of PBDC is the ’main iteration’, which consists of a sequence of
steps where the current iteration point remains unchanged. The basic idea
in the ’main iteration’ is that we repeatedly solve the problem (14) globally
and use the solution obtained to update appropriately either the proximity
parameter or the bundles. The exit from the ’main iteration’ happens either
because we end up in a better iteration point or because the current solution
satisfies the approximate stopping condition.

If we find a better solution candidate during the ’main iteration’, then the
sufficient descent condition is satisfied and the value of the objective function
decreases. In this case we update the current iteration point and start a new
’main iteration’. However, if the approximate stopping condition is fulfilled,
then the execution of the overall bundle algorithm stops with the current
iteration point as the final solution.

The execution of the PBDC method starts with the initialization of the
algorithm. In this step we need to choose a starting point x0 ∈ R

n and set
the following global parameters:

• the criticality tolerance δ > 0 and the proximity measure ε > 0

• the descent parameter m ∈ (0, 1)

• the decrease parameter r ∈ (0, 1) and the increase parameter R > 1.

After this the initial auxiliary point y1 is set equal to x0 in both bundles.
This means that for the DC components fi (i = 1, 2) the initial bundle B0

i

contains only one element (ξi(y1), α0
i,1) where ξi(y1) ∈ ∂fi(y1) and α0

i,1 = 0.
It is also worth noting that the PBDC algorithm requires (overestimated)
Lipschitz constants L1 > 0 and L2 > 0 of the DC components f1 and f2 on
the set Fε = {x ∈ R

n | d(x, F0) ≤ ε}, where F0 is the set defined by (10). In
addition, the following local parameters are set each time the ’main iteration’
is entered:

• the safeguard parameters tmin and tmax, 0 < tmin < tmax

• the local proximity measure θ > 0.

Due to the importance of the ’main iteration’ we first describe in detail
its algorithm and only after that we present the overall PBDC algorithm.
For the sake of notational simplicity we do not index the ’main iteration’
algorithm. Also the superscript k is omitted (except for xk), since it indicates
only the values with respect to the current iteration point xk ∈ R

n and
this point remains unchanged during the ’main iteration’. In what follows,
ξ1(xk) ∈ ∂f1(xk) and ξ2(xk) ∈ ∂f2(xk) are the subgradients computed at
the current iteration point xk.

12

ALGORITHM 4.1. Main Iteration

Step 0. (Stopping condition) If ‖ξ1(xk) − ξ2(xk)‖ < δ then STOP (criti-
cality achieved)

Step 1. (Parameter initialization) Calculate j∗ = arg maxj∈J2

{

‖ξ2,j‖
}

and
set

ξ2,max = ξ2,j∗ , ε1 =
ε

2 max{L1, L2, 1/2}
,

tmin = r ·
ε1

2
(

‖ξ1(xk)‖ + ‖ξ2,max‖
) ,

tmax = R tmin and θ = r tmin δ.

Select the value t ∈ [tmin, tmax].

Step 2. (Search direction) Solve the problem

min
d∈Rn

{

∆1(d) + ∆2(d) +
1

2t
‖d‖2

}

and from the solution dt compute the predicted changes

∆1(dt) = max
j∈J1

{

(ξ1,j)
T dt − α1,j

}

and

∆2(dt) = min
j∈J2

{

−(ξ2,j)
T dt + α2,j

}

.

If ‖dt‖ < θ then go to Step 3 else go to Step 4.

Step 3. (Approximate stopping condition) Set

J1 = J1 \ {j ∈ J1 | α1,j > ε} and J2 = J2 \ {j ∈ J2 | α2,j > ε}

and calculate values ξ∗
1 and ξ∗

2 such that

‖ξ∗
1 − ξ∗

2‖ =

min ‖ξ1 − ξ2‖

s. t. ξ1 ∈ conv{ξ1,j | j ∈ J1}

ξ2 ∈ conv{ξ2,j | j ∈ J2}.

(19)

If ‖ξ∗
1 − ξ∗

2‖ < δ then STOP (ε-criticality achieved) else set

tmax = tmax − r (tmax − tmin), (20)

select the value t ∈ [tmin, tmax] and go back to Step 2.

Step 4. (Descent test) Set y = xk + dt. If

f(y) − f(xk) ≤ m
(

∆1(dt) + ∆2(dt)
)

(21)

then put xk+1 = y and EXIT from the ’main iteration’.

13

Step 5. (Bundle update) Compute ξ1 ∈ ∂f1(y), ξ2 ∈ ∂f2(y) and set

α1 = f1(xk) − f1(y) + ξT
1 dt and α2 = f2(xk) − f2(y) + ξT

2 dt.

(a) If f(y) − f(x0) > 0 and ‖dt‖ > ε1 then set t = t − r(t − tmin)
and go back to Step 2.

(b) Otherwise insert the element:

(ξ1, α1) into B1 for a suitable value of the index ̂ ∈ J1

and, if ∆2(dt) ≥ 0, then insert also the element:

(ξ2, α2) into B2 for a suitable value of the index ̂ ∈ J2.

Step 6. (Parameter update) If ‖ξ2‖ > ‖ξ2,max‖ then update

ξ2,max = ξ2, tmin = r ·
ε1

2
(

‖ξ1(xk)‖ + ‖ξ2,max‖
) and θ = r tmin δ.

Go back to Step 2.

The direction finding problem at Step 2 of the ’main iteration’ is the
problem (14) and it can be solved globally by using the approach introduced
in the previous section. Therefore, during each round of the ’main iteration’
we need to solve the subproblem (16) for each i ∈ J2, since the global solution
is obtained by selecting the ’best’ solution from among all the subproblem
minimizers. However, if the bundle update (Step 5(b)) is performed, then
it is possible that we need not to resolve each of the subproblems during
the next round. This follows from the fact that a new constraint inserted
into the subproblem (17) (i.e. the one constructed from the newest bundle
element of B1) may not be active. In such a case the previous solution of the
subproblem does not change and we need not to resolve the corresponding
subproblem.

In the ’main iteration’, the initialization and update of the safeguard
parameter tmin is based on [14]. However, since we are maintaining two
separate bundles, we have to use two different norms in the denominator of
tmin. Moreover, the parameters tmax and θ are selected according to [15, 16]
whereas the selection of the proximity parameter t is based on [14, 16].

In addition, the stopping conditions tested both at Step 0 and 3 are
similar to those in [14, 15, 16], but now instead of substationarity we test
ε-criticality. Due to this we can do the bundle deletion at Step 3 by using the
linearization errors and we do not need to keep track of distances between
auxiliary points and the current iteration point as is done in [14, 15, 16].
It is also worth noting that the descent condition (21) tested at Step 4 is

14

the one typically used in bundle methods (see, e.g., [14, 15, 16, 26, 29, 34]).
Especially, if this condition does not hold, we have to improve our cutting
plane model of f .

The reason for Step 3 is that, whenever the norm of the solution dt is
’small’, we have either achieved an ε-critical point or our cutting plane model
is inconsistent [15]. To test ε-criticality we do the bundle deletion at Step
3 and calculate aggregated ε-subgradients ξ∗

1 and ξ∗
2 for DC components f1

and f2 (i.e. we solve the norm minimization problem (19)). If aggregated
ε-subgradients are not close enough to each other, then our model is incon-
sistent and we have to decrease the value of the safeguard parameter tmax.
It is also worth noting that if nothing is removed from the bundles at Step
3, then the current solution dt divided by t is a feasible solution to the norm
minimization problem (19). Moreover, this feasible solution 1

t
dt satisfies the

approximate stopping condition, that is,

1

t
‖dt‖ <

θ

t
=

tmin

t
r δ < δ,

because ‖dt‖ < θ whenever we are executing Step 3. Therefore, we do not
need to solve the norm minimization problem (19) and the PBDC algorithm
can be stopped.

ALGORITHM 4.2. Proximal bundle method for DC functions
(PBDC)

Data: Start with choosing the criticality tolerance δ > 0 and the proximity
measure ε > 0. Select also the descent parameter m ∈ (0, 1), the decrease
parameter r ∈ (0, 1) and the increase parameter R > 1.

Step 0. (Initialization) Select a starting point x0 ∈ R
n and compute the

value of DC components f1(x0) and f2(x0). Set y1 = x0 and
initialize the iteration counter k = 0. Then calculate subgradients
ξ1,1 ∈ ∂f1(y1) and ξ2,1 ∈ ∂f2(y1) and set αk

1,1 = αk
2,1 = 0. Initialize

the bundles by setting

Bk
1 =

{

(ξ1,1, αk
1,1)

}

and Bk
2 =

{

(ξ2,1, αk
2,1)

}

and Jk
1 = Jk

2 = {1}.

Step 1. (Main iteration) Execute ’main iteration’ Algorithm 4.1. This ei-
ther yields the new iteration point xk+1 = xk +dk

t or indicates that
the current solution xk is ε-critical. In the case of ε-criticality we
STOP the algorithm with xk as the final solution.

15

Step 2. (Bundle update) Compute the new DC component values and sub-
gradients

fi(xk+1) and ξi(xk+1) ∈ ∂fi(xk+1) for i = 1, 2.

Choose the bundles Bk+1
1 ⊆ Bk

1 and Bk+1
2 ⊆ Bk

2 for the next round
and update the linearization errors using the formula

αk+1
i,j = αk

i,j + fi(xk+1) − fi(xk) − (ξi,j)
T dk

t for all i = 1, 2 and j ∈ Jk+1
i .

Insert also the element

(ξ1(xk+1), 0) into Bk+1
1 for a suitable value of the index ̂ ∈ Jk+1

1 and

(ξ2(xk+1), 0) into Bk+1
2 for a suitable value of the index ̂ ∈ Jk+1

2 .

Finally, update the iteration counter k = k + 1 and go back to
Step 1.

It is worth noting that the choice of the new bundles Bk+1
1 and Bk+1

2 is not
restricted at Step 2 of the PBDC algorithm. For this reason, it is also possible
to set Bk+1

1 = ∅ and/or Bk+1
2 = ∅. However, the bundles Bk+1

1 and Bk+1
2 are

never empty when we start the execution of the ’main iteration’. This is due
to the fact that the bundle element corresponding to the new iteration point
xk+1 is always inserted into both bundles Bk+1

1 and Bk+1
2 before going back

to Step 1.
Another nice feature of the PBDC algorithm is that the size of the bundle

Bk
2 can also be bounded during ’main iteration’ Algorithm 4.1. This means

that we are allowed to select the maximum number of stored subgradients
Jmax ≥ 2 for the bundle Bk

2 in the ’main iteration’. Therefore, we are also
able to control the number of subproblems solved. The only restriction in
this case is that the bundle element (ξ2(xk), 0) of Bk

2 (i.e. the bundle element
corresponding to the current iteration point xk) cannot be replaced or deleted
during the execution of the ’main iteration’.

5 Convergence

In this section we prove the convergence of the PBDC algorithm to an ε-
critical point and show that the termination happens after a finite number
of ’main iterations’. Throughout the section we again require the following
assumptions:

A1 The set F0 = {x ∈ R
n | f(x) ≤ f(x0)} is compact.

A2 Overestimates of the Lipschitz constants of f1 and f2 are known on the
set Fε = {x ∈ R

n | d(x, F0) ≤ ε}, where ε > 0 is the proximity mea-
sure. These constants are denoted by L1 > 0 and L2 > 0, respectively.

A3 The objective function f is finite on R
n.

16

We start with the following observation (the similar observation is given
also in [14]).

REMARK 5.1. The bundle insertion rule at Step 5 of ’main iteration’
Algorithm 4.1 guarantees that all the points corresponding to the bundle
elements in the bundles B1 and B2 are on the set Fε. Together with the
assumption A2 this implies that we always have

‖ξ1,j‖ ≤ L1 for points yj on B1 and ‖ξ2,j‖ ≤ L2 for points yj on B2. (22)

This in turn indicates that the parameters tmin and θ are bounded away from
zero at all iterations of the algorithm, because now tmin ≥ t̄ = rε1/(2L1 +
2L2) > 0 and θ ≥ θ̄ = rt̄δ > 0.

Next we prove that the solution dt of the problem (14) is bounded in
norm during the execution of the ’main iteration’.

LEMMA 5.2. For any proximity parameter t > 0 it holds that

‖dt‖ ≤ 2t
(

‖ξ1(xk)‖ + ‖ξ2,max‖
)

≤ 2t (L1 + L2) ,

where xk is the current iteration point, ξ1(xk) ∈ ∂f1(xk) is the corresponding

subgradient and ‖ξ2,max‖ = maxj∈J2

{

‖ξ2,j‖
}

.

Proof. By the definition of ∆2(d) taking into account that α2,j ≥ 0 for all
j ∈ J2, we first observe that for all d

∆2(d) = min
j∈J2

{

−(ξ2,j)
T d + α2,j

}

≥ min
j∈J2

{

−(ξ2,j)
T d
}

≥ −‖ξ2,max‖‖d‖.

The definition of ∆1(d) yields

∆1(d) ≥ (ξ1,j)
T d − α1,j for all j ∈ J1.

Now, combining the above inequalities, we see that

∆1(d) + ∆2(d) ≥ (ξ1,j)
T d − α1,j − ‖ξ2,max‖‖d‖ for all d and j ∈ J1. (23)

Because at each iteration round in Algorithm 4.1 the current iteration point
xk belongs to the bundle B1 together with a subgradient ξ1(xk) ∈ ∂f1(xk),
there exits an index ̄ ∈ J1 which corresponds to this element and in partic-
ular, α1,j = 0 for j = ̄. Now the inequality (23) holds for the index ̄ and
thus for all d

∆1(d) + ∆2(d) ≥
(

ξ1(xk)
)T

d − ‖ξ2,max‖‖d‖

≥ −‖ξ1(xk)‖‖d‖ − ‖ξ2,max‖‖d‖ = −
(

‖ξ1(xk)‖ + ‖ξ2,max‖
)

‖d‖.

17

In addition, when we take into account the property (iii) of Lemma 3.2, we
can conclude that the solution dt of the problem (14) satisfies the inequality

−
1

2t
‖dt‖

2 ≥ ∆1(dt) + ∆2(dt) ≥ −
(

‖ξ1(xk)‖ + ‖ξ2,max‖
)

‖dt‖, (24)

which gives the first part of the claim. The latter inequality follows directly
from the property (22).

REMARK 5.3. As in [15], the previous lemma can be used to guarantee
that in ’main iteration’ Algorithm 4.1 the condition ‖dt‖ ≤ θ is never satisfied
as a consequence of the choice of a too small proximity parameter t. To see
this, we start with the observation that if the ’main iteration’ does not stop
at Step 0, then ‖ξ1(xk) − ξ2(xk)‖ ≥ δ. Now, the result follows by noticing
that

‖dtmin‖ ≤ 2tmin

(

‖ξ1(xk)‖ + ‖ξ2,max‖
)

=
2
(

‖ξ1(xk)‖ + ‖ξ2,max‖
)

rδ
θ,

where the right-hand side is strictly greater than θ, since

2
(

‖ξ1(xk)‖ + ‖ξ2,max‖
)

rδ
θ ≥

2 (‖ξ1(xk)‖ + ‖ξ2(xk)‖)

rδ
θ

≥
2 (‖ξ1(xk) − ξ2(xk)‖)

rδ
θ ≥

2

r
θ > θ.

The following lemma is needed when we prove the termination of the
’main iteration’.

LEMMA 5.4. If the condition (21) at Step 4 of Algorithm 4.1 is not satis-
fied, then

ξT
1 dt − α1 > m∆1(dt) + (m − 1)∆2(dt),

where ξ1 ∈ ∂f1(y) is a subgradient calculated at the new auxiliary point
y = xk +dt and α1 = f1(xk)−f1(y)+ξT

1 dt is the corresponding linearization
error.

Proof. If the descent condition (21) is not satisfied at Step 4, then

f(y) − f(xk) > m
(

∆1(dt) + ∆2(dt)
)

,

where y = xk +dt is the new auxiliary point computed in the main iteration.
Using DC decomposition (2) of the objective function f the above inequality
can be rewritten in the form

f1(y) − f1(xk) > m
(

∆1(dt) + ∆2(dt)
)

−
(

f2(xk) − f2(y)
)

.

18

Furthermore, the property (ii) of Lemma 3.2 ensures that we always have

−f2(y) − (−f2(xk)) = f2(xk) − f2(y) ≤ ∆2(dt),

because linearizations used in ∆2(d) are above the concave function −f2.
Taking this into account, we obtain

f1(y) − f1(xk) > m∆1(dt) + (m − 1)∆2(dt)

and the result follows by noticing that

f1(y) − f1(xk) = f1(xk + dt) − f1(xk) = ξT
1 dt − α1

when ξ1 ∈ ∂f1(y) and α1 = f1(xk) − f1(y) + ξT
1 dt.

Now we are ready to consider separately two possible cases which can
occur in ’main iteration’ Algorithm 4.1. The proofs of these properties are
along guidelines of [14, 15, 16].

LEMMA 5.5. Algorithm 4.1 cannot pass infinitely many times through
Step 3.

Proof. Suppose the assertion of the lemma is false. Then Step 3 is executed
infinitely many times and let us index by i ∈ I all the quantities referred to
ith passage of Step 3. Especially the conditions

∥

∥

∥d
(i)
t

∥

∥

∥ < θi and
∥

∥

∥ξ
∗ (i)
1 − ξ

∗ (i)
2

∥

∥

∥ > δ

hold for each index i ∈ I, because we are executing Step 3 and the approxi-
mate stopping condition cannot be satisfied.

First of all, we notice that the safeguard parameter tmax is reduced ac-
cording to the formula (20) each time Step 3 is performed while tmin is both
bounded and monotonically nonincreasing. Thus, the parameter tmax be-
comes arbitrarily close to the parameter tmin when the ’main iteration’ is
executed. From this it follows that also the proximity parameter t becomes
arbitrarily close to the parameter tmin, since t ∈ [tmin, tmax]. Together with

Lemma 5.2 and the definition of the parameter t
(i)
min, this information yields

that asymptotically

‖d
(i)
t ‖ ≤ ε1 =

ε

2 max{L1, L2, 1/2}
, (25)

since we always have

‖d
(i)
t ‖ ≤ 2 ti

(

‖ξ1(xk)‖ + ‖ξ
(i)
2,max‖

)

and t
(i)
min <

ε1

2
(

‖ξ1(xk)‖ + ‖ξ
(i)
2,max‖

) .

19

This in turn indicates that if Step 5 is entered then the new bundle element
is added to the bundle B1 and possibly also to the bundle B2. From Theorem
2.1 it also follows that in this case the corresponding linearization errors are
always smaller than or equal to the crucial proximity measure ε > 0, which
is used in the bundle deletion criteria at Step 3. Therefore, these bundle
elements are never removed from the bundles. We also notice that whenever
Step 3 is executed all bundle elements, for which the linearization error is
larger than ε, are deleted from both bundles B1 and B2.

From the above considerations it follows that there exists an index ı̄ ∈ I
such that for all i > ı̄ nothing is removed from the bundles B1 and B2 when
Step 3 is performed. Because according to Theorem 3.1 the solution to the
problem (14) is always of the form

d
(i)
t = −ti

(

∑

j∈J
(i)
1

λ
(i)
ti,j

(j∗)ξ1,j − ξ2,j∗

)

,

where j∗ ∈ J
(i)
2 and

∑

j∈J
(i)
1

λ
(i)
ti,j

(j∗) = 1, we obtain that for each index i > ı̄

and i ∈ I the direction d
(i)
t can be written as

d
(i)
t = −ti

(

ξ
(i)
1 − ξ2,j∗

)

with ξ
(i)
1 ∈ conv

{

ξ1,j | j ∈ J
(i)
1

}

.

However, since
∥

∥

∥d
(i)
t

∥

∥

∥ < θi and
∥

∥

∥ξ
∗ (i)
1 − ξ

∗ (i)
2

∥

∥

∥ > δ, we get

θi >
∥

∥

∥d
(i)
t

∥

∥

∥ = ti

∥

∥

∥ξ
(i)
1 − ξ2,j∗

∥

∥

∥ ≥ t
(i)
min

∥

∥

∥ξ
∗ (i)
1 − ξ

∗ (i)
2

∥

∥

∥ > t
(i)
minδ =

θi

rδ
δ =

θi

r
> θi.

This contradicts the assumption that the algorithm does not stop.

LEMMA 5.6. Algorithm 4.1 cannot pass infinitely many times through the
sequence of steps from 4 to 6.

Proof. We again suppose, contrary to our claim, that the sequence of steps
from 4 to 6 is executed infinitely many times. We index by i ∈ I all the
quantities referred to the ith passage. The previous lemma now ensures that
Step 3 cannot be executed infinitely many times, so we can especially assume
that Step 3 is not entered after some index ı̄ ∈ I. This means that

‖d
(i)
t ‖ ≥ θi for all i > ı̄,

since otherwise we would end up in Step 3.
We begin by observing that Step 5(a) cannot occur infinitely many times.

This is due to the fact that at Step 5(a) the proximity parameter t is re-
duced, while tmin is both bounded and monotonically nonincreasing. Thus,
the proximity parameter t becomes arbitrarily close to the parameter tmin. In

20

addition, the parameter tmin is always smaller than ε1/2(‖ξ1(xk)‖+‖ξ
(i)
2,max‖)

and therefore after a finite number of iterations also the proximity parameter
t falls below the threshold ε1/2(‖ξ1(xk)‖ + ‖ξ

(i)
2,max‖). After this Step 5(a)

cannot be executed, since ‖d
(i)
t ‖ ≤ ε1 according to Lemma 5.2. Thus, there

exits an index ı̂ ∈ I such that ı̂ > ı̄ and for all i ≥ ı̂ each bundle element
corresponding to the new auxiliary point is inserted into B1 and possibly also
into B2 while the parameter t is remaining unchanged.

Now, Lemma 5.2 together with the parameter selection rule t ∈ [tmin, tmax]

guarantees that the sequence {d
(i)
t }i∈I is bounded in norm and there exists a

convergent subsequence {d
(i)
t }i∈I′⊆I which converges to a limit d̂. In addition,

the assumptions A1 and A2 together with the bundle insertion rule at Step
5 of the ’main iteration’ guarantee that all the points yj corresponding to
the bundle elements inserted into the bundles B1 and B2 are on the compact
set Fε. Also all the iteration points xk are on the compact set F0 ⊂ Fε, since
the algorithm is a descent one. Thus, there exists a constant K > 0 such
that

‖xk − yj‖ ≤ K for all points yj on B1.

Combining this information with the assumption A2 we see that

|α1,j| = |f1(xk) − f1(yj) − (ξ1,j)
T (xk − yj)|

≤ |f1(xk) − f1(yj)| + ‖ξ1,j‖‖(xk − yj)‖

≤ L1‖xk − yj‖ + L1K ≤ 2L1K

for all points yj on B1, since according to Remark 5.1 we always have
‖ξ1,j‖ ≤ L1. Similar considerations apply also for all points yj on B2 and
thus subgradients ξi,j and linearization errors αi,j are bounded for i = 1, 2.

The above considerations imply that the corresponding subsequences
{∆1(d

(i)
t)}i∈I′⊆I and {∆2(d

(i)
t)}i∈I′⊆I are also bounded. Hence, they admit a

convergent subsequence for i ∈ I ′′ ⊆ I ′ and we denote the limits by ∆̂1 and
∆̂2, respectively. Moreover, since ‖d

(i)
t ‖ ≥ θi, we obtain as a consequence of

the property (iii) of Lemma 3.2 that

∆1

(

d
(i)
t

)

+ ∆2

(

d
(i)
t

)

≤ −
1

2ti

∥

∥

∥d
(i)
t

∥

∥

∥

2
≤ −

θ2
i

2ti

< 0 for all i ∈ I (26)

and thus also
∆̂1 + ∆̂2 ≤ −

θ̂2

2t̂
< 0,

where t̂ = limi→∞ ti > 0 and θ̂ = limi→∞ θi > 0. Now the strictly positive
limit t̂ exists for the parameter ti, because ti is not changed after the round
ı̂ ∈ I and the safeguard parameter t

(i)
min is always strictly positive according

to Remark 5.1. Furthermore, from Remark 5.1 we obtain that the local
proximity measure θi is always strictly positive. Since θi is bounded below
and also nonincreasing, it has a strictly positive limit θ̂.

21

Next, let r and s be two successive indices in I ′′ and α1,r = f1(xk) −

f1(xk + d
(r)
t) + (ξ1,r)

T d
(r)
t with ξ1,r ∈ ∂f1(xk + d

(r)
t). We get

(ξ1,r)
T d

(r)
t − α1,r > m∆1

(

d
(r)
t

)

+ (m − 1)∆2

(

d
(r)
t

)

(27)

and

∆1

(

d
(s)
t

)

≥ (ξ1,r)
T d

(s)
t − α1,r , (28)

where the first inequality follows from Lemma 5.4 and the latter one is an
immediate consequence of the definition of ∆1(d). Finally, combining of (27)
and (28) gives

∆1

(

d
(s)
t

)

− m∆1

(

d
(r)
t

)

+ (1 − m)∆2

(

d
(r)
t

)

> (ξ1,r)
T

(

d
(s)
t − d

(r)
t

)

and passing to the limit yields

(1 − m)
(

∆̂1 + ∆̂2

)

≥ 0,

which contradicts the fact that ∆̂1 + ∆̂2 < 0, since m ∈ (0, 1).

From Lemmas 5.5 and 5.6 we immediately get the next result.

THEOREM 5.7. The ’main iteration’ terminates after a finite number of
steps.

Finally, we show the finite termination of the overall bundle algorithm.
The proof is again obtained in the same way as in [14, 15, 16]. Moreover,
we can show that the convergence of the PBDC algorithm does not depend
on the starting point x0 if the assumption A1 holds for all x0 ∈ R

n. Thus,
PBDC can be called globally convergent in a sense that starting from any
arbitrary point x0 ∈ R

n it generates a sequence {xk} that converges to an
ε-critical point x∗. Note that the solution obtained is actually a critical one
if the stopping condition tested at Step 0 of the ’main iteration’ is the cause
of the termination of the algorithm.

THEOREM 5.8. For any parameter δ > 0 and ε > 0, the execution of
the PBDC algorithm 4.2 stops after a finite number of ’main iterations’ at a
point x∗ satisfying the approximate ε-criticality condition

‖ξ∗
1 − ξ∗

2‖ ≤ δ with ξ∗
1 ∈ ∂εf1(x

∗) and ξ∗
2 ∈ ∂εf2(x

∗). (29)

Proof. First of all, the stopping condition tested both at Step 0 and 3 of
the ’main iteration’ is exactly the approximate ε-criticality condition (29).
Next, we prove that one of these stopping conditions has to be verified after

22

a finite number of ’main iterations’, because otherwise the objective function
f is not bounded below.

Suppose by contradiction that the claim is false. Then the ’main iteration’
is entered infinitely many times and let us index by k ∈ K all the quantities
obtained from the kth passage. From Theorem 5.7 it follows that each of
these ’main iterations’ produces a new iteration point and especially the
descent condition (21) is satisfied. Thus

f(xk) − f(xk−1) ≤ m
(

∆1

(

d
(k)
t

)

+ ∆2

(

d
(k)
t

)

)

for all k ∈ K

and summing up the first k of the above inequalities yields

f(xk) − f(x0) ≤
k
∑

i=1

m
(

∆1

(

d
(i)
t

)

+ ∆2

(

d
(i)
t

)

)

.

Letting k → ∞ and taking into account (26), together with the facts that θk

is bounded away from zero and tk ≤ t(k)
max < ∞, we conclude that

lim
k→∞

f(xk) − f(x0) ≤ −∞.

This is a contradiction, since the function f is assumed to be finite.

6 Computational results

In this section we present some numerical results to verify the practical effi-
ciency of the proposed PBDC algorithm. We especially consider some aca-
demic test problems with nonsmooth DC objectives and those test problems
are introduced in the next subsection. After that we give a short description
of the implementation of the PBDC algorithm and also present three other
existing methods for nonsmooth optimization which are used for compar-
isons. Finally, we report our numerical experiments and analyze the results.

6.1 Test problems

All test problems are unconstrained DC optimization problems, where ob-
jective functions are presented as DC functions:

f(x) = f1(x) − f2(x).

Therefore in the description of all test problems we present only functions f1

and f2. The following notations are used to describe test problems:

x0 ∈ R
n – starting point;

x∗ ∈ R
n – known best solution;

f ∗ – known best value of the objective function.

23

Problem 1. [4]
Dimension: n = 2,
Component functions:
f1(x) = max{f1

1 (x), f2
1 (x), f3

1 (x)} + f1
2 (x) + f2

2 (x) + f3
2 (x),

f2(x) = max{f1
2 (x) + f2

2 (x), f2
2 (x) + f3

2 (x), f1
2 (x) + f3

2 (x)},
f1

1 (x) = x4
1 + x2

2, f2
1 (x) = (2 − x1)2 + (2 − x2)2, f3

1 (x) = 2e−x1+x2 ,
f1

2 (x) = x2
1 − 2x1 + x2

2 − 4x2 + 4, f2
2 (x) = 2x2

1 − 5x1 + x2
2 − 2x2 + 4,

f3
2 (x) = x2

1 + 2x2
2 − 4x2 + 1,

Starting point: x0 = (2, 2)T ,
Optimum point: x∗ = (1, 1)T ,
Optimum value: f∗ = 2.

Problem 2. [4]
Dimension: n = 2,
Component functions: f1(x) = |x1 − 1| + 200 max{0, |x1| − x2},
f2(x) = 100(|x1| − x2),
Starting point: x0 = (−1.2, 1)T ,
Optimum point: x∗ = (1, 1)T ,
Optimum value: f∗ = 0.

Problem 3. [4]
Dimension: n = 4,
Component functions: f1(x) = |x1 − 1| + 200 max{0, |x1| − x2}

+180 max{0, |x3|−x4}+ |x3 −1|+10.1(|x2 −1|+ |x4 −1|)+4.95|x2 +x4 −2|,
f2(x) = 100(|x1| − x2) + 90(|x3| − x4) + 4.95|x2 − x4|,
Starting point: x0 = (1, 3, 3, 1)T ,
Optimum point: x∗ = (1, 1, 1, 1)T ,
Optimum value: f∗ = 0.

Problem 4. [4]
Dimension: n = 2, 5, 10, 50, 100, 150, 200, 250, 350, 500, 750,
Component functions: f1(x) = n max {|xi| : i = 1, . . . , n} , f2(x) =

∑n
i=1 |xi|,

Starting point: x0 = (i, i = 1, . . . , ⌊n/2⌋ , − i, i = ⌊n/2⌋ + 1, . . . , n)T ,
Optimum point: x∗ = (x∗

1, . . . , x∗
n)T , x∗

i = α or x∗
i = −α, α ∈ R, i = 1, . . . , n,

Optimum value: f∗ = 0.

Problem 5. [4]
Dimension: n = 2, 5, 10, 50, 100, 150, 200, 250, 300, 350, 400, 500, 1000,
1500, 3000, 10 000, 15 000, 20 000, 50 000,

Component functions: f1(x) = 20 max
{∣

∣

∣

∑n
i=1(xi − x∗

i)ti−1
j

∣

∣

∣ : j = 1, . . . , 20
}

,

f2(x) =
∑20

j=1

∣

∣

∣

∑n
i=1(xi − x∗

i)ti−1
j

∣

∣

∣ , tj = 0.05j, j = 1, . . . , 20,

Starting point: x0 = (0, . . . , 0)T ,
Optimum point: x∗ = (1/n, . . . , 1/n)T ,
Optimum value: f∗ = 0.

24

Problem 6.

Dimension: n = 2
Component functions: f1(x) = x2 + 0.1(x2

1 + x2
2) + 10 max {0, −x2},

f2(x) = |x1| + |x2|,
Starting point: x0 = (10, 1)T ,
Optimum point: x∗ = (5, 0)T ,
Optimum value: f∗ = −2.5.

Problem 7.

Dimension: n = 2
Component functions: f1(x) = |x1 − 1| + 200 max{0, |x1| − x2}

+ 10 max{x2
1 + x2

2 + |x2|, x1 + x2
1 + x2

2 + |x2| − 0.5, |x1 − x2| + |x2| − 1, x1 + x2
1 + x2

2},
f2(x) = 100(|x1| − x2) + 10(x2

1 + x2
2 + |x2|),

Starting point: x0 = (−2, 1)T ,
Optimum point: x∗ = (0.5, 0.5)T ,
Optimum value: f∗ = 0.5.

Problem 8.

Dimension: n = 3
Component functions: f1(x) = 9 − 8x1 − 6x2 − 4x3 + 2|x1| + 2|x2| + 2|x3|

+ 4x2
1 + 2x2

2 + 2x2
3 + 10 max{0, x1 + x2 + 2x3 − 3, −x1, −x2, −x3},

f2(x) = |x1 − x2| + |x1 − x3|,
Starting point: x0 = (0.5, 0.5, 0.5)T ,
Optimum point: x∗ = (0.75, 1.25, 0.25)T ,
Optimum value: f∗ = 3.5.

Problem 9.

Dimension: n = 4
Component functions: f1(x) = x2

1 + (x1 − 1)2 + 2(x1 − 2)2 + (x1 − 3)2 + 2x2
2

+ (x2 − 1)2 + 2(x2 − 2)2 + x2
3 + (x3 − 1)2 + 2(x3 − 2)2 + (x3 − 3)2

+ 2x2
4 + (x4 − 1)2 + 2(x4 − 2)2

f2(x) = max{(x1 − 2)2 + x2
2, (x3 − 2)2 + x2

4}
+ max{(x1 − 2)2 + (x2 − 1)2, (x3 − 2)2 + (x4 − 1)2}
+ max{(x1 − 3)2 + x2

2, (x3 − 3)2 + x2
4} + max{x2

1 + (x2 − 2)2, x2
3 + (x4 − 2)2}

+ max{(x1 − 1)2 + (x2 − 2)2, (x3 − 1)2 + (x4 − 2)2},
Starting point: x0 = (4, 2, 4, 2)T ,
Optimum point: x∗ = (7/3, 1/3, 0.5, 2),
Optimum value: f∗ = 11/6.

Problem 10.

Dimension: n = 2, 4, 5, 10, 20, 50, 100, 150, 200
Component functions: f1(x) =

∑n
i=1 x2

i , f2(x) =
∑n

i=2 |xi − xi−1|,
Starting point: x0 = (x0,1, . . . , x0,n)T , x0,i = 0.1i,
Optimum point: For even n: x∗ = (x∗

1, . . . , x∗
n)T : x∗

1 = −0.5, x∗
n = 0.5,

x∗
2i = 1, i = 1, . . . , n/2 − 1, x∗

2i+1 = 1, i = 1, . . . , n/2 − 1,
For odd n ≥ 3: x∗ = (x∗

1, . . . , x∗
n)T : x∗

1 = −0.5, x∗
n = 0.5, x∗

j = 0,
j = ⌊n/2⌋ + 1, x∗

2i = 1, x∗
2i+1 = −1, for 2i ≤ ⌊n/2⌋ , x∗

2i = −1,
x∗

2i+1 = 1, for 2i > ⌊n/2⌋ + 1,
Optimum value: For even n: f∗ = 1.5 − n,

For odd n ≥ 3: f∗ = 2.5 − n.

25

6.2 Implementation and parameters

In order to compare the results obtained with the PBDC algorithm, we have
used three other algorithms for nonsmooth optimization. The tested imple-
mentations of all the algorithms are presented in Table 1 together with the
references to more detailed description of the methods. In what follows, we
give a short description of each algorithm and its implementation.

Table 1: Tested pieces of software

Software Author Algorithm Reference
PBDC Joki Bundle method for DC function
MPBNCG Mäkelä Proximal bundle method [30, 31]
NonsmoothDCA Bagirov DCA (DC algorithm) [2, 3]
TCM Bagirov Truncated codifferential method [6]

PBDC is an implementation of the bundle method proposed in this article.
However, this implementation slightly differs from the PBDC algorithm pre-
sented in Section 4, since in the ’main iteration’ algorithm it utilizes a sub-
gradient aggregation technique of the type introduced by Kiwiel [24] into the
bundle B1 (a similar type of aggregation is also used in [14]). This way we
are able to store some information from the previous iterations even thought
the size of the bundle B1 has to be kept bounded in the implementation.

Next we look closer how the aggregation scheme is performed in ’main
iteration’ Algorithm 4.1. First of all, let i∗ ∈ J2 be the index of the subprob-
lem (16) yielding the global solution dt at Step 2 of the ’main iteration’. Now
according to Theorem 3.1

dt = dt(i
∗) = −t

∑

j∈J1

λt,j(i
∗)ξ1,j − ξ2,i∗

vt(i
∗) = −

1

t
‖dt(i

∗)‖2 −
∑

j∈J1

λt,j(i
∗)α1,j + α2,i∗ .

Thus, we are able to compute the following aggregated quantities

ξ1,a =
∑

j∈J1

λt,j(i
∗)ξ1,j = −

1

t
dt(i

∗) + ξ2,i∗

α1,a =
∑

j∈J1

λt,j(i
∗)α1,j = −

1

t
‖dt(i

∗)‖2 − vt(i
∗) + α2,i∗ ,

which can be inserted into the bundle B1 at Step 2 of the ’main iteration’
algorithm. It is also worth noting that we store only one aggregated element
at a time and for this reason the old aggregated element is overwritten each

26

time when we obtain a new one. We can also easily verify that for i∗ ∈ J2

the solution dt(i
∗) of the subproblem

minimize (ξ1,a − ξ2,i∗)T d − α1,a + αk
2,i∗ + 1

2t
‖d‖2

subject to d ∈ R
n,

where the bundle B1 contains only the aggregated element, is also dt. Thus,
we are never going to overwrite the bundle element of B2 which yields the
most recent global solution.

PBDC is implemented in double precision Fortran 95. The subroutine
PLQDF1 [27] is used to solve the quadratic subproblems (17) and the norm
minimization problem (19) is solved by the subroutine PVMM [28], which
is a variable metric algorithm for unconstrained and linearly constrained
optimization. The Fortran source code of PBDC can be downloaded from
http://napsu.karmitsa.fi/pbdc/.

MPBNGC is an implementation of the proximal bundle method [31], which is
designed for a general nonsmooth objective. Therefore, we cannot utilize
the DC decomposition of the objective function f . However, the function f
is assumed to be locally Lipschitz continuous. In the method we approxi-
mate the subdifferential of the original objective function f with a bundle,
which consists of subgradients of the objective function from the previous
iterations. Similarly to the PBDC method this subgradient information is
used to construct a specific cutting plane model for the objective function f
and a search direction is then obtained as a solution to a quadratic direction
finding problem using this piecewise linear approximation. If the direction
obtained yields a sufficient descent, then we are able to calculate a new iter-
ation point. Otherwise we add more information into the bundle to improve
the cutting plane model and solve a new quadratic direction finding problem.
This method utilizes also the subgradient aggregation technique [24]. More-
over, linearization errors are substituted with subgradient locality measures
[25]. It is proved that under the upper semi-smoothness assumption [9] the
proximal bundle method converges to a substationarity point of the function
f [26, 31, 34].

The code of MPBNGC includes constraint handling together with a possi-
bility to solve multiobjective programming problems. This software also uses
the subroutine PLQDF1 [27] to solve the quadratic direction finding prob-
lem usually encountered in bundle methods. The Fortran 77 source code of
MPBNGC can be downloaded from http://napsu.karmitsa.fi/proxbundle/.

NonsmoothDCA is an implementation of the well-known DCA (DC algorithm)
[2, 3]. Next we give a very brief description of the algorithm. Detailed
description of DCA and its deeper insight analysis can be found in [2, 3].

27

The main idea behind DCA is to replace in the DC programming problem
(1), at the current point xk, the second DC component f2 with its affine
minorization defined by

f̃k
2 (x) = f2(xk) + ξT

2,k(x − xk),

where ξ2,k ∈ ∂f2(xk) is a subgradient calculated at xk. Then the next
iteration point xk+1 is obtained as a solution to the convex program

minimize f1(x) − f̃k
2 (x)

subject to x ∈ R
n.

(30)

The algorithm repeats iterations until the convergence of the sequence {xk}.
In general, the DCA converges to a critical point of the function f .

NonsmoothDCA is implemented in Fortran 77. Since in most test problems
the function f1 is nonsmooth the problem (30) is solved using the implemen-
tation of the quasisecant method from [5]. The Fortran 77 source code can
be downloaded from http://napsu.karmitsa.fi/dca/.

TCM is an implementation of the truncated codifferential method, which was
introduced in [6]. The truncated codifferential method is based on the con-
cept of codifferential [11] and it uses the explicit DC decomposition of the
function f . At the current iteration point xk this method approximates the
hypodifferential [11] of the DC component f1 using subgradients at points
from the ball with a given radius and the subdifferential of the DC compo-
nent f2 at the current iteration point xk. A search direction is then found by
using these approximations. If this search direction gives a sufficient descent
then the new iteration point xk+1 is computed, otherwise the algorithm im-
proves the approximation of the codifferential. It is proved that a procedure
for finding search directions is finite convergent: after finite number of steps
either the algorithm finds the descent direction or some necessary condition
for a minimum is satisfied. In the latter case the algorithm decreases the
radius of the ball. It is also showed that under some conditions the trun-
cated codifferential method converges to an inf-stationary point [11] of the
objective function f .

In this paper we have used the same implementation for the truncated
codifferential method as in [6]. The Fortran 77 source code of TCM can be
downloaded form http://napsu.karmitsa.fi/tcm/.

All the algorithms were implemented in Fortran with double precision
arithmetic. The codes were compiled by using f95, the Fortran 95 com-
piler, and tests were performed on an Intelr CoreTM i5-2400 CPU (3.10GHz,
3.10GHz) running on Windows 7.

28

The preliminary testing of PBDC has showed that the tuning of the param-
eters is particularly relevant to the performance of the new method. There-
fore, we have chosen the criticality tolerance

δ =

0.005n, if n < 150

0.015n, if 150 ≤ n ≤ 200

0.05n, if n > 200,

the proximity measure ε = 0.1, the decrease parameter

r =

0.75, if n < 10

the first two decimals of n/(n + 5), if 10 ≤ n < 300

0.99, if n ≥ 300,

the increase parameter R = 107 and the descent parameter m = 0.2. More-
over, the proximity parameter t is set to 0.8(tmin+tmax), whenever it has to be
selected from the interval [tmin, tmax]. In order to implement the algorithm,
we have limited the number of stored subgradients and the maximum size
of the bundle B1 has been set to min{n + 5, 1000} (the aggregated element
is not taken into account in this value). Furthermore, with n = 50 000, we
had to limit the size of the bundle B1 to 20, because otherwise we could not
compile the code PBDC. In all cases, the size of the bundle B2 has been set
to 3. The PBDC algorithm needs also approximations of Lipschitz constants
of DC components and, since these values can be overestimated, we have
selected L1 = L2 = 1000.

In MPBNGC, the maximum size of the bundle has been set to min{n + 3,
1000}, when n < 20 000. For larger dimensions, we have used the bundle size
20. Moreover, the final objective function accuracy parameter ε has been set
to 10−10. For all the other parameters we have used the default settings of the
code MPBNGC [30]. Furthermore, in the parameter selections of NonsmoothDCA

and TCM we have used the defaults values [5, 6].

6.3 Numerical results

We have summarized the results of our numerical experiments in Table 2,
where we have used the following notations:

• Prob. is the number of the problem

• n is the number of variables

• nf is the number of function evaluations for the objective function f

• nfi
is the number of function evaluations for the DC component fi

• nξ is the number of subgradient evaluations for the objective function f

• nξi
is the number of subgradient evaluations for the DC component fi

29

• time is the CPU time in seconds

• f is the obtained value of the objective function when the algorithm stops.

In addition, MPBNGC uses the same amount of function and subgradient eval-
uations, that is nf = nξ. It is also worth noting that for some solvers we
report the function and subgradient evaluations for the DC components.
Therefore, to obtain somewhat comparable results we have summed up the
DC component-wise values and compared nf1 + nf2 and nξ1

+ nξ2
to nf and

nξ, respectively. However, this comparison does not take into account the
fact that the evaluations for the DC components are less costly than the
ones for the original objective function. Due to this the values nf1 + nf2 and
nξ1

+ nξ2
overestimate computational effort when compared to nf and nξ.

The results presented in Table 2 show that the new solver PBDC is more
reliable to find global minimizers than the other solvers. PBDC only fails to
find the global minimizer in two cases out of 46 (Problem 10 (n = 150, 200))
and both of these problems are quite difficult, since they are not solved glob-
ally by any of the solvers. Moreover, the solver PBDC seems to be especially
efficient to solve globally Problems 7–10, whereas the other methods usually
do not succeed in that, except for TCM. Despite of being more unreliable than
PBDC, the solvers MPBNGC and TCM have also quite a good performance, since
they both find the best solution approximately in 75 % of the cases. However,
the solver NonsmoothDCA is the most unreliable one, since it fails to find the
global minimizer in 21 cases out of 46. It is also worth noting that in Prob-
lem 5, when n ≥ 3000, neither of the solvers NonsmoothDCA and TCM can be
compiled or run. The same thing happens also in MPBNGC, when n ≥ 20 000,
and therefore the new solver PBDC is the only one yielding a solution.

From Table 2 we can observe, that the new solver PBDC is the one using
the least evaluations in Problems 2–6. In other problems PBDC usually loses
to MPBNGC, since the function and subgradient evaluations of PBDC are a
little bit greater than those of MPBNGC. However, it is worth noting that
in some of the problems (Problems 7–10) MPBNGC does not find the global
minimizer unlike PBDC, making it hard to say if MPBNGC really is more efficient
than PBDC in those cases. The solvers PBDC and MPBNGC are also the fastest
ones and in general the CPU times of those solvers are approximately the
same. Only in some cases of Problem 4 (n = 150, 200, 250) and Problem 5
(n = 15 000) PBDC loses to MPBNGC. However, when the dimension of Problem
4 grows (i.e. n = 350, 500, 750), the new solver PBDC is much faster than
MPBNGC. Furthermore, NonsmoothDCA uses significantly more computational
efforts than the other solvers and therefore, it has the worst performance
among all the methods. TCM requires also a lot more function and subgradient
evaluations than PBDC and MPBNGC. Despite of that, the CPU times of TCM are
approximately the same as in PBDC and MPBNG, whenever the global minimizer
is found.

30

Table 2: Summary of the numerical results
PBDC MPBNGC NonsmoothDCA TCM

P rob. n nf nξ1
nξ2

time f nf , nξ time f nf1
nf2

nξ1
nξ2

time f nf nξ time f

1 2 22 17 16 0.00 2.0000000198 17 0.00 2.0000000000637 116 4 80 2 0.00 3.163836310813∗ 333 135 0.01 2.00000000016

2 2 21 15 15 0.00 1.10977 · 10−12 39 0.00 2.30926 · 10−14 139 4 105 2 0.00 1.000000006012∗ 526 129 0.01 8.44528 · 10−9

3 4 25 15 11 0.00 2.26888 · 10−12 112 0.00 2.22091 · 10−11 439 5 358 3 0.00 3.87083 · 10−9 517 218 0.01 3.71039 · 10−9

4 2 6 3 3 0.00 8.43769 · 10−15 7 0.00 4.440892 · 10−16 100 4 53 2 0.01 2.43370 · 10−10 125 55 0.00 4.05524 · 10−11

4 5 13 6 5 0.00 0.000000000000 30 0.00 3.55271 · 10−15 325 4 246 2 0.00 2.85320 · 10−10 399 180 0.00 3.66982 · 10−10

4 10 16 11 9 0.00 5.68434 · 10−14 61 0.00 0.000000000000 717 4 616 2 0.01 9.15171 · 10−10 844 388 0.01 1.06388 · 10−9

4 50 52 51 12 0.13 9.09494 · 10−13 561 0.29 1.12621 · 10−12 5823 6 5609 4 5.32 1.26078 · 10−9 6891 3368 3.56 2.80851 · 10−9

4 100 102 102 30 1.99 9.09494 · 10−13 1489 3.67 1.17310 · 10−11 12717 7 12459 5 150.2 2.71484 · 10−9 23299 11479 114.3 1.66346 · 10−9

4 150 198 198 70 15.00 1.67092 · 10−5 1592 10.17 −1.00897 · 10−11 974363 647 972524 645 15919 38.55251∗ 21474 10389 75.11 1156.55819∗

4 200 341 341 132 64.15 3.63797 · 10−12 3528 36.08 9.66338 · 10−13 956640 634 954261 632 12676 570.20237∗ 26645 12735 51.23 2515.04507∗

4 250 502 502 187 210.8 7.27595 · 10−12 3619 80.28 1.04108 · 10−10 938663 620 935851 618 15295 704.72555∗ 55145 26833 167.4 4608.73643∗

4 350 705 705 331 743.7 7.27595 · 10−12 9594 1191.3 2.66339 · 10−10 827404 535 821439 533 13052 2091.28680∗ 72241 34944 207.9 14168.40099∗

4 500 1357 1357 677 4120.3 5.38420 · 10−10 100000 16367 −3.54219 · 10−10 795446 511 788690 509 12504 5472.92134∗ 61177 29345 157.2 40663.80100∗

4 750 2258 2258 1489 22919 3.55066 · 10−9 49043 57396 7.42923 · 10−10 369108 212 349011 210 4249 20872.37875∗ 138040 66836 421.8 104683.25419∗

5 2 10 4 4 0.00 0.000000000000 5 0.00 8.88178 · 10−16 70 4 45 2 0.00 1.67526 · 10−9 149 66 0.00 1.99221 · 10−10

5 5 15 7 6 0.00 6.12843 · 10−14 25 0.00 3.60822 · 10−15 943 5 290 3 0.01 1.53050 · 10−10 1176 411 0.01 7.12619 · 10−10

5 10 21 14 11 0.00 3.54161 · 10−13 131 0.01 8.08532 · 10−11 104114 573 102099 571 2.01 1.52056 · 10−11 1316 479 0.01 2.56584 · 10−5

5 50 103 94 69 0.27 8.10106 · 10−13 51 0.02 8.19851 · 10−11 494993 614 491865 612 55.89 8.45877 · 10−4 1683 707 0.04 1.73820 · 10−5

5 100 47 28 23 0.36 8.56592 · 10−13 45 0.03 1.00426 · 10−10 941771 624 939068 622 153.2 3.05781 · 10−3 1785 754 0.08 1.58279 · 10−5

5 150 80 53 43 0.32 2.58052 · 10−12 43 0.05 7.72262 · 10−11 923022 611 919835 609 248.7 7.47693 · 10−4 1800 778 0.13 3.56810 · 10−5

5 200 107 56 47 0.40 4.63365 · 10−12 100000 209.8 3.85558 · 10−2 925026 614 921923 612 178.6 3.11222 · 10−4 1633 685 0.12 2.95805 · 10−6

5 250 55 49 40 0.43 3.05058 · 10−11 58 0.11 7.69885 · 10−12 958656 637 956191 635 184.6 4.12652 · 10−3 1744 745 0.19 4.17524 · 10−5

5 300 36 27 24 0.48 1.84993 · 10−11 105 0.29 6.85744 · 10−11 933889 619 931010 617 216.5 1.93779 · 10−3 1827 779 0.21 7.26738 · 10−5

5 350 43 34 27 0.39 1.27391 · 10−10 117 0.55 9.87137 · 10−11 948611 629 946077 627 248.6 1.76198 · 10−3 1599 678 0.21 3.30601 · 10−4

5 400 44 36 24 0.91 7.88742 · 10−11 95 0.36 8.43775 · 10−11 938748 623 935999 621 277.3 2.09469 · 10−4 2274 954 0.40 8.77218 · 10−5

5 500 29 22 18 1.46 2.10487 · 10−10 52 0.25 1.84398 · 10−12 935634 621 932878 619 371.5 1.62630 · 10−4 1493 637 0.30 3.66659 · 10−5

5 1000 32 26 22 0.62 4.74784 · 10−10 42 0.42 8.81669 · 10−11 959271 639 957081 637 715.2 3.34356 · 10−2 968 414 0.43 5.39214 · 10−4

5 1500 25 20 16 0.73 6.26813 · 10−10 41 0.74 4.89645 · 10−11 950142 631 947652 629 1065.0 8.81968 · 10−3 1380 562 0.93 1.33563 · 10−3

5 3000 29 24 16 2.36 1.94150 · 10−9 33 1.42 3.54419 · 10−11 fail fail

5 10000 22 19 11 4.92 5.93449 · 10−9 33 5.53 5.29412 · 10−11 fail fail

5 15000 178 54 48 51.83 2.65698 · 10−8 29 7.43 2.93902 · 10−11 fail fail

5 20000 152 43 39 50.16 1.41162 · 10−3 fail fail fail

5 50000 99 26 26 74.97 5.71421 · 10−4 fail fail fail
6 2 27 19 15 0.00 −2.49999973 53 0.00 −2.4999999999998 78 4 64 2 0.00 −2.4999999999999973 164 71 0.00 −2.4999999999999942
7 2 72 63 40 0.00 0.5000000035 27 0.00 1.0000000000129∗ 6671 64 4879 62 0.02 1.0000000013337100∗ 482 166 0.01 0.50000000572692649
8 3 84 64 40 0.00 3.5000001579 23 0.00 3.7727272727785∗ 114 4 82 2 0.00 3.7500000000000004∗ 337 148 0.00 3.5000000000000000
9 4 90 78 41 0.00 1.8333334317 4 0.00 9.199999999999995∗ 149 6 147 4 0.00 9.1999999999999957∗ 307 135 0.01 9.1999999999999886∗

10 2 21 13 7 0.00 −0.499999982 18 0.00 −0.499999999977 120 4 74 2 0.00 −0.50000000000000000 270 116 0.00 −0.49999999999999967
10 4 23 16 9 0.00 −2.499999788 11 0.00 −2.499999999991 201 5 136 3 0.00 −2.4999999999999991 342 148 0.00 −2.4999999999999996
10 5 22 13 10 0.00 −2.499999876 18 0.00 −2.499999999985 108 4 72 2 0.00 −0.49999999999999800∗ 341 156 0.01 −2.4999999999999978
10 10 59 45 23 0.01 −8.499999618 27 0.00 −6.499999999994∗ 504 8 355 6 0.00 −4.4999999999999982∗ 408 185 0.01 −8.5000000000000000
10 20 60 44 20 0.01 −18.49998801 88 0.00 −16.499999999998∗ 112 4 78 2 0.00 −0.50000003220404700∗ 524 237 0.01 −18.500000000000004
10 50 140 121 54 0.12 −48.49989423 5 0.00 −0.500000000000∗ 114717 661 121080 659 1.65 −4.5000000000000009∗ 801 350 0.01 −48.500000000000028
10 100 352 343 92 1.50 −98.49997663 141 0.02 −90.49999999996∗ 123 4 75 2 0.00 −0.50000002475810812∗ 1166 520 0.62 −98.499999999999986
10 150 447 446 104 4.47 −126.489324∗ 154 0.04 −134.499999999994∗ 141 4 88 2 0.01 −0.49999999999999656∗ 810 332 0.01 −145.54188264339533∗

10 200 321 320 86 4.34 −90.4958107∗ 8 0.00 −82.500000000000∗ 342628 661 347655 659 28.85 −4.4999999999999991∗ 1388 587 0.13 −192.50000000000011∗

∗ the obtained value of the objective function f is not optimal

31

All in all, we can conclude that the new solver PBDC is really efficient
to solve the DC programming problems presented in this article, since it
requires often the least computational effort and also finds the best solution
almost in each case. Our results also confirm that PBDC has a significantly
better ability to find global minimizers of DC functions than the other three
methods tested.

7 Conclusions

In this paper, we have developed a new proximal bundle method (PBDC)
for unconstrained nonsmooth DC optimization. The overall structure of the
algorithm is a quite typical one for proximal bundle methods. However, in
the model construction it utilizes explicitly the DC decomposition of the ob-
jective function, since the cutting plane model of the objective function is
obtained by combining the separate approximations of the DC components.
Therefore, unlike the other bundle methods, PBDC maintains two different
bundles which approximate the subdifferentials of the convex DC compo-
nents. The global convergence of the new method has been proved to an
ε-critical point under mild assumptions.

The presented results of numerical experiments confirm that the new
PBDC algorithm is efficient for solving nonsmooth DC programming prob-
lems. The most interesting fact is that, even though PBDC is only a local
solution method, it nearly always succeeds in finding the global minimizer
of a problem. Therefore, the new method seems to be a good alternative for
minimization of nonsmooth DC functions, if only a DC representation of the
objective function is available.

Acknowledgments. This work has been financially supported by the Jenny
and Antti Wihuri Foundation, the Turku University Foundation and the
University of Turku. The research by Dr. A.M. Bagirov was supported under
Australian Research Council’s Discovery Projects funding scheme (project
number: DP140103213).

References

[1] L.T.H. An and P.D. Tao: Solving a class of linearly constrained indefinite
quadratic problems by D.C. algorithms. Journal of Global Optimization,
11(3):253–285, 1997.

[2] L.T.H. An and P.D. Tao: The DC (difference of convex functions) pro-
gramming and DCA revisited with DC models of real world nonconvex
optimization problems. Annals of Operations Research, 133:23–46, 2005.

32

[3] L.T.H. An, H.V. Ngai and P.D. Tao: Exact penalty and error bounds in
DC programming. Journal of Global Optimization, 52(3):509–535, 2012.

[4] A.M. Bagirov: A method for minimizing of quasidifferentiable functions.
Optimization Methods and Software, 17(1):31–60, 2002.

[5] A.M. Bagirov and A.N. Ganjehlou: A quasisecant method for minimiz-
ing nonsmooth functions. Optimization Methods and Software, 25(1):3–
18, 2010.

[6] A.M. Bagirov and J. Ugon: Codifferential method for minimizing non-
smooth DC functions. Journal of Global Optimization, 50(1):3–22, 2011.

[7] A.M. Bagirov and J. Yearwood: A new nonsmooth optimisation algo-
rithm for minimum sum-of-squares clustering problems. European Jour-
nal of Operational Research, 170(2):578–596, 2006.

[8] A.M. Bagirov, N. Karmitsa and M.M. Mäkelä: Introduction to Non-
smooth Optimization: Theory, Practice and Software. Springer, Cham,
Heidelberg, 2014.

[9] A. Bihain: Optimization of upper semidifferentiable functions. Journal
of Optimization Theory and Applications, 44(4):545–568, 1984.

[10] F.H. Clarke: Optimization and Nonsmooth Analysis. John Wiley & Sons,
New York, 1983.

[11] V.F. Demyanov and A.M. Rubinov: Constructive Nonsmooth Analysis
(Approximation and Optimization). Vol. 7, Peter Lang, Frankfurt am
Main, Germany, 1995.

[12] V.F. Demyanov, A.M. Bagirov and A.M. Rubinov: A method of trun-
cated codifferential with application to some problems of cluster analy-
sis. Journal of Global Optimization, 23(1):63–80, 2002.

[13] A. Ferrer: Representation of a polynomial function as a difference of
convex polynomials with an application. Lectures Notes in Economics
and Mathematical Systems, 502:189–207, 2001.

[14] A. Fuduli, M. Gaudioso and G. Giallombardo: A DC piecewise affine
model and a bundling technique in nonconvex nonsmooth minimization.
Optimization Methods and Software, Vol. 19(1):89–102, 2004.

[15] A. Fuduli, M. Gaudioso and G. Giallombardo: Minimizing nonconvex
nonsmooth functions via cutting planes and proximity control. SIAM
Journal on Optimization, 14(3):743–756, 2004.

33

[16] A. Fuduli, M. Gaudioso and E.A. Nurminski: A splitting bundle ap-
proach for non-smooth non-convex minimization. Optimization, 2013,
1–21. doi: 10.1080/02331934.2013.840625

[17] P. Hartman: On functions representable as a difference of convex func-
tions. Pacific Journal of Mathematics, 9(3):707–713, 1959.

[18] J.B. Hiriart-Urruty: Generalized differentiability, duality and optimiza-
tion for problems dealing with differences of convex functions. Lecture
Note in Economics and Mathematical Systems, 256:37–70, 1985.

[19] J.B. Hiriart-Urruty: From convex optimization to nonconvex optimiza-
tion. Part I: Necessary and sufficient conditions for global optimality.
Nonsmooth Optimization and Related Topics, Ettore Majorana Inter-
national Sciences Series, Volume 43, Plenum Press, 1988.

[20] K. Holmberg and H. Tuy: A production-transportation problem with
stochastic demand and concave production costs. Mathematical Pro-
gramming, 85(1):157–179, 1999.

[21] R. Horst and N.V. Thoai: DC programming: Overview. Journal of Op-
timization Theory and Applications, 103(1):1–43, 1999.

[22] R. Horst and H. Tuy: Global Optimization: Deterministic Approaches.
Springer-Verlag, Heilderberg, first edition, 1990.

[23] N. Karmitsa, A. Bagirov and M.M. Mäkelä: Comparing different non-
smooth minimization methods and software. Optimization Methods and
Software, 27(1):131–153, 2012.

[24] K.C. Kiwiel: An aggregate subgradient method for nonsmooth convex
minimization. Mathematical Programming, 27(3):320–341, 1983.

[25] K.C. Kiwiel: Methods of Descent for Nondifferentiable Optimization.
Lecture Notes in Mathematics, Vol. 1133, Springer-Verlag, Berlin, 1985.

[26] K.C. Kiwiel: Proximity control in bundle methods for convex nondiffer-
entiable minimization. Mathematical Programming, 46:105–122, 1990.

[27] L. Lukšan: Dual method for solving a special problem of quadratic
programming as a subproblem at linearly constrained nonlinear minimax
approximation. Kybernetika, 20(6):445–457, 1984.

[28] L. Lukšan and E. Spedicato: Variable metric methods for unconstrained
optimization and nonlinear least squares. Journal of Computational and
Applied Mathematics, 124:61–95, 2000.

34

[29] M.M. Mäkelä: Survey of bundle methods for nonsmooth optimization.
Optimization Methods and Software, 17(1):1–29, 2002.

[30] M.M. Mäkelä: Multiobjective proximal bundle method for nonconvex
nonsmooth optimization: Fortran subroutine MPBNGC 2.0. Reports
of the Department of Mathematical Information Technology, Series B.
Scientific Computing, No. B 13/2003 University of Jyväskylä, Jyväskylä,
2003.

[31] M.M. Mäkelä and P. Neittaanmäki: Nonsmooth Optimization. World
Scientific Publishing Co. Inc., River Edge, NJ, 1992.

[32] C. Pey-Chun, P. Hansen, B. Jaumard and H. Tuy: Solution of the mul-
tisource Weber and conditional Weber problems by d.c. programming.
Operations Research, 46(4):548–562, 1998.

[33] R.T. Rockafellar: Convex Analysis. Princeton University Press, Prince-
ton, New Jersey, 1970.

[34] H. Schramm and J. Zowe: A version of the bundle idea for minimizing a
nonsmooth function: Conceptual idea, convergence analysis, numerical
results. SIAM Journal on Optimization, 2(1):121–152, 1992.

[35] W.Y. Sun, R.J.B. Sampaio and M.A.B. Candido: Proximal point al-
gorithm for minimization of DC functions. Journal of Computational
Mathematics, 21(4):451–462, 2003.

[36] P.D. Tao and L.T.H. An: Convex analysis approach to DC program-
ming: Theory, algorithms and applications. Acta Mathematica Vietnam-
ica, 22(1):289–355, 1997.

[37] J.F. Toland: Duality in nonconvex optimization. Journal of Mathemat-
ical Analysis and Applications, 66(2):399–415, 1978.

[38] J.F. Toland: On subdifferential calculus and duality in nonconvex op-
timization. Bulletin de la Société Mathématique de France, Mémoire,
60:173–180, 1979.

[39] H. Tuy: Convex Analysis and Global Optimization. Kluwer Academic
Publishers, Dordrescht, first edition, 1998.

35

Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku

Faculty of Mathematics and Natural Sciences
• Department of Information Technology

• Department of Mathematics

Turku School of Economics
• Institute of Information Systems Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

ISBN 978-952-12-3177-3

ISSN 1239-1891

