

Turku Cent re Computer Sciencefor

TUCS Technical Report
No 1018, September 2011

Author One | Author Two | Author Three
Author Four | Author Five

Title of the Technical Report

Fareed Jokhio | Andreas Dahlin | Johan Ersfolk
| Johan Lilius

Analysis of an RVC-CAL

MPEG-4 Simple Profile
Decoder

TUCS Technical Report

No 1018, September 2011

Analysis of an RVC-CAL MPEG-4 Simple

Profile Decoder

Fareed Jokhio
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5, 20520 Turku, Finland
fjokhio@abo.fi

Andreas Dahlin

 Åbo Akademi University, Department of Information Technologies

Joukahaisenkatu 3-5, 20520 Turku, Finland

andalin@abo.fi

Johan Ersfolk

 Åbo Akademi University, Department of Information Technologies

Joukahaisenkatu 3-5, 20520 Turku, Finland

jersfolk@abo.fi

Johan Lilius
Åbo Akademi University, Department of Information Technologies

Joukahaisenkatu 3-5, 20520 Turku, Finland
jolilius@abo.fi

Abstract

Profiling and instrumentation can be used to identify the inefficient areas of the code

which may require optimization. In this technical report profiling and instrumentation

results for RVC-CAL MPEG-4 simple profile decoder are discussed. The decoder is

using dynamic scheduling for action invocation in its all networks. The IDCT part is

optimized and dynamic scheduling of actions is replaced by static scheduling. Profiling

and instrumentation results show that the number of operations performed by

dynamically scheduled dataflow network are significantly reduced when part of the

dataflow network is statically scheduled.

Keywords: MPEG-4 simple profile, CAL actor language, Reconfigurable Video

Coding, RVC-CAL, profiling, instrumentation, dataflow modelling, dataflow

programming, quasi-static scheduling, benchmarking, parallel processing

TUCS Laboratory

Embedded Systems Laboratory

1

1. Introduction

The number of users watching the video content on the internet is growing rapidly.

Video consists of huge amount of data and it is therefore sent to the end user in

compressed form. It is also efficient to store the video in compressed form on storage

media such as hard disk or CD. In order to be able to watch the video content a video

decoder is required. The video decoder requires a significant amount of processing

power therefore multi-core processor platforms can be suitable for such applications. A

decoder implemented using conventional programming languages such as C/C++

cannot easily be distributed on multi-core platforms. For such platforms a decoder

expressed as a dataflow network is more suitable. The video decoder represented as

dataflow network has nodes and arcs. The nodes in a dataflow network represent

computational entities and the arcs show the flow of data in the network. The dataflow

network is a directed graph and can have any number of inputs and outputs at a node.

In the decoder there are several different operations which need to be performed and

there are interdependencies among those operations. If the number of operations or

processes is larger than the number of processing units available, then a scheduler is

required in order to arrange those operations which are mapped on the same processing

unit into an appropriate sequence. The scheduling can be performed at compile time

(static scheduling) or at run time (dynamic scheduling). In static scheduling the order of

executing different processes is predefined and it is not needed to check whether those

processes are eligible for execution or not. In the dynamic scheduling the order of

executing different processes is decided at run time so it is essential to check that

whether they are eligible or not. If the number of processes which needs to be executed

is very large and they need to be executed several number of times in a particular

program, then significant amount of processor time will be consumed in checking for

the eligibility of the processes. The extra overhead, caused by checks, will slow down

the overall performance of the application. In a video decoder the operations which

needs to be performed depend on the content of data hence it is not possible to get static

scheduling. But it is quite possible to find out certain set of processes which always

execute in a particular order or sequence. This kind of scheduling is termed as quasi-

static scheduling and it can be helpful in reducing the overheads.

 In the quasi-static scheduling approach compile time analysis are applied to improve

runtime decisions. A quasi-static schedule has both static scheduling sequences and

runtime decisions as shown in figure 1. Based on a run time decision one of those static

sequences is selected for execution. In quasi-static scheduling data dependent

scheduling decisions are made at runtime and static decisions are made at compile time.

2

Figure 1. Graphical Representation of a Quasi Static Schedule¨

In order to know the overheads in the decoder, profiling and instrumentation can be

used and inefficient areas having more overhead can be identified. The main

contribution of this work is:

 Perform the profiling and instrumentation for the dynamically scheduled

decoder and find the overheads in its different parts.

 Perform the profiling and instrumentation for the same decoder having static

schedule on its IDCT network and find the reduction in the overheads.

2. Background and Related Work

A new video coding standard named Reconfigurable Video Coding (RVC) [8] is

developed by the MPEG group. This RVC framework was standardized by ISO/IEC in

2009. The main objective of this standard is to provide an open framework which is

capable of specifying and reconfiguring video codecs by connecting different video

coding tools or functional units. In the RVC framework there are three languages used:

RVC-CAL [1, 2], FNL [10] and RVC-BSDL [11]. RVC-CAL is a subset of a dataflow

programming language named Caltrop Actor language (CAL) [9] which is used for

modelling Functional units (FUs). The FNL is the Functional Units Network Language

which is used for describing connections of the RVC-CAL Functional Units. The RVC-

BSDL (Bit stream Syntax Description Language) is used for describing the syntax of

the bit stream.

A CAL program consists of actors. An actor performs some task or computation, it can

accept input as well as can produce output, it can have internal states and an actor is

completely independent from other actors. The actor state is internal to the actor and

cannot be observed by other actors, which means that actors are independent units,

which can interact with each other by exchanging data named as token through channels

[4]. An actor in network fires its actions based on status of input tokens and guard

conditions.

3

The execution of a CAL program is asynchronous, actors can be fired in any order and

any actor in the network can be fired if one of its actions is eligible. An action is eligible

if there are sufficient input tokens, there is space on the output buffer and the guard

condition is satisfied[4]. A CAL application often contains a large number of actors. If

more than one actor is executed on a single processing unit then an inter-actor scheduler

is required. The CAL actors are dynamic and it is not possible to schedule them

statically, because the current state of the actor and its input values determine which

actions can be fired. The runtime scheduler needed for those actors causes extra

overheads or checks before firing any action.

The model checkers are used to verify the requirements and design for a system. In [12,

13, 14, and 15] model checkers are used to get the schedule for dataflow network. In

[13] Boutellier worked with scheduling of a RVC-CAL network and proposed a quasi-

static schedule. He did not use a model checker; the proposed schedules were derived

by hand. Thereby generating schedules for different decoders will be hard and time

consuming.

In [3] Ersfolk proposes a model checking approach, which uses prior knowledge to

identify dynamic sub-networks with the model checker. With this approach dynamic

scheduling is replaced with quasi-static scheduling. In this paper a new schedule is

obtained based on that approach, for the IDCT part of the MPEG-4 Simple profile

decoder. The obtained schedule is a single static schedule for the entire IDCT network.

2.1. Profiling and Instrumentation

To get the timing information and CPU load costs for an application, instrumentation

and profiling can be used. It allows gathering of timing information for all functions in a

program. The profiler lets us view performance of programs and thus it indicates

inefficient areas of the code which may require more optimization.

Program profiling from software engineering point of view is used for optimizing a

program; the tool used for performing the profiling is the profiler which is used for

performance analysis. The profiler is used to get the behaviour of program from

program starting to program ending. With profiling following measures can be

performed:

1. Memory usage

2. Instructions usage

3. Function calls frequency

4. Function calls duration

The profile of a program obtained by profiler depends on the following parameters:

1. Application source code

2. Compiler settings

3. Software and hardware platform it runs on

4

The code instrumentation technique is used for data collection. In order to check how

many number of times a particular section or part of a function is executed, code

instrumentation can be used. In this report the code instrumentation is used to count the

number of checks which fails or number of misses is counted with code

instrumentation.

3. RVC-CAL MPEG-4 Simple Profile Decoder

In the RVC-CAL MPEG-4 Simple Profile Decoder the main functional blocks are the

bit stream parser, the reconstruction block, the 2D IDCT, the frame buffer, and motion

compensation [17]. Top level view of the MPEG-4 simple profile decoder is shown in

figure 2. Input to the decoder is the compressed bit stream and output is the series of

pictures or a video.

Figure 2. Block Diagram of the RVC-CAL MPEG-4 Simple Profile Decoder

The decoder consists of several networks and sub networks of actors. Inside an actor

there are number of actions. The decoder consists of nine (9) sub-networks and 42 actor

instantiations. A more detailed representation of the decoder is shown in figure 3.

The dataflow oriented MPEG-4 Simple profile decoder is scheduled dynamically. The

original project with dynamic schedule is written in the RVC-CAL [1, 2] language. The

CAL2C [5] code generator is used to generate C code from the RVC-CAL program so

that it can be compiled and executed on most processors [6] including embedded

processors. The dynamic schedule for the entire IDCT network is converted into a static

schedule using the approach discussed in [3], which is used to get the quasi-static

schedules by using model checkers. For the IDCT network, instead of getting quasi-

static schedules, it is even possible to obtain a single static schedule.

The static schedule is implemented on the network level and it is independent of the

state machine of the individual actors. It is possible to fire a set of actions of one actor

and then fire a couple of other actions within the same network and again come back to

fire actions of the same actor within the network. Hence if actions become ready to be

fired then actors are allowed to fire actions and do not need not to wait for the complete

cycle.

5

In this case study the static schedule is applied on only IDCT network of the MPEG-4

decoder. More detailed description about this decoder is available in [17]. All other

networks and actors are dynamically scheduled and have their own state machine. The

entire IDCT network is treated as single scheduling unit and is scheduled in round robin

fashion with other actors.

6

Figure 3. Actors in the RVC-CAL MPEG-4 Simple Profile Decoder

7

4. Experimental Setup

In order to get instrumentation and profiling results four video sequences were chosen,

three Foreman video sequences consist of 300 frames. One Foreman video sequence

only have intra coded frames while others have intra as well as progressive frame

sequence format. The Football video sequence has 360 frames. In Foreman QCIF,

Foreman CIF and Football QCIF video sequences 8% of all frames are of type I and 92

percent are of type P. The resolution for all sequences is 176x144 pixels, except one of

the football sequences which has CIF (352x288 pixels) resolution. Table 1 shows

resolution, number of frames and frames types for all test video sequences.

Video Sequence Resolution No. of Frames Frame Types

Foreman QCIF 176x144 300 I 8% P 92%

Foreman QCIF Intra 176x144 300 I 100%

Foreman CIF 352x288 300 I 8% P 92%

Football QCIF 176x144 360 I 8% P 92%

Table 1. Test Video Sequences

In order to see the improvement in terms of frames per second the execution time

analysis was performed on a desktop computer equipped with an Intel Core 2 Duo CPU

running at 2.66 GHz, 2 GB of RAM and running the 32-bit version of Windows 7

Professional. Both instrumentation and profiling results were obtained using the same

machine. In this case study the instrumentation and profiling results are obtained using

Microsoft Visual Studio 2010.

In order to perform profiling in visual studio, the following steps can be followed:

1. Click on the Analyze menu

2. Select the Launch Performance Wizard

3. Then the performance wizard will be opened having 3 pages. On the first page you have to select

the Instrumentation option. This option is used to measure function call counts and timing.

4. Click next and on second page select the project which needs to be instrumented.

5. Click next

6. On the third page you have to uncheck the Launch profiling after the wizard finishes option. This

is essential to uncheck this option because the decoder programs needs the file name of

compressed video sequence as an argument, which must be provided.

7. Click Finish. Now the Performance Explorer will be opened.

8. Right click on the project name under the Targets option in the performance explorer and select

properties option.

9. The property dialog box will be shown having the following four options

 Launch

 Tier Interactions

 Instrumentation

 Advanced

8

10. Select the launch option

11. Check the Override project setting option and provide the compressed video sequence name in

the Arguments text box.

12. Click on Instrumentation option on the right side of the property dialog box

13. Uncheck the option Exclude small functions from instrumentation option.

14. click on the ok button

15. The profiler can now be executed to obtain the results.

5. Results

In this section gain in terms of speedup for decoding process is discussed along with

Instrumentation and Profiling results.

5.1. Performance Gain

The number of frames per second for different video sequences, before and after

optimization of scheduling, is given in table 2. We observe that 13% gain can be

obtained by scheduling the IDCT part with static schedule.

Video Sequence Dynamic Static Gain

Foreman QCIF 81 fps 93 fps 13%

Foreman QCIF intra 84 fps 96.5 fps 13%

Foreman CIF 22 fps 25 fps 12%

Football QCIF 67 fps 77 fps 13%

Table 2. Frames per Second for Dynamic and Quasi-static Schedules

After applying the static schedule on IDCT network there is significant gain in

execution time for IDCT part, it is also observed that there was slight improvement in

other networks as a side effect. In the dynamic schedule the actors are invoked in round

robin fashion and if an actor is not ready to be fired, and then it has to wait until its next

turn. With the static scheduler unnecessary waiting time will be reduced which results

in faster decoding operation.

Applying static scheduling does not degrade the performance of other networks. Either

it will either improve their performance or will have no effect.

9

Figure 4. Foreman QCIF and Foreman QCIF Intra Video Sequences Gain

In figure 4, execution time in percentage for Foreman QCIF and Foreman QCIF Intra

video sequences is indicated for both static and dynamic schedules. For Foreman QCIF

video sequence both motion and IDCT are time consuming tasks. There is significant

gain in the IDCT part after applying the static schedule and a small gain in the Motion

part as a side effect.

Figure 5. Foreman CIF and Football QCIF Video Sequences Gain

10

In figure 5, execution time in percentage for Foreman CIF and Football QCIF video

sequences is indicated for both static and dynamic schedules. There is 12% gain for the

Foreman CIF video sequence and 13% gain for football video sequence.

It is worth to mention here that all results are obtained using Windows 7 operating

system. The operating system itself executes a number of other processes while

performing decoding operation; hence there will be nondeterministic behaviour in the

results.

5.2. Instrumentation Results

For MPEG-4 decoder with dynamic scheduling it was observed that there are millions

of firings of actions, hence for every firing there is one check or several checks. It

means that the decoder is using some part of time in checking those guard conditions or

overheads.

By using static scheduling as proposed in [3] this number of checks can be reduced and

significant speedup is possible in decoding operation. In experiments with different

video sequences it was observed that more than 40% of those checks produce false

results hence no firing of actions. The table 3 summarizes the number of checks for both

static and dynamic scheduled MPEG-4 Decoder.

Video Sequence Dynamic Static Reduction

Foreman QCIF 300x10
6
 242x10

6
 19.38%

Foreman QCIF Intra 402x10
6
 238x10

6
 40.60%

Foreman CIF 1142x10
6
 938x10

6
 17.87%

Football QCIF 419x10
6
 322x10

6
 23.19%

Table 3. Total Number of Checks for Dynamic and Static Schedules

In table 3 it can be observed that the number of checks is reduced by applying the static

schedule on the IDCT network. For different actions the time consumed in guard

conditions checking is different. If any guard condition is checked then there can be

multiples checks for it. It can fail at the very first check means there is no need to check

further conditions or it may fail at the very last check. Here in this report the term

―miss‖ indicates that the guard condition was checked and it produced false result and

no action was fired. If all conditions become true for action’s guard then the action is

fired and here we use the term ―Hit‖.

 The results for hits and misses are shown in table 4. It can be observed that for all video

sequences there is reduction in number of hits and misses after applying the static

schedule. The reason for this reduction is that we have only a single point of check for

entire IDCT network.

11

In order to calculate number of hits and misses the original code was instrumented by

inserting extra code. Figure 6 shows the code listing of serialize actor. The bold code is

the instrumented code. Serialize actor has two actions reload and shift. In the C

language code there is one function for each actor. Due to space limitation body of the

functions is not indicated. The profiler gives the number of invocations for every actor,

hence in order to calculate number of hits there is no need to insert or instrument code.

The number of misses cannot be viewed from the profiler results for the original code.

Hence two extra functions are created having no code in body. These functions are

called whenever a miss occurs. After inserting these two extra functions bodies and their

calls at appropriate locations, it is possible to view the number of missed in the profiler

results.

The code instrumentation is done for all actors, hence there is one extra function for

every action and it is called whenever a misses occurs for that action. The sum of the

misses of actions inside an actor gives the total number of misses for that particular

actor.

// /Xilinx_top/decoder/serialize

void serialize_reload_not(){} //this is instrumented code
void serialize_reload() { … }

static i32 isSchedulable_reload() { … }

void serialize_shift_not() {} //this is instrumented code
void serialize_shift() { … }

static i32 isSchedulable_shift() { … }

// Action scheduler

void decoder_serialize_scheduler(struct schedinfo_s *si) {

 int i = 0;

 while (1) {

 if (fifo_u8_has_tokens(decoder_serialize_in8, 1) &&

 isSchedulable_reload()) {

 serialize_reload();

 i++;

 } else if (isSchedulable_shift()) {

 int ports = 0;

 serialize_reload_not(); //this is instrumented code
 if (!fifo_i32_has_room(decoder_serialize_out, 1)) {

 ports |= 0x01;

 }

 if (ports != 0) {

 si->num_firings = i;

 si->reason = full;

 si->ports = ports;

 serialize_shift_not(); //this is instrumented code
 break;

 }

 serialize_shift();

 i++;

 } else {

 si->num_firings = i;

 si->reason = starved;

 si->ports = 0x01;

 serialize_reload_not(); //this is instrumented code

 serialize_shift_not(); //this is instrumented code
 break;

 }

 }

}

12

Figure 6. Code Listing for Serialize Actor

Video Sequence Dynamic Schedule Static Schedule for IDCT

 Hits Misses Hits Misses

Foreman QCIF 151x10
6
 148x10

6
 106x10

6
 135x10

6

Foreman QCIF intra 233x10
6
 169x10

6
 110x10

6
 128x10

6

Foreman CIF 569x10
6
 572x10

6
 412x10

6
 525x10

6

Football QCIF 217x10
6
 202x10

6
 143x10

6
 179x10

6

Table 4. Summary of Hits and Misses for Dynamic and Static Schedules

In table 5 the number of hits and misses is indicated for both original and static

schedules for Foreman QCIF video sequence. It can be noticed that there is large

difference in the number of hits and misses for the dynamic schedule and static

schedule.

Sequence Dynamic Schedule Static Schedule for IDCT

 No. of Hits No. of Misses No. of Hits No. of Misses

Motion 62 577 963 98 854 178 62 570 890 98 384 798

IDCT 44 881 058 11 988 769 64 941 46 586

ACDC 23 923 793 24 233 886 23 923 570 23 797 153

Parser 6 978 669 11 162 185 6 978 439 10 782 984

Others 13 191 622 2 745 103 13 189 062 2 552 495

Total 151 553 105 148 984 121 106 726 902 135 564 016

Table 5. Number of Hits and Misses for Foreman QCIF Video Sequences

In table 6 the number of hits and misses is indicated for both original and static schedule

for Foreman QCIF intra video sequence. In this video sequence all frames are I type.

Sequence Dynamic Schedule Static Schedule for IDCT

 No. of Hits No. of Misses No. of Hits No. of Misses

Motion 24 494 875 36 424 864 24 495 983 34 241 049

IDCT 123 076 178 33 306 888 178 119 71 221

ACDC 58 979 069 61 499 394 58 980 005 59 178 581

Parser 15 464 236 28 881 422 15 464 092 27 072 505

Others 11 309 009 8 960 760 11 320 955 7 992 852

Total 233 323 367 169 073 328 110 439 154 128 556 208

Table 6. Number of Hits and Misses for Foreman QCIF Intra Video Sequences

In table 7 the number of hits and misses is indicated for both original and static schedule

for Foreman CIF video sequence. Since the frame size in CIF video sequence is bigger

13

than the QCIF video sequence hence more time is required in decoding the video

frames. In other words more actions need to be fired, hence more checks before firing

the actions. The number of checks will be different for different video sequences.

Larger frame size will result in more checks, but even with same size of frames this

number will be different because it will totally depend on the types of operations which

will be performed during the decoding.

Sequence Dynamic Schedule Static Schedule for IDCT

 No. of Hits No. of Misses No. of Hits No. of Misses

Motion 250 724 857 395 531 580 250 727 476 393 982 757

IDCT 157 168 871 42 367 866 227 416 187 169

ACDC 84 347 764 85 539 738 84 348 375 84 037 814

Parser 25 581 425 39 921 813 25 581 668 38 634 437

Others 51 462 690 9 626 921 51 459 405 8 971 186

Total 569 285 607 572 987 918 412 344 340 525 813 363

Table 7. Number of Hits and Misses for Foreman CIF Video Sequences

In table 8 the number of hits and misses is indicated for both original and static schedule

for football QCIF video sequence. This video sequence has more misses in the Motion

compensation.

Sequence Dynamic Schedule Static Schedule for IDCT

 No. of Hits No. of Misses No. of Hits No. of Misses

Motion 74,667,161 118,614,059 74,671,073 117,526,842

IDCT 74,117,194 19,944,196 107,261 57,715

ACDC 38,003,615 38,750,133 38,006,407 37,743,143

Parser 11,279,761 18,626,702 11,280,228 17,764,073

Others 19,119,406 6,425,015 19,116,285 5,972,302

Total 217,187,137 202,360,105 143,181,254 179,064,075

Table 8. Number of hits and misses for football QCIF video sequences

5.3. Profiling Results

Table 9 indicates the decoding and overheads time in percentage for Foreman QCIF

video sequence. It can be noticed that the overhead time in IDCT part was 27% in the

dynamic schedule and after applying the static schedule it is only 2.95%. The table

indicates that decoding time for motion was 67.7% in the dynamic schedule and it is

68.21% in the static schedule. In reality the decoding time is not changed it is constant

in both schedules. Since overheads time is reduced hence the total time is also reduced

so the scale of time is not same.

14

Sequence Dynamic Schedule Static Schedule for IDCT

 Decoding time Overhead time Decoding time Overhead time

Motion 67.69% 32.31% 68.21% 31.79%

IDCT 72.89% 27.11% 97.04% 2.96%

ACDC 52.74% 47.26% 49.49% 50.51%

Parser 47.94% 52.06% 40.85% 59.15%

Others 63.02% 36.98% 61.25% 38.75%

Total 66.90% 33.10% 74.34% 25.66%

Table 9. Decoding and Overhead Timings for Foreman QCIF Video Sequence

In table 9 the total decoding time is 66.9% in the dynamic schedule and 33.1% time is

the overheads time. There is no reduction or change in the decoding time. The only

change is in the overheads time and it is significantly reduced hence total time becomes

less. Hence now the decoding time is 74.3% and still we have 25.66% overheads time.

It is possible to apply the quasi-static schedule on other parts of decoder to get more

gain and reduce the overheads time as much as possible.

The table 10 indicates the decoding and overheads time in percentage for Foreman

QCIF intra video sequence. For Intra frames motion compensation is not required and

even there is no need of any reference frame for decoding the current frame, but the

decoder does not know in advance that which type of frame will be coming after the

current frame, hence it stores the current frame as a reference frame.

Sequence Dynamic Schedule Static Schedule for IDCT

 Decoding time Overhead time Decoding time Overhead time

Motion 70.65% 29.35% 73.27% 26.73%

IDCT 74.31% 25.69% 97.21% 2.79%

ACDC 52.72% 47.28% 53.47% 46.53%

Parser 49.118% 50.89% 46.84% 53.16%

Others 59.14% 40.86% 55.69% 44.31%

Total 68.46% 31.54% 79.44% 20.56%

Table 10. Decoding and Overhead Timings for Foreman QCIF Intra Video Sequence

Table 10 indicates that there are 20.5% overheads in the static schedule. The 2.79%

overheads in the IDCT part are due to some checks which are very essential to fire any

action. The context switch time in firing the actions is also included in this overheads

time. Current implementation of the static schedule does not inline the actions code

15

hence it introduces a little overhead. Table 11 indicates the decoding and overheads

time in percentage for Foreman CIF video sequence.

Sequence Dynamic Schedule Static Schedule for IDCT

 Decoding time Overhead time Decoding time Overhead time

Motion 67.40% 32.60% 66.60% 33.40%

IDCT 74.19% 25.81% 97.10% 2.90%

ACDC 52.04% 47.96% 51.56% 48.44%

Parser 47.84% 52.16% 49.80% 50.20%

Others 62.66% 37.34% 63.95% 36.05%

Total 67.11% 32.89% 73.59% 26.41%

Table 11. Decoding and Overhead Timings for Foreman CIF Video Sequence

The decoding process on desktop machines is nondeterministic because other threads

are also running hence it will not give 100% same timing results on the same machine

for same video sequence. During experiments it was noted that there was always 2% or

even more variation in the execution time. The above results were taken during different

executions hence they may not indicate 100% same type of values but however they

indicate same information that static schedule always performs better for almost all

video sequences.

The table 12 indicates the decoding and overheads time in percentage for football QCIF

video sequence. The overheads time after applying static schedule is 3.1%.

Sequence Dynamic Schedule Static Schedule for IDCT

 Decoding time Overhead time Decoding time Overhead time

Motion 68.79% 31.21% 68.117% 31.89%

IDCT 73.77% 26.23% 96.91% 3.09%

ACDC 52.93% 47.07% 51.77% 48.23%

Parser 48.42% 51.58% 48.93% 51.07%

Others 62.53% 37.47% 62.68% 37.32%

Total 67.39% 32.61% 75.44% 24.56%

Table 12. Decoding and Overhead Timings for Football QCIF Video Sequence

It can be noted in all above results that the overheads time after applying static schedule

is almost 3% for all video sequences in the IDCT network. It means that 97% of the

time is consumed in doing the real decoding in this network.

6. Conclusion and Future Work

In this case study the profiling and instrumentation results are obtained for the RVC-

CAL Simple Profile Decoder. The original decoder has dynamic scheduling.

16

Instrumentation results show the number of checks which are placed before action

invocation. These checks are extra overheads in the decoding process. The profiling

results show the actual decoding time and overheads time. It was observed that more

than 33% of the total decoding time is utilized in the overheads. The static schedule is

obtained for the IDCT part by using the approach discussed in [3]. Instrumentation

results are obtained for the decoder having static scheduling in IDCT network, the

results shows that for different video sequences there was significant reduction of the

checks. The profiling results show 13% gain is obtained in overall decoding time with

better scheduling.

It was further measured that the IDCT part with dynamic scheduling has more than 27%

overheads. With static scheduling in the IDCT part the overheads time is less than 3%,

which is significant gain.

In the future we plan to obtain quasi-static schedules for the other networks for MPEG-

4 Simple Profile decoder and thereby obtain increased performance. The approach for

finding quasi-static schedules should be further validated by profiling and instrumenting

other dataflow applications as well.

References

[1] ISO/IEC 23001-4:2009, "Information technology - MPEG systems technologies

- Part 4: Codec configuration representation," 2009

[2] Marco Mattavelli, Ihab Amer, and Michael Raulet, "The reconfigurable video

coding standard", IEEE Signal Processing Magazine, vol. 27, no. 3, pp 157-167,

2010.

[3] Johan Ersfolk, Ghislain Roquier, Fareed Jokhio, Johan Lilius, Marco Mattavelli,

―Scheduling of dynamic dataflow programs with model checking,‖ ―IEEE

Workshop on Signal Processing Systems SiPS 2011‖, October 4-7 2011, Beirut,

Lebanon

[4] Nicolas Siret, Ismail Sabry, Jean Francois Nezan and Mickael Raulet, "A

codesign synthesis from an MPEG-4 decoder dataflow description", "Circuits

and Systems(ISCAS), Proceedings of 2010 IEEE International Symposium on

France "

[5] G. Roquier, M. Wipliez, M. Raulet, J.W. Janneck, I.D. Miller, and D.B. Parlour,

―Automatic software synthesis of dataflow program: An MPEG-4 simple profile

decoder case study,‖ in Signal Processing Systems (SiPS). IEEE Workshop on,

2008, pp. 281–286.

[6] I. Amer, C. Lucarz, G. Roquier, M. Mattavelli, M. Raulet, J.-F. Nezan, and O

Deforges, ―Reconfigurable video coding on multicore,‖ in Signal Processing

Magazine, IEEE, 2009, pp. 113–123.

17

[7] M. B. Taylor, J. Kim, J. Miller, D.Wentzlaff, F. Ghodrat, B. Greenwald, H.

Hoffman, P. Johnson, Jae-Wook Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N.

Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, .The Raw

microprocessor: a computational fabric for software circuits and general-purpose

programs,. IEEE Micro, vol. 22, pp. 25.35, March 2002.

[8] Lucarz, C., Mattavelli, M., Thomas-Kerr, J., & Janneck, J. W. (2007).

Reconfigurable media coding: A new specification model for multimedia

coders. In IEEE workshop on signal processing systems (pp. 481–486).

Shanghai, China.

[9] Eker, J., & Janneck, J. W. (2003). CAL language report. UC Berkeley, Tech.

Rep. UCB/ERL M03/48.

[10] ISO/IECFDIS23001-4 (2009).MPEGsystems technologies—Part 4: Codec

configuration representation.

[11] International Standard ISO/IEC FDIS 23001-5: MPEG systems technologies—

Part 5: Bitstream Syntax Description Language (BSDL).

[12] Marc Geilen, Twan Basten, and Sander Stuijk, ―Minimising buffer requirements

of synchronous dataflow graphs with model checking,‖ in DAC ’05, 2005.

[13] Zonghua Gu et al., ―Static scheduling and software synthesis for dataflow graphs

with symbolic modelchecking,‖ in RTSS ’07, 2007.

[14] Nan Guan et al., ―Improving scalability of modelchecking for minimizing buffer

requirements of synchronous dataflow graphs,‖ in ASP-DAC ’09, 2009.

[15] Weichen Liu et al., ―An efficient technique for analysis of minimal buffer

requirements of synchronous dataflow graphs with model checking,‖ in

CODES+ISSS ’09, 2009.

[16] Jani Boutellier, Christophe Lucarz, S´ebastien Lafond, Victor Gomez, and

Marco Mattavelli, ―Quasi-static scheduling of cal actor networks for

reconfigurable video coding,‖ Journal of Signal Processing Systems, 2009.

[17] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli, and M.

Raulet, ―Overview of the MPEG reconfigurable video coding framework,‖

Journal of Signal Processing Systems, 2009, DOI:10.1007/s11265-009-0399-3.

ISBN 978-952-12-2636-6
ISSN 1239-1891

