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Abstract

A clusterwise linear regression problem consists of finding a number of linear func-
tions each approximating a subset of the given data. In this paper, the limited memory
bundle method [Haarala et.al. Math. Prog., Vol. 109, No. 1, pp. 181–205, 2007] is
modified and combined with the incremental approach to solve this problem using its
nonsmooth optimization formulation. The proposed algorithm is tested on small and
large real world data sets and compared with other algorithms for clusterwise linear
regression. Numerical results demonstrate that the proposed algorithm is especially
efficient in data sets with large numbers of instances and input variables.

Keywords: Clusterwise linear regression; Nonsmooth optimization; Nonconvex prob-
lems; Bundle methods; Limited memory methods.
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1 Introduction

The clusterwise regression is a technique to approximate the data using two or more
regression functions. It is based on two well-known techniques: clustering and regres-
sion, and simultaneously identifies clusters and their associated regression functions.
If the regression functions are linear then the clusterwise regression is called the clus-
terwise linear regression (CLR). The CLR has many applications (see, e.g. [26, 32]).

In general, the algorithms for the CLR can be divided into three groups. The first
group contains algorithms which are extensions of clustering algorithms such as k-
means [27, 28] and EM [14]. Algorithms from the second group are based on mixture
models [11, 15, 26]. The third group consists of algorithms which are extensions of
optimization methods. This group includes the simulated annealing method for the
CLR [12], algorithms based on mixed integer nonlinear programming [8, 9, 11] and
nonsmooth optimization (NSO) methods [1, 2, 3].

The CLR is a global optimization problem. However, it is out of the reach of ex-
isting global optimization algorithms when the number of input variables is relatively
large and/or a large number of linear regression functions are needed to approximate
data. Therefore, it is essential to develop algorithms which are capable of finding high
quality solutions to the CLR problems in data sets with large numbers of points and/or
input variables.

In this paper, we introduce the new LMBM-CLR -method for solving CLR prob-
lems. The LMBM-CLR -method consist of two algorithms: an incremental algo-
rithm is used to solve CLR problems globally and at each iteration of this algo-
rithm the limited memory bundle algorithm (LMBM) by Karmitsa (née Haarala) et
al. [16, 17, 18, 20] is used to solve both the CLR problem and the so-called auxiliary
CLR problem with different starting points provided by the incremental algorithm.

The LMBM is a modification of the variable metric bundle methods (VMBM)
[24, 31], where the limited memory approach (see e.g. [6]) is used to calculate the
search direction. Therefore, the time-consuming quadratic direction finding problem
appearing in the standard bundle methods (see, e.g. [19, 22, 25]) does not need to
be solved, nor the number of stored subgradients needs to grow with the dimension
of the problem. Furthermore, the method uses only a few vectors to represent the
variable metric approximation of the Hessian matrix and, thus, it avoids storing and
manipulating large matrices as is the case in the VMBM. These improvements make
the LMBM suitable for large-scale optimization. Namely, the number of operations
needed for the calculation of the search direction is only linearly dependent on the
number of variables while, for example, this dependence is quadratic for the VMBM
. In this paper, the original LMBM algorithm is slightly modified to be better suited
for solving CLR problems.

The rest of this paper is organized as follows. The nonsmooth optimization for-
mulation of the CLR problem is given in Section 2. In Section 3, we first give the
basic ideas of the LMBM and then, we recall the ideas of incremental approach used
to solve globally the CLR problem. The results of the numerical experiments are pre-
sented and discussed in Section 4, and finally, Section 5 concludes the paper.
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Throughout the paper the following notations are used: the Euclidean norm in Rn

is denoted by ‖·‖ and the inner product of vectors a and b is denoted by aTb (bolded
symbols are used for vectors).

2 Clusterwise Linear Regression
The aim of the CLR is to find an optimal partition of the given data set A = {(ai, bi) ∈
Rn × R : i = 1, . . . ,m} into k clusters and, simultaneously, to find regression coeffi-
cients {xj, yj}, xj ∈ Rn, yj ∈ R, j = 1, . . . , k within clusters in order to minimize
the overall fit. Let Aj ⊂ A, j = 1, . . . , k be clusters such that

1. Aj 6= ∅, j = 1, . . . , k;

2. Aj
⋂

Al = ∅, for all j, l = 1, . . . , k, j 6= l;

3. A =
k⋃

j=1

Aj.

Let {xj, yj} be linear regression coefficients computed using solely the data points
from the cluster Aj, j = 1, . . . , k. Then for a given data point (a, b) ∈ A and coeffi-
cients {xj, yj} the squared regression error Eab(xj, yj) is given by

Eab(xj, yj) =
(
(xj)

Ta+ yj − b
)2

.

A data point is associated with the cluster whose regression error at this point is the
smallest one. The function

fk(x,y) =
m∑
i=1

min
j=1,...,k

Eab(xj, yj), (1)

is called the k-th clusterwise linear regression function or the k-th overall fit function
[1, 2, 3]. Here x = (x1, . . . ,xk) ∈ Rnk and y = (y1, . . . , yk) ∈ Rk. For k = 1
the function fk is convex and for k > 1 it is nonsmooth, nonconvex, and piecewise
quadratic.

The CLR problem. The NSO formulation of the CLR problem is given by{
minimize fk(x, y)

subject to x = (x1, . . . ,xk) ∈ Rnk, y ∈ Rk,
(2)

where fk(x, y) is defined in (1). The number of clusters k is not always known a
priori and this number should be specified before solving Problem (2). The number of
variables in Problem (2) is (n + 1) × k and it does not depend on m, the number of
points in a data set.
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The auxiliary CLR problem. Problem (2) is nonconvex and may have a large num-
ber of local solutions. In this paper, we propose to use the local method LMBM to
solve it. The success of this algorithm strongly depends on the choice of initial so-
lutions. We apply an algorithm introduced in [1] to generate such solutions. This
algorithm uses the so-called auxiliary CLR problem. In this paper, we briefly recall
this problem and refer to [1] for details.

Given the solution (x1, y1, · · · ,xk−1, yk−1), k ≥ 2 to the (k − 1)-CLR problem
we define the regression error of the point (a, b) ∈ A by

rabk−1 = min
j=1,...,k−1

Eab(xj, yj)

and introduce the following function

f̄k(u, v) =
∑

(a,b)∈A

min
{
rabk−1, Eab(u, v)

}
, u ∈ Rn, v ∈ R. (3)

The function f̄k is called the k-th auxiliary clusterwise linear regression function [1,
2, 3]. The problem {

minimize f̄k(u, v)

subject to u ∈ Rn, v ∈ R.
(4)

is called the k-th auxiliary clusterwise linear regression problem [1, 2, 3].
Similar to the k-CLR problem (2), the k-auxiliary CLR problem (4) is nonsmooth

and nonconvex. However, the number of variables is only n+1 and it does not depend
on the number of linear regression functions (clusters).

Initial Solutions. Since we apply the local method LMBM to solve problem (4)
it is imperative to use an algorithm to generate good starting points to obtain high
quality solutions. We apply an algorithm from [1] to find such points. This algorithm
uses clusters from (k−1)-th iteration and computes hyperplanes passing through each
data point and parallel to the hyperplane approximating the cluster to which this point
belongs. Then all hyperplanes giving the value of the auxiliary CLR function less than
some threshold are chosen as initial solutions to solve the problem (4). Details of this
algorithm can be found in [1].

In their turn, solutions from the auxiliary CLR problem are used to compute initial
solutions to solve the problem (2). The use of many initial solutions allows to get
a set of solutions to the problem (4). The set of initial solutions to the problem (2)
is obtained by simply adding each solution of the auxiliary problem to the solution
(x1, y1, · · · ,xk−1, yk−1) to the (k − 1)-CLR problem. Then the solutions providing
the value of the CLR function less than some threshold are chosen as initial solutions
to the problem (2). Such an approach allows to select most promising initial solutions
and reduce computational effort.
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3 LMBM-CLR -Method

In this section we introduce the new LMBM-CLR -method for solving CLR prob-
lems. As already said in the introduction, the LMBM-CLR -method consist of two
algorithms: an incremental algorithm is used to solve CLR problems globally and at
each iteration of this algorithm the LMBM is used to solve the CLR problem (2) and
the auxiliary CLR problem (4).

3.1 LMBM

The LMBM is originally developed for solving general nonconvex nonsmooth opti-
mization problems. Here, the original algorithm is slightly modified to be better suited
for solving CLR problems. To use LMBM it is assumed that the objective function
is locally Lipschitz continuous (LLC) and at every point x ∈ Rn we can evaluate
both the value of the objective function f(x) and one arbitrary subgradient ξ from the
subdifferential

∂f(x) = conv{ lim
i→∞
∇f(xi) | xi → x and ∇f(xi) exists },

where “conv” denotes the convex hull of a set. For (auxiliary) CLR problems these
assumptions are easily satisfied. In this section our notation differs a little bit from that
before: n is used as a size of the optimization problem, that is, n = n+ 1 for auxiliary
CLR problem and n = (n+ 1)× l for CLR problem, where l is the current number of
clusters. In addition, k is now used as an iteration counter.

The LMBM is characterized by the usage of null steps together with a simple
aggregation of subgradients. Moreover, the limited memory approach is utilized in
the calculation of the search direction and the aggregated values. The L-BFGS update
formula is used after a serious step and the L-SR1 update formula after a null step.
The usage of null steps gives further information about the nonsmooth objective in
the case that the search direction is not ”good enough”. On the other hand, a simple
aggregation of subgradients is used to guarantee the global convergence of the method.

Algorithm. Now we give the pseudo-code of LMBM for solving the (auxiliary)
CLR problem. Here the following input is needed:

• x1 ∈ Rn — starting point;

• ε > 0 — stopping tolerance;

• m̂c ≥ 3 — the maximum number of stored corrections used to form limited
memory matrix updates.
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PROGRAM LMBM
INITIALIZE x1 ∈ Rn, m̂c ≥ 3, and ε > 0;
Compute ξ1 ∈ ∂f(x1);
Set k = 1, m = 1, d1 = −ξ1, ξ̃1 = ξ1, and β̃1 = 0;

WHILE the termination condition wk = −ξ̃Tk dk + 2β̃k ≤ ε is not met
Find step sizes tkL and tkR, and the subgradient locality
measure βk+1;

Set xk+1 = xk + tkLdk and yk+1 = xk + tkRdk;
Evaluate f(xk+1) and ξk+1 ∈ ∂f(yk+1);
Store the new correction vectors sk = yk+1 − xk and
uk = ξk+1 − ξm;

Set m̂k = min{k, m̂c};
IF tkL > 0 THEN

SERIOUS STEP

Compute the search direction dk+1 using ξk+1 and L-BFGS
update with m̂k most recent correction pairs;

Set m = k + 1 and β̃k+1 = 0;
END SERIOUS STEP

ELSE

NULL STEP

Determine multipliers λki satisfying λki ≥ 0 for all
i ∈ {1, 2, 3}, and

∑3
i=1 λ

k
i = 1 that minimize the function

ϕ(λ1, λ2, λ3) = [λ1ξm + λ2ξk+1 + λ3ξ̃k ]TDk[λ1ξm + λ2ξk+1 + λ3ξ̃k ]

+2(λ2βk+1 + λ3β̃k);
Compute the aggregate values
ξ̃k+1 = λk1ξm + λk2ξk+1 + λk3 ξ̃k and
β̃k+1 = λk2βk+1 + λk3β̃k;

Compute the search direction dk+1 using ξ̃k+1 and L-SR1
update with m̂k most recent correction pairs;

END NULL STEP

END IF

Set k = k + 1;
END WHILE

RETURN final solution xk;
END PROGRAM LMBM

REMARK 3.1. When combined with an incremental algorithm we use nonmonotone
line search to find step sizes tkL and tkR. In addition, different stopping tolerances for
different problems can be used.

Under the upper semi-smoothness assumption (see, e.g. [4]) the LMBM can be
proved to be globally convergent for LLC objective functions [16, 18]. In addition, if
we choose ε > 0, the LMBM algorithm terminates in a finite number of steps.
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3.2 Incremental algorithm

Now we present the incremental algorithm for solving the CLR problem (2). Prob-
lem (2) is nonconvex and, it is important to use many starting points when applying
a local method like LMBM for its solution. As already mentioned, we use the al-
gorithm introduced in [1] to generate initial solutions in our algorithm given below.
The LMBM is applied to solve both the CLR and the auxiliary CLR problems at each
iteration of the incremental algorithm. Together, these two algorithms are a called the
LMBM-CLR -method.

PROGRAM Incremental Algorithm
INITIALIZE the maximum number of linear functions k ≥ 1;
Compute the linear regression function (x1, y1) ∈ Rn × R of the
set A;

Set l = 1;
WHILE l < k
Set l = l + 1;
Apply the procedure from [1] to find the set S1 ⊂ Rn+1 of
initial solutions for the auxiliary CLR problem (4)
with k = l;

SOLVING AUXILIARY CLR PROBLEM

To obtain a set S2 ⊂ Rn+1 of initial solutions for the
l-CLR problem (2), apply LMBM to solve Problem (4)
starting from each point (x, y) ∈ S1;

END SOLVING AUXILIARY CLR PROBLEM

SOLVING CLR PROBLEM

For each (x̄, ȳ) ∈ S2 apply LMBM to solve Problem (2)
starting from the point (x1, y1, . . . ,xl−1, yl−1, x̄, ȳ) and find
a solution (x̂1, ŷ1, . . . , x̂l, ŷl);

Denote by S3 ⊂ R(n+1)l a set of all such solutions;
END SOLVING CLR PROBLEM

SOLUTION TO THE l -CLR PROBLEM

Compute fmin
l = min {fl(x̂1, ŷ1, . . . , x̂l, ŷl) | (x̂1, ŷ1, . . . , x̂l, ŷl) ∈ S3}

and the collection of linear functions (x̄1, ȳ1, . . . , x̄l, ȳl)
such that fl(x̄1, ȳ1, . . . , x̄l, ȳl) = fmin

l ;
Set xj = x̄j , yj = ȳj, j = 1, . . . , l as a solution to the l-CLR
problem;

END SOLUTION TO THE l -CLR PROBLEM

END WHILE

RETURN the solution to the k-CLR problem;
END PROGRAM Incremental Algorithm

In addition to the k-CLR problem, LMBM-CLR solves also all intermediate l-CLR
problems, where l = 1, . . . , k − 1.
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4 Numerical Experiments
The proposed algorithm was tested using some data sets for regression analysis. First,
we apply the algorithm to solve CLR problems in small real world data sets with
known solutions. Then we solve CLR problems in large real world data sets. We
compare the proposed algorithm with the NOBIA-CLR — Nonsmooth Optimization
Based Incremental Algorithm for Clusterwise Linear Regression [3] — and the well-
known multistart Späth’s-algorithm MS-Späth [27, 28] using results from these data
sets.

LMBM-CLR is implemented in Fortran 95 while NOBIA-CLR and MS-Späth are
implemented in Fortran 77. All the software are compiled using gfortran, the GNU
Fortran compiler. The experiments were performed on MacBookAir (OS El Capitan
10.11.3) with Intel R© CoreTM i5, 1.6 GHz and RAM 4 GB.

LMBM-CLR and NOBIA-CLRmethods use the incremental approach to solve CLR
problems globally while MS-Späth uses the simple randomized multistart scheme
for starting points. Thus, MS-Späth does not give any intermediate results. For com-
parison purposes, we made different runs for different numbers of linear regression
functions.

The following notations are used to present computational results:

• m is the number of observations (data points);

• n is the number of input variables;

• k is the number of linear regression functions (or clusters);

• fbest is the best known value of the function fk;

• EA is the error in %;

• nfa is the number of auxiliary regression error function (3) evaluations.

• nfr is the number of regression error function (1) evaluations.

• Nreg is the number of linear regression problems (2) solved; and

• cpu is the used cpu time in seconds.

The error EA is computed as

EA =
(fA − fbest)

fbest + 1
× 100, (5)

where fA is the value of the function fk obtained by an algorithm A. EA = 0 implies
that an algorithm finds the best known solution. We have used the fbest value given
in [3] (for those data sets that were used also in [3]) unless we got better value in our
experiments.
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4.1 Results on small data sets with known solution
In this subsection we present results with 20 small size data sets available from [7].
The brief description of the data sets is given in Table 1. Computational results for
these data sets and the values of global solutions are given in Tables 2 and 3. We
include here only the error value EA for each algorithm, since all the algorithms found
the solution immediately. With MS-Späth we started the computations from 1000
randomly chosen initial points. Tables 2 and 3 contain results with two and three
regression functions, respectively. We used only a subset of the data sets given in
Table 1 to compute three regression functions since only for these data sets the values
at global solutions are known.

Table 1: The brief description of small data sets

Data set m n Data set m n

1 Acorn 39 3 11 Extroversion 40 3
2 Brinks 47 4 12 House Prices 40 1
3 Car Fuel 82 1 13 Mercury Bass 53 4
4 CEO Salaries 59 1 14 Mortality 58 3
5 Check Off 56 4 15 Nuclear Plants 32 3
6 Cheese Taste 30 3 16 Polishing Times 59 2
7 Crime Rates 47 5 17 Public Expenditure 48 4
8 Diabetes 47 2 18 Smoking Cancer 44 1
9 Electricity 50 3 19 Temperatures 56 2
10 Enrollment 29 4 20 Votes 50 1

We conclude from these results that the accuracy of the new algorithm LMBM-CLR
was similar to that of NOBIA-CLR. With two regression functions these solvers found
the near global solution (ELMBM−CLR ≤ 1.84 and ENOBIA−CLR ≤ 2.51) in all but three data
sets. The accuracy of MS-Späth was a little bit worse: it solved 15 problems with
error less or equal to 2.82. All the solvers totally failed to solve the Brinks data set
(data set 2, see Table 2).

Obviously, reaching the global solution was much more difficult task with three
regression functions (see Table 3). Here, the accuracy of LMBM-CLRwas again similar
to that of NOBIA-CLR. LMBM-CLR solved six problems (out of 11) to near global
solution (ELMBM−CLR ≤ 2.90) while with NOBIA-CLR the number of accurate solutions
were five but all of them were obtained with ENOBIA−CLR = 0.00. Again MS-Späth
was the most inaccurate one: it solved only three problems with EMS−Späth ≤ 3.95.

4.2 Results on large real data sets
In this subsection we report results on nine large real world data sets for regression.
The brief description of these data sets is given in Table 4. Their detailed descriptions
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Table 2: Results for small data sets with two regression functions
Data fbest ELMBM−CLR ENOBIA−CLR EMS−Späth

1 223817911.1 0.00 0.00 7.52
2 382570037.000 114658.82 99961.37 103199.50
3 335.95050870 0.00 0.00 1.80
4 768960.336 0.00 0.00 0.00
5 1169.2983490 0.00 0.00 0.00
6 503.7991483 0.00 0.00 2.62
7 3329.26314 27.00 49.56 53.15
8 3.640144568 0.00 0.00 0.00
9 284.5280943 0.01 2.51 4.72
10 969887.3 0.00 0.00 29.15
11 1478.422187 1.84 0.00 1.84
12 51655.04437 0.00 0.00 0.00
13 0.550461693 0.00 0.00 0.00
14 0.000000000 0.00 0.00 0.00
15 112810.03462 1.46 0.00 2.82
16 5315.41062 0.04 0.00 0.04
17 13660.93458 0.71 0.00 0.71
18 140.3610520 0.00 0.00 0.00
19 428.3865333 24.71 24.71 0.00
20 189.3029607 0.00 0.00 0.00

Table 3: Results for small data sets with three regression functions
Data fbest ELMBM−CLR ENOBIA−CLR EMS−Späth

1 70493712.1 14.82 37.57 24.31
6 95.0925567 89.48 46.60 120.64
8 1.332098236 0.33 0.00 12.26
10 97879.0953 261.80 98.12 184.50
11 415.7273293 1.85 15.17 9.58
12 19540.35008 2.90 0.00 11.68
15 10714.82356 33.71 46.34 22.38
16 1900.03938 0.00 0.00 13.93
18 57.7651194 0.00 0.00 0.00
19 145.6685991 26.83 7.85 3.95
20 91.1856555 0.00 0.00 0.00
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can be found in [23] and references given in Table 4. The number of input variables
in these data sets ranges from 4 to 280 and the number of data points from 1030 to
52397. All input variables are numeric and data sets do not contain missing values.
We compute up to ten linear regression functions in each data set. Results are presented
in Tables 5–13 and Figures 1–9.

To obtain comparable results, the numbers of different starting points for
MS-Späth was always kept big enough, but we limited the computational time of
the method to be twice of that used by LMBM-CLR. We also stopped the run if the wall
clock time was more than 24 hours without any progress. That is, if after 24 hours
MS-Späth was still computing the solution from the first starting point.

Table 4: The brief description of large data sets

Data set m n Reference

Concrete compressive strength 1030 8 [33]
Airfoil self-noise 1503 5 [23]
Red wine quality 1599 11 [10]
White wine quality 4898 11 [10]
Insurance company benchmark (COIL 2000)∗ 5822 85 [30]
Combined cycle power plant 9568 4 [29, 21]
Online News Popularity 39644 58 [13]
Physicochemical properties 45730 9 [23]
of protein tertiary structure
BlogFeedback∗ 52397 280 [5]
∗ training data set.

Let us first examine data sets with less than 6000 data points (5 – 85 input vari-
ables). That is, Concrete compressive strength, Airfoil self-noise, Red wine quality,
White wine quality, and Insurance company benchmark data sets. Note that in Red
wine quality, White wine quality, and Insurance company benchmark data sets the
values of the regression error functions were equal to zero with 6, 7, and 2 linear re-
gression functions, respectively, and we stopped computing more regression functions
in these cases.

As with small data sets, LMBM-CLR and NOBIA-CLR behaved quite similarly:
both had some difficulties in Concrete compressive strength data set with larger num-
ber of regression functions, nevertheless not as bad as MS-Späth (see Table 5);
LMBM-CLR and NOBIA-CLR did not find the best known solution in Red wine qual-
ity data set with five regression functions, on the other hand, MS-Späth found it
only with two regression functions (see Table 7); and in Airfoil self-noise data set
LMBM-CLR failed to find the best known solution with seven regression function while
NOBIA-CLR failed with ten regression functions (see Table 6). Again MS-Späth did
not find the best known solution with any numbers of regression functions. Moreover,
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MS-Späth failed to find accurate solutions in White vine quality data set but with
two regression functions and in Insurance company benchmark data set (see Tables
8 and 9). Besides above the solvers found at least near the best known solution with
EA ≤ 0.19.

MS-Späth algorithm used less regression function calculations than the other
two algorithms when there were only few regression functions involved. However,
with larger number of regression functions MS-Späth algorithm needed significantly
more computations. Note that the procedure used in MS-Späth is completely dif-
ferent from that of the other two algorithms and, although, the procedures for find-
ing a global solution in LMBM-CLR and NOBIA-CLR are quite similar, their internal
implementation is somewhat different. Thus, a sole number of regression function
calculations does not give a right impression of the computational burden. Indeed,
LMBM-CLR needed to solve more regression problems than NOBIA-CLR but to do
so, it used significantly less function evaluations, especially, evaluations of the com-
putationally more expensive regression error function (1). As a result LMBM-CLR was
about five times faster than NOBIA-CLR. In Figures 1 – 5 we have compared the used
CPU times of LMBM-CLR and NOBIA-CLR when the numbers of linear regression
functions are increased. As already said MS-Späth always uses (at least) twice the
computation time of LMBM-CLR and thus, we omitted it from these figures. These
figures show that the computational time of LMBM-CLR increased clearly less with
the numbers of regression functions.

Second, we consider data sets with less than 50000 data points (4 – 58 input vari-
ables): that is Combined cycle power plant, Online News Popularity, and Physico-
chemical properties of protein tertiary structure data sets (see Tables 10 – 12). As be-
fore LMBM-CLR and NOBIA-CLR behaved quite similarly and MS-Späth was very
inaccurate. In fact, we could say that MS-Späth did not solve these problems. Here,
LMBM-CLR was clearly faster than NOBIA-CLR due to fact that LMBM-CLR solved
less regression problems than NOBIA-CLR and also significantly less function evalu-
ations, especially, evaluations of the computationally more expensive regression error
function (1). The comparisons of the used CPU times of LMBM-CLR and NOBIA-CLR
are given in Figures 6 – 8. Again, these figures show that the computational time of
LMBM-CLR was significantly smaller and increased clearly less with the number of
regression functions.
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ä
t
h

E
A

n
f
a

n
f
r

N
r
e
g

cp
u

E
A

n
f
a

n
f
r

N
r
e
g

cp
u

E
A

N
r
e
g

cp
u

2
71

05
8.

91
0.

00
31

95
72

23
8

0.
93

0.
00

17
10

9
84

9
33

5
4.

39
17

.9
0

12
0

2.
81

3
40

41
4.

89
0.

01
65

40
15

5
46

3
1.

88
0.

00
34

00
6

14
88

64
0

8.
70

29
.9

0
28

5
5.

00
5

18
28

8.
70

0.
00

11
21

4
23

60
85

2
4.

69
0.

00
61

24
1

23
13

9
12

32
29

.8
5

24
.3

3
11

25
13

.6
1

7
10

12
1.

22
0.

22
17

21
3

39
64

14
35

7.
68

0.
00

84
24

6
31

81
9

17
56

43
.5

5
31

.3
3

23
80

22
.2

9
10

52
76

.7
9

1.
03

19
27

1
58

19
17

47
11

.1
7

0.
00

94
80

6
44

50
2

21
37

62
.8

1
42

.5
2

46
30

31
.6

2

13



Ta
bl

e
11

:R
es

ul
ts

fo
rO

nl
in

e
ne

w
s

po
pu

la
ri

ty
da

ta
se

t.
k

f
b
e
s
t

L
M
B
M
-
C
L
R

N
O
B
I
A
-
C
L
R

M
S
-
S
p
ä
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Figure 1: Concrete compressive strength: used CPU time vs. numbers of regression
functions.

0.0E+00

1.0E+01

2.0E+01

3.0E+01

4.0E+01

5.0E+01

0 2 4 6 8 10

CP
U

 ti
m

e

No of regression functions

Airfoil self-noise

LMBM-CLR

NOBIA-CLR

Figure 2: Airfoil self-noise: used CPU time vs. number of regression functions.
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Figure 3: Red wine quality: used CPU time vs. number of regression functions.

All the results of LMBM-CLR and NOBIA-CLR are at least near the best known
solution in Combined cycle power plant and Physicochemical properties of protein
tertiary structure data sets (EA ≤ 1.3, see Tables 10 and 12). However, in Online News
Popularity data set LMBM-CLR had problems with accuracy: it found the best known
solution only with five regression functions, otherwise 3.79 ≤ ELMBM−CLR ≤ 9.47 (see
Table 11).
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Figure 4: White wine quality: used CPU time vs. number of regression functions.
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Figure 5: Insurance company benchmark: used CPU time vs. number of regression
functions.
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Figure 6: Combined cycle power plant: used CPU time vs. number of regression
functions.

Finally, in BlockFeedback data set which has both very large number of data points
(52397) and a large number of input variables (280) we obtained a little bit differ-
ent results (see Table 13 and Figure 9). With two regression functions MS-Späth
found the smallest minimum. Nevertheless, with larger number of regression func-
tions MS-Späth failed to find even near best known solutions. In addition, with less
than five regression functions LMBM-CLR used more CPU time than NOBIA-CLR.
However, LMBM-CLR found smaller function values in all cases and with ten re-
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Figure 7: Online news popularity: used CPU time vs. number of regression functions.
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Figure 8: Physicochemical properties of protein: used CPU time vs. number of regres-
sion functions.

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

0 2 4 6 8 10

CP
U

 ti
m

e

No of regression functions

BlogFeedback

LMBM-CLR

NOBIA-CLR

Figure 9: BlogFeedback: used CPU time vs. number of regression functions.

gression functions LMBM-CLR was also significantly faster than NOBIA-CLR .
LMBM-CLR and NOBIA-CLR solved an equal number of regression problems. While
NOBIA-CLR usually used less auxiliary error function evaluations LMBM-CLR suc-
ceed solving problems with less regression error function evaluations.

Note that with Online news popularity and BlockFeedback data sets MS-Späth
computed solutions from only one starting point before the time limit was exceeded.
In addition, we did not obtain any result from MS-Späth in BlockFeedback data set
with ten regression function within 24 hours.
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5 Conclusions
In this paper a new LMBM-CLR -method for solving the clusterwise linear regression
problems is introduced. Here the clusterwise linear regression problem is formulated
as a nonsmooth nonconvex optimization problem. In addition, an auxiliary clusterwise
linear regression problem is introduced to find initial solutions for the clusterwise lin-
ear regression problem.

The LMBM-CLR -method consist of two different algorithms: an incremental
algorithm is used to solve clusterwise linear regression problems globally and at each
iteration of this algorithm the LMBM algorithm is used to minimize both the clus-
terwise linear regression error function and the auxiliary clusterwise linear regression
error function with different starting points.

The new LMBM-CLR -method was tested using both small data sets with known
solutions and large real world data sets with the number of data points ranging from
thousands to tens of thousands. In small data sets the difference in computational
times was insignificant. The accuracy of the new method was similar to that of the
NOBIA-CLR and better than Späth’s algorithm. In large data sets the new method
LMBM-CLR was significantly faster and at least as accurate as the other methods
tested. Numerical results demonstrate that the LMBM-CLR is especially efficient for
solving CLR problems in data sets with large number of input variables.
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