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Abstract
Control theory is a well-established approach in network science, with known
applications in bio-medicine and cancer research. We build on recent results for full
and structural controllability of directed networks, which gives a set of driver nodes
able to control the whole network, or an a-priori defined part of it, respectively. We
develop a novel approach for the structural controllability of cancer networks and
demonstrate it for the analysis of breast, pancreatic, and ovarian cancer. We build in
each case a signalling transduction (STN) protein-protein interaction (PPI) network
and focus on the so-called “essential proteins” specific to each cancer type in our
study. We show that the cancer essential proteins are efficiently controllable from a
(relatively small) computable set of driver nodes. Moreover, we adjust the method
to find the driver nodes among FDA-approved drug-target nodes. Interestingly, we
find that while many of the drugs acting on our driver nodes are part of known
cancer therapies, some of them are not used for the cancer types analyzed here;
also some drug-target driver nodes identified by our algorithms are not known to
be used in any cancer therapy. Overall we show that a better understanding of the
control dynamics of cancer through mathematical modelling could pave the way
for new efficient therapeutic approaches and personalized medicine.

Author Summary
Advances in systems biology are offering not only insight into complex molecular
interactions, but are also useful for the discovery of new disease proteins and of
new therapeutic targets for disease intervention. Here we employ a control theory
approach for the analysis of specific disease networks, allowing us to drive the
system dynamics towards favourable traits, as well as helping us to understand
better the regulatory mechanisms of these bio-chemical networks. We show how
to employ the use of well established drug-target proteins in order to archive
a structural control over essential target proteins within specific cancer protein-
protein interaction networks, and apply this to breast, pancreatic, and ovarian cancer
signalling transductions PPIs networks. We demonstrate that instead of aiming
for an overall control of entire networks, partial controllability is more effective
and efficient in the development of therapies for various cancers. Also, we provide
a new insight into the efficient control of dynamical disease networks which can
assist in the discovery of novel cancer associated proteins and bio-markers.

Introduction
The main cause of cancer is genetic and epigenetic alterations, which allow normal
cells to over-proliferate as tumour cells [1]. Most of these alterations contribute to
various cancer dysregulated signal transduction pathways, which control essential
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cell processes such as growth factor, differentiation and survival [1]. Through
signal transduction processes, these tumour cells develop as malignant cells; this
complex process information is transmitted through protein-protein interactions
(PPIs) [1]. Proteins act as the vehicles of these signals, while the interactions
among them influence the velocity of the information flow. For instance, PPIs are
directly regulating the phosphorylation of serine/threonine residues [2], and the
same process is used by tumour necrosis factor to convey signals from the receptor
to their downstream targets [2]. Also, the transforming growth factor-β (TGFβ)
employs PPIs to convey signals to activate its targets [2]. TGFβ interacts also
with other signaling pathways [3] and creates a complex web in cancer signaling.
It has been shown that TGFβ also regulates various kinase cascades such as the
mitogen-activated protein kinase (MAPKs) ERK, the p38 MAPK pathways, the
Jun N-terminal kinase (JNK), the PI3K kinase, the PP2A phosphatases and the
Rho family members [4, 5]. Furthermore, by using docking proteins and protein
interaction domains, the receptor tyrosine kinases (RTKs) recruits targets to the
receptor [2]. These protein domains mediate a series of intra-molecular interactions
during the downstream of RTKs and re-wire the signaling networks [6]. Usually,
RTK modules are highly mutated and over-expressed in cancer, which effectively
leads its signaling to escalate the progression of tumours [7]. Also, RTKs help to
build robust cancerous signalling networks and signal to other tumor cells to form
similar networks [8]. These studies show that to comprehensively understand the
specificity in signaling networks, we have to understand how distinct pathways
communicate with each other and how proteins of one pathway make interactions
with related signaling components. A network approach over the cancer’s signal
transduction dynamics gives us the tools to provide a better understanding of the
various information-processing abilities employed during the molecular alteration
of the cancerous cells [9].

In human diseases, both associated and non-associated diseased proteins inter-
act with one-another to create disease modules [10], and pave the way towards a
layered configuration and understanding of these complex diseases [11]. Previous
studies have shown that networks associated with the same disease family, as
well as with common phenotypes tend to contain significant similarities between
their disease modules [12]. Disease proteins produce some common tendencies,
such as: inside and outside interactions of modules through PPIs, co-expresed in
specific tissues, as well as high expression correlations [13]. Uncovering these
disease-specific interactions is essential not only in demonstrating the complex
molecular mechanism inside these networks, but also in providing an inside-view
of the dysfunctional signaling transduction processes within these networks. All
these examples illustrate that a network approach toward disease analysis could
provide significant new insights into disease-gene identifications, as well as it could
open new approaches towards network-based therapeutic tools, targeting entire
disease modules together instead of individual elements [14]. The current system-
based understanding of biological processes has already showed that due to the
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various overlaps of signaling pathways, proteins participating in multiple pathways
build robust inter-pathways connections. Therefore multi-target drugs can inhibit
multiple proteins and can thus increase the chance of effective treatments [15]. In
turn, targeting single protein can damage the connection of multi-cellular functions
and delay the recovery of disease [15, 16, 17]. However, in many diseases, the
relationship between the various drug targets and the associated disease proteins
is still vague. This opens a new door of investigation for finding rational disease
control mechanisms by use of the currently available drug-target proteins. Essential
proteins are of the central interest in such investigations, in identifying novel targets
for therapeutics [18]; there is already evidence that targeting essential proteins
in cancer can lead to novel therapies [19, 20]. Proteins are consider essential in
cancer if their mutations cause the death of the cancer cells [21]. Cancer essential
proteins can be found in specific cell lines and often induce oncogenesis [20].

Network biology, with the help of mathematical modeling, has revolutionized
the human diseasome research and paved the way towards the development of
new therapeutic approaches and personalized medicine [22]. This is why, in
the last couple of decades, networks science has been constantly in the focus of
biological research, where scientists try to understand the dynamics and control
features of various complex bio-chemical networks in association with matching
experimental findings [23]. Recent work on network controllability has shown that
full controllability and reprogramming of inter-cellular networks, which assumes
the driving of the complete network from any initial state to any desired final state,
can be achieved by a minimum number of control targets [22, 24]. However, the
computer-based experimental tests of Liu et al [25] suggest that achieving full
control over gene regulatory networks is rather demanding, requiring sometimes up
to 80% of the nodes to be directly controlled by an external controller. At the same
time, another research by Wuchty et al. [26] demonstrated the existence of the so
called minimum dominating sets (MDSets) of proteins inside protein interaction
networks. These MDSets are groups of proteins which have a central position
within the protein interaction networks, and are interacting with all other proteins
within the network. They also showed that the MDSets are enriched with essential,
cancer-related and virus-targeted proteins, which are acting as bottlenecks for
various essential cell processes. Based on the study from [26] and considering
essential MDSets (e-MDSets), Khuri et al. [27] showed that e-MDSet proteins
have predominantly more connections in networks than any other sets of proteins,
and can be vital for network control. Another framework based on feedback
loops (both negative and positive) showed that these loops play a major role in
signaling transduction networks by causing various oscillations and switching of
signals. Thus, they concluded that also these feedback loops could be a major
target for controlling oncoproteins and for the development of effective therapies
in cancer [23]. All the above approaches are aimed at controlling specific types of
biological networks. However, in the case of diseased protein-protein interaction
networks, there is still no feasible methodology for achieving an efficient control.
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In this article we use target controllability for the analysis of specific signal
transduction cancer networks, focusing on cancer type specific essential proteins
as our target nodes and on drug-target proteins as our driven nodes. We develop a
general computational model based on directed networks, that aims to find specific
paths from the set of potential driven nodes to the set of targets. We report on
the total number of driven nodes needed to control the targets, the number/list of
drug targetable driven nodes, and on some interesting topological properties of the
driven nodes in these networks.

Materials and Methods

Cancer data

The cancer data used in this study was obtained both from the publicly available
UniprotKB protein database [28], as well as from previous published research
articles [29, 30, 31, 32, 33, 34, 35, 36]. We concentrated our study over three
types of cancer, namely breast, pancreatic and ovarian, for which we gathered
data for 1415, 991 and 1047 proteins respectively, see S1 Table. While gathering
this data we required that the selected proteins should be reviewed in curated
databases and/or gathered from literature. We used short python scripts to check
for redundancy in the gathered data.

Protein-protein interaction data

To obtained directed PPI cancer data, we used SIGNOR (SIGnaling Network Open
Resource) database [37], which outputs binary matrix representations for the used-
provided protein lists; this allowed us to create directed graphs between signaling
entities. We obtained directed PPIs network of 2532 interactions from 1415 nodes
in breast cancer, 1569 interactions from 991 nodes in pancreatic caner, and 1643
interactions from 1047 nodes in ovarian cancer. The networks are available at [38]
or see S2 Table

Essential protein data

Although diseased cells may harbor hundreds of genomic alterations in various
biological pathways [9, 24], only a subset of these alterations are driving the disease
initiation and progression. These proteins form together the sets of (disease specific)
essential proteins. Due to the new CRISPR gene editing technology, researchers
can now pinpoint essential proteins for a very large class of illnesses [39], including
many types of cancers [40, 41]. We collected essential gene data for all three types
of cancer from the COLT-Cancer database [42]. In particular, we considered the
MDA-MBD-231, HPAF-II and OV-90 cell lines respectively for breast, pancreatic
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and ovarian cancer, and follow the GARP (Gene Activity Rank Profile) and GARP-
P value of corresponding proteins mentioned in the database. Since previous
studies showed that proteins with lower GARP score are more essential and directly
associated with oncogenesis [40], we selected only those essential proteins whose
GARP value is in the negative range, and moreover, whose GARP-P value is less
than 0.05 (p ≤ 0.05). Following the above criteria, we identified 712, 770 and 866
proteins respectively for breast, pancreatic and ovarian cancer, see S3 Table. Out
of these, 135, 168 and 140 essential proteins respectively in breast, pancreatic and
ovarian cancer were found available in the SIGNOR PPI network database, and
were included in our network.

Drug target data

We obtained drug-target protein data from the open source DrugBank database [43]†.
The DrugBank database offers extensive information of drug and drug targets. This
includes information of chemical, pharmacological and pharmaceutical specific
drugs integrated with structure, pathway and sequence drug target. For drug-target
identifiers we have selected in total 1507 FDA-approved proteins which have a
known mechanism, see S4 Table.

Theoretical model and optimization algorithm

The mathematical methodology used for deriving the sets of driving genes through
which we can effectively manipulate the system is based on the well established
Structural Control Theory. This theory, although initiated by Lin [44] in the 70’s,
has recently received a new boost of attention, [22, 25, 45] partly due to recent
results on efficient algorithms for core research problems within this framework.

We say that a dynamical system, such as the expression levels of a set of genes
influencing each other, is controllable from a set of input (driver) nodes, if there
exists a time-dependent sequence of input signals delivered through these nodes
such that the system can be driven from any initial state to any desired final state
within finite time. From the point of view of our study, we can concentrate over
linear time-invariant (lti) dynamical systems. Such systems can be visualized as
directed networks, where the nodes represent the components of the system while
the weighted directed edges represent how these components interact and influence
each other.

In a recent breakthrough an efficient (low polynomial time) algorithm was
provided for computing the minimal number of input nodes needed to structurally
control any given lti network [25]. However, it was also shown that in the case
of sparse inhomogeneous networks, such as most of the networks emerging from
biochemical and biomedical applications, controlling the entire system is expensive,

†The query was performed on August 2015
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requiring up to 80% of the system’s nodes to be controlled directly. On the other
hand, in terms of practical applications, in many cases it is enough to control only
a certain well-selected portion of the network’s nodes, such as the set of essential
genes, in order to impose a certain overall behaviour over the system. Thus,
controlling those target genes, or a considerable subset of them, could translate
into a highly effective control approach over the desired system dynamics.

Our algorithms aim to minimize the number of driven nodes (i.e., network
nodes) which can be used to control a given target, namely the set of cancer-
specific essential genes in each network. Our approach is different that in [22]
that minimize the number of input/driver nodes (i.e., possibly acting upon several
of the network nodes in the same time). The rationale for this choice is that we
aim for combinatorial drug target identification and we consider only the primary
target of each drug under consideration. Our algorithm has a double optimization
to minimize the total number of driven nodes (on which a subsequent intervention
is needed) and to maximize the percentage of FDA-approved target nodes among
them. We used several heuristic strategies for a more efficient exploration of the
search space, leading to faster and better results.

We implemented an additional validation step for the proposed solution of our
algorithm, which is freely available at [38]. An example in [46] shows that in some
rare cases, the algorithm in [22], whose basic search strategy we also follow here,
may output a non-solution (a set of nodes that fails to control the given target). In
such a case, we restart the search algorithm and given the built-in randomness of
our algorithm, we expect to get another candidate solution with high probability.
The size of the set of non-solution output is not-known in general but according
to [36], it is expected to be very small. This is consistent with our computational
results where no non-solutions were found.

Topological properties of networks

The degree of a node in a network is the number of connections the node has to other
nodes. The robustness of a network depends upon the connections between the
nodes inside the network. Another important node-associated value is the cluster
coefficient, which, for a node v, is defined as Cv = n/kv(kv − 1), where kv is the
number of neighbours of v and n is the total number of connections/edges between
these neighbours. The clustering coefficient of a node takes values between 0 and
1, where 1 implies that the node v is in a complete sub-graph, while 0 denotes that
the node is part of a loosely connected cluster (a star-shaped cluster with v in the
centre). Further, the betweenness centrality of a node v is defined as the weighted
sum of all shortest pathes between all pairs of nodes s and t, that go through the
node v. That is, CB(v) =

∑
s6=v 6=t

σst(v)
σst

, where σst is the number of shortest paths
between nodes s and t, while σst(v) is the number of such shortest paths running
through node v. Also, the closeness centrality of a node indicates how close this
node is from all other nodes; it is defined formally as Cc(v) =

∑
t6=v∈V

S(s,t)
n−1 ,
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where S(v, t) is the shortest path between v and t.

Results

Controlling PPI signaling transduction networks in cancer
To determine the controllability of essential proteins we analyzed three cancer
networks: breast, pancreatic and ovarian cancers, see S2 Table. The size of the PPI
networks that we generated based on [33] ranges roughly between 900-1600 nodes
and between 1500-2500 edges, Table 1.

We first computed the minimum set of nodes controlling the entire network,
based on the algorithm for full controllability in [25]. We found in all three cases
that around 70% of all the nodes have to be directly controlled in order to gain
control over the whole network, Table 1. This is in accordance with previous
results of [25] for different types of gene regulatory networks and confirms that
full controllability is impractical in cancer medicine.

We then considered a set of cancer type-specific essential proteins based on [42]
and computed the sets of nodes that are enough to (target) control these essential
proteins, see S3 Table. We applied both the generic algorithms of [22] (whose
search we improved through a new heuristic strategy) and our algorithm maximiz-
ing the use of drug-targetable nodes as driven nodes, aiming to make the results
more practical. The results are summarized in Table 2; the cancer PPI networks
are graphically described in Fig. 2 for pancreatic cancer, S1 Fig for breast cancer,
and S2 Fig for ovarian cancer. We found that the number of driven nodes needed
for the control of essential proteins is much smaller, ranging between 6-14% of
the total number of nodes in the network, Fig. 1, depending on the cancer type
and on the algorithms used in the computation. Our algorithms also found sets of
driven nodes containing many (19-32) drug targetable nodes, Table 2, drastically
improving the applicability of this approach.

Table 1: Full controllability of three cancer network

Network Nodes Edges Full control:
driver (drug-
targ.) nodes

Full control: %
driver (% drug-
targ.) nodes

Breast 1415 2532 962 (210) 68% (15%)
Pancreatic 991 1569 690 (472) 70% (48%)
Ovarian 1047 1643 736 (432) 70% (41%)

The columns represent the following information per cancer network: the total
number of nodes in the network (Nodes), the number of connections (Edges), the
controlling set for the entire network (Full control), the % of the controlling set vs.
the whole network (Full control %).
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Table 2: Essential gene -targeted controllability of three cancer networks

Network Nodes Edges Targets:
#(%)

Min target
control:
driven
(drug tar)

Min target
control(%):
driven
(drug tar)

Drug oriented
target control:
driven
(drug tar)

Drug oriented
target control(%):
driven (drug tar)

Breast 1415 2532 135 (9.5%) 94(1) 6.6% (0%) 110(19) 7.7% (1.3%)
Pancreatic 991 1569 168 (17%) 131(9) 13.2% (0.9%) 143(32) 14.4% (3.2%)
Ovarian 1047 1643 140 (13%) 111(6) 10.6% (0.5%) 120(25) 11.4% (2.3%)

The columns represent the following information per cancer network: the total number of nodes in the
network (Nodes), the number of connections (Edges), the number (and percentage) of target proteins
(Targets), the minimal controlling set of the target proteins (Min target control) including enclosed
drug-target (drug tar) proteins, percentage (vs. the whole network) of the minimal controlling set (Min
target control (%)) including enclosed drug-targets, the drug-oriented controlling set (Drug-oriented
target control) including enclosed drug-target (drug tar) proteins, and the percentage (vs. the whole
network) of the drug-oriented controlling set (Drug-oriented target control(%)) including enclosed
drug-targets (drug tar).

These results portray a highly advantageous situation. The ultimate objective
of our use of structural controllability on cancer disease networks is to be able to
control the cancer evolution and drive it towards a downfall. This can be achieved
by gaining control over the entire network, an approach which seems to require
an excessive direct intervention over 68%, 69.6%, and 70.3% of the nodes in
the network, i.e., 962, 690, and 736 of the nodes from the breast, pancreatic
and ovarian cancer networks, respectively, Fig. 1 and Table 1. In contrast to the
previous situation, we aimed in achieving a control over a subset of nodes, specific
to each individual cancer network, which is known to have an overwhelming
effect over that cancers survivability. The reasoning is that by controlling these
essential positions in the network, we ensure the overall down-evolution of the
disease. In contrast to the previous case, controlling these focused target can be
done much more efficiently, requiring a direct intervention over 6.6% (94 nodes)
13.2% (131 nodes) and 10.6% (111 nodes) of the breast, pancreatic and ovarian
cancer networks, respectively. Thus, we obtain up to a 10 fold decrease in the
control effort, Fig. 1, while maintaining a high likelihood of an overall similar
effect.

Topological properties of drug target proteins and of essential
proteins
We analyzed several topological properties of the drug target proteins included by
our algorithm in the set of driven nodes, and of the essential proteins in each of the
networks in our study. We looked at the average degree, the betweenness centrality,
the closeness centrality, and the clustering coefficient of these proteins as compared
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Figure 1: Controlling of cancer networks. The radius of the circles is propor-
tional with the number of nodes in the networks. (a) The percentage of controlled
target nodes by drug-target nodes and non drug-target nodes, w.r.t. the total number
of nodes. (b) Required minimum control nodes for the control of the whole cancer
networks.

with the average values over the entire networks. We found that in all the three
considered cancer networks, the drug-target driven nodes and the essential proteins
have much higher average degree than the average over the whole networks, Fig. 3.
This shows that both the drug-target driven nodes and the essential proteins are hubs
in the networks and thus central in the regulation of the networks; this is consistent
with observation of, e.g., [47, 48]. The essential proteins were found to have a
higher average betweenness centrality than the average over the whole networks,
especially in the breast and in the pancreatic cancer networks, Fig. 3. This indicates
that essential proteins act as highly-traversed bridges in these interaction networks;
nodes with high betweenness centrality values have been reported also in several
other pathways, including MAPK pathways [49, 50].

The other topological indicates we considered did not systematically distinguish
the drug-target driven nodes or the essential proteins against the rest of the networks
nodes, Fig. 3.
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Figure 2: Pancreatic cancer PPI network. A yeast two-hybrid (Y2H) PPI net-
work for cancer signalling proteins. A network view of pancreatic cancer PPI
network. The network contains 90% of the total network nodes, the remaining part
of the network containing isolated nodes. The drug-target nodes (DTN) are shown
in dark blue, target nodes (TN) are in maroon, nodes that are both in DTN and TN
are shown in dark green, Non-drug target nodes (NDT) are in light orange, and
nodes that both in NDT and TN are in magenta.

From driven nodes to combinatorial drug therapy strategies

We analyzed the drug-targetable proteins identified by our algorithms as part of the
strategies to control the cancer essential proteins. We found that some of them are
themselves oncoproteins and thus could be a direct target in cancer therapy. Among
those that are not oncoproteins, we found that some have a high impact in their
corresponding network, controlling several essential proteins simultaneously. One
of them is ERBB2, which controls five essential proteins in breast cancer (CDK1,
CDC27, CDC7, SH3RF1, APLP2) and four essential proteins in pancreatic cancer
(CNSK1E, MST1R, MAML1, ADAM17); Fig. 4 and Table 3. This is in line with
previous observation of [51] showing that ERBB2 is often a drug-target in cancer
therapies. Another potent drug-target protein is RET, controlling five oncoproteins
(MAPK3, PLK1, OPTN, PTTG1, CDH1) in the ovarian cancer network, Fig. 4 and
Table 3. The list of all high impact drug-target protein (controlling more than two
essential proteins) is in Table 3. We observed that out of the 75 drug-target proteins
included by our algorithms in the control strategies (driven nodes) of the three
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Figure 3: Topological properties of drug-target and target (essential) proteins
in compare to whole network. (a) Average degree of drug-target and target
proteins in compare to whole network. (b) Average betweenness of drug-target and
target proteins in compare to whole network. (c) Average clustering coefficient of
drug-target and target proteins in compare to whole network. (d) Average closeness
of drug-target and target proteins in compare to whole network.

cancer networks, 31 of them are present in more than one cancer network. This
shows that they are expressed in multiple cancer cell lines and could be used in
drug therapies of several cancer, in combinations with cancer type-specific targets.

We looked for anti-cancer drugs for the drug target proteins identified by our
control algorithms. We found that in some cases they are used in current cancer
type-specific drugs and drug-therapies; for example, anti-cancer drugs targeting the
ERBB2 gene are in use for breast cancer. In many other cases however, we found
that the drug-targets identified by our methods are either not used in any known
cancer therapies, or at least not in the case of the specific cancers we analyzed.
These results and observations are summarized in, Table 3.

Functional properties of the high-control proteins
We reviewed the functional properties of the driven nodes found to have the
highest impact in controlling the essential proteins; they are ERBB2, SRC, PDPK1,
PRKDC, mTOR for breast cancer, ERBB2, AKT1, GSK3B, ABL1 in pancreatic
cancer, and RET in ovarian cancer. Our goal was to correlate the findings of our
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Figure 4: Target control efficiency of drug-target proteins. (a) Control features
of drug-target proteins in breast cancer. (b) Control features of drug-target proteins
in pancreatic cancer. (c) Control features of drug-target proteins in ovarian cancer.

computational study with previous studies on the functional properties of these
proteins.

In breast cancer, the ERBB2 oncogene activates signaling pathways that dereg-
ulate the essential proteins processes and make cancer cells resistant to chemother-
apeutic drugs of cancer cells [52]. Amplification of ERBB2 gene is the main cause
of its over-expression in cancer [53], while depletion of glucose also inhibits ex-
pression of ERBB2 [52]. Moreover, the PI3K/AKT pathway directly activates the
mutations in ERBB2-amplified breast cancers [54]. The SRC protein is activated
by various factors such as cytoplasmic proteins, which play vital role in integrat-
ing signalling and ligand activation of cell surface receptors. These interactions
interrupt the intermolecular interaction within SRC and lead to over-expression
of upstream growth factor receptors [55]. Other intrinsic factors in breast cancer
are dephosphorlization of SRC, SRC regulation by RTKs, and SRC activity gene
expression signature [56].

The protein PDPK1 has a crucial role in over-proliferation of breast cancer [57],
while [58] shows that anchorage-independent growth is regulated by PDPK1,
which resists to many anti-cancer drugs and starts the tumour formation in breast
cancer cell lines. Along with this, PDPK1 proteins phosphorylate the activating
segment of AKT, which affects various key cell functions and facilitate the breast
cancer progression [57]. The PRKDC protein is also carrying an important role in
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breast cancer [59, 60]. Downregulation of MYC mRNA and protein expression
in multiple cancer cell lines is caused by inhibition of PRKDC, which leads to
over-expression of MYC family of proteins induced DNA double-strand breaks
and leads to cancer progression [61]. Protein mTOR, together with PIKS and
Akt, mediates multiple cellular pathway functions. Aberrations and degradations
inside these pathways leads to tumour proliferation in breast cancer [59, 62]. These
aberrations affect germline and somatic mutations, amplification, rearrangements,
methylation, overexpression, aberrant splicing, and starts mutation in breast cancer
cell lines [64].

In pancreatic cell lines, overexpression of ERBB2 is known to advance the
disease states [64]. Moreover, knocking down of CAPAN-1 and CAPAN-2 cells by
ERBB2 increases the sensitivity to gemcitabine, the resistance to irinotecan/SN-38,
the increase of hCNT1 and hCNT3 transporters, and ABCG2, MRP1 and MRP2
ATP-binding cassette transporters expression, which leads to apoptosis [65]. In
vivo, PEAK1-dependent kindles induced by oncogenic KRas amplify the loop
between SRC, PEAK1, and ERBB2 drive pancreatic cancer. Also, increased
SRC-dependent PEAK1 expression by blockade of ERBB2 expression activates
tumour growth [66]. The next protein in our list is AKT1, which is serine/threonine
kinase AKT (also known as Protein Kinase B) for which we found reports of over-
expression in pancreatic tumour formation [67]. The alteration of AKT increases
the oncogenic changes in tumour, and the activation of AKT isoforms disturbs the
down-regulation of pancreatic tumours which starts upstream signalling [67]. Also,
the activation of HER2/3- PI3K/Akt signaling pathways by VIP plays a key role
in growth and survival of cancer [68]. For the next protein in our list GSK3B, we
found reports that its inhibition activates JNK-cJUN-dependent apoptosis in human
pancreatic cancer cell lines [69] and participates in the nuclear factor−kβ (NF−
kβ) mediated cell survival in pancreatic cancer [70]. Also, GSK3B is documented
to initiate the tumour through activation of the oncogenic β-catenin [71], which
over-expressed the GSK3B in pancreatic cancer. The next protein ABL1 is over-
expressed in pancreatic cancer [72]. Alteration in ABL mRNA expression in
tumours increases the activity of ABL kinase, which promotes the cancerous’ cell
over-proliferation and survival [73]. Interestingly, cellular stress and DNA damage
induced ABL1 escalate the cell growth arrests or apoptosis mediated by p53 or
p73 [74].

In ovarian cancer RET (REarranged during transfection) is expressed and
involved in pathogenesis of ovarian cancer [75, 76]. RET tyrosine kinase is a fusion
partner of TRIM27 (tripartite motif-containing 27), which is highly expressed
in normal epithelial cells of the ovary and fallopian tube and in ovarian serous
carcinoma cells [77]. It has been pathologically characterized in patients with
ovarian serous carcinoma. Since RET participates in essential cellular processes,
the over-expression of fusion proteins (TRIM27-RET) disrupts its essential cellular
activity and triggers tumorigenesis [77].
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Discussion

We analyzed the breast, pancreatic, and ovarian cancer protein-protein interaction
networks, and identified the respective sets of driven proteins for controlling the net-
works. Recent genetic editing technologies explain the existence of cancer-specific
sets of proteins which have an important role in the overall disease mechanism.
These proteins, called cancer essential proteins, are proved to be key for in-vivo
cancerous cell’s proliferation and survival. Therefore, instead of trying to achieve
a full control of the entire disease’s network, which in itself is highly complex, our
approach aims for a targeted control approach, particularly for controlling those
cancer essential proteins. In order to achieve the partial control of all the above
mentioned cancers, we have first generated for each of them the associated signal
transduction directed protein-protein interaction network. These networks identify
the in-between influence of the proteins passed on their overall expression levels.
Our analysis showed that in order to control all of the essential proteins in these
cancer networks, we require the direct intervention over only 6.6% - 13% of the
entire networks’ nodes, Table 2. In turn, to achieve a full control of these networks,
it required around 70% of the networks’ nodes to be directly controlled by an
outside intervention, Table 1, e.g., such as achieved by administering a number of
drugs. Thus, our method generates up to a 10-fold decrease in the control effort,
while maintaining a high likelihood of an overall similar effect. Moreover, our
methodology and algorithms for target control of the essential proteins empha-
size, and maximize, the use of known drug target proteins, as a choice for input
controlling nodes, i.e., driven nodes, of the network. Our analysis shows that
when comparing the drug target (DT) vs. the non-drug target (NDT) driven nodes
generated by our algorithms, the average (per node) control efficacy of the former
ones is considerably higher.

Furthermore, we analyzed the topological properties of the driven DT proteins
and of the essential proteins in all cancer networks, in order to understand the
structural and functional properties of these proteins. We observed that driven DT
associated nodes have high degree in the network, Fig. 3, which shows that these
proteins are central, and that they form robust connections inside the networks.
This characteristic seems to confirm the control efficiency of these nodes, as it
shows that these proteins have multiple connections within the networks and this
intensifies the feasible control over the target (essential) nodes. Also, we observed
that the essential proteins have high betweenness centrality, Fig. 3, showing that
these proteins operate as a bridge in the networks, and that they are highly important
for the signal flow.

We analyzed the relationship between our resulted driven DT proteins and
cancer. We observed that some of these DT proteins are oncoproteins, and thus
the associated targeting drugs have a strong potential therapeutic effect in those
cancers, Table 3. Other driven DT proteins based drugs are known to be part
of therapies in other cancers, but not in breast, pancreatic or ovarian. We also
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observed that out of all selected 75 driven DT proteins in all three cancer networks,
31 DT proteins are present in more than one cancer. This shows that some DT
proteins are expressed in multiple cancer cell lines. We also analyzed the functional
properties of high control proteins in all cancers, and found that these proteins are
directly responsible for the occurrence of particular cancers.

The control methodology applied in this study provides an efficient way to
control an interactome network through known drug target nodes, especially in the
case of disease associated networks. Also, this work provides a better understanding
of the disease associated biochemical networks and opens a new way towards the
successful application of drug-target based control mechanisms. This in turn
could pave the way for future studies of various disease diagnostic techniques
based on network controllability, efficient therapeutic approaches, and personalized
medicine.

Supporting Information

S1 Fig
Breast cancer PPI network. A yeast two-hybrid (Y2H) PPI network for cancer
signalling proteins. A network view of pancreatic cancer PPI network. This
network containd 90% of total network nodes, the remaining part of the network
containing isolated nodes. The drug-target nodes (DTN) are shown in dark blue,
target nodes (TN) are in maroon, nodes that are both in DTN and TN are shown in
dark green, Non-drug target nodes (NDT) are in light orange, and nodes that both
in NDT and TN are in magenta.

S2 Fig
Ovarian cancer PPI network. A yeast two-hybrid (Y2H) PPI network for cancer
signalling proteins. A network view of pancreatic cancer PPI network. This
network containd 90% of total network nodes, the remaining part of the network
containing isolated nodes. The drug-target nodes (DTN) are shown in dark blue,
target nodes (TN) are in maroon, nodes that are both in DTN and TN are shown in
dark green, Non-drug target nodes (NDT) are in light orange, and nodes that both
in NDT and TN are in magenta.

S1 Table
Breast, Pancreatic and Ovarian cancer proteins.

S2 Table
PPI network of breast, pancreatic and ovarian cancer.

18



S3 Table
Essential proteins of breast, pancreatic and ovarian cancer.

S4 Table
Drug-target proteins.
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Table 3: Highly impact drug-target proteins for Breast, Pancreatic and Ovarian
cancers

Cancer Types Drug-target Target proteins Anti-cancer drug Known to be used in cancer
therapies

Breast ERBB2 CDK1, CDCH2, CDC7,
SH3RF1, APLP2

Lapatinib Breast, Lung

SRC PLK1, RAN, MAP2K1,
KARS

Dasatinib, Bosu-
tinib, Ponatinib

Chronic myelogenous leukemia
(CML)

PDPK1 PNK1, ERBB3, SH3RF1,
PDPK1

None None

PRKDC GBF1, MN1, RPA2 None None
MTOR PHB2, RPTOR, MTOR Temsirolimus Renal cell carcinoma (RCC),

Bone marrow cancer,
JAK2 MAP3K5, AIRE Ruxolitinib, Er-

lotinib
Pancreatic cancer and others
types of cancer

HDAC3 SP1, HDAC3 Vorinostat Cutaneous T cell lymphoma
(CTCL)

CDK2 PFN1, TFCP2 None None
Pancreatic ERBB2 TUBA1C, ERF, NUDC,

ERBB2
Lapatinib Breast, Lung

AKT1 CNSK1E, MST1R,
MAML1, ADAM17

None None

GSK3B DLC1, ROBO1, ABL1 Hepatitis B immune
globulin, Alectinib,
Paclitaxel, Eribulin,
Testolactone

Liver cancer, Anaplastic lym-
phoma kinase (ALK) and Non-
small cell lung cancer (NSCLC),
Cancer chemotherapy, Breast
cancer

ABL1 DLC1, ROBO1, ABL1 None None
IGF1R PIK3C2A, IGFR1 None None
HDAC3 SMURF2, HDAC3 Vorinostat Cutaneous T cell lymphoma

(CTCL)
RAF1 STK3, DAXX None None
INSR IRS4, INSR None None
RAC1 SFN, USP6 None None
PDPK1 HNRNPA1, PDPK1 None None

Ovarian RET MAPK3, PLK1, OPTN,
PTTG1, CDH1

Cabozantinib,
Lenvatinib, Van-
detanib, Sunitinib,
Regorafenib,
Ponatinib,

Medullary thyroid cancer (MTC),
Thyroid cancer, Renal cell carci-
noma (RCC), Imatinib-resistant
gastrointestinal stromal tumor
(GIST), Metastatic colorectal
cancer and Advanced gastroin-
testinal stromal tumours, Chronic
myeloid leukemia,

AKT1 WNK1, CHEK1 None None
GRB2 APBB1, GRB2 None None
JAK3 STAT2, JAK3 None None
PRKDC HNRNPU, VHL None None
SMO GNG12, GNAT2 Vismodegib,

Sonidegib
Basal cell carcinoma

MTOR ISCU, RPS6 Temsirolimus Renal cell carcinoma (RCC)
CDK2 MYBL2, CHEK1 None None

The columns represent the type of cancer, drug-target, target (essential) proteins, name of
anti-cancer drug, and type of cancer for which the drug is known to be used.
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