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Abstract

As (network) software is such an omnipresent component of contemporary mission-
critical systems, formal analysis is required to provide the necessary certification
or at least assurance for these systems’ properties. In this paper we focus on mod-
elling and analysing a distributed, proactive routing protocol named Optimised
Link State Routing (OLSR), recognised as the standard ad-hoc routing protocol
for Wireless Mesh Networks (WMN). WMNs are instrumental in critical systems,
such as emergency response networks and smart electrical grids. We employ Up-
paal model checking for analysing safety properties of OLSR as well as to point
out a case of OLSR malfunctioning.

Keywords: Network Protocol, Protocol Verification, Uppaal Model Checker, For-
mal Analysis, Distributed Protocol
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1 Introduction
Routing is at the center of network communication, which in turn, is part of the
backbone for numerous mission-critical systems. For instance, smart electrical
grids transport (through wires) electrical power from power generators to con-
sumers, but one of their critical ‘smart’ features consists in controlling, often
wirelessly, the dis-connectors in the power grid. We can think of two inter-related
networks in this case, the electricity network transporting electrical power and
the telecommunication network, controlling the momentary topology of power
distribution. Obviously, the telecommunication network is also a consumer of
electrical power. Another example of wireless network-based critical systems is
that of emergency response networks, when ad-hoc network structures are formed
to help resolve various emergencies, such as earthquake aftermaths. In these and
other examples, the wireless communication is truly distributed, without depend-
ing on any central entity for coordination. In this paper we focus on distributed
routing mechanisms in such wireless networks; due to their usage for critical sys-
tems, we aim to model and analyse them.

A routing protocol enables node communication in a network by disseminat-
ing information enabling the selection of routes. In this way, nodes are able to sent
data packets to arbitrary destinations in the network. Clearly, shortcomings in the
routing protocol immediately decrease the performance and reliability of the en-
tire network. Wireless Mesh Networks (WMNs) have gained popularity and are
increasingly applied in a wide range of application areas. They are self-organising
wireless multi-hop networks which provide support for communication without
relying on a wired infrastructure [7]. As a consequence, they bear the benefit
of rapid and low-cost network deployment. The Optimised Link State Routing
(OLSR) protocol [4] is one of the proactive routing protocols, identified as the
standard ad-hoc routing protocol by the IETF MANET working group1. By dis-
tributing control messages throughout the network, proactive protocols maintain
a list of all destinations together with routes to them.

Traditionally, common methods used to evaluate and validate network proto-
cols are test-bed experiments and simulation in ‘living lab’ conditions. However,
such analysis is always limited to very few topologies [8]; moreover, when a short-
coming is found, it is often unclear whether the limitation is a consequence of the
routing protocol chosen, or of the underlying link layer (the reason is that often
both layers are implemented at the same time and that no clear separation is es-
tablished). In this paper, we abstract away from the underlying link layer; hence
a shortcoming found is definitely a problem of the routing protocol.

Another problem w.r.t. routing protocols is that they are usually specified in
English prose. Although this makes them easy to understand, it is well-known
that textual description contains ambiguities, contradictions and often lacks spe-
cific details. As a consequence, this might yield to different interpretations of one

1http://datatracker.ietf.org/wg/manet/charter/
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specification and to different implementations [10]. In the worst case, implemen-
tations of the same routing protocol are even incompatible.

One approach to address these problems is using formal methods in general
and model checking in particular. Formal methods provide valuable tools for de-
sign, evaluation, and verification of WMN routing protocols; they complement
alternatives such as test-bed experiments and simulation. These methods have
a great potential on improving the correctness and precision of design and de-
velopment, as they produce reliable results. Formal methods allow the formal
specification of routing protocols and the verification of their desired behaviour
by applying mathematics and logics [3]. In this way, stronger and more general
assurance about protocol behaviour and properties can be achieved.

The concrete result reported in this paper consists in applying model check-
ing to explore the behaviour of WMN routing protocols. Model checking [3] is
a powerful approach used for validating key correctness properties in finite rep-
resentations of a formal system model [8]. We put forward the applicability of
model checking for providing a clear and unambiguous Uppaal [15] model of the
OLSR protocol; based on it, we carry out some experiments in order to anal-
yse OLSR behaviour; remarkably, we uncover some problematic behaviour of
this protocol. However, we believe these findings are more generally applicable.
Namely, distributed control is a topic of high relevance, both theoretically and in
practice, the latter due to its potential applicability in self-recovering, distributed
systems such as the smart grids. Due to space limitations, we only discuss this
briefly in conclusions, pointing out several lines of future research.

We proceed as follows. In Section 2, we overview the OLSR protocol. We
detail the Uppaal model of OLSR, based on RFC 3626 [4], in Section 3. In Section
4, we present the results of our experiments. We review related work in Section 5,
and propose future directions as well as conclude in Section 6.

2 OLSR Overview

OLSR [4] is a proactive routing protocol particularly designed for WMNs and
Mobile Ad hoc Networks (MANETs). The proactive nature of OLSR implies the
benefit of having the routes available when needed. The underlying mechanism of
this protocol consists in the periodic exchange of messages to find routes. OLSR
works in a completely distributed manner without depending on any central entity.
As a consequence, it is applicable in situations where a large subset of nodes are
communicating with each other or in situations where nodes are changing with
time. The protocol minimises flooding of control messages in the network by
selecting the so-called Multipoint Relays (MPRs). MPRs are one-hop neighbours
of every node which have bi-directional links towards two-hop neighbours of that
node [13]. The process of MPR selection is described shortly.

Nodes running OLSR are not restricted to any kind of start up synchronisation.
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a1 a2 a3 a4 a5

Fig. 1: A network of size 5.

Nodes a1 a2 a3 a4 a5
MPRs a2 a3 a2, a4 a3 a4

Table 1: Nodes and their MPRs.

Every node broadcasts a HELLO message every 2 seconds in the network and de-
tects its direct neighbour nodes by receiving these messages. A HELLO message
contains information about one-hop neighbours of the originator which allows the
receiving nodes to know about their two-hop neighbours. HELLO messages tra-
verse only one wireless link or a single hop and they are not forwarded. This type
of message is used for neighbour detection and MPR selection.

After receiving HELLO messages from direct neighbours, every node selects
its MPRs and selected MPRs understand about their MPR selectors (those nodes
that have selected them as an MPR). Then, MPR nodes broadcast Topology Con-
trol (TC) messages every 5 seconds to build and update topological information
which can be transmitted on more than one wireless link by intermediate MPR
nodes. This means that if a node is not an MPR, it receives TC messages, pro-
cesses those messages, but it will not forward them. Every TC message contains
the information about MPR selectors of the TC originator. While receiving control
messages from other nodes, every node updates its routing table for the originator
of the received message. After broadcasting and forwarding control messages via
nodes, routes to all destinations should be established and nodes should have the
required information about all the other nodes in the network. As a consequence,
nodes can select paths to deliver data packets to arbitrary destination nodes.

Fig. 1 depicts a network topology consisting of 5 nodes. As shown in Table
1, each node selects its MPRs from its direct neighbours. For instance, node a2
selects node a3 as its MPR because a3 has a link toward two-hop neighbour of
a2. In this network, only nodes a2, a3 and a4, as selected MPRs, broadcast
TC messages and provide required information for other nodes in the network.
Selecting these nodes as TC generators decreases traffic in the network, since not
all the nodes broadcast TC.

We describe below the behaviour of nodes a1, a2 and a3 running OLSR to
sketch an overview of this protocol. Lets assume node a3 starts first, then node
a2 start working, and at last node a1 broadcasts its HELLO message. The first
broadcasted HELLO message via node a3 has the following information:

• HELLO is the type of the message.

• 3 is the originator of the message.
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This message has no information about the one-hop neighbours or MPRs of this
node, since it is the starting point of node a3 and no information is available in its
routing table about other nodes. The HELLO message from node a3 is received
by the immediate neighbours, i.e., nodes a2 and a4. While receiving a HELLO
message from node a3, node a2 updates its routing table for this node and then
node a2 is broadcasting its HELLO message which contains the following infor-
mation:

• HELLO is the type of the message.

• 2 is the originator of the message.

• 3 is one-hop neighbour of node 2.

While receiving a HELLO message from node a2, node a1 updates its routing
table for a2 and a2’s one-hop neighbour, i.e., node a3. By this, node a1 learns
about its two-hop neighbours and selects node a2 as its MPR. Then, node a1
broadcasts a HELLO message and declares node a2 as its MPR. Upon receiving
HELLO from node a1, a2 would figure out that it has been selected as an MPR
by a1. So, it broadcasts its TC message which has the following information:

• TC is the type of the message.

• 2 is the originator of the message.

• 1 is sequence number of the message.

• 5 is the time to live of the message.

• 0 is the number of hops from the originator of this TC message.

• 2 is the address of the sender.

• 1 is the MPR selector of node a2.

This process continues for other nodes in the network.

3 Modelling OLSR in Uppaal
Our larger context goal consists in providing formal mechanisms for the specifi-
cation, analysis, and comparison of various WMN protocols. In this paper, we
use Uppaal [15] to model and investigate the behaviour of the OLSR protocol.
Uppaal [1] is a well established model checker for modelling, simulating and
verifying real-time systems. It is designed for systems that can be modelled as
networks of timed automata, used in particular for protocol verification. We use
Uppaal for the following reasons: a) two synchronisation mechanisms of wire-
less networks, i.e., broadcast and binary synchronisation, are provided by Uppaal;
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b) Uppaal provides common data structures, such as structs and arrays; a C-like
programming language is applicable for defining updates on these data structures;
c) OLSR highly depends on on-time broadcasting of control messages and Uppaal
provides mechanisms and tools for considering time variables. In the following,
we describe Uppaal to the extent needed in this paper.

3.1 Uppaal timed-automata
The Uppaal modelling language extends timed automata with various features [1].
Uppaal automata provide various types and data structures, and variables of these
types. The system state is defined as the value of all variables, local in some au-
tomata or shared between automata. Every automaton is a graph with locations
and edges between these locations together with guards and clock constraints.
Each location might have an invariant which is a slide-effect free expression; only
clock, integer variables, and constants are referenced, and each edge has a selec-
tion, a guard, a synchronisation label, and optionally an update. Selection non-
deterministically bind a given identifier to a value in a given range. Guards on
transitions are used to restrict the automaton behaviour. Synchronisation happens
via channels; for every channel a there is one label a! to identify a sender, and a?
to represent a receiver. Transitions with no labels are internal transitions and all
the other transitions use one of the two following types of synchronisation [1].

In binary handshake synchronisation, one automaton which has an edge with a
!-label synchronises with another automaton with the edge having a ?-label. These
two transitions synchronise only when both guards evaluate to true in the current
state. After taking the transitions, both locations will change, and the updates on
transitions will be applied to the state variables; first the updates will be done on
the !-edge, then the updates occur on the ?-edge. When having more than one
possible pair, the transition will be selected non-deterministically [1].

In broadcast synchronisation, one automaton with an !-edge synchronies with
several other automata that all have an edge with a relevant ?-label. The initiating
automaton is able to change its location, and apply its update, if and only if the
guard on its edge is satisfied. It does not need a second automaton to synchronise
with. Matching ?-edge automata must synchronise if their guard is true, currently.
They will change their location and do the updating of the state. At first, the au-
tomaton with the !-edge will update the state, then the other automata will follow
in some lexicographic order. When more than one automaton can initiate a tran-
sition on an !-edge, the process of choosing will occur non-deterministically [1].

Urgent channels are special type of channels which must be taken with no
delay. In other words, delays must not happen if a synchronisation transition on
an urgent channel is enabled.

Committed locations are special type of locations where delay cannot happen
and the next transition outgoing from a committed location must be taken immedi-
ately. These locations freeze time; i.e. time is not allowed to pass when a process
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is in one of them. When a model has one or more active committed locations,
no transitions other than those leaving said locations can be enabled. if several
processes are in a committed location at the same time, then they will interleave.

Uppaal’s verifier uses Computation Tree Logic (CTL) [6] to model system
properties. The query language in Uppaal contains two types of formulas, namely
path formulas and state formulas. State formulas describe individual states of the
model, while path formulas quantify over paths or traces in the model. CTL uses
A and E as path quantifiers, and G,F,X, and U as temporal operators. Here, a
path contains an infinite sequence of states which are connected using transitions.

Formulas model what can happen starting from the ‘current’ state, meaning
the state being described in the formula. The current state is included in its future.
In this context Aφ means that the formula φ holds for all paths starting from the
current state and Eφ means that there is a path starting from the current state that
satisfies φ. Gφ means all future states satisfy φ; Xφ means the next state of a path
satisfies φ; Fφ means that φ holds in some future state; and φUψ means that, if a
future state (along a path) satisfies ψ, then all states from the current one to that ψ-
satisfying state satisfy φ. Formulas combine the path quantifies and the temporal
operations, e.g., AGφ holds if φ holds on all states in all paths originating from
the current state. This is also denoted as A[]φ in Uppaal [1].

3.2 Our Uppaal model
In this section, we overview our Uppaal model of OLSR protocol; more details
follow in Section 3.3.

We model OLSR in Uppaal as a parallel composition between node processes.
Every process is a further parallel composition of two timed automata, Queue
and OLSR, each having its own data structures. The Queue automaton has been
chosen to model incoming messages from other nodes. In other words, it models
the input buffer of a node: the received messages are buffered and then, in turn
are sent to the OLSR automaton for processing. The OLSR automaton models
the main OLSR process. It has local data structures to model the routing table
and the broadcasting of control messages at particular times. Upon receiving a
message by a node, its routing table is updated according to the information in the
received message. Routing tables provide all the information required for route
establishment and packet delivery. Every routing table rt is an array of entries,
one entry for each node. An entry is modelled by the data type rtentry:

typedef struct {
IP dip; //destination address

int hops; //number of hops to the destination

IP nhopip; //next hop along the path to the destination

SQN dsn; //last sequence number of TC originator

} rtentry;
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Here, IP denotes a data type for all addresses and SQN a data type for sequence
numbers. OLSR uses sequence numbers to check whether received messages are
new or they have been processed before. In our model, integers are used to define
these types. Every message is modelled by the data type MSG:

typedef struct {
MSGTYPE msgtype; //messages type: PACKET, HELLO, TC

IP oip; //the originator address of the message

IP dip; //destination address of the message

bool onehop[N]; //information about two-hop neighbours

int ttltc; //max number of hops a message is forwarded

int hops; //the distance to the receiver

IP sip; //the sender address of a message

SQN osn; //message sequence number showing freshness

bool mpr[N]; //information about MPRs or MPR selectors

} MSG;

Here, N is a constant denoting the number of nodes. msgtype shows type of
the message flooded in the network and can have values PACKET, HELLO, or TC,
oip is the address of the node who generates the message, dip is the destination
address of the message, and it is used only for the PACKET, onehop is a boolean
array of size N and is embedded in the HELLO message to give the information
about two-hop neighbours of the receiver node, ttltc is an integer denoting the
number of nodes in the network which represents how many hops a TC message
can be forwarded, whenever a TC is forwarded, this value reduces by 1 , hops
is an integer indicating the distance from the originator of the message to the re-
ceiver node, whenever a TC is forwarded, this value is increased by 1, sip is the
address of the node which forwards a message and is used when generating a TC
message, osn is the message sequence number shows the freshness of the mes-
sage. The originator node assigns this identification number to each TC message,
and boolean array of size N mpr represents the MPRs of the originator in HELLO
messages and MPR selectors of the originator in TC messages.

Communication between two nodes is modelled by the isconnected[i][j]
predicate as following:

bool isconnected(IP i, IP j){
return(topology[i][j]==1);
}

Here, topology is a two-dimensional boolean array of size N characterising the
current configuration of the network. We do not model mobility nor failure of
nodes in this paper and thus, topology models in fact the static structure of one
network. The predicate holds only when nodes i and j are able to communicate.
Communication between these two nodes is feasible if and only if they are in
transmission range of each other.
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Communication between nodes happens via channels. The Broadcast channel
htc[ip] models the propagation of HELLO and TC messages where a mes-
sage can be received by all directly connected nodes. Each node has a broadcast
channel, and every node in the range may synchronise on this channel. We also
use the unicast channel packet[i][j] to model the unicast sending of a data
packet from i to j; this packet is generated by the user layer. Our model includes
one channel for each pair of nodes and they are only enabled if they are directly
connected.

Fig. 2: Queue automaton.

The Queue automaton of a node ip is represented in Fig. 2. Each directly
connected node receives messages from other nodes and stores them to its queue
using the addmsg function:

void addmsg(MSG msg){
msglocal[nodebuffersize[ip]]=msg;
nodebuffersize[ip]++;

}
Here msglocal is a local array of size QLength (equals to 30) with elements of
type MSG representing stored messages in the Queue and nodebuffersize is
a global array of size N with integer elements. Global array nodebuffersize
models the number of stored messages in Queue. Our model ensures that mes-
sages from those nodes which are in the transmission range are received. Queue
automaton consists of some other functions such as deletemsg, nextmsg and
create add packet, respectively to delete a message, return the type of the
next message and to create a data packet. These functions are as following:

void deletemsg(){
MSG empty msg;
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for(i: int[1,QLength-1]){
msglocal[i-1]=msglocal[i];

}
msglocal[QLength-1]=empty msg;
nodebuffersize[ip]--;
}}

MSGTYPE nextmsg(){
return msglocal[0].msgtype;
}
void create add packet(IP oip, IP dip){

MSG msg;
msg.msgtype= PACKET;
msg.oip=oip;
msg.dip=dip;
addmsg(msg);
}

We model the deletion of a message when Queue transfers the last message
of its local array msglocal, i.e., msglocal[0], to OLSR for processing, re-
turning of the type of the next message to know about the type of msglocal[0]
which is transferred to OLSR, and creation of a packet to be used in our experi-
ments; checking packet delivery property.

(a) (b)

(c) (d)

Fig. 3: Queue automaton transitions with selections, guards, synchronisation
channel, and updates.

Fig. 3 depicts four transitions of Queue automaton with selections, guards,
synchronisation channels and updates. In this figure, transition (a) is enabled
when receiving a HELLO or TC message. transition (b) is taken when transferring
relevant data from Queue to OLSR for processing, transition (c) is enabled when
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creating a PACKET and is used for our experiments, transition (d) is activated
when receiving a PACKET from another node. This transition is also used in our
experiments.

Transition (a) has selection sip:IP representing sender node of the messages
as sip with type IP, guard isconnected(sip, ip) which shows whether
or not nodes sip and the receiver are in transmission range of each other, channel
htc[sip]? is the synchronisation channel where Queue as the receiver of the
message adds msgglobal to its local array msglocal using addmsg as the
update on this transition.

Transition (b) has a guard, a synchronisation channel and an update. The
guards show if the type of the last message in Queue is HELLO, TC or PACKET
and OLSR is not busy with processing other messages, Queue transfers the mes-
sage to the OLSR using imsg[ip]!, assigns this last message into a global vari-
able and at last deletes the message from its local array msglocal.

Transition (c), the one used for our experiments, has only a selection, a syn-
chronisation channel and an update. Selection dip:IP indicates destination node
of the packet as dipwith type IP, synchronisation channel packet[ip][dip]?
provides the possibility to create a PACKET applying create add packet
function as the update.

Transition (d) has selection sip:IP showing sender node of the messages as
sip with type IP, guard isconnected(sip, ip) which shows whether or
not nodes sip and the receiver are in transmission range of each other, channel
pkt[sip][ip]? is the synchronisation channel where Queue as the receiver
of the message adds msgglobal to its local array using addmsg as the update
on this transition.

The OLSR automaton modelling the message-handling protocol is more com-
plicated. This automaton depicted in Fig. 4 has 12 locations and 27 transitions
precisely modelling broadcasting and handling of the different types of messages,
i.e., HELLO, TC and PACKET. OLSR is busy while sending messages, and can
accept a new message from Queue only once it has completely finished han-
dling a message. Whenever it is not processing a message, i.e., the boolean array
idle of size N is equal to 1, and there are messages stored in Queue, Queue
and OLSR synchronise on the urgent channel imsg[ip] meaning no delay must
happen when transferring the relevant message data from Queue to OLSR. OLSR
copies msgglobal to the local variable msglocal with type MSG and becomes
not idle.

We use an urgent channel here to prevent the expiration of messages. In ad-
dition, we define two other channels called tau[ip] and urg[ip] for each
OLSR: this means that we assign a higher priority to internal transitions, in order
to reduce the state space. With this, we cannot check liveness properties, but for
this paper it is not a limitation. All properties we are interested in can be repre-
sented as safety properties.
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Fig. 4: OLSR automaton.
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To model rigorous timing behaviour, we define 3 different clocks for every
OLSR: t hello and t tc to model on-time broadcasting HELLO and TC mes-
sages, and t send to model time consumed for sending messages. According to
the specification of OLSR [4], each node broadcasts HELLO messages every 1500
milliseconds and the most time consuming activity, i.e., communication between
nodes, can take up to 500 milliseconds. In our experiments, we assume always the
maximum sending time, i.e., every message sending takes 500 milliseconds.

In order to be able to model the start-up working of nodes, we define the
constant time between hello, that equals 1500; the starting points of nodes
are varied between [0, time between hello). Different starting points provide
means for modelling a realistic specification where nodes can start broadcasting at
different times. As soon as each node starts working, we reset all clock variables
to 0. Every time t hello reaches 1500 milliseconds, we reset t hello and
t send to 0 before transmission, and then we use an intermediate location which
has the effect of selecting a delay of 500 milliseconds to model sending time. The
HELLO message is created using the createhello function and copied to the
global variable msgglobal as follows:

void createhello(){
MSG msg;
msg.msgtype= HELLO;
msg.oip= ip;
for(i:int[1,N-1]){
if (rt[i].hops==1){ msg.onehop[i] = 1; }
else {
msg.onehop[i]= 0;
if (rt[i].hops==2){ msg.mpr[rt[i].nhopip]=1;}
}
}
msgglobal= msg;
}

OLSR assigns HELLO to the type of the messages and its ip to the message oip.
If the hops of any entry in routing table, i.e., rt[i].hops, equals to 1, OLSR
assigns 1 to the msgonehop[i]. Also, if rt[i].hops equals to 2, OLSR
assigns 1 to the msgmpr of the next node for that entry. With this, OLSR is able
to find its MPRs. The HELLO messages are then broadcasted. Connected nodes
receive the HELLO message, update their routing tables for the originator of the
message, learn about their two-hop neighbours and select their MPRs and MPR
selectors using functions called updatehello, updatetwohop and setmpr
functions, respectively.

void updatehello(){
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rt[msglocal.oip].dip=msglocal.oip;
rt[msglocal.oip].hops= 1;
rt[msglocal.oip].nhopip=msglocal.oip;
rt[msglocal.oip].dsn=rt[msglocal.oip].dsn;

}

OLSR updates the routing table for the message originator, i.e., msglocal.oip.
It assigns the message originator address to the destination address in the rout-
ing table. It means that rt[msglocal.oip].dip is updated by assigning
msglocal.oip into it. hops is assigned to 1, the next node is the originator
node: rt[msglocal.oip].nhopip=msglocal.oip, and since HELLO
messages do not have sequence numbers, rt[msglocal.oip].dsn remains
unchanged.

void updatetwohop(){
for(i:int[1,N-1]){
if(msglocal.onehop[i]==1 && i!=ip &&
rt[i].hops!=1){
rt[i].dip=i;
rt[i].hops= 2;
rt[i].nhopip= msglocal.oip;

}
}

}

Update of two-hop neighbours happens in this stage based on the information
about the one-hop neighbours of the originator, i.e., msglocal.onehop . If
any elements of this array equals to 1, and if that element’s address is not equal
to the address of the node who is processing the message and also if the hops
of the routing table for that element has not been updated before while using
updatehello function, the routing table for that element is updated as follow-
ing: (1) the address of that element is assigned into the destination address, i.e.,
rt[i].dip, (2) rt[i].hops is assigned to 2, and (3) the message address
originator is assigned to rt[i].nhopip since the message originator is the
next node to two-hop neighbours.

void setmpr(){
if (msglocal.mpr[ip] == 1){
isMPR=1;
mprselector[msglocal.oip]=1;

}
}

Here, mprselector is a local boolean array of size N which indicates the MPR
selectors of every node. This function models the process of selecting MPRs and
also finding MPR selectors in a way that if any element of the mpr array of the
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received message is equal to 1, the boolean array isMPR is changed to 1, and
mprselector array is updated for the message originator which means that
mprselector[msglocal.oip]=1.

At the next step, after MPR nodes are selected (i.e., local boolean variable
isMPR equals 1), and MPR selectors are determined, every MPR node broadcasts
TC messages to the connected nodes every 4500 milliseconds. For this, we define
the constant time between tc, that equals 4500. When t tc reaches 4500,
t tc and t send are reset to 0 before transmission and again we use another
intermediate location to let OLSR select a delay of 500 milliseconds. Then, a TC
message is generated by createtc function and is broadcasted to other nodes:

void createtc(IP oip, SQN osn, int ttltc, int hops, IP
sip, bool mprselector[N]){

MSG msg;
msg.msgtype= TC;
msg.oip= oip;
msg.osn= osn;
msg.ttltc= ttltc;
msg.hops= hops;
msg.sip= sip;
msg.mpr = mprselector;
msgglobal= msg;
}

While receiving a TC message from Queue, if the message is considered
for processing, the routing table is updated for the TC generator and its MPR
selectors, using updatetc and updatemprselector functions, respectively.

void updatetc(){
if(rt[msglocal.oip].hops==1||
rt[msglocal.oip].hops==2){

rt[msglocal.oip].dsn=msglocal.osn;}
else{
if(rt[msglocal.oip].hops!=1&&
rt[msglocal.oip].hops!=2){

rt[msglocal.oip].dip=msglocal.oip;
rt[msglocal.oip].hops= msglocal.hops+1;
rt[msglocal.oip].nhopip= msglocal.sip;
rt[msglocal.oip].dsn=msglocal.osn;
}
}

}

Here, if the routing table has been updated for the originator of the message while
receiving a HELLO, the routing table is updated only for the sequence number
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of the originator. It means that rt[msglocal.oip].dsn is substituted by
msglocal.osn. If the routing table has not been updated for the originator of
the messages, the routing table is updated as following:

• message originator address is assigned to the rt[msglocal.oip].dip

• rt[msglocal.oip].hops is substituted by msglocal.hops+1

• the sender address of the message is assigned as the next hop along the path
to rt[msglocal.oip].dip

• the message sequence number is assigned to rt[msglocal.oip].dsn

Function updatemprselector is used to update the information about the
MPR selectors of each MPR. If an element of msglocal.mpr equals to 1, the
routing table for that element has not been updated before and that element address
is not equal to the address of the receiver node, the routing table for such element
is updated as following:

• the address of the element, i.e., i, is assigned to rt[msglocal.oip].dip

• rt[msglocal.oip].hops is substituted by msglocal.hops+2

• the sender address of the message is assigned as the next hop along the path
to rt[i].dip

• routing table is not updated for dsn. We update rt[msglocal.oip].dsn
only in updatetc function when the routing table is updated for the orig-
inator of a TC message.

void updatemprselector(){
for(i:int[1,N-1]){
if (msglocal.mpr[i]==1 && rt[i].hops!=1 &&
rt[i].hops!=2 && i!=ip){
rt[i].dip=i;
rt[i].hops=msglocal.hops+2;
rt[i].nhopip=msglocal.sip;
rt[i].dsn=rt[i].dsn;
}
}

}
If the receiver node is an MPR and the TC message is considered for forward-

ing, the message is forwarded. Forwarding messages also takes time in our model
500 milliseconds. We should add here that OLSR might have to broadcast differ-
ent messages at the same time. As an example, at some point a HELLO, a TC and
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maybe a TC to be forwarded are supposed to be broadcasted; the sending time, i.e.,
500 milliseconds, is counted only once and these messages are broadcasted simul-
taneously. We considered this behaviour in our model using committed locations
and boolean variables. For instance, flag fwd and flag pkt are examples
of such boolean variables. If the value of these variables equals 1, it indicates
that there is a message in the node, considered for forwarding and waiting to be
forwarded together with node’s control messages.

We also model the behaviour of OLSR in case of receiving and forwarding a
packet. Due to the proactive nature of the OLSR, if one node receives a packet, it
must have the information about the destination of that packet in its routing table,
to forward the packet to the next node along the path to the destination node.
In case the node has to broadcast its own control messages, the packet waits in
the node to be forwarded together with node’s control messages; it means that
OLSR changes the value of flag pkt to 1, showing that a packet is waiting to
be forwarded.

3.3 Functioning of the OLSR automaton
The initial state of OLSR has the invariant t hello<time between hello
as shown in Fig. 4. Upon taking the urg[ip] channel transition from the initial
state, all the clock variables are assigned to 0, to support the realistic behaviour of
nodes mentioned in Section 3.2, and OLSRmoves to the central state which has the
invariant t hello<= time between hello. Every time the guard on the
next urg[ip] channel transition outgoing from the central location is satisfied,
i.e., t hello 1500, we reset t hello to 0 before transmission, and then we use
an intermediate committed location. There are four transitions outgoing from this
committed location (the committed location in the up right corner side) with the
following guards:

t tc < time between tc (1)

t tc >= time between tc && !isMPR (2)

t tc >= time between tc && !isMPR && flag pkt == 1 (3)

t tc >= time between tc && isMPR (4)

If any of guards (1), (2) or (3) is satisfied, OLSR goes to the next intermediate
location with invariant t send<= time sending (time sending 500) and
does the updates. If the transition with guard (1) is taken, t send is assigned to
0, and if transitions with guards (2) or (3) are taken, both t send and t tc are
assigned to 0. In this location (send HELLO), there are three self-transitions with
the following guards:

t send >= time sending && flag pkt == 1 (5)
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t send >= time sending && flag fwd == 1 (6)

t send >= time sending && flag fwd == 0 && flag pkt == 0 (7)

The transition with guard (5) is taken if t send reaches 500 and there is a
packet to be forwarded: in this case, OLSR copies msglocal (which is a packet)
to the global variable msgglobal and sends the packet to the next node along
the path of the destination, deletes the message using the deletemsg function
as shown below, assigns idle to 1, and flag pkt to 0, changes a to 1 showing
that the packet is forwarded by the node. Then, it goes back to the same location,
(send HELLO).

void deletemsg(){
msglocal.msgtype=NONE;

}
The transition with guard (6) is taken if t send reaches 500 and there is a TC

to be forwarded. In this case, the following happens: OLSR

• reduces the value of the ttltc by 1

• increases the hops variable of the message by 1

• assigns its own address as the sender of the message

• copies the msglocal which is a TC to the global variable msgglobal

• forwards the TC

• deletes the message by deletemsg function

• assigns idle to 1 and flag fwd to 0

• and finally goes to the same location, (send HELLO).

Transition with guard (7) is taken if t send reaches 500 and there is no TC or
packet to be forwarded; in this situation OLSR creates the HELLO message and
broadcasts it. Then, it moves to the central location.

In case of taking the transition with (4), t send and t tc are assigned to 0
and OLSR goes to the next delay location (the location in the up left corner side).
In this location, three self-transitions can be taken with respect to the guards on
those transitions. These guards are as following:

t send >= time sending && flag pkt == 1 (8)

t send >= time sending && flag fwd == 1 (9)

t send >= time sending && flag fwd == 0 && flag pkt == 0 (10)

The description of these guards and transitions is similar to those of (5), (6)
and (7). The only difference is on the third guard; when transition with guard
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t send>=time sending && flag fwd==0 && flag pkt==0 is taken,
OLSR does the updates in the transition and moves to the next committed location.
Then immediately, it creates and broadcasts its TC message and goes back to the
central location.

Upon receiving a HELLO message from Queue, i.e., transition with guard
msglocal.msgtype==HELLO, each node updates its routing table for one-
hop and two-hop neighbours, selects its MPRs, and finally deletes the HELLO
message and changes the value of idle to 1.

While receiving a TC from Queue, i.e., msglocal.msgtype==TC &&
flag fwd==0, the location is changed to the committed location where two
transitions with guards have to be taken. We should mention that flag fwd==0
indicates that no TC message is waiting in OLSR to be forwarded. We use this
flag to prevent taking this transition several times when a TC to be forwarded is
still in OLSR. These guards are as following:

msglocal.oip == ip || (msglocal.osn <= rt[msglocal.oip].dsn) (11)

msglocal.oip! = ip && (msglocal.osn > rt[msglocal.oip].dsn) (12)

In guard (11), we check if the receiving node is the originator of the message;
or, if the sequence number of the message is smaller than or equal to the sequence
number of the routing table for the message originator, we delete the message and
change idle to 1. In guard (12), we check if the receiving node is not the origi-
nator of the message, and the sequence number of the message is greater than the
sequence number of the routing table for the message originator, the message is
considered for processing. The routing table for the message originator and MPR
selectors of the message originator are updated and in parallel, OLSR reaches the
next committed location to decide if the message needs to be forwarded or not.

If the receiver node is not an MPR or the message cannot be forwarded any-
more, i.e., !isMPR || msglocal.ttltc<=1, the TC message is deleted
and idle is assigned to 1. If the receiving node is an MPR and the message
can be still forwarded, i.e., !isMPR && msglocal.ttltc>1, the message
is considered for forwarding (next committed location). While the TC is going to
be forwarded, there might be the possibility that OLSR has to broadcast its own
control messages when t hello>time between hello-time sending.
In this case, flag fwd is set to 1, OLSR goes back to the central location to
broadcast its own control messages and the TC to be forwarded waits to be broad-
casted together with the node’s control messages. However, in case the guard
t hello<=time between hello-time sending is satisfied, meaning that
the node does not have to broadcast its own control messages, the TC message can
be forwarded considering the intermediate delay location (Forward TC). After
forwarding, the TC is deleted and OLSR becomes idle.

When OLSR receives a PACKET from Queue, i.e., transition with guard
msglocal.msgtype==PACKET && flag pkt==0, the location is changed
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to the committed location where four transitions with some guards have to be
taken. We should mention here that flag pkt==0 indicates that no PACKET is
waiting in OLSR to be forwarded. We use this flag to prevent taking this transition
several times when a PACKET to be forwarded is still in OLSR. These guards are
as following:

msglocal.oip == ip (13)

msglocal.oip! = ip && rt[msglocal.dip].nhopip == 0 (14)

msglocal.dip! = ip && rt[msglocal.dip].nhopip! = 0 &&

t hello <= time between hello− time sending
(15)

msglocal.dip! = ip && rt[msglocal.dip].nhopip! = 0 &&

t hello > time between hello− time sending
(16)

Guard (13) represents if the receiving node is the destination node, the PACKET is
deleted from OLSR, idle value is assigned to 1 and deliveredwhich shows if
the PACKET is received by the destination is assigned to 1. Guard (14) indicates
if the receiving node is not the destination node and the routing table for the des-
tination node has not been not updated, the packet is dropped and idle changes
to 1. Guard (15) shows if the receiving node is not the destination node, the infor-
mation about the destination node is available, and the receiver does not have to
broadcast its own control messages, the PACKET is forwarded along the path to
the destination node considering the sending time applying the intermediate delay
location (Forward PACKET). Guard (16) indicates that if the receiving node is
not the destination node, the information about the destination node is available,
and the node has to broadcast its own control messages, as a consequence, it as-
signs flag pkt to 1 which presents that the PACKET must be forwarded with
the node’s control messages simultaneously.

4 Experiments
The main purpose of using Uppaal is to verify our OLSR model w.r.t. the require-
ment specification. Our automated analysis of OLSR considers 3 properties that
relate to route establishment for all topologies up to 5 nodes, packet delivery in
different network topologies with at most 5 nodes, and a scenario which reports
on finding non-optimal routes with 7 nodes. The latter was discovered during the
creation of the formal specification in Uppaal.

Due to proactive nature of OLSR, our Uppaal model has become quite com-
plex with many states; adding one more node to the system makes the verification
part longer and more complicated (in some cases, we could even not verify prop-
erties for 5 nodes). As a consequence, we applied different techniques to avoid
state space explosion and to minimise our system model inspired from Uppaal
literature [5, 16, 17].
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We added priority on channels to overcome the state space problem. For the
first two experiments, we give the highest priority to channels of node a1 and the
lowest priority to channels of node a5. The priority of other node channels are
in between these two. This priority assigning contributes to overcoming the state
space problem and is not a limitation for this paper because we check the first two
properties for all topologies up to 5 nodes: this means that a1, the starting node
with highest priority, will be in every location in different network topologies. For
the third property we also assign the highest priority to node a1 and the lowest
priority to node a7.

The experiments use the following set up: 3.2 GHz Intel Core i5, with 8 GB
memory, running the Mac OS X 10.9.5 operating system. For all experiments we
use Uppaal 4.0.13.

4.1 Properties
We now detail the properties that we have verified. In our experiment, we assume
that the originator is always a1, denoted by OIP1, and the destination is always
a5, denoted by DIP1. For our experiments, we defined another automaton called
Tester which injects a data packet to OIP1 to be delivered at the destination
DIP1. This automaton is illustrated in Fig. 5. The statements written under the
locations are the invariants of the two specific locations, while the guards of the
transitions are written above them, together with the potential update and synchro-
nisation channel. The Tester has a local clock named clk, 3 locations and 2
transitions with clock guards. When clk reaches 3*(time between tc),
Tester synchronises with Queue of OIP1, resets clk to 0, and moves to
location test. In parallel, the Queue of OIP1 creates a data packet to be
sent to the destination DIP1. The Tester waits in test location until clk
reaches 5*(time between tc) to move to location delivery. We model
3*(time between tc) and 5*(time between tc) to denote some arbi-
trary time periods, so that we assume required TC messages are received by nodes
to update their routing tables.

Fig. 5: Tester automaton.

The first property states that, after Tester and Queue of OIP1 are synchro-
nised (Tester in location test), a route from the originator to the destination
has been found. This safety property using the Uppaal syntax is expressed as:

A[ ] (Tester.test imply node(OIP1).rt[DIP1].nhopip! = 0) (17)
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The CTL formula A[]φ is satisfied if φ holds on all states along all paths. The
variable node(OIP1).rt represents the routing table of the originator node
OIP1, and node(OIP1).rt[DIP1].nhopip expresses the next hop for the
destination DIP1. All required HELLO and TC messages are sent if and only if
Tester is in location test; the originator OIP1 has a route to node DIP1 if
and only if node(OIP1).rt[DIP1].nhopip is not equal to 0.

The second property is that if a packet is injected to the system via the user, it
is delivered to the destination DIP1. In Uppaal this can be expressed as:

A[ ] (Tester.delivery imply node(DIP1).delivered! = 0) (18)

The variable node(DIP1).delivered shows whether the injected data
packet is received by the destination DIP1. This property is satisfied if Tester
is in location delivery and for all paths, DIP1 has always updated the boolean
value delivered, i.e., node(DIP1).delivered is not 0.

The third property states that, after broadcasting, forwarding and processing
TC messages, OLSR would guarantee an optimal route w.r.t. hop count. We
investigate this property for a network topology with 7 nodes as shown in Fig. 2 .
This property is expressed as:

A[ ] ((Tester.test && node(OIP1).a! = 0) imply

node(OIP1).rt[DIP1].hops == 3)
(19)

Here, variable node(OIP1).a!=0 indicates whether or not OIP1 has sent its
packet to the next node along the path to the destination DIP1, and variable
node(OIP1).rt[DIP1].hops shows the number of hops from the origina-
tor OIP1 to the destination DIP1 which must be equal to 3. We use 7 nodes
network for verifying optimal route finding property. Although OLSR is able to
find optimal routes in small networks by updating routing tables while receiving
HELLO messages, we have uncovered that a node might find non-optimal routes
in larger networks.

4.2 Results
To analyse and verify our model, we evaluate it in all network topologies up to 5
nodes. Property (17) was satisfied for all these networks; when the Tester is in
location test, node OIP1 has established a route to node DIP1. This property
confirms the propagation of HELLO and TC messages and also the correctness of
the MPR selection mechanism. Hence, node OIP1 is ready to send data packets
to node DIP1.

Property (18) is stricter than property (17). It models that all nodes have the
information about all other nodes in the network, to deliver their data packets. In
theory, the originator node OIP1 could have a routing table entry for the destina-
tion node DIP1, stating that it should send a packet to its immediate next neigh-
bour along the path to the destination DIP1; the next node itself might have no
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information about the destination, so all packets for the destination DIP1 stem-
ming from the originator OIP1 would be lost. However, property (18) is also
checked by the Uppaal verifier: this means that all nodes have updated their rout-
ing tables for all other nodes in the network. Therefore, they are able to deliver
data packets to the arbitrary destination node DIP1.

Interestingly, property (19) related to the optimal route finding for 7 nodes was
not satisfied. This indicates that OLSR is not always able to find optimal routes.
We illustrate this phenomenon with the example found by Uppaal, with the fol-
lowing steps shown in Table. 2. In this example, Tester synchronises with the
Queue of OIP1 (Tester is in location test), and OIP1 has sent the created
data packet to the next node along the path to the destination DIP1. Based on the
proactive nature of OLSR, all required information is provided in routing tables;
the Uppaal simulator shows that node OIP1 has sent its data packet via node a2
to the destination, which is not the optimal route! The problem is that, while node
a5 is broadcasting its TC to nodes a4 and a6 (Table 2: Step 1), node a4 might
forward TC5 earlier. Then this TC message would be forwarded subsequently
earlier via nodes a3 and a2 (Table 2: Step 2). As a consequence, node OIP1 up-
dates its routing table for node a5 (Table 2: Step 3) and when it receives another
TC5 via node a7, it has already updated its table for this node. Since the sequence
number of the TC message is the same, it drops the TC5 arrived via shorter hops
(Table 2: Step 4).

Step 1: Broadcast TC

a1

a2
a3

a4

a5

a6a7

TC5

TC5

Step 3: Update a1.rt[5]

a1

a2
a3

a4

a5

a6a7

TC5

TC5

TC5TC5

TC5

Step 2: Forward TC

a1

a2
a3

a4

a5

a6a7

TC5

TC5

TC5TC5

Step 4: Drop TC5

a1

a2 a3 a4

a5

a6a7 TC5

TC5
TC5

Table 2: Non-optimal Route in a 7 nodes topology
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“if there exists a tuple in the duplicate set, where:
D addr == Originator Address,
AND
D seq num == Message Sequence Number
then the message has already been completely processed and MUST not be
processed again.” [RFC3626, page 16]

Uppaal works correctly; it is the specification of OLSR that prescribes this func-
tions, as shown above. In our model, D addr is modelled by dip, and D seq num
by dsn. So, the generated data packet is delivered via the longer route. One solu-
tion can be as follows. When processing a TC messages, if the sequence number
of the messages is equal to the last sequence number of the TC originator in the
routing table, the number of hops should be checked; if hops of the message is
bigger than the one in the routing table, the message must be dropped. But if it is
smaller, the message must be processed again.

5 Related Work
While modelling and verifying protocols is not a new research topic, attempts to
verify routing protocols for WMNs are still rather new and remain a challeng-
ing task. Model checking techniques have been applied to analyse protocols for
decades, but there are only a few papers that use these techniques in the context of
mobile ad-hoc networks, e.g., [2]. In the area of WMNs, Uppaal has been used to
model and analyse the routing protocols AODV and DYMO, see [8, 9, 11]. In the
following, we overview some research related to the work in this paper. However,
to the best of our knowledge, our study is the first aiming at a formal model of
OLSR core functionality considering time variables.

Clausen et al. [4] specify the OLSR routing protocol used in mobile ad-hoc
networks. This paper is the official description currently standardised by the IETF.
Jacquet et al. [13] also provide a high-level description of OLSR describing the
advantages of this protocol, when compared to the others.

Steele and Andel [19] provide a study of OLSR using the Spin model checker
[12]. They designed a model of OLSR in which Linear Temporal Logic (LTL)
is used to analyse the correct functionality of this protocol. They verified their
system for correct route discovery, correct relay selection, and loop-freedom. Due
to the state space explosion problem, their modelling is limited to four node net-
works.

Fehnker et al. [9] describe a formal and rigorous model of the AODV routing
protocol in Uppaal; this is derived from a precise process-algebraic model that
reflects a common and unambiguous interpretation of the RFC [18]. They model
each node in the network as an automaton. They also describe some experiments
for exploring AODV’s behaviour in all network topologies up to 5 nodes. Al-
though the two protocols AODV and OLSR behave differently, we use the same
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modelling techniques and experiments as for AODV, to make the comparison
study of these two protocols feasible for our future work.

Kamali et al. [14] have used refinement techniques for modelling and analysing
wireless sensor-actor networks. They prove that failed actor links can be temporar-
ily replaced by communication via the sensor infrastructure, given some assump-
tions. They have used Event-B formalisation based on theorem proving and their
proofs are carried out in the RODIN tool platform. There is a strong similarity
between the nature of the distributed OLSR protocol and the nature of distributed
sensor-based recovery. However, the tools employed for analysis in the two frame-
works are different in nature (model checking vs. theorem proving) and hence the
results are also different.

6 Conclusions and Outlook

The concrete result of this paper consists in providing a formal analysis for a dis-
tributed and proactive routing protocol named OLSR. Our analysis is performed
based on the Uppaal model checker. The analysis shows that our Uppaal model is
in accordance with the OLSR standard specification, but also points out a weak-
ness of the protocol: in some cases, an optimal route for message delivery cannot
be found. We also sketch a solution for the uncovered problem.

We see these results as the starting point for at least two directions of future re-
search. First, our analysis is restricted to small networks (of 5 and 7 nodes), due to
the nature of model checking. Wireless Mesh Networks draw their strength from
employing potentially thousands of nodes (or more), hence, we need to extend
our analysis to larger networks. This can be achieved by working with statisti-
cal model checking, where simulation concepts are combined with model check-
ing to establish the statistical evidence of satisfying hypotheses. While this does
not guarantee a correct result w.r.t the hypothesis, the probability of error can be
made vanishingly small. Another approach suitable to deal with larger networks
is that of theorem-proving, where, e.g., we can prove the required system prop-
erties as invariants for all systems (of all sizes) that verify certain assumptions.
Theorem-proving is traditionally seen as difficult to carry out, but the advent of
tools considerably eases the modelling: the needed proofs are automatically gen-
erated and even partly discharged, while the remaining proof obligations are dealt
with interactively by the user of the theorem-proving tool.

Second, our model for the proactive, distributed OLSR can be generalised to
distributed control. The latter is a concept with high relevance for systems where,
e.g., self-repairing is important, as it can enable the independence of the system
from central coordinators. Even maintaining proactively the optimal communica-
tion routes, as OLSR does, is instrumental in this. The applicability of distributed
control to critical systems such as emergency response networks or smart electri-
cal grids is very relevant, as these are complex systems, for which global solutions
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cannot be provided.
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