
Olga Karelkina | Yury Nikulin | Marko M. Mäkelä

An adaptation of NSGA-II to the stability
radius calculation for shortest path problem

TUCS Technical Report

No 1017, September 2011

An adaptation of NSGA-II to the stability
radius calculation for shortest path problem

Olga Karelkina
University of Turku, Department of Mathematics
FI-20014 Turku, Finland
volkar@utu.fi

Yury Nikulin
University of Turku, Department of Mathematics
FI-20014 Turku, Finland
yurnik@utu.fi

Marko M. Mäkelä
University of Turku, Department of Mathematics
FI-20014 Turku, Finland
makela@utu.fi

TUCS Technical Report

No 1017, September 2011

Abstract

Abstract: This paper addresses two different approaches to the calcula-
tion of stability radius of an optimal solution to the well-known shortest
path problem. We present an adaptation of multi-objective evolutionary al-
gorithm (NSGA-II) to the considered problem. We also compare behavior
of the derived algorithm with the known exact method in terms of solutions
diversity and computational complexity. Algorithmic performance is tested
by numerical experiments.

Keywords: combinatorial optimization; stability analysis; shortest path
problem; stability radius; Pareto set: genetic algorithm.

1 Introduction

As a rule while solving various applied problems, the information for mathem-
atical models construction is given inaccurately. This inaccuracy is caused
by the various factors of uncertainty and randomness such as inadequacy
of mathematical models to real processes, rounding off, calculation errors
and etc. In these cases a mathematical problem cannot be properly solved
without using results of stability theory (at least implicitly).

In this work we address the issue of deriving algorithm for calculation of
quantitative characteristic of solution stability for the well known shortest
path problem. A quantitative characteristic called stability radius is defined
as the limit level of perturbations of problem parameters preserving optim-
ality of a single solution (or of the solution set). The perturbed parameters
are usually coefficients of the scalar or vector objective function.

So far, to the best of our knowledge, algorithms for calculating or es-
timating stability radii have only been created for some scalar problems.
For example, Chakravarti and Wagelmans [2] developed an approach to con-
structing a polynomial algorithm for calculating the stability radius for some
classes of polynomially solvable problems. However, the calculation time
increases dramatically for large scale problems. Therefore, it is quite reason-
able to apply modern heuristics in order to derive faster algorithms for the
stability radius calculation. Moreover these methods can be further applied
for calculation of stability radius of optimal solutions to various multicriteria
discrete optimization problems.

Evolutionary algorithms (EAs) [3, 10, 16] are adaptive heuristic search
algorithms based on the evolutionary ideas of natural selection and genetics.
As such they represent an intelligent exploitation of a random search used
to solve optimization problems. Although randomized they utilize historical
information to direct the search into the region of better performance within
the search space. At each generation, a new set of approximations is created
by the process of selecting individuals according to their level of fitness in
the problem domain and breeding them together using the evolution of pop-
ulations of individuals that are better suited to their environment than their
ancestors, just as in natural selection.

In this paper, non-dominated sorting genetic algorithm (NSGA-II) [3]
based approach is proposed for calculating stability radius of an optimal
solution to the single criterion shortest path problem. The essentially new
idea we introduce here is to split the problem into the bi-criteria optimiz-
ation problem of finding the Pareto set in order to concern fractional term
minimization appearing in the analytical expression for the stability radius.
The preference is given to NSGA-II instead of evolutionary algorithm for
single criterion case because NSGA-II is a multi agent method providing a
diversity among non-dominated solutions by using the crowding comparison

1

procedure. This procedure is used in the tournament selection and during
population reduction phase. Moreover NSGA-II performs more sophisticated
search than a straightforward genetic algorithm.

2 Basic definitions and notations

Given a directed graph G = (V,A) , where V is a set of vertices and A is
the set of edges with cardinality |V | = m and |A| = n. Each edge ei ∈ A is
associated with positive cost ci, i ∈ Nn = {1, 2, . . . , n}. The shortest-path
problem (SP) is the problem of finding a directed path from a distinguished
source node s to a distinguished terminal node t, with the minimum total
cost.

We can formulate SP as a linear programming problem by first defining
the cost vector C = (c1, c2, . . . , cn) ∈ Rn

+, ci > 0. Denote by X ⊆ 2E
n

, E =
{0, 1}, the set of feasible solutions, i.e. the set of all valid directed paths
P = (ei1 , ei2, . . . , eik) from node s to node t. Then the decision variables
specify all possible paths in graph G:

xi =

{

1, if ei ∈ P,
0 otherwise.

(1)

Let us define by ei → j an edge for which vertex i is a tail and vertex j is
a head and by ei ← j an edge for which vertex j is a tail and vertex i is a
head. Then boolean linear programming formulation is given as follows:

∑

ei∈A

cixi → min, (2)

subject to

∑

ei:ei→j

xi −
∑

ei:ei←j

xi =

1, if j = s,
−1, if j = t,
0 otherwise.

(3)

xi ∈ {0, 1}. (4)

Here (3) is classical network flow balance constraints and (4) is Boolearity
constraints which define the set of feasible solutions (paths).

It is well known that if we omit the requirement of variables boolear-
ity assuming xi ∈ [0, 1], i = (1, 2, . . . , n), the relaxed linear programming
problem will have an integer (boolean) solution due to the total unimodu-
larity of the constraints matrix [14]. Thus, in principle, the shortest path
problem can be solved as a linear programming problem. However, being
more efficient problem oriented discrete algorithms are used in practice. The
considered problem with positive costs can be easily solved by Dijkstra’s
algorithm [4], which processes nodes in nondecreasing order of their actual

2

distances from the source node. At the beginning all nodes are given an
infinite distance except the source which is given a distance 0. At each step
we choose the next unlabeled node which is nearest to the source and mark
it, while updating the optimal distance to all its neighbors. The optimal dis-
tance of a neighbor is updated only if reaching it from the current labeling
node gives a total path length that is shorter then its current distance. Do-
ing so the algorithm constructs the so-called shortest path tree, which is a
spanning tree rooted at the source node s where the shortest paths to all
other nodes are determined. The shortest path to each node is then found
by tracing the predecessor iteratively back to the source. One of the best
implementations of Dijkstra’s algorithm uses priority queue structure [6] and
has time complexity O(m log(m+n)) (see, e.g. [1]). Observe that Dijkstra’s
algorithm can be correctly applied to the problem only in the case when
all ci > 0, i = (1, 2, . . . , n), otherwise it terminates but does not provide
correctness, i.e. proper optimal solution is unlikely to be found. In the case
with negative costs and at the presence of negative costs cycles the algorithm
experiences also a problem with termination.

We define norms l1 and l∞ in Rd for any finite dimension d ∈ N:

‖y‖1 =
∑

i∈Nd

|yi|, ‖y‖∞ = max{|yi| | i ∈ Nd},

where y = (y1, y2, . . . , yd)
T ∈ Rd and Nd = {1, 2, . . . , d}.

The perturbation of the problem parameters is understood as an arbitrary
independent change of coefficients of objective function (2). A perturbation
is modeled by adding to vector C a perturbing vector C ′ = (c′1, c

′
2, . . . , c

′
n)

from the set
Ω(ε) = {C ′ ∈ Rn | ‖C ′‖∞ < ε},

where 0 < ε < min{ci | i ∈ Nn}. Thus, we always preserve that ci + c′i ≥ 0
for any i ∈ Nn.

Limiting perturbations we consider only small changes of problem para-
meters. One should mention that this restriction is not unusual because for
problems occurring in practice typically all data are given with some kind of
accuracy ratio which could not exceed the nominal value.

The perturbed problem is formulated as follows:

∑

ei∈A

(ci + c′i)xi → min, (5)

subject to (3) and (4).
In this situation, it makes sense to estimate a quantitative characteristic

of an optimal solution stability. Such a characteristic called stability radius
is defined as the limit level of perturbations for which a certain relation
between solutions of problems (2)–(4) and (5), (3), (4) holds. If the level of

3

uncertainty in problem parameters is not greater than the stability radius,
then the solution of (2)–(4) is practically relevant (in certain sense).

Denote by Xopt(C) the set of optimal solutions to the initial problem
(2)–(4) with cost vector C.

Definition 1. An optimal solution x ∈ Xopt(C) is called stable if there
exists ε > 0 such that for any C ′ ∈ Ω(ε) we have x ∈ Xopt(C + C ′).

Definition 2. Stability radius of x ∈ Xopt(C) formally can be defined as
follows

ρ(x, C) =

{

sup Θ, if Θ 6= ∅,
0, if Θ = ∅,

where
Θ = {ε > 0 | ∀C ′ ∈ Ω(ε), x ∈ Xopt(C + C ′)}.

In other words, the stability radius of x is the supremum level of para-
meter perturbations such that x remains optimal in the perturbed problems
under given restricted perturbations. If x remains optimal for any arbitrary
large perturbations, then its stability radius is assumed to be infinite.

The formula for stability radius of an optimal solution to the single cri-
terion linear programming problem was originally obtained in [13] and ex-
pressed as follows:

ρ(x, C) = min
x′∈X\{x}

∑

i∈Nn

ci(x
′
i − xi)

‖x′ − x‖1
. (6)

Under our assumption about ”small perturbations” for the considered
problem this formula transforms into

ρ(x, C) = min
{

min
i∈Nn

ci, min
x′∈X\{x}

∑

i∈Nn

ci(x
′
i − xi)

‖x′ − x‖1

}

. (7)

In further research, formula (6) was generalized on various classes of vec-
tor discrete optimization problems (see, e.g. [7, 8]).

3 Exact method of calculating stability ra-

dius

In the case of a single objective function, Chakravarti and Wagelmans [2]
presented an approach to calculating the stability radius of an ε-solution to
the linear problem of 0–1 programming in polynomial time. They assumed
that the objective function is minimized, the feasible solution set is fixed
and a given subset of the objective function coefficients is perturbed. The
approach requires that the original problem is polynomially solvable.

The method of Chakravarti and Wagelmans relies on the following the-
orem.

4

Theorem 1 [2] Let x be an optimal solution to (2)–(4). The stability radius
ρ(x, C) of x is the maximum ρ satisfying the following inequality

min
x′∈X\{x}

∑

i∈Nn

(ci − ρdi)x
′ ≥

∑

i∈Nn

(ci + ρ)xi, (8)

where

di =

{

1, if xi = 0,
−1, if xi = 1.

In fact, in [2], a more general statement is formulated, but we restrict it
to the context of the shortest path problem.

It is shown in [9] that Theorem 1 can be obtained from the formula (6)
of stability radius. Thus having a formula of stability radius for a single
criterion problem, one can derive an inequality analogous to (8).

The right-hand side of (8) is a linear function of ρ. The left-hand side
is the value function of a parametric version of problem (2)–(4), where the
objective coefficients are linear functions of ρ. Let us call this value function
v(ρ). It is well known (see, for instance, [5] or [11]) that v(ρ) is a continuous,
piecewise linear and concave function of ρ. It follows from the results of
[2] that the number of linear pieces of v(ρ) is O(m), where m is number of
vertices in graph G.

In [11] a general scheme for solving linear parametric computing problems
was presented and was applied for constructing function v(ρ) on [0, ρu] in [2],
where ρu is an upper bound for the value of stability radius and theoretically
equals ‖C‖∞ (see, for instance, [9]), but in our case, as was mentioned earlier,
ρu = min

i∈Nn

ci. The method starts with computing v(0) and v(ρu). The optimal

solutions associated with these values each defines a linear function on [0, ρu].
If these linear functions are identical, then v(ρ) is simply this linear function.
Otherwise, we have two linear functions which intersect at a unique value
ρ̄ ∈ [0, ρu]. If (ρ̄, v(ρ̄)) coincides with the intersection point, then v(ρ) is the
concave lower envelope of the two linear functions. Otherwise, the optimal
solution associated with ρ̄ defines a third linear function which intersects
each of the other linear functions on [0, ρu]. These two intersection points
define new values of ρ for which v(ρ) is to be computed, and so on.

Once v(ρ) has been computed, it is trivial to find the largest value of ρ for
which this function is greater than or equal to the linear function

∑

i∈Nn

(ci +

ρ)xi.
The running time of the described procedure is shown in [5] to beO(BR(m)),

where B is the number of linear pieces of v(ρ) and R(m) is the complexity
of solving an instance of (2)–(4), i.e. the complexity of Dijkstra’s algorithm
that solves the single-source shortest path problem for a graph with nonneg-
ative edge path costs. In worst case we need to analyze O(m2) linear pieces

5

(or breakpoints) for constructing function v(ρ). Thus, the total complexity
of the exact method is O(m4).

4 NSGA-II adaptation for calculating stabil-

ity radius

A genetic algorithm (GA) is a search and optimization method which works
by mimicking the evolutionary principles and chromosomal processing in nat-
ural genetics. Originally GA technique was proposed for single criterion case
and was further extended on finding Pareto optimal solutions to multiob-
jective optimization problems. A GA begins its search with a random set of
solutions usually coded in binary string structures. Every solution is assigned
a fitness which is directly related to the objective functions of the search and
optimization problem. Thereafter, the population of solutions is modified to
a new population by applying three operators similar to natural genetic op-
erators – reproduction, crossover, and mutation. A GA works iteratively by
successively applying these three operators in each generation till a termina-
tion criterion is satisfied. Similar to natural selection each simulation run is
aimed to improve new generation in the sense that a fitness value is optim-
ized. Over the past one decade and more, GAs have been successfully applied
to a wide variety of problems, because of their simplicity, global perspective,
and inherent parallel processing.

In order to apply a non-dominated sorting based multi-objective evolu-
tionary algorithm (or NSGA-II) proposed in [3] to calculation of the stability
radius we suggest to treat the minimization of fraction (6) as bi-objective
discrete optimization problem:

f1 :=
∑

i∈Nn

ci(x
′
i − xi)→ min

x′∈X\{x}

f2 := ‖x
′ − x‖1 → max

x′∈X\{x}

The Pareto set of the problem is formally defined as follows:

P 2(C) = {x′ ∈ X | 6 ∃x ∈ X
(

f1(x, C) ≤ f1(x
′, C) ∧ f2(x, C) ≥ f2(x

′, C)
)

∧

∧
(

f1(x, C) 6= f1(x
′, C) ∨ f2(x, C) 6= f2(x

′, C)
)

}. (9)

In other words, a feasible solution is Pareto efficient if there is no feasible
solution which strictly dominates by one of the objectives and not worse
by any other. Here the first objective function is numerator of fraction (6)
which should be minimized and the second objective function is denominator
of fraction (6) which should be maximized in order to obtain the minimum
value of fractional ratio (6). Thus it is evident that the value of stability

6

radius corresponds to one of the points from Pareto frontier which delivers
minimum to the fraction.

In the following, we discuss the details of the coding representation of a
solution and present developed operators of NSGA-II adaptation for stabil-
ity radius calculation. The proposed algorithm uses a fast non-dominated
procedure and an elitist-preserving approach [3].

4.1 Representation and initialization

We consider a randomly generated directed graph G. The topology of the
graph is defined by an adjacency matrix and costs of edges are defined by
a cost matrix. A chromosome or a solution consists of integer numbers of
nodes that form a path from the source node to a terminal node. The length
of the chromosome is variable and may not be greater than number of nodes
m. Let us consider the example of digraph with the following adjacency and
cost matrices

A0 =

0 1 1 0 0 0 1 0 1 0
0 0 1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 1 0 1
1 1 0 0 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1
0 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0

C0 =

∞ 30 43 ∞ ∞ ∞ 9 ∞ 19 ∞
∞ ∞ 15 4 17 ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ 21 1 ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ 26 ∞ ∞ 30 ∞
44 ∞ ∞ ∞ ∞ ∞ 40 ∞ ∞ ∞
∞ 43 ∞ ∞ 34 ∞ ∞ 5 ∞ 15
45 28 ∞ ∞ 28 31 ∞ ∞ 29 ∞
∞ ∞ ∞ ∞ ∞ ∞ 36 ∞ ∞ 28
∞ 5 33 ∞ ∞ ∞ ∞ ∞ ∞ 22
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 49 ∞

.

The image of the graph is given in figure 1. The representation of one path
from node 1 to node 10 is either (1, 3, 4, 6, 10) or ((1, 3), (3, 4), (4, 6), (6, 10)).

Initial population of solutions which represent valid directed paths from
source node s to terminal node t is generated using breadth first search
algorithm [15]. This method is chosen in order to guarantee diversity of

7

1

2

3

4

5

6

7

8

9
10

Figure 1: A random directed graph on 10 nodes.

solutions in the randomly generated initial population. In current imple-
mentation of NSGA-II population size is equal to the number of nodes in the
considered graph.

It is necessary to note that we create an initial population only based on
graph topology without deriving information about the cost vector. One can
certainly produce a more efficient starting population by applying Dijkstra’s
algorithm to solve the problem of type (8) (left hand side) for several ran-
domly picked up values of ρ. However it will compromise the idea to avoid
the exact algorithm within the heuristic. This will have greater importance,
if we would like to generalize the approach for some NP hard problem.

4.2 A fast non-dominated sorting approach

After a random parent population is created it is sorted based on the non-
domination level using a fast non-dominated sorting procedure [3]. In this
approach, every solution from the population is checked with a partially filled
population for domination. When all solutions of the population are checked,
the first non-dominated class for all solutions is found. To find other fronts,
the members of the first class are discounted from population and sorting
procedure is repeated. At the end of the operation, all solutions are sorted
and each front is stored separately.

This method requires a maximum of O(K2) domination checks, where K
is the number of generations and in our case equals the number of nodes m.
Since each domination check requires two function value comparisons, the
maximum complexity of this approach to find the first non-dominated front
is O(2m2).

One thing worth mentioning is that since elitism is introduced by compar-

8

ing current population with previously-found best non-dominated solutions,
the procedure is different after the initial generation.

4.3 Reproduction

Reproduction (or selection) operator is applied on a population directly after
sorting procedure. Selection plays an important role in improving the average
quality of the population by passing the high quality chromosomes to the
next generation. Selection process is guided by the crowded comparison
operator [3]. Let us assume that every individual in the population has two
attributes: non-domination rank that is front number and crowding distance
which serves as an estimate of the size of the largest cuboid enclosing the
point without including any other point in the population. That is, between
two solutions with differing non-domination ranks we prefer the solution with
lower (better) rank. Otherwise, if both solutions belong to the same front
then we prefer the solution which is located in a less crowded region.

4.4 Crossover operators

Crossover operators are applied next to the chromosomes selected by repro-
duction procedure. For current implementation of NSGA-II we use three
different types of crossovers, so called one-node (ON), one-edge (OE) and
one-node-two-edges (ONTE) crossovers. At first solutions which correspond
to the minimum and the second minimum value of fraction (6) are picked up
from the current generation.

ON crossover is an analog of the conventional one-point crossover [12] with
one difference is that two chromosomes chosen for crossover should have at
least one common gene (node) except for source and destination nodes. ON
operator builds an offspring by choosing one random node among common
nodes for two paths and swapping substrings of two paths before or after cut
point. One thing worth mentioning is that all crossover operators used in
the proposed algorithm check if there are common nodes in substrings from
different paths before swapping and joining procedure in order two avoid
appearance of cycles and produce only feasible solutions. For the graph in
figure 1 we can choose the following two paths as parents: (1, 2, 5, 7, 6, 10) and
(1, 3, 5, 7, 9, 10) (see figure 2). Node 7 is common for both parents. Crossover
exchanges substrings of the first and second parents from node 1 to node 7
producing two offsprings illustrated in figure 3. One-node crossover is very
straightforward to implement. However, it can not be applied to any pair of
paths, because they may not have a common vertex. Moreover, this crossover
is not capable to produce offsprings with edges that do not belong to parents.
Thus, it is worth to consider other types of crossover operators.

OE crossover works as follows. First, two random edges that connect two

9

1 2 5 7 6 10

1 3 5 7 9 10

Figure 2: Two parents selected for crossover procedure

1 2 5 7 9 10

1 3 5 7 6 10

Figure 3: Two offsprings produced by one-node crossover

paths are selected. For instance, edges (2, 3) and (1, 7) can be selected for
parents in figure 2. Then substring of the first parent from node 1 to node 2
is combined with edge (2, 3) and substring of the second parent from node 3
to node 10. The same procedure is repeated for edge (1, 7) and corresponding
substrings. The obtained offsprings are displayed in figure 4.

Note that OE crossover allows to find paths with edges which do not
belong to parents. Moreover, the probability of applying this crossover to
two random chromosomes is higher than for ON crossover, especially in dense
graphs. In addition, using OE technique we can produce more than two
offsprings and as a result find more good candidates. However, it is not
possible to build paths containing nodes which do not belong to the parents.
Therefore, we introduce the third model of crossover.

1 2 3 5 7 9 10

1 7 6 10

Figure 4: Two offsprings produced by one-edge crossover

ONTE crossover builds offspring by selecting random node which does
not belong to parents and joining substring of one parent with a substring of

10

1 2 4 9 10

1 3 4 6 10

Figure 5: Two offsprings produced by one-node-two-edges crossover

the other parent using two edges adjacent to the selected node. For example
two paths in figure 2 would produce offsprings as follows. First, a random
connecting node that is not in paths is chosen, e.g. node 4. Next, crossover
founds all possible edges whose tail is adjacent to vertices of the first path
and head is adjacent to the connecting node, e.g. edge (2, 4), and all possible
edges whose tail is adjacent to the connecting node and head is adjacent
to the second path, e.g. edge (4, 9). The same procedure is repeated in
the other direction, from the second path to the first one. Thus, two edges
links ((2, 4), (4, 9)) and ((3, 4), (4, 6)) are formed that connect substrings of
the first (second) path with substrings of the second (first) path. Finally,
substring of the first (second) path from node 1 to the node adjacent to link
is glued with link itself and substring of the second (first) path from the node
adjacent to the link to the terminal node 10 (see figure 5).

Observe that ONTE crossover applied to two chromosomes can produce
quite many offsprings but only two of them are selected to the new generation.
In order to pick up the best two strings, all created solutions are sorted
according to the value of the ratio of two functions, f1 and f2, and those
which have minimal value of this ratio are included into the new generation.
This procedure helps to direct the local search towards the optimal solution,
but can slow down run time of the algorithm. Therefore, combining of three
different crossover operators leads to more efficient evolutionary algorithm.

4.5 Mutation

The search of genetic algorithm is mainly guided by crossover operators,
even though mutation is also used to maintain diversity in the population.
Furthermore, mutation is useful for local improvement of a solution. Here
we suggest two types of mutations. One takes a path of length greater then
2 and randomly selects a subpaths which consists of two edges and replace it
by one edge if it is possible. Another type of mutation randomly selects two
adjacent nodes in the path and replace an edge that connect them by two
edges link if such exists in the considered graph. For example, in the graph in
figure 1 path (1, 9, 10) can be obtained from path (1, 7, 9, 10) by applying first

11

1

7

9 10

Figure 6: Mutations scheme

type of mutation and visa versa by applying second type. In the proposed
algorithm probability of applying mutation to some chromosome increases
with the number of population and probability of what type of mutation to
choose is one half.

5 Comparison of the exact method and NSGA-

II

Let us now look at the time complexity of one iteration of the entire NSGA-
II. As it was shown in [3] the overall complexity of the above algorithm is
O(Km2), where K is the number of generations, and it is governed by the
non-dominated sorting part. In other words, in our case it is O(10m2) or
O(20m2), while the exact method complexity is O(m4).

To test accuracy of our algorithm, we use randomly generated directed
graphs on 100 nodes with approximately 5000 edges. The population size
is set to 100 for all tests. The ONTE crossover, the OE crossover and the
ON crossover probabilities are 0.5, 0.3 and 0.2 correspondingly. Mutation
probability in the first generation is 0.05 and for subsequent generations it
is calculated by the formula 0.05 + 0.45Kcurrent/Ktotal, where Kcurrent is the
number of a current generation andKtotal is the total number of generations in
the test. This relation between mutation probability and generation number
is not conventional and was chosen based on preliminary test runs.

In figure 7 we show computational results for ten different instances of
the shortest path problem. In order to estimate the affect of the number
of generations on the obtained results we performed test runs of NSGA-II
both for 10 and 20 generations. Results of our algorithm are compared with
those of Chakravarti and Wagelmans exact method. Accuracy of NSGA-II
is measured by absolute error, that is the difference between the value ob-
tained by NSGA-II and the exact value, and absolute error normalized by

12

Test instance 1 2 3 4 5 6 7 8 9 10

Costs interval @1,100D @1,100D @1,100D @1,100D @1,100D @5,200D @5,200D @5,200D @5,200D @5,200D

minimum ci 1 1 1 1 1 5 5 5 5 5

NSGA-II, 10
9

10

3

8
1

1

2

1

7

17

5

1

2

1

3

3

2

24

5

NSGA-II, 20
5

9

3

8
1

1

2

1

7

5

2

1

2

1

4

3

7

13

3

CW 0 0 0
1

2

1

7

5

2

1

2

1

4

3

7

13

3

Absolute error
5

9

3

8
1 0 0 0 0 0 0 0

Normalized absolute error
5

9

3

8
1 0 0 0 0 0 0 0

Figure 7: Comparison of NSGA-II for 10 generations, NSGA-II for 20 gen-
erations and CW (method proposed by Chakravarti and Wagelmans)

the length of interval [0,min
i∈Nn

ci]. Relative error does not provide any mean-

ingful information if input (exact value) is 0. For the first three instances of
the problem NSGA-II did not converge to the exact value of stability radius.
Therefore, in some cases it is worth to increase the number of generations in
order to improve an average accuracy of the proposed algorithm. In figure 7
it is clearly seen how the number of generations affects the results for 1, 6, 8, 9
and 10 problem instances.

6 Conclusions

This work is the first attempt to derive an alternative heuristic approach to
the stability radius calculation. Shortest path problem was chosen for testing
based on the fact that the method proposed by Chakravarti and Wagelmans
runs in polynomial time if the optimization problem itself is polynomially
solvable. Thus, we can estimate accuracy of results of our approach by
comparison with those of the exact method. As it was shown above, theoret-
ical time complexity of adapted NSGA-II is competitive with complexity of
the algorithm proposed by Chakravarti and Wagelmans. Moreover NSGA-II
complexity can be reduced by decreasing the number of generations, however
this could affect accuracy of solutions.

The apparent computational efficiency of the proposed algorithm is ex-
plained by the following two facts: at the beginning of the solution process,
breadth first search procedure provides diversity in the initial population
and chosen size of the population, which is equal to the number of nodes, is
enough to generate good solutions and, in addition, keeps memory and time;
combining three different crossover operators lead to more exhaustive search
allowing to find solutions faster.

Preliminary comparisons showed that the convergence rate of the adap-
ted NSGA-II was good for almost all random scenarios of the shortest path
problem that were tested, though the number of tested instances could have
been larger. This study encourage us to believe that our approach has some

13

real potential. In addition, the exact algorithm is not polynomial for NP
hard problems, while NSGA-II has still complexity of O(Km2) since it does
not depend on complexity of the original problem. Further, our emphasis is
on applying algorithm working on similar principles as adapted NSGA-II for
calculating stability radius for NP hard combinatorial optimization problems,
e.g. TSP, and multi-criteria combinatorial optimization problems.

This research was partially supported by Doctoral Programme in Sys-
tems Analysis, Decision Making and Risk Management and by Belarusian
Republican Fund of the Fundamental Research (project F10M-183).

References

[1] R. K. Ahuja, K. Mehlhorn, J. Orlin and R. E. Tarjan, Faster algorithms
for the shortest path problem, Journal of the ACM 37 (2) (1990), 213–
223.

[2] N. Chakravarti and A. Wagelmans, Calculation of stability radius for
combinatorial optimization, Operations Research Letters 23 (1) (1998),
1–7.

[3] K. Deb , A. Pratap , S. Agrawal and T. Meyarivan, A fast and elitist
multi-objective genetic algorithm NSGA-II, Evolutionary Computation
6 (2) (2002), 182–197.

[4] E. W. Dijkstra, A note on two problems in connection with graphs,
Numerische Mathematik 1 (1959), 269–271.

[5] M. J. Eisner and D. G. Severance, Mathematical techniques for efficient
record segmentation in large shared databases, J. Assoc. Comput. Mach.
23 (1976), 619–635.

[6] P. van Emde Boas, R. Kaas, and E. Zijlstra, Design and implementation
of an efficient priority queue, Mathematical Systems Theory 10 (1977),
99–127

[7] V. A. Emelichev, E. Girlich, Yu. V. Nikulin and D. P. Podkopaev, Stabil-
ity and regularization of vector problem of integer linear programming,
Optimization 51 (4) (2002), 645–676.

[8] V. A. Emelichev, V. N. Krichko and D. P. Podkopaev, On the radius of
stability of a vector problem of linear Boolean programming, Discrete
Math. Appl. 10 (2000), 103–108.

[9] V. A. Emelichev and D. P. Podkopaev, Quantitative stability analysis for
vector problems of 0 – 1 programming, Discrete Optimization 7 (2010),
48–63.

14

[10] D. E. Goldberg, B. Korb and K. Deb, Messy genetic algorithms: Mo-
tivation, analysis, and first results, Complex Syst. 3 (1989), 93–530.

[11] D. Gusfield, Parametric combinatorial computing and a problem of pro-
gram module distribution, J. Assoc. Comput. Mach. 30 (1983), 551–563.

[12] J. H. Holland, Adaptation in Natural and Artificial Systems, Cambridge,
M.A.: The MIT Press (1992)

[13] V. K. Leont’ev, Stability in linear discrete problems, Probl. Kiber. 35
(1979), 169–184.

[14] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Al-
gorithms and Complexity, Mineola, N.Y.: Dover Publications (1998)

[15] S. Russel and P. Norvig, Artificial Intelligence: a modern approach (2nd
Ed.), Upper Saddle River, N.J.: Prentice Hall (2002)

[16] E. Zitzler, Evolutionary algorithms for multiobjective optimization:
Methods and applications, Doctoral dissertation ETH 13398, Swiss Fed-
eral Institute of Technology (ETH), Zurich, Switzerland (1999).

15

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978-952-12-2632-8

ISSN 1239-1891

