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Abstract

Network controllability studies focus on discovering combinations of external
interventions that can drive a biological system to a desired configuration. In
practice, this approach translates into finding a combined multi-drug therapy in
order to achieve a desired response from a cell; this can lead to developments
of novel therapeutic approaches for systemic diseases like cancer. We develop a
novel bioinformatics data analysis pipeline (called NetControl4BioMed) based on
structural control of linear networks. Our pipeline generates a cellular molecular
interaction network by combining pathway data from various public databases ac-
cording to the user’s query. The pipeline identifies a minimal set of driven proteins
needed to control a given, user-defined set of target proteins in the network. We
provide here both the source code of the pipeline as well as an online web-service
based on this pipeline. The pipeline can be used by researchers for controlling
and better understanding of molecular interaction networks through combinatorial
multi-drug therapies, for better disease diagnostic, efficient therapeutic approaches
and personalized medicine.

Introduction

Over the last decade, high-throughput experimental technologies like gene se-
quencing, proteomics, etc. became the core of biomedical research and have
generated a large set of biomedical data [Bolouri et al., 2014]. The recent ad-
vances in experimental data acquisitions allow researchers to study functions and
properties of proteins, RNAs and genes, as well as to explore a network of in-
teractions between them. The network of protein-protein interactions (PPIs) is
the backbone of signaling pathways [Pawson et al., 2000], metabolic pathways
[Durek et al., 2008], and various essential cell processes for normal cell function
[Kolch et al., 2015, Yamada et al., 2009]. In recent years, analysis of PPI networks
has been central for the current biological research, providing novel insights into
modern molecular biology from the network perspective [Barabasi et al., 2011].
In order to study the structure, function and dynamics of PPI networks, multiple
computational system biology approaches have been employed to reveal impor-
tant links in various biological networks [Cho et al., 2012]. This includes, among
others, finding physical interactions (e.g., between proteins in PPI networks) and
functional interactions (e.g., between genes with similar or related functions, direct
or indirect regulatory relationships between genes), identifying network mod-
ules (clusters of intensively interacting molecules) [Cho et al., 2012], interaction
patterns and topological properties of disease networks (such as cancers, HIV
infections, diabetes mellitus, Parkinson, Alzheimer, etc.) [Zhou et al., 2014].

A number of computational pipelines and softwares have been developed
[Doncheva et al., 2012] to perform various analysis of the interaction partners,
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topological properties, and visualization of PPI networks. The majority of these
approaches are focusing on finding structurally important disease-associated pro-
tein interactions in a network [Yildirim et al., 2007, Jiang et al., 2015]. However,
so far there are no known software solutions analysing biochemical interaction
networks and providing information on how to control them. Recently, several
algorithms have been developed to perform network structural analysis and suggest-
ing optimal sets of so-called driven nodes through which one can control a network
[Liu et al., 2011, Kanhaiya et al., 2016, Czeizler et al., 2016]. We say that a sys-
tem is controllable through a set of driven nodes if there exists a time-dependent
sequence of input signals delivered through these nodes in such a way that the sys-
tem can be driven from any initial state to any desired final state within finite time
[Liu et al., 2011, Lin et al., 1974]. Recently, the use of structural controllability
of biological networks has been suggested on undirected PPI networks through
minimum dominating sets (MDSet) proteins approach [Wuchty et al., 2014]. An
efficient method to select a minimal set of driven nodes in a directed PPI network in
order to reach its full controllability was recently presented in ([Liu et al., 2011]).
However, it was shown through a number of computer-based experimental tests
in [Liu et al., 2011] that in biological networks one may have to control as much
as 80% of the nodes of a gene-regulatory network in order to reach the full con-
trollability. This makes the full network controllability approach for biological
and medical purposes. In many cases, it is more practical to control only a certain
properly selected subset of the network’s nodes (for instance, a disease-specific
set of essential genes) in order to reach a desired overall behavior of the sys-
tem [Kanhaiya et al., 2016, Czeizler et al., 2016]. This approach may lead, for
instance, to an effective combined multi-drug therapy for a particular disease.

We develop a bioinformatics data analysis pipeline (called NetControl4BioMed)
and its web-based front-end in order to provide a web-based service for automatic
generation of combined multi-drug therapy suggestions through the analysis of user-
given directed biochemical interaction networks. The core of the pipeline consists
of the implementation of the algorithm proposed in [Czeizler et al., 2016] that for a
given directed network and a set of target nodes, it calculates a minimal set of driven
nodes through which one can control the target nodes. Based on the user’s query,
the pipeline generates automatically intracellular molecular interaction networks
by combining the interactions between genes, proteins and other intracellular
components from various public pathway repositories. Then, the resulting networks
are subjected to the structural controllability analysis in order to identify the
minimal set of driven genes [Czeizler et al., 2016]. The data from public drug
repositories is used to maximize the use of drug-targetable genes and proteins as
driven nodes, to increase the practical applicability of the approach. The results
of this analysis are returned to the user in form of reports in CSV tables, PDF
documents and GRAPHML files.
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1 Methods
We build here a data analysis pipeline and its web-based front-end in order to
provide a web-based service for automatic generation of combined multi-drug
therapies suggestions. The core of the pipeline consists of the implementation of the
algorithm (proposed in [Czeizler et al., 2016] and briefly discussed in Section 1.1)
that for a given set of target nodes calculates a minimal set of driven nodes through
which one can control the target nodes. Based on the user’s query, the pipeline
generates automatically intracellular chemical interaction networks by combining
the interactions between genes, proteins, and other intracellular components from
various public pathway repositories. Then, the resulting networks are subjected to
the structural controllability analysis in order to identify the minimal set of driven
genes [Czeizler et al., 2016]. The data from public drug repositories is used to
maximize the use of drug-targetable genes and proteins as driven nodes, to increase
the practical applicability of the approach. The results of this analysis are returned
to the user in form of reports in PDF documents, XML files and files readable by
Cytoscape.

1.1 Structural network control
Here we present theoretical aspects of the algorithm that we have proposed in
[Czeizler et al., 2016]. This algorithm is aimed to minimize the size of the set of
driven nodes that can be used to control a given set of target nodes. The algorithm
uses several heuristic strategies for a more efficient exploration of the search space,
which leads to faster and better (smaller sets of driven nodes) results in comparison
to [Gao et al., 2014]. The Python implementation of the algorithm is available in
(http://combio.abo.fi/research/network-controlability-project/).

We consider discrete time-invariant linear dynamical systems as models of
biological entities (genes, proteins) influencing each other. Such a system can be
modeled by

xt+1 = Axt +But, yt = Cxt,

where A,B,C are matrices of size n× n, n×m, and l× n, respectively, xt ∈ Rn,
ut ∈ Rm and yt ∈ Rl are the state vectors, input vectors and output vectors, for
all t ∈ N. Matrix A describes the interactions within the system under scrutiny,
B describes the influence of the m driver nodes over the internal nodes of the
system, while C describes the l output nodes as a function of the internal nodes of
the system. We call driven node any j ∈ {1, . . . , n} such that Bij 6= 0, for some
i ∈ {1, . . . ,m}; in other words a driven nodes is any internal node linked to an
external driver node through matrix B. We say that an output vector y ∈ Rl is
reachable from an initial state x0 ∈ Rn if there exists a finite sequence of inputs
u0, u1, . . . , ut ∈ Rm such that yt = y.

In this paper we focus on target controllability, i.e., on the case when the focus
is on controlling a well-defined subset of the internal nodes of the system. To
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capture this case, we consider matrices C with l ≤ n and such that on each row of
matrix C there is at most one non-zero value; this effectively selects the internal
nodes of interest as outputs of the dynamical system. We say that such a system
is target controllable if any output vector is reachable from any input state. It is
known that a system is target controllable if and only if

rank[CB,CAB,CA2B, . . . , CAn−1B] = l,

see [Czeizler et al., 2016] and references therein. A related notion is that of struc-
tural target controllability, that refers to a system that becomes target controllable
by changing the non-zero values of A and B with some well-chosen non-zero
values (we call such matrices equivalent); moreover, it is well known that a sys-
tem is structurally target controllable if and only if it is target controllable for
almost all (in a mathematically well-defined sense) equivalent matrices A and
B. This allows the problem to be redefined as a graph-theoretical problem since
the target controllability depends on the structure of the system and not on its
numerical setup. Due to space restrictions we skip all these details here and refer
to [Czeizler et al., 2016] and references therein. We only mention that the problem
may be reduced to the following problem on directed graphs: given a directed
graph G = (V,E) with n nodes and a subset T ⊆ V with l nodes, decide if there
exists a set of l directed paths in G such that each node in T is an end point of one
such path and no two paths intersect at the same distance from their end points,
see [Lin et al., 1974]. In an additional refinement of the problem, one may also be
given a subset D ⊆ V of driven nodes and require that the directed paths preferably
start from nodes in D.

1.2 NetControl4BioMed
Here we discuss software tools used to build our pipeline as well as the data used
in it.

1.2.1 Workflow engine: Anduril

The pipeline is developed for the Anduril workflow framework [Ovaska et al., 2010].
Anduril is an open source component-based pipeline engine for scientific data anal-
ysis. Anduril defines an API that allows to integrate rapidly a vast range of existing
software analysis and simulation tools and algorithms into a single data analysis
pipeline. An Anduril pipeline represents a set of interconnected executable pro-
grams (called components) through well-defined I/O ports. Upon the termination
of the execution of an Anduril component, its output results are delivered as inputs
to the other (downstream) components by means of connecting the output port
of the component to the input ports of its downstream components. When an
Anduril pipeline is being executed, a component can be executed as soon as all the
necessary input data at the input ports (from the upstream components) become
available.
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1.2.2 Biological data and network generation

Our pipeline uses the Moksiskaan platform [Laakso et al., 2010] to generate molec-
ular interaction networks based on the user’s query. Moksiskaan integrates path-
ways, protein-protein interactions, genome and literature mining data into compre-
hensive networks for a given list of proteins (so-called “seed nodes”). It combines
the relations between genes and proteins from different known pathways in order
to address the fact that pathways crosstalk and influence each other. In our pipeline,
Moksiskaan constructs a comprehensive network for the list of seed nodes by using
and combining all imported pathways in the following manner: it connects all seed
nodes by all known paths of length not exceeding the “gap” value (a parameter
of our pipeline). The intermediate proteins from the paths need not necessarily
belong to the given set of seed nodes.

The Moksiskaan platform defines a generic database schema to store the path-
ways from a number of different pathway databases and can be scaled to in-
clude the pathway data from new sources (such as new databases and user’s own
data). Currently, Moksiskaan has built-in support for the integration of the path-
way data from, among others, KEGG pathway database [Kanehisa et al., 1996],
Pathway Commons [Cerami et al., 2011], and WikiPathways [Kutmon et al., 2015,
Kelder et al., 2011]. In order to import the data from a new source, the user has
to implement an import mechanism fetching and translating the data from the
new source into the format defined by the Moksiskaan database schema. After
the Moksiskaan database is populated, it can be used by the Moksiskaan Anduril
components to import the pathways data into Anduril pipelines.

We use in our pipeline drug-target protein data from the open source DrugBank
database [Law et al., 2014]. The DrugBank database combines detailed drug (i.e.
chemical, pharmacological and pharmaceutical) data with comprehensive drug
target (i.e. sequence, structure, and pathway) information from bioinformatics and
cheminformatics resources. For drug-target identifiers we have selected in total
1507 FDA-approved drugs with known mechanisms.

In our pipeline, we provide the user with a number of predefined sets of target
proteins associated to some specific cancer cell lines. These target proteins are
cancer-specific essential proteins. We have included in the pipeline data for three
types of cancer from the COLT-Cancer database [Koh et al., 2012]. In particular,
we considered 29, 23 and 15 cell lines respectively for breast, pancreatic and ovarian
cancer. The collected data follows the GARP and GARP-P value of correspond-
ing proteins mentioned in the database. Previous studies [Marcotte et al., 2012]
showed that proteins with lower GARP score are more essential and directly asso-
ciated with oncogenesis. Therefore, we have selected only those essential proteins
whose GARP value is in the negative range, and moreover, whose GARP-P value
is less than 0.05. Following the above criteria, we identified proteins for breast,
pancreatic and ovarian cancer respectively.
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1.2.3 Pipeline structure

Here we describe the pipeline structure as well as its input and output.
INPUT
Our pipeline currently accepts the following inputs from the user:

1. Seed proteins: List of proteins that will be used as seed nodes by Mok-
siskaan to generate the network. This input can be any protein ID of Homo
sapiens.

2. User-defined network: The user has an option to use a custom network in
the pipeline instead of the Moksiskaan network.

3. Cancer Cell Lines: A cancer cell line whose set of essential proteins will be
used as target nodes for the network controllability algorithm. These nodes
can act also as seed nodes if the user decides so. The user has also the option
not to include any of the cell lines. However, in this case the next field should
not be empty.

4. Additional target proteins: A set of target nodes defined in addition to
those in the “Cancer Cell Lines”. This input can be left empty if the previous
field is set to a cancer cell line. These nodes can act also as seed nodes if the
user decides so.

5. Gap: The gap parameter used by Moksiskaan to generate the network.

6. Include drug information: Should the pipeline include also the drug target
information for the driven nodes. If so, then the driven nodes for which there
exist FDA approved drugs will be specifically highlighted in the output of
the pipeline.

OUTPUT
The pipeline generates as the result of the computation a zip-archive with the

following files. Table driven.csv contains the drug-targetable driven nodes and the
number of targets (e.g., cancer essential proteins) controlled by them. If driven.csv
is empty, it means that our algorithm didn’t find any cancer essential protein (or
generally any target) inside the generated PPI network which can be controlled
by the drug-target driven protein. Table extra.csv contains the non-drug targetable
driven nodes (no FDA-approved drug target proteins are known to be targeting
the node) and and the number of targets (e.g., cancer essential proteins) controlled
by them. Similarly as driven.csv, if extra.csv is empty then it follows that our
algorithm didn’t find any cancer essential protein (or generally any target) inside
the generated PPI network which needs to be controlled from a non-drug-targetable
driven protein. In details.txt the first line indicates the heuristics which was used
for obtaining the result in the file. A blank line follows, then the names of the
driven nodes, each on a separate line. After another blank line, the control path
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for each target is provided. File graph.xml contains the generated network and can
be visualized in Cytoscape and further downloaded as a node.csv from Cytoscape.
The archive also contains a visualization of the controlled graph (as a PDF file)
generated with GraphML, see Figure 2.

PIPELINE
Our pipeline consists of the following three parts, see Figure 1:

1. DATA IMPORT: Integrate the user’s defined input into the pipeline. Either
generate the network with Moksiskan, basing on the user’s defined input or
get the user-defined network in GRAPHML format.

2. NETWORK CONTROLLABILITY: Compute the minimal set of driven
nodes for the given target genes in the network generated at the previous
step.

3. POSTPROCESSING AND OUTPUT: Highlight those driven nodes that
can be targeted by FDA approved drugs. Generate the network file (GRAPHML,
Cytoscape and PDF) from the original network and by adding additional
annotations to the nodes representing selected driven genes/proteins, drug-
targetable driven genes/proteins, if any, and target genes. Generate CSV
tables with the information about the driven genes/proteins, and the list of
target genes and their control paths from the driven nodes.

2 Discussion
The structural network controllability approach allows to get a better insight into
a system modeled as a directed graph: for a set of target nodes it is possible to
identify a set of driven nodes through which one can control the target nodes by an
external intervention through using the internal “wiring” of the network. We use
here a recently developed algorithm [Czeizler et al., 2016] for structural targeted
network controllability that identifies a minimal set of driven nodes for a user-given
set of target nodes. We implemented this algorithm through a pipeline (that can be
downloaded and installed as a stand-alone software) and through a related online
service (a publicly available web interface for an instance of the pipeline installed
on our servers). The pipeline performs an automatic generation of intracellular
molecular interaction networks (by combining publicly available pathway data)
and identification of driven nodes (that also can be targeted by FDA approved
drugs) for a set of target genes/proteins defined by the user.

In this paper we also address the interesting problem of using the controllability
approach for a combination of data on FDA-approved drug targets and data on
cancer essential genes for different types of cancers. Users can also apply this
pipeline if they have other disease target (essential) genes. We anticipate that further
developments on our pipeline have the potential in suggesting novel therapeutic
strategies by using currently known drugs.
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Figure 1: The general scheme of the NetControl4BioMed pipeline. The pipeline
consists of three parts. In the first part we perform data input and preprocessing: we
get from the user the list of seed nodes, the predefined list of essential proteins for a
selected cancer essential cell line, and the list of additional target nodes, if provided
by the user. Moksiskaan generates the network based on the seed proteins provided
by the user; the seed can also include the predefined list of cancer essential cell
lines and the optional list of user-defined target nodes. The user also can provide
for the analysis a custom network instead of that generated by Moksiskaan. The
second part of the pipeline deals with the network structural controllability analysis,
where a minimal set of driven nodes is computed for the given set of target nodes
(user-defined target nodes and cancer cell line-associated essential proteins). In
the third part of the pipeline the post-processing is performed and the output is
generated. In the output, the user gets the network generated by Moksiskaan and
the information about driven nodes, target nodes and drug-targetable driven nodes.
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Figure 2: A visualization of the generated network from the pipeline. Proteins
PIK3R3, PIK3CB, PIK3R1, PIK3CG, PIK3CD, PIK3CA, PIK3R5 and PIK3R2
are promoted/activated by ERBB3. They promote/activate AKT1, AKT2, AKT3
and MTOR and inhibit AKT1, AKT2 and AKT3. Proteins PIK3R3, PIK3CB,
PIK3R1, PIK3CG, PIK3CD, PIK3CA, PIK3R5 and PIK3R2 have no interactions
between each other. NRG1 controls ERBB3 and AKT1 controls MTOR. The
colors have the following meaning: “seed nodes” are shown in green circle
(NRG1, ERBB3, MTOR), “driven drug-target nodes” are represented as aqua
color (AKT1), “controlled from drug-target nodes” are shown in purple color
(MTOR), “driven non-drug- target nodes” are shown in red color (NRG1) and

“controlled from non-drug-target nodes” are shown in orange yellow (ERBB3).
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