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Abstract

We introduce a new accurate method for preprocessing incomplete data sets. We com-
bine two well-known approaches for missing value imputation: the linear regression
and the clustering. That is, we use the clusterwise linear regression to predict suitable
imputations. A clusterwise linear regression problem consists of finding a number of
linear functions each approximating a subset of the given data. The idea here is to
approximate missing values using only those data points that are somewhat similar
to the incomplete data object. This idea is used also in clustering based imputations.
On the other hand, we use linear regression within the given cluster to find accurate
predictions to the missing values and we do this simultaneously to clustering. The aim
here is to make an accurate and efficient method for preprocessing incomplete data
sets. The proposed algorithm is tested on small and large, artificial and real world data
sets and compared with other algorithms for missing data imputation. Numerical re-
sults demonstrate that the proposed algorithm produces the most accurate imputations
in data sets with clear structure and small or moderate amount of missing values.

Keywords: Data analysisi; Incomplete data; Imputation; Clusterwise linear regres-
sion; Nonsmooth Optimization.
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1 Introduction
The occurrence of missing (or incomplete) data is very common in many fields of
research such as social sciences, biology, medicine and climatic science. There are
various reasons for possible incompleteness of data. For instance, in medical domain
some data may be missing because certain procedures were not performed on a given
patient, other data may be missing because the patient chose not to disclose them, and
even some data may be missing due to malfunction of certain equipment [25].

As the quality of knowledge extracted from data depends largely on the quality of
data, missing values may have a significant effect on the conclusions that can be drawn
from the data. Moreover, most of the existing knowledge discovery and data mining
algorithms, used, for example, for clustering and classification, are designed under the
assumption that there are no missing values in the data. When data is incomplete, the
performance of these algorithms may worsen drastically or they may not work at all.
Thus, data pre-processing is a critical task in the knowledge discovery process in order
to ensure the quality of the data to be analyzed and the performance of the tools to be
used.

When dealing with incomplete data, possible approaches can be divided into three
main categories:

1. deletion-based methods,

2. learning methods for complete and incomplete data, and

3. imputation methods.

The deletion-based methods (e.g. pairwise deletion and listwise deletion [16, 32,
55]) strive toward complete database by removing all the observations/attributes con-
taining missing values. Because of their simplicity, these methods are fairly popular.
However, the methods may lead to large losses of information, which calls for thor-
ough consideration before using them [16].

The second approaches, learning methods, apply machine-learning techniques to
classify or cluster incomplete data directly without explicitly estimating missing fea-
tures or modifying the data set. Examples of these kind of methods include clustering
based methods like modifications of k-means [12, 50] and fuzzy c-means [24, 58],
neural network based approaches [17, 19, 37, 42, 56] and different variants of kernel
methods [27, 33, 47].

The third approaches, imputation methods, fill missing values in order to com-
plete the original database without significant loss of information. The key advantage
of these methods is the ability to create complete data set by embedding new values
(predictions) without changing the original observed values in the database. This new
imputed data set can then be treated with any traditional data mining method for com-
plete data.

On their turn, imputation methods can be divided into three groups including
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1. data driven,

2. model-based, and

3. machine learning based approaches.

Data driven imputation methods usually produce the imputed values by relatively
simple statistical/mathematical methods like mean, conditional mean, hot-deck, cold-
deck, or substitution [1, 16].

Model-based imputation methods use mathematical or statistical models to handle
the missing values in the data and to predict correct imputations. This group con-
sists mainly of regression-based and maximum likelihood based approaches like mul-
tiple imputations by chained equations and stochastic regression [16, 40, 41, 53], and
expectation-maximization (EM) [16, 51, 54].

Various machine learning based approaches have been proposed for missing value
imputation. These include neural network based approaches [21, 44], clustering based
approaches [30, 36, 9], and K-nearest neighbours (K-nn) [8, 48] to mention but few.
In addition, imputation approaches that combine machine learning techniques and
model based approaches are introduced, for instance in [43, 57] where clustering is
used together with the linear regression. This is the case also in this paper, where we
introduce a new imputation algorithm IVIACLR (Imputation via Clusterwise Linear
Regression).

The clusterwise regression is a technique to approximate data using two or more
regression functions. It is based on two well-known techniques: clustering and re-
gression, and simultaneously identifies clusters and their associated regression func-
tions. If the regression functions are linear then the clusterwise regression is called
the clusterwise linear regression (CLR). The CLR has many applications (see, e.g.
[4, 26, 35, 38, 39, 52]). Here, we will use it as the part of a new imputation algorithm
IVIACLR. The main idea in the IVIACLR is to use regression of those data points
that are somewhat similar to the incomplete data object. That is, we infer the value
of a missing feature based on that item’s observed features and its similarity to other
items in the data set. The difference of the IVIACLR to the methods introduced in
[43, 57] is that, instead of using clustering and regression separately as in [43, 57], we
use the CLR to predict suitable imputations. Thus, the IVIACLR computes all the pre-
dictions to missing values simultaneously to clustering and instead of the traditional
ball-shaped clusters with cluster centres our clusters are regression functions.

The algorithms for solving general CLR problems can be divided roughly into
three groups: algorithms which are based on data mining [18, 45, 46]; statistical algo-
rithms [14, 20, 39]; and optimization based methods [5, 6, 7, 10, 11, 15, 28]. In princi-
ple, any of these approaches could be used in our new imputation method IVIACLR.
In this paper, we have adopted the nonsmooth nonconvex optimization formulation of
the CLR problem and apply the algorithm LMBM-CLR [28] to solve it.

The LMBM-CLR -method consists of two algorithms: an incremental algorithm
[34] is used to solve CLR problems globally and at each iteration of this algorithm
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the limited memory bundle algorithm (LMBM) [22, 23] is used to solve both the
CLR problem and the so-called auxiliary CLR problem with different starting points
provided by the incremental algorithm. In addition, we have added here three different
kind of prediction approaches to choose best possible predictions to missing values.

The performance of the proposed method IVIACLR is studied and compared to
other imputation methods on three artificial and five real data sets of various sizes
with varying percentages of missing values. The evaluation criteria used in our ex-
periments are the root mean square error (RMSE), mean absolute error (MAE), and
unsupervised classification error (UCE). In addition, we introduce a new cluster center
misplacement (CCM) criterion that can be used together with the UCE to measure the
bias in the imputed values.

The rest of this paper is organized as follows. In the next section, we give some
background information, including the nonsmooth optimization formulation of the
CLR problem and basic ideas of the LMBM-CLR. Section 3 introduces the new
imputation method and the prediction approaches used. The results of the numeri-
cal experiments and the new evaluation criterion CCM are presented and discussed in
Section 4, and finally, Section 5 concludes the paper.

2 Background

2.1 Notations and Definitions

Throughout the paper the following notations are used: the Euclidean norm in Rn is
denoted by ‖·‖ and the inner product of vectors a and b is denoted by aTb (bolded
symbols are used for vectors).

We have a data set A = {â1, â2, . . . âm} of m objects (observations, instances,
data points) and each object has n features (attributes, variables). We denote by âij
(1 ≤ i ≤ m and 1 ≤ j ≤ n) the value of the attribute j in object âi. Data point âi is
called complete, if âij 6= ∅ with all j = 1, . . . , n, and incomplete, if âij = ∅ with at
least one j ∈ {1, . . . , n}. In the latter case, we say that object âi has a missing value
on attribute j. The attributes âij , j ∈ {1, . . . , n} that are available for an incomplete
object âi are called the reference attributes. Our objective is to find and impute the
values of non-reference attributes for incomplete objects.

For regression purposes we denote A = {(a1, b1), (a2, b2), . . . , (am, bm)}, where
ai ∈ Rn−1 (i = 1, . . . ,m) are the so-called input variables and bi ∈ R is the output
variable. If there are missing values only in one feature, say in feature j of the data set
A, then we set bi = âij , i = 1, . . . ,m, and the rest of the variables are input variables.
However, in real world data sets it is common for missing values to occur in several
variables. In such situations, we go trough all features with missing values iteratively
using some initial imputations in place of missing values on those features that are not
output variables in the current iteration.
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2.2 Nonsmooth Optimization
Nonsmooth optimization (NSO) refers to the general problem of minimizing (or maxi-
mizing) functions that are typically not differentiable at their minimizers (maximizers).
In NSO the gradient ∇f(x) needs not to exist for all x ∈ Rn. However, we can de-
fine the so-called subdifferential [13] that allows us to generalize the classical theory
of optimization to NSO. The subdifferential ∂f(x) of a locally Lipschitz continuous
function f is given by

∂f(x) = conv{ lim
i→∞
∇f(xi) | xi → x and ∇f(xi) exists },

where “conv” denotes the convex hull of a set. Each component ξ ∈ ∂f(x) is called a
subgradient of f at x. For more details on nonsmooth analysis and optimization, we
refer to [3].

2.3 Clusterwise Linear Regression
The aim of the CLR is to find an optimal partition of the given data set A = {(ai, bi) ∈
Rn−1 × R | i = 1, . . . ,m} into k clusters and, simultaneously, to find regression
coefficients {xj, yj}, xj ∈ Rn−1, yj ∈ R, j = 1, . . . , k within clusters in order to
minimize the overall fit. Let Aj ⊂ A, j = 1, . . . , k be clusters such that

1. Aj 6= ∅, j = 1, . . . , k;

2. Aj
⋂

Al = ∅, for all j, l = 1, . . . , k, j 6= l;

3. A =
k⋃

j=1

Aj.

Let {xj, yj} be linear regression coefficients computed using solely the data points
from the cluster Aj, j = 1, . . . , k. Then for a given data point (a, b) ∈ A and coeffi-
cients {xj, yj} the squared regression error Eab(xj, yj) is given by

Eab(xj, yj) =
(
(xj)

Ta+ yj − b
)2

.

A data point is associated with the cluster whose regression error at this point is the
smallest one. The function

fk(x,y) =
m∑
i=1

min
j=1,...,k

Eab(xj, yj),

is called the k-th clusterwise linear regression function or the k-th overall fit function
[5, 6, 7]. Here x = (x1, . . . ,xk) ∈ R(n−1)k and y = (y1, . . . , yk) ∈ Rk. The NSO
formulation of the CLR problem is given by{

minimize fk(x,y)

subject to x = (x1, . . . ,xk) ∈ R(n−1)k, y ∈ Rk.
(1)
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For k = 1 Problem (1) is convex and for k > 1 it is nonsmooth, nonconvex, and
piecewise quadratic. The number of clusters k is not always known a priori and this
number should be specified before solving Problem (1). The number of variables in
Problem (1) is n× k and it does not depend on m, the number of points in a data set.

2.4 LMBM-CLR -Method

In this subsection we recall the structure of the LMBM-CLR -method for solving CLR
problems. As already said in the introduction, the LMBM-CLR -method consists of
two algorithms: an incremental algorithm is used to solve CLR problems globally and
at each iteration of this algorithm the LMBM is used to solve the CLR problem (1)
and the so-called auxiliary CLR problem that is used to find good initial solutions for
the CLR problem. Figure 1 illustrates the structure of this combination and basic ideas
of the two algorithms. For more details we refer to [28] for the LMBM-CLR, [5] for
the incremental algorithm and auxiliary problem, and [22, 23] for the basic LMBM.

Set  l = l + 1.

Initialization of auxiliary
CLR problem:
Find the set                   of 
starting points for auxiliary 
CLR problem

Auxiliary CLR problem:
Use LMBM algorithm to solve
the l-th auxiliary CLR problem
starting from each point
                 to find the set               
of starting points for the l-partition
CLR problem.

Solution of the l-th CLR    
problem:
Set                                  
where                             is the 
best solution obtained.

LMBM

Initialization:

  Serious step
  initialisation:

 Line search:
 Evaluate 

                    

 Update step:
 Set
  

Desired accuracy?

Serious step?

Initialization:
Select the maximum number of 
linear functions k > 0;  Compute  

the linear regression function
                               of the set A.

Set  l = 1. 

Incremental Algorithm for CLR Problems

Stopping criterion:
l > k ?

Yes

Yes

  Aggregation:
  Compute a new  
  

No

Direction finding:
Compute

using the limited
memory BFGS 
update. 

Stop

 Type of  
the problem solved:

Auxiliary CLR        
problem?

No

Yes

 Direction finding:
 Compute

 using the limited 
 memory SR1 update. 

No

CLR problem:
Use LMBM algorithm to solve
the l-th CLR problem starting
from
for each             

Yes

No

Figure 1: LMBM-CLR -method. Here, D denotes the inverse variable metric ap-
proximation of the Hessian and ξ ∈ ∂f(x) is an arbitrary component (the so-called
subgradient) from the subdifferential.

In addition to the k-CLR problem, the LMBM-CLR solves also all intermediate
l-CLR problems, where l = 1, . . . , k − 1.
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3 Missing Value Imputation via CLR
In this section, we introduce a new imputation method IVIACLR. The IVIACLR con-
sists of three different parts that, at least in principle, can be altered: initial imputation,
CLR-method, and predictions. We already introduced the used CLR-method LMBM-
CLR in the previous section, so here, we first introduce the main algorithm and then
the initial imputations and prediction approaches used.

3.1 Main Algorithm

We recall that we denote A = {(a1, b1), (a2, b2), . . . , (am, bm)}, where ai ∈ Rn−1

and bi ∈ R are the input and the output variables, respectively (i = 1, . . . ,m). The
IVIACLR consists of inner and outer iterations. In the inner iteration, we go trough
all features with missing values iteratively using some initial imputations (or previ-
ously imputed values) in place of missing values on those features that are not output
variables in the current iteration. After imputing all the missing values, we repeat the
process (outer iteration) with imputed values as place holders until the results are not
changing a lot or the maximum number of outer iterations is reached. The IVIACLR
-algorithm is as follows:

Algorithm 1: IVIACLR
Data: Incomplete data set A = {â1, â2, . . . âm}, final number of regression functions

k, number of outerloops omax ≥ 1, and tolerance for the change ε ≥ 0.
Result: Imputed data set Aimp.
Use a simple imputation method (e.g. mean) to impute all missing values. These

imputations are considered as ”place holders”;
Set iout = 0;
while iout < omax do

Set iout = iout + 1;
while There are features with missing values do

Find the feature j with most missing values and set the output variable
bi = âij , i = 1, . . . ,m. The rest of the variables (with place holders and/or
previously imputed values) are input variables;

Use clusterwise linear regression to find predictions to missing values at
feature j;

Replace missing values at feature j with predictions. Set those values as ”not
missing”;

if iout > 1 then
Compute the difference d between previous and current imputations;
if d < ε then

STOP with current imputed data set.

Set all originally missing values again as ”missing”;

STOP with current imputed data set;
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REMARK 3.1. The best possible number of regression functions (clusters) is data spe-
cific and it should be given as input parameter to the IVIACLR. Nevertheless, it may
not be known a priori. The use of the LMBM-CLR gives us a possibility to use some
intermediate results and possible procedures for ”intelligent” stopping will be studied
in the future.

REMARK 3.2. In the current version of the IVIACLR we only use linear regression
and consider continuous numeric data. In addition, discrete (integer) data can be con-
sidered simple by rounding the final result. Further, it would be possible to generalize
our approach to deal with different data types (e.g. binary) if some other regression
model was used.

3.2 Initial imputations
There are three different options for initial imputations in the IVIACLR.

1. Mean imputation. In the mean imputation the mean of all observed values of
the feature with the missing value is used as an impute.

2. Linear regression imputation. In the linear regression imputation the data is
regressed using the complete data set (i.e. data set produced with deletion).
The previously regressed values are not taken in to account but the complete
data set used in computations is the same for all features with missing values.

3. Recursive regression imputation. In the recursive regression imputation we
first regress and impute the feature with the least number of missing values
using the complete data. Then we repeat the process for the variable with the
next fewest missing values using updated data set with previously imputed
values and so on until all missing values have been imputed.

As a sole imputation method, the mean is known to produce imputations with
high level of bias by pulling the distribution of the imputed data toward the mean
of observed data. The positive point is that the mean imputation is extremely easy
to compute and we can compute it even if every object in the data set has missing
values. Thus, it is well suited as an initial imputation method. On the other hand, the
linear (recursive) regression imputation underestimates the variance of imputed items.
However, due to fact that we continue by making more regression functions, this is not
a big issue in our method. However, we can not compute initial imputations with the
regression model if there is no complete data, that is, if every object has one or more
missing values.

3.3 Predictions
The selection of predictions in the CLR is not straightforward. In the IVIACLR we
have tested three different weighting based prediction approaches. Here, as before, k
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is the number of linear regression functions (clusters), (xj, yj) ∈ Rn−1 × R are the
regression coefficients corresponding to the j-th cluster, j = 1, . . . , k, and (ai, bi) is a
data point with possible missing value in bi. For an object (ai, bi) ∈ Rn (i = 1, . . . ,m)
with a missing value in bi we compute

zj = x
T
j ai + yj, j = 1, . . . , k.

The following prediction methods are used in the IVIACLR.

1. Simple weighting method [4]. In the simple weighting method the weight
wj is computed as wj = mj/m, where mj is the number of points in the j-th
cluster and m is the total number of the points in data set.

2. Local weighting method. In the local weighting method we, instead of com-
puting weight from all m data points, use only l < m nearest neighbours
to compute the weight. When the nearest neighbours has been selected the
weight wj is computed as wj = lj/l, where lj is the number of nearest neigh-
bour points in the j-th cluster.

3. RMSE based local weighting. In the RMSE based local weighting method we
first compute how similar the data point (ai, bi) with a missing value in bi is
to l of its nearest neighbours (ah, bh), h ∈ {1, . . . ,m}, h 6= i, using the root
mean square error (RMSE). Then we compute the weight wj as

wj =
∑
h=Cj

rmse− rmseh
(l − 1)rmse

,

where Cj is the set of indices of nearest neighbour points in the j-th cluster
(|Cj| = lj), rmse =

∑l
h=1 rmseh, and rmseh is the RMSE between ai and

ah. Here, we set wj = lj/l if rmse = 0. On the other hand, if l = 1 we
simply take the nearest neighbour (the one with the smallest rmseh) and the
cluster j∗ it belongs, and we set wj∗ = 1 and wj = 0 for all j 6= j∗ .

Now, the imputed values are given by

bimp
i =

k∑
j=1

wjzj, i = 1, . . . ,m.

Naturally, in all the cases, we can skip the procedure, if (ai, bi) has no missing
value in bi and repeat the procedure (with different (ai, bi)) if object âi has more than
one missing value.

While the first approach is the most simple to compute it suffers the same drawback
than just a single regression approach: all the missing values of a single feature are
imputed to one regression line. The second and third approaches make it possible to
better utilize the cluster structure obtained. The problem with these approaches and
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large data sets is the computational burden when computing nearest neighbours. In
order to make the implementation more efficient we, instead of using every data point,
select the maximum number of points lmax ≤ m that we are randomly looking trough
when seeking for nearest neighbours.

4 Numerical Experiments
The proposed algorithm IVIACLR was tested using some artificial and real world data
sets. The IVIACLR -algorithm is compared to some commonly used methods for
imputation: the mean imputation, regression imputation, and MICE [2, 41, 53].

The IVIACLR is implemented in Fortran 95 and compiled using gfortran, the
GNU Fortran compiler. The mean and regression imputations are obtained as initial
imputations for the IVIACLR (i.e. we select the initial imputation to be either the mean
or the regression and set the number of regression functions to zero in the actual CLR
procedure). For MICE the build-in R-implementation with default parameters is used
[49].

4.1 Data Sets
To test and compare the above mentioned imputation methods we have used three
artificial and five real life data sets. We generated incomplete data sets with varying
percentages of missing values (from 5% to 45% ) by randomly removing some of the
values from original complete data sets. Nevertheless, all data points need to have at
least one reference attribute in it. For all original data sets we performed 10 runs with
all percentages of missing values. That is, in 10 runs the original complete data and
the percentage of missing values are the same but different values are missing. The
results given are averaged over these 10 runs.

Artificial Data Set. To see the performance of the new imputation method in dif-
ferent types of data, the synthetic data sets were generated to be very different from
each other. The first data set D500 has no structure in it. It is generated using uni-
form distribution with the mean value 0 and standard deviation 1. The number of data
points is 500 and the number of features is 4. In addition, we used five regression
functions when testing the IVIACLR. In turn, the second synthetic data set U500 has
three clearly separated clusters (see, Figure 7). It contains 500 data points and 2 fea-
tures. For this data set we tested the IVIACLR with two and three regression functions.
The third data set U2500 contains 2500 data points and 20 features. It has 5 clusters,
some of witch slightly overlaps each other (nevertheless, the structure is still clear).
Naturally, five regression functions were used when testing the IVIACLR.

Real World Data Sets. We use one small and four larger real world data sets in our
experiments. Their names, numbers of data points m and features n, and the optimal
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number of clusters k in the data sets are given in Table 1. All these data sets can be
found from [31].

Table 1: Real world data sets.

Data m n k

Iris 150 4 3
TSPLIB1060 1060 2 5
Red wine quality 1599 11 61

Abalone 4177 8 22

White wine quality 4898 11 71
1 Number of clusters in [28]. 2 Number of clusters in [9].

4.2 Evaluation criteria
Imputation methods were compared using four evaluation criteria:

1. Root mean square error (RMSE) measures the difference between true and
imputed values. It is computed by the formula

RMSE =

√√√√ 1

m

m∑
i=1

(aobs
i − a

imp
i )2,

where aobs
i and aimp

i are the observed and imputed values, respectively, and
aimp
ij = aobsij , j ∈ {1, 2, . . . , n}, if the value aij is not missing.

2. Mean absolute error (MAE) measures the average magnitude of the errors
and it is computed by the formula

MAE =
1

m

m∑
i=1

|aobs
i − a

imp
i |.

3. Unsupervised classification error (UCE) assesses the preservation of an in-
ternal structure. That is, the UCE measures how well the clustering of the
complete data set is preserved when clustering the imputed data set. We de-
fine the UCE as

UCE = % of misclassified samples.

Here we use the LMBM-CLUST [29] as a clustering method (The LMBM-
CLUST is available at http://napsu.karmitsa.fi/clustering/).
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4. Cluster center misplacement (CCM) measures the distance between the cen-
ters of clusters in the complete data set and in the imputed one. We define the
CCM as

CCM =
1

k

k∑
i=1

|corigi − cimp
i |,

where corigi and cimp
i are the centers of ith clusters in original and imputed

data sets, respectively, and k is the number of clusters.

Note that the sole CCM does not give much information about the accuracy of the
imputation. Nevertheless, it supports and reinforces the UCE by telling if also the
centers of clusters are preserved. That is, if we obtain both a small UCE and a small
CCM the imputation can be considered accurate. Otherwise, a small UCE but large
CCM means that there is some bias in imputed values, a large UCE with small CCM
indicates that the overall structure of the data set is preserved but some imputed values
are incorrect, and both the UCE and CCM large indicates that the structure of data set
is lost.

4.3 Results
The tables of results can be found in Appendix. Here we visualise the most relevant
ones in Figures 2–21 and draw some conclusions.

Parameters for IviaCLR. We start our experiments by searching a good combina-
tion of parameters for the IVIACLR: i.e. the type of an initial imputation, the number
of outerloops omax in Algorithm 1, the type of a prediction method, and the number
of nearest neighbours in the prediction phase. As noted in subsection 3.3, the first
prediction method introduced suffers from the drawback that all missing values of a
single feature are imputed to a sole regression line similarly to the regression impu-
tation (see Figures 8(d) and 9(d) for illustration of the regression imputation). Our
pre-preliminary tests confirmed that this prediction method does not work properly in
missing value imputation. Thus, we omit it from our testing. In addition, in the first
version of the code we do not have the tolerance ε for the change (see Algorithm 1)
and we use lmax = 150 (see subsection 3.3) with all data sets. In order to find a good
combination of parameters we use data sets Iris and U500, and compare results in light
of RMSEs only.

Figure 2 illustrates the RMSE with increasing amount of missing data for different
initial imputations. From these results we see that in Iris data set the mean works
clearly best as an initial imputation. In U500 data set, which has only two features, the
regression and recursive regression give the same initial imputations, and the results
show no clear preference to either the mean or regression as the initial imputation. In
Figure 2 we have used the RMSE based local weighting with knn = 5 as prediction
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(a) Iris (b) U500 with 2 cluster (c) U500 with 3 clusters

Figure 2: IVIACLR: RMSE for different initial imputations.

and omax = 10. The other parameter combinations reveal the same trends but smaller
omax favor mean also in U500 data set (see Figures 3 and 4 and Appendix).

Next we study the effect of outer iterations. The results are given in Figures 3 and
4 with the mean and regression as initial imputations, respectively. In addition, we
have used the RMSE based local weighting with knn = 5. For the results with other
parameters, see Appendix. We see that omax = 1 is not enough even with the data set
U500 with only two features. In addition, the larger omax may prevent a ”bad” initial
solution. In what follows, we use omax = 10 for small data sets and, since this choice
naturally means more computational burden, omax = 5 is used for larger data sets.

There is no big difference in results with different prediction methods as can be
seen from Figure 5. In Iris and U500, when 3 regression functions are used with the
IVIACLR, the RMSE based local weighting seems to be slightly better as prediction.
Thus, for the rest of the tests we use the RMSE based local weighting.

Figure 6 illustrates the RMSE with increasing amount of missing data for different
values of knn. From the figure we see that for up to 35% of data missing knn = 5 is
the best choice. However, with very large parts of data missing the usage of smaller
knn might give more accurate imputations. The other parameters used here are those
obtained above. That is, the mean as initial imputation, RMSE based local weighting
as prediction, and omax = 10. The other parameter combinations reveal the same
trends (see Appendix). Therefore, for the rest of the tests we use the value knn = 5.

(a) Iris (b) U500 with 2 cluster (c) U500 with 3 clusters

Figure 3: IVIACLR: RMSE for different numbers of outer iterations, mean as an initial
imputation.
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From Figures 2–6 (b) and (c) we see that for small amount of missing data 2 re-
gression functions is enough in U500. However, with 45% 3 regression functions give
clearly more accurate imputation.

Different types of data. Next we study the behavior of the IVIACLR and the other
imputation methods in different types of data. For this purposis we use the three
artificial data sets D500, U500, and U2500. The original data set U500 as well as the
imputed data sets with 5% and 45% of missing values are illustrated in Figures 7 –
9, respectively. The RMSE, MAE, UCE, and CCM of different imputation methods
are illustrated in Figure 10 and the more comprehensive tables of the results are given
in Appendix. We recall that the RMSE, MAE, UCE, and CCM are averaged over 10
runs with different values missing in the data sets. For the imputed data sets in figures
we just selected the first data set in our collection with 5% or 45% of missing values
(i.e. with all algorithms the data sets with same values missing are used in figures).
From these figures we can clearly see the superiority of the IVIACLR when the data
is clearly structured. With 5% of missing values it clearly misplaces only one value
(see Figure 8(a)). This misplacement is due to prediction where some of the knn
neighbours belong to the different cluster. In addition, the structure of the data set can
still be seen in the imputed data set even when almost half of the data is missing (see
Figure 9(a)). MICE works quite well with 5% of missing data. However, it misplaces
the same data point than the IVIACLR and the absolute error is greater. From Figure
10 we see that the IVIACLR always has the smallest RMSE and the MAE is similar
to that of MICE. In addition, the UCE and CCM show that the IVIACLR is clealy the
best in preserving the original structure of the data set up to 35% of missing values:
less than 5% of data points are clustered to some other cluster than with the complete
data set and cluster centers are approximately the same.

Figure 11 shows the RMSE, MAE, UCE, and CCM in data set D500 with no
structure. From this figure we conclude the obvious result that if no clusters or other
structure is present then the mean and regression imputations are as good as any other
method. In fact, our results show a little advantage to the mean and regression over
the more sophisticated methods MICE and IVIACLR. Although, we compute more
regression functions in the IVIACLR, and thus cover the space more densely, the fact
that points are spread out randomly means that the prediction phase of the IVIACLR
fails.

Figures 12 and 13 show the results in U2500 data set with larger numbers of data
points and features. Figure 12 gives results with all imputation methods while Figure
13 compares only MICE and the IVIACLR. Similarly to U500 data set, the IVIA-
CLR produces most accurate imputation due to clear structure of the data set. Note
that Figures 12(c) and 12(d) show us the usefulness of the CCM criterion: sole UCE
would indicate as good imputation with mean as with MICE and IVIACLR up to 25%
of missing values but the CMM indicates large bias in values imputed by the mean.
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(a) Iris (b) U500 with 2 cluster (c) U500 with 3 clusters

Figure 4: IVIACLR: RMSE for different numbers of outer iterations, regression as an
initial imputation.

(a) Iris (b) U500 with 2 cluster (c) U500 with 3 clusters

Figure 5: IVIACLR: RMSE with different predictions.

(a) Iris (b) U500 with 2 cluster (c) U500 with 3 clusters

Figure 6: IVIACLR: RMSE with for different values of knn.

Figure 7: Original U500
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(a) Imputation by IVIACLR (b) Imputation by MICE (c) Imputation by Mean (d) Imputation by Regression

Figure 8: U500: imputed data sets with 5% of missing data.

(a) Imputation by IVIACLR (b) Imputation by MICE (c) Imputation by Mean (d) Imputation by Regression

Figure 9: U500: imputed data sets with 45% of missing data.
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(a) RMSE (b) MAE (c) UCE (d) CCM

Figure 10: U500: RMSE, MAE, UCE, and CCM versus the number of missing values.

(a) RMSE (b) MAE (c) UCE (d) CCM

Figure 11: D500: RMSE, MAE, UCE, and CCM versus the number of missing values.
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(a) RMSE (b) MAE (c) UCE (d) CCM

Figure 12: U2500: RMSE, MAE, UCE, and CCM versus the number of missing values.

(a) RMSE (b) MAE (c) UCE (d) CCM

Figure 13: U2500: RMSE, MAE, UCE, and CCM versus the number of missing values for MICE and IVIACLR.
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Real world data. In addition to artificial data sets with known structures, we com-
pare IVIACLR to the other imputation methods using some real world data sets. Fig-
ures 14 and 18–21 show the RMSE, MAE, UCE, and CCM in Iris, TSPLIB1060, Red
Wine, Abalone, and White Wine data sets, respectively. In addition, Figures 15 – 17
illustrate the original data set TSPLIB1060 and the imputed data sets with 5% and
45% of missing data.

With Iris data the proposed method IVIACLR gives the smallest errors with less
than 35% of missing values. With 35% and 45% MICE gives smaller errors. Never-
theless, the differences between the IVIACLR and MICE are small in both directions.
In addition, the UCE and CCM show that the IVIACLR and MICE work similar with
less or equal to 25% of missing values misclassifying less than 10% of data points.
With larger percentages of missing values MICE produces more accurate imputations.
In addition, both the IVIACLR and MICE produce clearly more accurate imputations
than the mean and regression.

In TSPLIB1060 the largest errors are always obtained with MICE. Although the
UCE and CCM indicate that MICE preserves the original cluster structure more ac-
curately than the other methods, the percentages of misclassified data points is huge
(> 40%) when there are more than 25% of missing values. This is true for all the
tested methods. With less than 25% of missing values the IVIACLR works as good as
MICE in terms of the UCE and CCM, and it always has smaller errors. In addition,
the mean and regression imputations produce relatively small errors in TSPLIB1060
data set. This is due to the large cluster of data points at the middle of the data space
(see Figure 15) which makes mean an average good approximation for missing val-
ues. Nevertheless, the mean and regression imputations are even worse in preserving
the cluster structure than the other two imputation methods. Especially, with greater
percentages of missing data, the CCM shows very large bias in centers of clusters with
the mean and regression imputations.

For the rest of the data sets the results obtained with the regression imputation are
very large compared to others (see Appendix). To make the figures more illustrative,
we have omitted these results. In Red wine quality data set with less than 25% of miss-
ing values the proposed method IVIACLR is the best imputation method according to
all measured evaluation criteria. MICE has the largest errors but with large percentages
of missing data it preserves the original structure of the data set most accurately yet,
again, the percentages of misclassified data points are large with all the methods with
more than 25% of missing values. In Abalone the IVIACLR again has the smallest
errors, but the UCE and CCM indicate that the IVIACLR does not preserve the orig-
inal structure of the data set as well as the other methods (but regression). However,
the percentage of misclassified data points here is smaller than that in TSPLIB1060 or
Red wine quality.
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(a) RMSE (b) MAE (c) UCE (d) CCM

Figure 14: Iris: RMSE, MAE, UCE, and CCM versus the number of missing values.

Figure 15: Original TSPLIB1060
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(a) Imputation by IVIACLR (b) Imputation by MICE (c) Imputation by Mean (d) Imputation by Regression

Figure 16: TSPLIB1060: imputed data sets with 5% of missing data.

(a) Imputation by IVIACLR (b) Imputation by MICE (c) Imputation by Mean (d) Imputation by Regression

Figure 17: TSPLIB1060: imputed data sets with 45% of missing data.
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(a) RMSE (b) MAE (c) UCE (d) CCM

Figure 18: TSPLIB1060: RMSE, MAE, UCE, and CCM versus the number of missing values.

(a) RMSE (b) MAE (c) UCE (d) CCM

Figure 19: Red Wine: RMSE, MAE, UCE, and CCM versus the number of missing values.
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(a) RMSE (b) MAE (c) UCE (d) CCM

Figure 20: Abalone: RMSE, MAE, UCE, and CCM versus the number of missing values.

(a) RMSE (b) MAE (c) UCE (d) CCM

Figure 21: White Wine: RMSE, MAE, UCE, and CCM versus the number of missing values.
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In Abalone the mean preserves the structure of the original data set most accurately,
especially, with large percentages of data missing. In White wine quality MICE has
again greatest error. The UCEs of the methods (but the regression) are similar but the
CCM indicates less bias with MICE than with the other methods.

We conclude that the proposed method IVIACLR worked best with small and
moderate amount of missing data being usually the most accurate imputation method
tested. More so, if there is a clear structure in the data set in question. With very large
parts of data missing MICE usually give more accurate imputations at least in terms
of the UCE and CCM.

5 Conclusions and Discussion

A new approach IVIACLR (imputation via clusterwise linear regression) for imputing
missing features of incomplete data was proposed in this paper. The approach is based
on clusterwise linear regression and it simultaneously finds optimal clusters within the
data and their associated regression functions. The idea is to approximate missing
values using only those data points that are somewhat similar to the incomplete data
object. In addition, we introduced a new cluster center misplacement (CCM) criterion
that can be used together with the well-known unsupervised classification error (UCE)
to measure the bias in the imputed values.

The IVIACLR was tested and compared to other imputations methods using the
root mean square error (RMSE), mean absolute error (MAE), and the above men-
tioned UCE and CCM. The results confirm that the IVIACLR usually finds smaller
errors (RMSE and MAE) than the well-known imputation method MICE. In addi-
tion, with small and moderate percentages of missing values (say ≤25%) the UCE
and CCM indicate that the original structure of data set imputed with the IVIACLR is
well preserved. With larger percentages of missing data MICE usually produces more
accurate imputation in terms of the UCE and CCM but not necessary the RMSE and
MAE. We conclude that the proposed algorithm IVIACLR produces the most accurate
imputations in data sets with clear structure and small or moderate amount of missing
values.

In the current version of IVIACLR we only use linear regression and consider con-
tinuous numeric data. Nevertheless, it would be possible to generalize our approach to
deal with different data types (e.g. binary) if some other regression model was used.
In addition, although now used as a single imputation method, the proposed method
could be used as multiple imputation (MI) method (comparably e.g. with MICE) by
taking into account all the intermediate results obtained during the clusterwise linear
regression process, by taking predictions provided by different regression functions
as multiple imputations, using different prediction methods, and/or using a different
initial imputation.
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Appendix
We give here the results obtained in our numerical experiments. Unless said otherwise
we have used default parameters for IVIACLR. That is, mean as initial imputation,
RMSE based local weighting as prediction, knn = 5. and omax = 10 (for small data
sets) or omax = (for large data sets). For those results where also other parameter than
the default ones are used we have used the following coding:

iimp − ipred − knn− omax,

where iimp is the type or initial imputation:

• iimp = 0: mean;

• iimp = 1: regression;

• iimp = 2: regular regression;

ipred is the prediction method:

• ipred = 0: Local weighting;

• ipred = 1: RMSE based local weighting;

and knn and omax are the number of nearest neighbours and the number of outer
iterations, respectively. For example ”0-1-05-10” means that we have used mean as
initial imputation, RMSE based local weighting as prediction, knn = 5. and omax =
10.
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Table 2: IVIACLR: RMSE with increasing knn.
Iris

knn 5% 15% 25% 35% 45%

3 0.131 0.260 0.403 0.659 0.923
5 0.130 0.273 0.400 0.618 0.862
10 0.126 0.279 0.426 0.650 0.912
15 0.131 0.271 0.418 0.632 0.928

U500 with 2 clusters

knn 5% 15% 25% 35% 45%

3 0.616 1.090 1.387 1.656 2.538
5 0.597 1.044 1.366 1.662 3.191
10 0.569 1.016 1.336 2.039 3.346
15 0.601 1.079 1.599 2.310 3.504

U500 with 3 clusters

knn 5% 15% 25% 35% 45%

3 0.627 1.090 1.412 1.683 2.207
5 0.598 1.037 1.372 1.628 2.642
10 0.566 1.010 1.328 1.894 3.034
15 0.606 1.069 1.549 2.222 3.239

Table 3: IVIACLR: MAE with increasing knn.
Iris

knn 5% 15% 25% 35% 45%

3 0.044 0.147 0.279 0.508 0.792
5 0.044 0.150 0.277 0.489 0.766
10 0.043 0.155 0.292 0.510 0.799
15 0.044 0.150 0.288 0.507 0.817

U500 with 2 clusters

knn 5% 15% 25% 35% 45%

3 0.125 0.394 0.645 0.910 1.630
5 0.125 0.383 0.648 0.951 2.169
10 0.123 0.380 0.666 1.248 2.233
15 0.135 0.422 0.821 1.404 2.283

U500 with 3 clusters

knn 5% 15% 25% 35% 45%

3 0.127 0.395 0.653 0.926 1.389
5 0.127 0.383 0.646 0.918 1.763
10 0.123 0.378 0.657 1.145 2.022
15 0.135 0.419 0.793 1.326 2.142
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Table 4: U500 data set: RMSE.
Algorithm 5% 15% 25% 35% 45%

MICE 0.946 1.442 2.247 2.234 3.298
Mean 1.191 2.092 2.754 3.253 3.711
Regression 1.108 1.881 2.499 2.977 3.453

IVIACLR with 2 clusters

0-0-03-01 0.629 1.125 1.548 1.955 2.864
1-0-03-01 0.641 1.133 1.599 2.096 3.550
0-1-03-01 0.608 1.129 1.592 1.980 2.733
1-1-03-01 0.672 1.123 1.590 2.087 3.497
0-0-05-01 0.620 1.115 1.521 1.984 3.141
1-0-05-01 0.605 1.114 1.571 2.178 3.707
0-1-05-01 0.601 1.093 1.531 1.982 2.999
1-1-05-01 0.592 1.113 1.553 2.118 3.657

0-0-03-05 0.598 1.061 1.364 1.631 2.664
1-0-03-05 0.617 1.105 1.376 1.676 2.784
0-1-03-05 0.619 1.082 1.408 1.663 2.575
1-1-03-05 0.680 1.085 1.397 1.673 2.601
0-0-05-05 0.595 1.031 1.344 1.712 3.258
1-0-05-05 0.572 1.063 1.349 1.618 3.193
0-1-05-05 0.566 1.050 1.343 1.697 3.113
1-1-05-05 0.583 1.061 1.342 1.615 3.223

0-0-03-10 0.608 1.095 1.401 1.626 2.621
1-0-03-10 0.630 1.079 1.410 1.652 2.796
0-1-03-10 0.616 1.090 1.387 1.656 2.538
1-1-03-10 0.665 1.094 1.407 1.666 2.693
0-0-05-10 0.628 1.045 1.337 1.618 3.216
1-0-05-10 0.620 1.056 1.338 1.670 3.140
0-1-05-10 0.597 1.044 1.366 1.662 3.191
1-1-05-10 0.620 1.054 1.351 1.643 3.097

IVIACLR with 3 clusters

0-0-03-01 0.621 1.094 1.435 1.766 2.618
1-0-03-01 0.635 1.170 1.540 2.000 3.091
0-1-03-01 0.618 1.102 1.475 1.768 2.434
1-1-03-01 0.674 1.166 1.582 2.015 3.039
0-0-05-01 0.607 1.066 1.385 1.745 3.047
1-0-05-01 0.609 1.119 1.518 2.043 3.359
0-1-05-01 0.587 1.049 1.389 1.713 2.716
1-1-05-01 0.595 1.108 1.500 1.987 3.260

0-0-03-05 0.610 1.065 1.375 1.687 2.341
1-0-03-05 0.621 1.089 1.413 1.727 2.470
0-1-03-05 0.639 1.092 1.419 1.685 2.122
1-1-03-05 0.681 1.092 1.438 1.700 2.245
0-0-05-05 0.587 1.027 1.362 1.648 2.691
1-0-05-05 0.583 1.064 1.345 1.640 2.835
0-1-05-05 0.565 1.034 1.354 1.632 2.535
1-1-05-05 0.583 1.049 1.349 1.631 2.644

0-0-03-10 0.605 1.098 1.449 1.687 2.196
1-0-03-10 0.639 1.072 1.419 1.730 2.299
0-1-03-10 0.627 1.090 1.412 1.683 2.207
1-1-03-10 0.674 1.089 1.434 1.724 2.350
0-0-05-10 0.614 1.038 1.363 1.628 2.723
1-0-05-10 0.628 1.055 1.357 1.660 2.663
0-1-05-10 0.598 1.037 1.372 1.628 2.642
1-1-05-10 0.606 1.051 1.360 1.629 2.637
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Table 5: U500 data set: MAE.
Algorithm 5% 15% 25% 35% 45%

MICE 0.154 0.416 0.806 0.964 1.651
Mean 0.320 0.969 1.650 2.305 2.976
Regression 0.287 0.843 1.434 1.988 2.546

IVIACLR with 2 clusters

0-0-03-01 0.133 0.425 0.768 1.166 1.903
1-0-03-01 0.137 0.423 0.780 1.228 2.395
0-1-03-01 0.127 0.424 0.781 1.170 1.830
1-1-03-01 0.137 0.414 0.775 1.220 2.338
0-0-05-01 0.131 0.427 0.767 1.205 2.049
1-0-05-01 0.127 0.425 0.786 1.304 2.503
0-1-05-01 0.127 0.418 0.774 1.196 1.984
1-1-05-01 0.127 0.420 0.775 1.269 2.462

0-0-03-05 0.124 0.383 0.637 0.903 1.710
1-0-03-05 0.126 0.396 0.639 0.916 1.796
0-1-03-05 0.127 0.389 0.653 0.915 1.642
1-1-03-05 0.137 0.391 0.649 0.912 1.688
0-0-05-05 0.125 0.378 0.637 0.995 2.179
1-0-05-05 0.122 0.387 0.640 0.923 2.118
0-1-05-05 0.120 0.385 0.639 0.993 2.078
1-1-05-05 0.124 0.388 0.639 0.914 2.167

0-0-03-10 0.125 0.398 0.651 0.891 1.644
1-0-03-10 0.128 0.389 0.653 0.909 1.785
0-1-03-10 0.125 0.394 0.645 0.910 1.630
1-1-03-10 0.135 0.393 0.650 0.912 1.732
0-0-05-10 0.129 0.384 0.635 0.933 2.137
1-0-05-10 0.128 0.383 0.636 0.952 2.078
0-1-05-10 0.125 0.383 0.648 0.951 2.169
1-1-05-10 0.129 0.381 0.639 0.945 2.056

IVIACLR with 3 clusters

0-0-03-01 0.133 0.397 0.665 0.965 1.653
1-0-03-01 0.134 0.424 0.723 1.106 1.978
0-1-03-01 0.128 0.398 0.671 0.961 1.536
1-1-03-01 0.139 0.427 0.741 1.109 1.933
0-0-05-01 0.130 0.393 0.654 0.994 1.923
1-0-05-01 0.129 0.420 0.727 1.163 2.195
0-1-05-01 0.125 0.385 0.659 0.967 1.744
1-1-05-01 0.129 0.411 0.714 1.131 2.138

0-0-03-05 0.126 0.384 0.641 0.930 1.496
1-0-03-05 0.128 0.392 0.648 0.940 1.601
0-1-03-05 0.131 0.396 0.662 0.922 1.337
1-1-03-05 0.138 0.391 0.667 0.938 1.458
0-0-05-05 0.125 0.375 0.645 0.930 1.782
1-0-05-05 0.123 0.392 0.633 0.924 1.902
0-1-05-05 0.121 0.380 0.641 0.919 1.677
1-1-05-05 0.124 0.384 0.641 0.925 1.773

0-0-03-10 0.125 0.399 0.668 0.930 1.407
1-0-03-10 0.132 0.389 0.647 0.948 1.448
0-1-03-10 0.127 0.395 0.653 0.926 1.389
1-1-03-10 0.137 0.390 0.657 0.945 1.504
0-0-05-10 0.129 0.383 0.640 0.915 1.806
1-0-05-10 0.131 0.382 0.641 0.930 1.784
0-1-05-10 0.127 0.383 0.646 0.918 1.763
1-1-05-10 0.128 0.382 0.643 0.913 1.738
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Table 6: U500 data set: UCE and CCM.
UCE

Algorithm 5% 15% 25% 35% 45%

MICE 5.66 5.96 20.18 20.00 27.56
Mean 27.18 27.00 27.40 26.00 22.10
Regression 20.86 21.18 21.64 21.22 20.34
IVIACLR with 3 clusters 0.08 0.16 1.26 2.08 20.92
IVIACLR with 2 clusters 0.10 1.38 3.44 6.22 30.34

CCM

Algorithm 5% 15% 25% 35% 45%

MICE 0.58 0.64 1.94 3.23 2.60
Mean 2.90 3.14 3.51 3.91 4.75
Regression 2.34 2.83 3.33 3.62 3.87
IVIACLR with 3 clusters 0.05 0.10 0.28 0.43 2.88
IVIACLR with 2 clusters 0.05 0.25 0.58 1.05 4.18
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Table 7: D500 data set: RMSE.
Algorithm 5% 15% 25% 35% 45%

MICE 0.699 1.230 1.610 1.870 2.130
Mean 0.590 0.984 1.282 1.521 1.710
Regression 0.588 0.993 1.285 1.527 1.734

IVIACLR

0-0-03-01 0.609 1.038 1.344 1.592 1.797
1-0-03-01 0.614 1.037 1.364 1.583 1.792
2-0-03-01 0.601 1.046 1.340 1.600 1.792
0-1-03-01 0.619 1.062 1.353 1.596 1.820
1-1-03-01 0.625 1.042 1.358 1.605 1.814
2-1-03-01 0.615 1.065 1.345 1.602 1.806
0-0-05-01 0.579 0.992 1.297 1.519 1.708
1-0-05-01 0.585 0.983 1.289 1.519 1.728
2-0-05-01 0.579 0.992 1.283 1.516 1.739
0-1-05-01 0.587 0.987 1.290 1.520 1.710
1-1-05-01 0.592 0.997 1.279 1.526 1.727
2-1-05-01 0.580 0.986 1.297 1.524 1.726

0-0-03-05 0.608 1.047 1.352 1.631 1.900
1-0-03-05 0.603 1.043 1.387 1.634 1.893
2-0-03-05 0.603 1.048 1.363 1.645 1.900
0-1-03-05 0.613 1.050 1.376 1.652 1.905
1-1-03-05 0.613 1.053 1.375 1.651 1.915
2-1-03-05 0.622 1.050 1.379 1.636 1.915
0-0-05-05 0.573 0.984 1.309 1.586 1.874
1-0-05-05 0.581 1.002 1.303 1.583 1.862
2-0-05-05 0.578 0.990 1.316 1.560 1.859
0-1-05-05 0.577 0.993 1.304 1.583 1.856
1-1-05-05 0.582 1.002 1.320 1.579 1.850
2-1-05-05 0.576 0.994 1.309 1.592 1.860

0-0-03-10 0.616 1.050 1.362 1.629 1.893
1-0-03-10 0.598 1.043 1.351 1.659 1.925
2-0-03-10 0.609 1.039 1.364 1.640 1.921
0-1-03-10 0.612 1.061 1.376 1.646 1.913
1-1-03-10 0.619 1.049 1.375 1.670 1.932
2-1-03-10 0.619 1.035 1.364 1.667 1.923
0-0-05-10 0.585 1.000 1.305 1.592 1.907
1-0-05-10 0.579 0.988 1.307 1.586 1.898
2-0-05-10 0.579 0.993 1.303 1.590 1.901
0-1-05-10 0.581 0.999 1.325 1.594 1.911
1-1-05-10 0.586 0.991 1.320 1.596 1.871
2-1-05-10 0.567 0.991 1.315 1.585 1.907
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Table 8: D500 data set: MAE.
Algorithm 5% 15% 25% 35% 45%

MICE 0.244 0.749 1.270 1.750 2.280
Mean 0.223 0.642 1.085 1.515 1.928
Regression 0.224 0.648 1.079 1.525 1.952

IVIACLR

0-0-03-01 0.225 0.670 1.120 1.570 2.010
1-0-03-01 0.232 0.676 1.140 1.570 2.000
2-0-03-01 0.225 0.676 1.120 1.580 2.000
0-1-03-01 0.230 0.685 1.130 1.570 2.030
1-1-03-01 0.233 0.671 1.130 1.580 2.020
2-1-03-01 0.228 0.687 1.130 1.580 2.020
0-0-05-01 0.219 0.650 1.090 1.520 1.930
1-0-05-01 0.222 0.642 1.080 1.510 1.940
2-0-05-01 0.219 0.647 1.080 1.510 1.960
0-1-05-01 0.223 0.644 1.090 1.520 1.930
1-1-05-01 0.223 0.650 1.080 1.530 1.950
2-1-05-01 0.220 0.643 1.100 1.520 1.940

0-0-03-05 0.230 0.677 1.123 1.604 2.107
1-0-03-05 0.226 0.673 1.152 1.601 2.104
2-0-03-05 0.228 0.674 1.132 1.620 2.103
0-1-03-05 0.231 0.676 1.141 1.628 2.106
1-1-03-05 0.229 0.681 1.143 1.623 2.119
2-1-03-05 0.233 0.676 1.145 1.603 2.121
0-0-05-05 0.219 0.644 1.099 1.566 2.083
1-0-05-05 0.221 0.656 1.093 1.564 2.075
2-0-05-05 0.221 0.643 1.103 1.542 2.065
0-1-05-05 0.218 0.646 1.095 1.565 2.067
1-1-05-05 0.220 0.652 1.106 1.558 2.064
2-1-05-05 0.220 0.650 1.099 1.574 2.074

0-0-03-10 0.232 0.677 1.129 1.598 2.095
1-0-03-10 0.224 0.669 1.122 1.636 2.139
2-0-03-10 0.229 0.671 1.138 1.610 2.123
0-1-03-10 0.231 0.683 1.145 1.619 2.111
1-1-03-10 0.232 0.678 1.375 1.640 2.137
2-1-03-10 0.231 0.667 1.133 1.636 2.130
0-0-05-10 0.224 0.655 1.095 1.571 2.117
1-0-05-10 0.222 0.645 1.097 1.565 2.112
2-0-05-10 0.221 0.648 1.094 1.572 2.114
0-1-05-10 0.221 0.655 1.111 1.574 2.127
1-1-05-10 0.223 0.647 1.110 1.580 2.078
2-1-05-10 0.216 0.647 1.105 1.560 2.117
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Table 9: D500 data set: UCE and CCM.
UCE

Algorithm 5% 15% 25% 35% 45%

MICE 37.54 44.52 52.06 59.60 62.66
Mean 27.26 39.18 52.90 55.48 60.78
Regression 33.00 33.68 52.82 54.70 62.88
IVIACLR 29.48 37.94 52.38 52.50 59.14

CCM

Algorithm 5% 15% 25% 35% 45%

MICE 2.85 3.04 3.20 2.79 3.47
Mean 2.42 2.84 2.60 3.13 2.90
Regression 3.22 2.71 3.24 2.61 2.95
IVIACLR 2.60 3.55 2.66 3.54 3.06

Table 10: U2500 data set: RMSE, MAE, UCE, and CCM.
RMSE

Algorithm 5% 15% 25% 35% 45%

MICE 2.637 4.811 6.933 12.396 26.818
Mean 27.499 47.618 61.491 72.789 82.535
Regression 27.575 60.883 121.937 1264.698 1370.102
IVIACLR 2.161 3.767 4.974 7.176 18.565

MAE

Algorithm 5% 15% 25% 35% 45%

MICE 1.897 5.723 9.715 14.954 26.802
Mean 23.502 70.486 117.534 164.503 211.484
Regression 21.666 84.701 216.796 3159.035 3919.392
IVIACLR 1.628 4.913 8.269 12.188 20.426

UCE

Algorithm 5% 15% 25% 35% 45%

MICE 0.00 0.00 0.00 0.03 0.22
Mean 0.00 0.00 0.02 2.47 16.95
Regression 0.00 2.50 23.19 76.46 74.85
IVIACLR 0.00 0.00 0.00 0.01 0.29

CCM

Algorithm 5% 15% 25% 35% 45%

MICE 0.16 0.31 0.52 1.28 4.24
Mean 25.47 76.40 127.46 663.71 590.11
Regression 20.38 332.43 623.45 3290.55 4063.28
IVIACLR 0.14 0.27 0.41 0.82 2.10
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Table 11: Iris data set: RMSE.
Algorithm 5% 15% 25% 35% 45%

MICE 0.167 0.305 0.448 0.522 0.651
Mean 0.471 0.828 1.095 1.282 1.440
Regression 0.960 1.965 2.780 3.870 4.807

IVIACLR

0-0-03-01 0.145 0.281 0.452 0.674 0.963
1-0-03-01 0.215 0.570 0.906 1.920 1.730
2-0-03-01 0.215 0.557 0.874 1.500 1.560
0-1-03-01 0.137 0.279 0.452 0.686 0.956
1-1-03-01 0.214 0.595 0.949 1.370 1.810
2-1-03-01 0.203 0.559 0.902 1.530 1.590
0-0-05-01 0.136 0.282 0.450 0.663 0.881
1-0-05-01 0.220 0.580 0.940 1.749 1.701
2-0-05-01 0.218 0.594 0.961 1.444 1.752
0-1-05-01 0.142 0.282 0.440 0.646 0.886
1-1-05-01 0.221 0.572 0.980 1.330 1.769
2-1-05-01 0.213 0.565 0.953 1.555 1.711

0-0-03-05 0.131 0.266 0.408 0.651 0.919
1-0-03-05 0.144 0.366 0.581 1.270 1.260
2-0-03-05 0.144 0.370 0.616 1.200 1.180
0-1-03-05 0.131 0.262 0.403 0.655 0.901
1-1-03-05 0.144 0.390 0.623 1.070 1.230
2-1-03-05 0.141 0.350 0.632 1.260 1.240
0-0-05-05 0.129 0.270 0.412 0.641 0.853
1-0-05-05 0.142 0.352 0.620 1.036 1.233
2-0-05-05 0.145 0.356 0.680 1.211 1.229
0-1-05-05 0.128 0.268 0.401 0.620 0.856
1-1-05-05 0.145 0.344 0.594 0.922 1.332
2-1-05-05 0.140 0.356 0.616 1.285 1.257

0-0-03-10 0.135 0.272 0.407 0.651 0.929
1-0-03-10 0.143 0.328 0.497 1.010 1.200
2-0-03-10 0.142 0.317 0.552 1.080 1.140
0-1-03-10 0.131 0.260 0.403 0.659 0.923
1-1-03-10 0.138 0.334 0.523 0.928 1.210
2-1-03-10 0.140 0.318 0.528 1.200 1.200
0-0-05-10 0.130 0.273 0.415 0.650 0.866
1-0-05-10 0.138 0.315 0.509 0.919 1.169
2-0-05-10 0.138 0.315 0.556 1.100 1.153
0-1-05-10 0.130 0.273 0.400 0.618 0.862
1-1-05-10 0.136 0.317 0.501 0.819 1.239
2-1-05-10 0.138 0.315 0.503 1.183 1.193
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Table 12: Iris data set: MAE.
Algorithm 5% 15% 25% 35% 45%

MICE 0.054 0.176 0.332 0.460 0.641
Mean 0.163 0.495 0.836 1.160 1.478
Regression 0.308 1.124 2.161 3.661 5.082

IVIACLR

0-0-03-01 0.049 0.159 0.314 0.533 0.849
1-0-03-01 0.060 0.255 0.563 1.170 1.500
2-0-03-01 0.061 0.254 0.547 1.080 1.390
0-1-03-01 0.047 0.158 0.311 0.539 0.837
1-1-03-01 0.060 0.267 0.592 1.040 1.580
2-1-03-01 0.057 0.251 0.572 1.100 1.440
0-0-05-01 0.047 0.156 0.312 0.525 0.803
1-0-05-01 0.062 0.259 0.584 1.172 1.500
2-0-05-01 0.061 0.264 0.600 1.064 1.531
0-1-05-01 0.048 0.156 0.305 0.519 0.807
1-1-05-01 0.061 0.255 0.607 1.010 1.547
2-1-05-01 0.060 0.254 0.598 1.136 1.502

0-0-03-05 0.045 0.151 0.284 0.500 0.790
1-0-03-05 0.047 0.178 0.358 0.774 1.030
2-0-03-05 0.047 0.180 0.374 0.858 0.994
0-1-03-05 0.045 0.148 0.279 0.504 0.784
1-1-03-05 0.047 0.184 0.380 0.762 1.050
2-1-03-05 0.046 0.172 0.387 0.898 1.030
0-0-05-05 0.044 0.150 0.284 0.500 0.761
1-0-05-05 0.047 0.171 0.377 0.713 1.020
2-0-05-05 0.048 0.174 0.397 0.858 1.059
0-1-05-05 0.044 0.148 0.279 0.488 0.763
1-1-05-05 0.047 0.169 0.357 0.679 1.110
2-1-05-05 0.046 0.173 0.382 0.891 1.085

0-0-03-10 0.046 0.153 0.285 0.502 0.800
1-0-03-10 0.047 0.168 0.316 0.677 0.987
2-0-03-10 0.047 0.163 0.339 0.767 0.946
0-1-03-10 0.044 0.147 0.279 0.508 0.792
1-1-03-10 0.046 0.168 0.328 0.676 1.020
2-1-03-10 0.046 0.162 0.330 0.849 0.985
0-0-05-10 0.045 0.150 0.283 0.501 0.770
1-0-05-10 0.046 0.161 0.317 0.642 0.955
2-0-05-10 0.045 0.162 0.339 0.773 0.976
0-1-05-10 0.044 0.150 0.277 0.489 0.766
1-1-05-10 0.045 0.163 0.311 0.599 1.020
2-1-05-10 0.046 0.162 0.319 0.812 0.999
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Table 13: Iris data set: UCE and CCM.
UCE

Algorithm 5% 15% 25% 35% 45%

MICE 1.07 2.67 6.20 6.73 8.60
Mean 5.80 16.53 25.60 28.87 32.87
Regression 24.13 34.33 43.67 53.33 52.20
IVIACLR 0.67 3.27 7.53 10.60 13.40

CCM

Algorithm 5% 15% 25% 35% 45%

MICE 0.04 0.12 0.24 0.26 0.34
Mean 0.22 0.63 0.82 0.98 0.70
Regression 1.84 4.50 6.37 5.71 4.90
IVIACLR 0.04 0.12 0.23 0.18 0.28

Table 14: TSPLIB data set: RMSE, MAE, UCE, and CCM.
RMSE

Algorithm 5% 15% 25% 35% 45%

MICE 1618.654 2783.380 3736.581 4575.201 5126.254
Mean 1151.442 2002.080 2638.503 3176.327 3648.815
Regression 1149.538 2003.418 2644.599 3205.853 3728.615
IVIACLR 1204.708 2115.541 2835.145 3466.203 4084.690

MAE

Algorithm 5% 15% 25% 35% 45%

MICE 380.063 1130.523 1982.582 2865.145 3673.430
Mean 288.754 868.460 1488.416 2133.230 2789.135
Regression 291.856 879.474 1503.643 2161.930 2856.578
IVIACLR 294.381 895.796 1549.340 2264.830 3037.619

UCE

Algorithm 5% 15% 25% 35% 45%

MICE 6.44 20.70 29.69 47.35 55.03
Mean 10.94 28.20 46.25 52.25 55.41
Regression 14.90 27.62 46.99 51.29 56.25
IVIACLR 8.11 22.08 40.69 53.01 57.01

CCM

Algorithm 5% 15% 25% 35% 45%

MICE 142.15 841.74 598.68 2150.13 2891.26
Mean 416.60 2225.65 4878.25 5213.65 5930.32
Regression 601.82 1102.69 3831.45 4721.49 5769.44
IVIACLR 250.37 709.27 1953.15 3104.19 3381.53
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Table 15: Red wine quality data set: RMSE, MAE, UCE, and CCM.
RMSE

Algorithm 5% 15% 25% 35% 45%

MICE 7.450 13.600 18.300 23.000 26.800
Mean 5.635 10.739 14.363 18.202 21.023
Regression 3003.404 1450.330 668.012 660.305 50.921

IVIACLR

0-1-05-05 5.523 10.770 14.527 18.278 22.378
0-1-05-10 5.495 10.877 14.584 19.992 23.312

MAE

Algorithm 5% 15% 25% 35% 45%

MICE 1.670 5.350 9.120 13.700 18.000
Mean 1.295 4.156 7.103 10.790 14.375
Regression 103.783 60.521 45.281 74.159 22.404

IVIACLR

0-1-05-05 1.262 4.133 7.220 11.084 15.361
0-1-05-10 1.236 4.176 7.308 12.038 15.912

UCE

Algorithm 5% 15% 25% 35% 45%

MICE 4.14 12.86 20.28 31.63 39.01
Mean 3.41 16.60 22.96 33.01 39.51
Regression 51.61 58.56 56.56 58.88 44.05

IVIACLR

0-1-05-05 3.64 10.73 25.62 39.32 41.78
0-1-05-10 3.83 12.51 26.74 41.28 42.58

CCM

Algorithm 5% 15% 25% 35% 45%

MICE 1.27 10.99 20.57 34.70 24.76
Mean 0.92 15.82 39.49 30.88 61.40
Regression 26666.92 12092.51 7632.57 6540.85 337.75

IVIACLR

0-1-05-05 0.90 3.79 51.76 59.14 77.12
0-1-05-10 1.13 12.44 36.25 69.44 68.09
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Table 16: Abalone: RMSE, MAE, UCE, and CCM.
RMSE

Algorithm 5% 15% 25% 35% 45%

MICE 0.713 1.251 1.620 1.955 2.307
Mean 0.751 1.268 1.632 1.937 2.200
Regression 3.073 5.286 7.179 10.825 14.102

IVIACLR

0-1-05-05 0.532 0.912 1.230 1.660 2.024
0-1-05-10 0.532 0.901 1.245 1.675 1.941

MAE

Algorithm 5% 15% 25% 35% 45%

MICE 0.126 0.380 0.642 0.921 1.246
Mean 0.173 0.507 0.838 1.175 1.510
Regression 1.143 3.194 5.097 7.984 11.268

IVIACLR

0-1-05-05 0.095 0.278 0.475 0.734 1.026
0-1-05-10 0.094 0.275 0.478 0.758 1.013

UCE

Algorithm 5% 15% 25% 35% 45%

MICE 2.36 7.06 7.48 10.24 13.01
Mean 6.38 7.28 4.69 5.87 7.85
Regression 12.46 20.71 21.01 20.03 24.32

IVIACLR

0-1-05-05 6.96 10.37 10.68 13.33 16.60
0-1-05-10 8.70 10.25 10.76 13.43 15.91

CCM

Algorithm 5% 15% 25% 35% 45%

MICE 0.16 0.41 0.27 0.40 0.42
Mean 0.53 0.51 0.32 0.39 0.54
Regression 5.47 8.43 10.25 13.68 18.30

IVIACLR

0-1-05-05 0.65 0.91 0.91 1.03 1.20
0-1-05-10 0.85 0.98 1.00 1.08 1.27
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Table 17: White wine quality data set: RMSE, MAE, UCE, and CCM.
RMSE

Algorithm 5% 15% 25% 35% 45%

MICE 10.216 18.179 24.618 29.928 35.256
Mean 7.664 14.117 19.356 23.920 27.928
Regression 438.435 14641.733 873.038 2153.377 2443.363
IVIACLR 7.640 14.455 19.058 23.936 28.104

MAE

Algorithm 5% 15% 25% 35% 45%

MICE 2.628 8.181 14.120 20.252 27.020
Mean 1.907 6.207 10.911 16.015 21.223
Regression 19.248 326.706 32.080 91.620 304.430
IVIACLR 1.846 5.991 10.470 15.737 21.173

UCE

Algorithm 5% 15% 25% 35% 45%

MICE 20.02 31.76 39.61 55.65 51.90
Mean 22.03 30.35 43.52 50.82 56.41
Regression 52.71 65.44∗ 59.94 65.79 73.18∗

IVIACLR 24.74 30.89 44.04 49.19 54.65

CCM

Algorithm 5% 15% 25% 35% 45%

MICE 26.88 40.08 48.69 78.20 39.44
Mean 45.71 66.03 81.50 99.82 98.18
Regression 6577.84 77841.85∗ 11243.11 31164.36 13617.70∗

IVIACLR 49.97 54.88 73.38 116.02 91.50
∗ averaged over 9 runs.
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