
Michal Kunc | Alexander Okhotin

Making graph-walking automata reversible

TUCS Technical Report
No 1042, September 2012

Making graph-walking automata reversible

Michal Kunc
Department of Mathematics, Masaryk University,
Brno, Czech Republic.
E-mail: kunc@math.muni.cz

Alexander Okhotin
Department of Mathematics and Statistics, University of Turku, and
Turku Centre for Computer Science
Turku FI–20014, Finland. E-mail: alexander.okhotin@utu.fi

TUCS Technical Report

No 1042, September 2012

Abstract

The paper proposes a general notation for deterministic automata traversing
finite undirected structures: the graph-walking automata. This abstract
notion covers such models as two-way finite automata, including their multi-
tape and multi-head variants, tree-walking automata and their extension
with pebbles, picture-walking automata, space-bounded Turing machines,
etc. It is then demonstrated that every graph-walking automaton can be
transformed to an equivalent reversible graph-walking automaton, so that
every step of its computation is logically reversible. This is done with a
linear blow-up in the number of states, where the linear factor depends on
the degree of graphs being traversed. The construction directly applies to all
basic models covered by this abstract notion.

Keywords: Graph-walking automata, tree-walking automata, finite au-
tomata, reversible computation, halting.

TUCS Laboratory
FUNDIM, Fundamentals of Computing and Discrete Mathematics

1 Introduction

Logical reversibility of computations is an important property of compu-
tational devices in general, which can be regarded as a stronger form of
determinism. Informally, a machine is reversible, if, given its configuration,
one can always uniquely determine its configuration at the previous step.
This property is particularly relevant to the physics of computation [5], as
irreversible computations incur energy dissipation [32]. It is known from
Lecerf [34] and Bennett [4] that every Turing machine can be simulated by
a reversible Turing machine. Later, the time and space cost of reversibility
was analyzed in the works of Bennett [6], Crescenzi and Papadimitriou [14],
Lange et al. [33] and Buhrman et al. [12]. A line of research on reversibility
in high-level programming languages was initiated by Abramsky [1]. Re-
versibility in cellular automata also has a long history of research, presented
in surveys by Toffoli and Margolus [45] and by Kari [26]. In the domain of
finite automata, the reversible subclass of one-way deterministic finite au-
tomata (1DFAs) defines a proper subfamily of regular languages [39], which
was studied, in particular, by Héam [20] and by Lombardy [35]. On the
other hand, every regular language is accepted by a reversible two-way finite
automaton (2DFA): as shown by Kondacs and Watrous [28], every n-state
1DFA can be simulated by a 2n-state reversible 2DFA.

One of the most evident consequences of reversibility is that a reversible
automaton halts on every input. The property of halting on all inputs has
received attention on its own. For time-bounded and space-bounded Turing
machines, halting can be ensured by explicitly counting the number of steps,
as done by Hopcroft and Ullman [22]. A different method for transforming
a space-bounded Turing machine to an equivalent halting machine operating
within the same space bounds was proposed by Sipser [42], and his approach
essentially means constructing a reversible machine, though reversibility was
not considered as such. In particular, Sipser [42] sketched a transformation
of an n-state 2DFA to an O(n2)-state halting 2DFA (which is actually re-
versible), and also mentioned the possibility of an improved transformation
that yields O(n) states, where the multiplicative factor depends upon the size
of the alphabet. The fact that Sipser’s idea produces reversible automata was
noticed and used by Lange et al. [33] to establish the equivalence of deter-
ministic space s(n) to reversible space s(n). Next, Kondacs and Watrous [28]
distilled the construction of Lange et al. [33] into the mathematical essence
of constructing reversible 2DFAs. A similar construction for making a 2DFA
halt on any input was later devised by Geffert et al. [17], who have amal-
gamated an independently discovered method of Kondacs and Watrous [28]
with a pre-processing step. For tree-walking automata (TWA), a variant of
Sipser’s [42] construction was used by Muscholl et al. [37] to transform an
n-state automaton to an O(n2)-state halting automaton.

The above results apply to various models that recognize input structures

1

by traversing them: such are the 2DFAs that walk over input strings, and
the TWA walking over input trees. More generally, these results apply to
such models as deterministic space-bounded Turing machines, which have
extra memory at their disposal, but the amount of memory is bounded by a
function of the size of the input. What do these models have in common?
They are equipped with a fixed finite-state control, as well as with a finite
space of memory configurations determined by the input data, and with a
fixed finite set of operations on this memory. A particular machine of such
a type is defined by a transition table, which instructs it to apply a memory
operation and to change its internal state, depending on the current state
and the currently observed data stored in the memory.

This paper proposes a general notation for such computational models:
the graph-walking automata (GWA). In this setting, the space of memory
configurations is regarded as an input graph, where each vertex is a memory
configuration, labelled by the data observed by the machine in this position,
and the operations on the memory become labels of the edges. Then a graph-
walking automaton traverses a given input graph using a finite-state control,
and a transition function with a finite domain, that is, at each step there are
only finitely many possibilities that the automaton can observe. The defini-
tions assume the following conditions on the original models, which accord-
ingly translate to graph-walking automata; these assumptions are necessary
to transform deterministic machines to reversible ones:

1. Every elementary operation on the memory has an opposite elementary
operation that undoes its effect. For instance, in a 2DFA, the operation
of moving the head to the left can be undone by moving the head to the
right. In terms of graphs, this means that input graphs are undirected,
and each edge has its end-points labelled by two opposite direction
symbols, representing traversal of this edge in both directions.

2. The space of memory configurations on each given input object is fi-
nite, and it functionally depends on the input data. For graph-walking
automata, this means that input graphs are finite. Though, in general,
reversible computation is possible in devices with unbounded memory,
the methods investigated in this paper depend upon this restriction.

3. The automaton can test whether the current memory configuration
is the initial configuration. In a graph-walking automaton, this means
that the initial node, where the computation begins, has a distinguished
label.

A definition of graph-walking automata designed according to the above
principles is given in Section 2, where it is illustrated by presenting 2DFAs
and TWAs as simple special cases of GWAs. Further machine models, in-
cluding multi-head 2DFAs, 2DFAs with pebbles and space-bounded Turing
machines, are represented as GWAs in the subsequent Section 3.

2

The definition of reversibility in GWAs, developed in the next Section 4,
is based upon several conditions. First, consider a subclass of GWAs, where
each state is accessible from a unique direction, or, in other words, the last
operation on the memory is remembered in the internal state; in this paper,
such automata are called direction-determinate. Another subclass of GWAs
are returning automata, which may accept only in the initial memory config-
uration. Then, a reversible automaton is defined as a direction-determinate
returning GWA with an injective transition function on each label, and with
at most one accepting state for every initial label.

The most distinctive property of reversible automata is that they can be
straightforwardly reversed : that is, given a reversible GWA, one can con-
struct a GWA with at most one extra state, which carries out the same
computations in the reverse direction, and accepts the same set of graphs.
This construction, which mostly amounts to replacing the transition function
by each label with its inverse, is presented in Section 5.

The next Section 6 establishes the main results of this paper: these are
transformations from automata of the general form to returning automata,
and from returning to reversible automata. Both transformations rely on the
same effective construction, which generalizes the method of Kondacs and
Watrous [28], while the origins of the latter can be traced to the general idea
due to Sipser [42]. The constructions involve only a linear blow-up in the
number of states. In the subsequent Section 8, these results are applied to
each of the concrete models represented as GWAs in this paper, leading, in
particular, to the following results:

• An n-state 2DFA can be transformed to a reversible 2DFA with 4n+3
states. This generalizes the construction of Kondacs and Watrous [28],
and also provides an improved construction and a rigorous argument
for the result by Geffert et al. [17] on making a 2DFA halt on every
input. In the case of a one-letter alphabet, an n-state 2DFA is shown
to have an equivalent reversible 2DFA with 2n + 5 states.

• An n-state TWA over k-ary trees can be transformed to a (4kn+2k+1)-
state reversible TWA. This improves the transformation to halting due
to Muscholl et al. [37].

• An n-state k-head 2DFA can be transformed to a reversible k-head
2DFA with 2(3k − 1)n + 2k + 1 states. This establishes the result
sought in the recent papers by Morita [36] and Axelsen [3].

• A deterministic Turing machine operating in marked space s(n) (as
defined by Ranjan, Chang and Hartmanis [41, Sect. 5]) can be trans-
formed to a reversible Turing machine that uses the same marked space
s(n). This directly implies one of the versions of the result of Lange et
al. [33] on the equivalence of deterministic space to reversible space.

3

Figure 1: An edge in a graph, with its ends marked by the directions d and
−d.

A few extra results of this kind are included in the paper, and it is easy to
infer more, for any automaton models representable as GWA.

Investigating further properties of graph-walking automata is proposed
as a worthy subject for future research. Models of this kind date back to
automata in labyrinths, introduced by Shannon and later studied by Bu-
dach [11]: these automata walk over directed graphs and may leave marks
in nodes. There was a related work by Panaite and Pelc [38] on automatic
mapping of a graph by an agent following its edges. Other important models
defining families of graphs are graph-rewriting systems and monadic second-
order logic on graphs researched by Courcelle [13], and graph tilings studied
by Thomas [44].

2 Graph-walking automata

The automata studied in this paper walk over finite undirected graphs, in
which every edge can be traversed in both directions. The directions are
identified by labels attached to both ends of an edge. These labels belong to a
finite set of directions D, with a bijective operation − : D → D, representing
opposite directions and satisfying −(−d) = d for all d ∈ D.

If a graph models the memory, the directions represent elementary oper-
ations on this memory, and the existence of opposite directions means that
every elementary operation on the memory can be reversed by applying its
opposite.

A signature S consists of

• a direction set D, with a bijective operator − : D → D, as described
above,

• a finite set Σ of possible labels of nodes of the graph,

• a non-empty subset Σ0 ⊆ Σ of labels allowed in the initial node; all
other nodes have to be labelled with elements of Σ \ Σ0,

• a set Da ⊆ D of directions for every a ∈ Σ, so that every node labelled
with a must be of degree |Da|, with the incident edges corresponding
to the elements of Da.

A graph over the signature S is a quadruple (V, v0, +, λ), where

4

• V is a finite set of nodes ;

• v0 ∈ V is the initial node;

• +: V ×D → V is a partial mapping, which must satisfy the following
condition of invertibility by opposite directions: for every v ∈ V and
d ∈ D, if v + d is defined, then (v + d) + (−d) is defined too and
(v + d) + (−d) = v. In other words, for every d ∈ D, the partial
mapping v 7→ v +(−d) is the inverse of the partial mapping v 7→ v + d.
In the following, v − d will be used to denote v + (−d);

• the total mapping λ : V → Σ is a labelling of nodes, such that for every
v ∈ V the following two conditions are satisfied:

1. d ∈ Dλ(v) if and only if v + d is defined,

2. λ(v) ∈ Σ0 if and only if v = v0.

The representation of an edge by the mapping + is illustrated in Figure 1.
A deterministic graph-walking automaton over a signature S =

(D, Σ, Σ0, (Da)a∈Σ) is a quadruple A = (Q, q0, δ, F), where

• Q is a finite set of internal states,

• q0 ∈ Q is the initial state,

• F ⊆ Q× Σ is a set of acceptance conditions, and

• δ : (Q×Σ) \F → Q×D is a partial transition function, with δ(q, a) ∈
Q×Da for all a and q where it is defined.

Given a graph (V, v0, +, λ) over the signature S, the automaton begins
its computation in the state q0, observing the node v0. At each step of the
computation, with the automaton in a state q ∈ Q observing a node v, the
automaton looks up the transition table δ for q and the label of v. If δ(q, λ(v))
is defined as (q′, d), the automaton enters the state q′ and moves to the node
v + d. If δ(q, λ(v)) is undefined, then the automaton accepts if (q, λ(v)) ∈ F
and rejects otherwise.

Formally, for a graph (V, v0, +, λ) and an automaton A = (Q, q0, δ, F),
every pair (q, v), with q ∈ Q a state and v ∈ V a node, is called a con-
figuration of A over this graph. The computation of A on this graph be-
ginning in the configuration (q, v) is the unique (finite or infinite) sequence
(p0, u0), (p1, u1), . . . of configurations, which satisfies the following conditions:

• (p0, u0) = (q, v).

• For every element (pi, ui) of the sequence, δ(pi, λ(ui)) is undefined if
and only if it is the last element of the sequence.

5

• If (pi, ui) is not the last element of the sequence, then δ(pi, λ(ui)) =
(pi+1, d), where ui+1 = ui + d.

If the computation is infinite, then, due to the finiteness of the graph, it
goes into a loop, which is repeated forever. If the computation is finite, then
it is either accepting (if the last (pi, ui) satisfies (pi, λ(ui)) ∈ F) or rejecting
by undefined transition.

A graph (V, v0, +, λ) is accepted by A, if the computation of A on
(V, v0, +, λ) starting in the initial configuration (q0, v0) terminates in a con-
figuration (q, v) such that (q, λ(v)) ∈ F .

The two most well-known special cases of graph-walking automata are
the two-way finite automata, which walk over path graphs, and tree-walking
automata operating on trees.

Example 1. A two-way deterministic finite automaton (2DFA) operating on
a tape delimited by a left-end marker ` and a right-end marker a, with the
tape alphabet Γ, is a graph-walking automaton operating on graphs over the
signature S with D = {+1,−1}, Σ = Γ ∪ {`,a}, Σ0 = {`}, D` = {+1},
Da = {−1} and Da = {+1,−1} for all a ∈ Γ. A sample graph over this
signature is demonstrated in Figure 2(i).

All connected graphs over this signature are path graphs, containing one
instance of each marker and an arbitrary number of symbols from Γ in be-
tween. For an input string w = a1 . . . an, with n > 0, the graph has the set of
nodes V = {0, 1, . . . , n, n+1} representing positions on the tape, with v0 = 0
and with v + d defined as the sum of integers. These nodes are labelled as
follows: λ(0) = `, λ(n + 1) = a and λ(i) = ai for all i ∈ {1, . . . , n}.

Consider tree-walking automata, defined by Aho and Ullman [2, Sect. VI]
as a formal model for traversing context-free parse trees, and later studied by
Bojańczyk and Colcombet [8, 9]. Given an input binary tree, a tree-walking
automaton moves over it, scanning one node at a time. At each step of
its computation, it may either go down to any of the sons of the current
node or up to its father. Furthermore, in any node except the root, the
automaton is invested with the knowledge of whether this node is the first
son or the second son [8]; without this knowledge, the expressive power of a
tree-walking automaton would be severely limited [24]. The traversal of trees
by these automata can be described using directions of the form “go down
to the i-th son” and the opposite “go up from the i-th son to its father”.

In the notation of graph-walking automata, the knowledge of the number
of the current node among its siblings is contained in its label: for each label
a, the set of valid directions Da contains exactly one upward direction and
the full set of downward directions. Furthermore, by analogy with the end-
markers in 2DFAs, the input trees of tree-walking automata shall have end-
markers attached to the root and to all leaves; in both cases, these markers
allow a better readable definition1.

1Note that both for 2DFA and TWA it would be possible not to use any end-markers,

6

Figure 2: Representing (i) input strings of 2DFAs and (ii) input trees of
TWAs as graphs.

Example 2. A tree-walking automaton on k-ary trees uses the set of direc-
tions D = {+1, +2, . . . , +k,−1,−2, . . . ,−k}, with −(+i) = −i, where posi-
tive directions go to children and negative ones to fathers. Trees are graphs
labelled with symbols in Σ = {>,⊥1, . . . ,⊥k} ∪ Γ, where the top marker >
with D> = {+1} is the label of the root v0 (and accordingly, Σ0 = {>}), while
each i-th bottom marker ⊥i with D⊥i

= {−i} is a label for leaves. Elements
of the set Γ are used to label internal nodes of the tree, so that for each a ∈ Γ
there exists i ∈ {1, . . . , k} with Da = {−i, +1, . . . , +k}, which means that
every node labelled by a is the ith child of its father. An example of a tree
with k = 2 is given in Figure 2(ii).

One can similarly define the unranked tree automata, in which every inter-
nal node may have any finite number of successors. Such an automaton has
directions to go down to the first son, and to go down to the last son, along
with the opposite directions for going up from the first son and going up
from the last son; furthermore, an unranked tree automaton has directions
to go left to the previous sibling and to go right to the next sibling.

3 Common models of computation as graph-

walking automata

Consider any computational device recognizing input objects of any kind,
which has a fixed number of internal states and employs auxiliary memory
holding such data as the positions of reading heads and the contents of any
additional data structures. Assume that for each fixed input, the total space

and instead have something like Σ = {`,middle,a} × Γ in the case of 2DFAs and Σ =
{>, middle,⊥} × {1, . . . , k} × Γ for TWAs.

7

of possible memory configurations of the device and the structure of admis-
sible transitions between these configurations are known in advance. The set
of memory configurations with the structure of transitions forms a graph of
memory configurations, which can be presented in the notation assumed in
this paper by taking the set of elementary operations on the memory as the
set of directions. The label attached to the currently observed node repre-
sents the information on the memory configuration available to the original
device, such as the contents of cells observed by heads; along with its internal
state, this is all the data it can use to determine its next move. Thus the
device is represented as a graph-walking automaton.

To begin with the simplest model, consider a 2DFA. Its space of mem-
ory configurations includes all positions of the head over the tape, and these
positions are connected into a path graph, as in Figure 2(i). Elementary op-
erations on the memory include incrementing and decrementing the position
of the head by +1 ∈ D and −1 ∈ D, respectively, and the label in each
position contains the symbol observed by the head.

By the same principle, one can describe many other models of com-
putation by graph-walking automata. As the first model, consider 2DFAs
equipped with multiple reading heads, which can independently move over
the same input tape: the multi-head automata, introduced by Rabin and
Scott [40]. The research on such automata is described in a survey by Holzer
et al. [21]. Their reversibility was recently investigated by Morita [36] and
by Axelsen [3].

Example 3. A k-head two-way deterministic finite automaton with a tape
alphabet Γ is described by a graph-walking automaton as follows. Its memory
configuration contains the positions of all k heads on the tape. The set of
directions is D = {−1, 0, +1}k \ {0}k, where a direction (s1, . . . , sk) with
si ∈ {−1, 0, +1} indicates that each i-th head is to be moved in the direction

si. Each label in Σ =
(
Γ ∪ {`,a})k

contains all the data observed by the
automaton in a given memory configuration: this is a k-tuple of symbols
scanned by all heads. There is a unique initial label corresponding to all
heads parked at the left-end marker, that is, Σ0 = {(`, . . . ,`)}. For each
node label (s1, . . . , sk) ∈ Σ, the set of directions D(s1,...,sk) contains all k-tuples
(d1, . . . , dk) ∈ {−1, 0, +1}k, where di 6= −1 if si = ` and di 6= +1 if si = a;
the latter conditions disallow moving any heads beyond either end-marker.

The automaton operates on graphs of the following form. For each input
string a1 . . . an ∈ Γ∗, let a0 = ` and an+1 = a for uniformity. Then the set of
nodes of the graph is a discrete k-dimensional cube V = {0, 1, . . . , n, n+1}k,
with each node (i1, . . . , ik) ∈ V labelled with (ai1 , . . . , aik) ∈ Σ. The initial
node is v0 = (0, . . . , 0), labelled with (`, . . . ,`). An example of such a graph
is given in Figure 3.

The set of graphs representing computations of k-head 2DFAs, as de-
scribed in Example 3, is not the whole set of connected graphs over the given

8

Figure 3: Representing the space of head positions of a 2-head 2DFA on the
input w = a as a graph.

signature. For instance, one can reconnect the edges in the graph in Figure 3
to obtain another graph over this signature, which no longer corresponds to
the space of configurations of k-head 2DFAs on any input. However, on the
subset of graphs of the intended form, a GWA defined in Example 3 correctly
represents the behaviour of a k-head 2DFA.

Several other models of computation can be described by GWAs in a
similar way. Consider multi-tape finite automata, introduced in the famous
paper by Rabin and Scott [40] and studied, in particular, by Harju and
Karhumäki [19].

Example 4. A k-tape two-way deterministic finite automaton with tape
alphabets Γ1, . . . , Γk uses directions D = {−1, 0, +1}k \ {0}k and labels
Σ =

(
Γ1 ∪ {`,a}) × . . . × (

Γk ∪ {`,a}). The set of directions D(s1,...,sk)

available in a node labelled by (s1, . . . , sk) ∈ Σ is defined as in Example 3.
Given a k-tuple of input strings (w1, . . . , wk) ∈ Γ∗1 × . . . × Γ∗k with wi =

ai,1 . . . ai,`i
, let ai,0 = ` and ai,`i+1 = a; then the automaton operates on the

graph with the set of nodes V = {0, 1, . . . , `1, `1+1}×. . .×{0, 1, . . . , `k, `k+1},
where each node (i1, . . . , ik) ∈ V is labelled with (a1,i1 , . . . , ak,ik) ∈ Σ. The
initial node v0 = (0, . . . , 0) has the label λ(v0) = (`, . . . ,`).

Two-way finite automata with pebbles, introduced by Blum and Hewitt [7]
and further studied by Globerman and Harel [18], are 2DFAs equipped with
a fixed number of pebbles, which may be dispensed at or collected from
the currently visited square; it is known that 2DFAs with a single pebble

9

recognize only regular languages, while two pebbles allow representing some
non-regular languages.

Example 5. A 2DFA with k pebbles with a tape alphabet Γ uses the set
of directions D = {−1, +1} ∪ {↓1, ↑1, . . . , ↓k, ↑k}, where −1 and +1 refer to
moving the head, ↓t means putting the t-th pebble at the current position, and
↑t means picking up the t-th pebble from the current square. Accordingly, the
opposite directions are defined as −(+1) = −1 and −(↓t) = ↑t. Every label
from the set Σ = (Γ ∪ {`,a}) × {here, elsewhere, nowhere}k determines the
symbol at the current square and the status of each pebble, whether it is placed
at the current position, is placed elsewhere, or is available to be placed. For
each node label (s, p1, . . . , pk) ∈ Σ, the set of directions D(s,p1,...,pk) contains
−1 (unless s = `), +1 (unless s = a), all ↓t with pt = nowhere, and all ↑t
with pt = here.

For an input string a1 . . . a` ∈ Γ∗, let P = {0, 1, . . . , `, ` + 1} be the set of
positions in the input. As before, let a0 = ` and a`+1 = a. The automaton
operates on a graph with the set of nodes V = P × (P ∪{ })k, where the first
component defines the position of the head, and the remaining k components
determine the position of each pebble, with the space () indicating that a
pebble has not been placed. Each node (i, j1, . . . , jk) ∈ V is labelled with
(ai, p1, . . . , pk) ∈ Σ, where

pt =

nowhere, if jt = ,

here, if jt = i,

elsewhere, otherwise.

The initial node is (0, , . . . ,). The sum v + d is defined as follows:

(i, j1, . . . , jk) + d = (i + d, j1, . . . , jk), for d ∈ {−1, +1},
(i, j1, . . . , jt−1, , jt+1, . . . , jk) + ↓t = (i, j1, . . . , jt−1, i, jt+1, . . . , jk),

(i, j1, . . . , jt−1, i, jt+1, . . . , jk) + ↑t = (i, j1, . . . , jt−1, , jt+1, . . . , jk).

The model defined in Example 5 can be extended to tree-walking au-
tomata with pebbles, first considered by Engelfriet and Hoogeboom [15] and
subsequently studied by Bojańczyk et al. [10] and by Muscholl et al. [37].
This model can be restricted to such variants as tree-walking automata with
nested pebbles [15, 16]. All these models can be further extended to have
multiple reading heads, etc., and each case can be described by an appropri-
ate kind of GWAs operating over graphs that encode the space of memory
configurations of the desired automata.

The next model to be defined as graph-walking automata are the space-
bounded Turing machines; to be precise, Turing machines operating in
marked space, as in the paper by Ranjan, Chang and Hartmanis [41, Sect. 5],
rather than the more usual unmarked space with the condition of space con-
structibility.

10

Example 6. Consider two-tape Turing machines with an alphabet Γ on the
read-only input tape, and with an alphabet Ω on the work tape, where the
number of squares on the work tape is defined by a function s : N → N of
the length of the input string. The set of memory configurations of such
machines is represented by graphs with the nodes corresponding to different
positions of heads and different contents of the work tape. These graphs are
defined with the set of directions D = {(−1, 0), (+1, 0), (0,−1), (0, +1)} ∪
{ cc′ | c, c′ ∈ Ω, c 6= c′ }, where directions (i, j) with i, j ∈ {−1, 0, +1} refer
to moving the heads on the input tape and on the work tape, respectively, while
a direction cc′ means replacing the currently read symbol c on the work tape
with the symbol c′. The opposite directions are defined as −(+1, 0) = (−1, 0),
−(0, +1) = (0,−1) and −(cc′) = c′c. The label of each node contains the
currently scanned symbols on the input tape and on the work tape, that is,
Σ = (Γ ∪ {`,a}) × (Ω ∪ {`,a}). For each node label (a, c) ∈ Σ, the set
of directions D(a,c) contains (−1, 0) (unless a = `), (+1, 0) (unless a = a),
(0,−1) (unless c = `), (0, +1) (unless c = a), and all cc′ (for every c′ ∈
Ω \ {c}, unless c ∈ {`,a}).

For an input string a1 . . . an ∈ Γ∗, the second tape initially contains the
string ` s(n) a, where ∈ Ω is a special blank symbol. The space of memory
configurations is represented by a graph with the set of nodes

V = {0, . . . , n + 1} × {0, . . . , s(n) + 1} × Γs(n),

with the positions of the heads as the first two components, and with the
contents of the work tape in the third component. The initial node is v0 =
(0, 0,` s(n)a). Assuming a0 = c0 = ` and an+1 = cs(n)+1 = a, the label of
each node is defined as λ(i, j, c1 . . . cs(n)) = (ai, cj).

Consider one more variant of finite automata, which operates on two-
dimensional pictures. Such machines—the so-called four-way finite au-
tomata, 4DFA—were defined by Blum and Hewitt [7] and are described in a
recent survey by Kari and Salo [27].

Example 7. A 4DFA has D = {(−1, 0), (+1, 0), (0,−1), (0, +1)}. It operates
on rectangular m× n arrays with ai,j ∈ Γ for i, j ∈ {1, . . . , m} × {1, . . . , n}.
Such an array is bordered by special symbols of four different types, repre-
senting four directions (>, a, ⊥, `). The topmost left special symbol has a
special label °.

Let Σ = Γ ∪ {>,a,⊥,`,°}, let Da = D for all a ∈ Γ and let D> =
{(+1, 0)}, Da = {(0,−1)}, D⊥ = {(−1, 0)}, D` = D° = {(0, +1)}. For each
input picture, consider the graph with V = { (i, j) | 1 6 i 6 m, 1 6 j 6 n }∪
{ (i, j) | 1 6 i 6 m, j ∈ {0, n + 1} } ∪ { (i, j) | i ∈ {0,m + 1}, 1 6 j 6 n },
where v0 = (1, 0). The sum v + d is defined as the sum of vectors. For
all i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, let λ((i, j)) = ai,j, λ((0, j)) = >,
λ((i, n + 1)) = a, λ((m + 1, j)) = ⊥, λ((1, 0)) = ° and λ((i, 0)) = ` for
i 6= 1. Such a graph for m = 2 and n = 3 is illustrated in Figure 4.

11

Figure 4: A 4DFA as a graph-walking automaton.

Because the setting of graph-walking automata on undirected graphs, as
they are defined in this paper, was designed with reversibility in mind, many
models cannot be described within this setting. Consider any models, which
cannot immediately return to the previous configuration after any operation.
This includes any models, where the previous configuration may never be
revisited, such as one-way finite automata [39] or pushdown automata [31].
Models that may possibly revisit earlier configurations, but cannot do that
at will by a single instruction, cause the same problem: for instance, such
are the sweeping two-way finite automata introduced by Sipser [43] and the
rotating automata of Kapoutsis et al. [25], where the head may revisit the
previous configuration only after traversing the whole input. The same can
be said about the restarting automata of Jančar et al. [23], in which the head
may jump to the beginning of the input by a single instruction, thus resetting
the memory configuration. No such models can be expressed by GWA on
undirected graphs, because an operation on the memory without an opposite
operation means that some edges cannot be traversed in both directions.

Another type of models not considered in this paper are any devices with
unbounded memory, where, given an input, one does not know the space
of memory configurations in advance. Such are the Turing machines of the
general form, and they may be regarded as GWA operating on infinite graphs.
The results of this paper essentially rely on the finiteness of input graphs.

12

4 Reversibility and related notions

This section develops the definition of logical reversibility for graph-walking
automata. This definition is comprised of several conditions, and the first
condition is that each state may be accessed from a unique direction.

Definition 1. A graph-walking automaton is called direction-determinate, if
every state is reachable from a unique direction, that is, there exists a partial
function d : Q → D, such that δ(q, a) = (q′, d′) implies d′ = d(q′).

As the direction is always known, the notation for the transition function
can be simplified as follows: for each a ∈ Σ, let δa : Q → Q be a partial
function defined by δa(p) = q if δ(p, a) = (q, d(q)).

According to this definition, d(q) may be undefined only if q is not reach-
able by any transitions, which may be useful only if q = q0. Note that the
requirement δ(q, a) ∈ Q × Da on the transition function in the definition
of automata translates to this notation as d(δa(p)) ∈ Da, whenever δa(p) is
defined.

Any GWA can be made direction-determinate by storing the last used
direction in its state.

Lemma 1. For every graph-walking automaton with the set of states Q, there
exists a direction-determinate automaton with the set of states Q×D, which
recognizes the same set of graphs.

Another subclass of automata requires returning to the initial node after
acceptance.

Definition 2. A graph-walking automaton is called returning, if it has F ⊆
Q× Σ0, that is, if it accepts only at the initial node.

A returning graph-walking automaton is still allowed to reject in any way,
whether by an undefined transition at any node, or by looping.

For each computational model represented by a GWA in Sections 2–3,
returning after acceptance is straightforward: for instance, a 2DFA moves
its head to the left, a 2DFA with pebbles picks up all its pebbles, a space-
bounded Turing machine erases its work tape, etc. However, for graphs of
the general form, finding a way back to the initial node from the place where
the acceptance decision was reached is not a trivial task. This paper defines
a transformation to a returning automaton, which finds the initial node by
backtracking the accepting computation.

Theorem 1. For every direction-determinate graph-walking automaton with
n states, there exists a direction-determinate returning graph-walking au-
tomaton with 3n states recognizing the same set of graphs.

Another important kind of graph-walking automata are those that halt
on any input.

13

Definition 3. A graph-walking automaton is halting, if it never goes into a
loop, that is, if its computation on every input graph is either accepting or
rejecting by an undefined transition.

For every direction-determinate graph-walking automaton, consider the
inverses of transition functions by all labels, δ−1

a : Q → 2Q for a ∈ Σ, de-
fined by δ−1

a (q) = { p | δa(p) = q }. Given a configuration of a direction-
determinate automaton, one can always determine the direction, from which
the automaton came to the current node v at the previous step; and if the
inverse function δ−1

λ(v) is furthermore injective, then the state at the previ-
ous step is also known, and hence the configuration at the previous step
is uniquely determined. This leads to the following definition of automata,
whose computations can be uniquely reconstructed from their final configu-
rations:

Definition 4. A direction-determinate graph-walking automaton is called
reversible, if

i. every partial transformation δa is injective, that is, |δ−1
a (q)| 6 1 for all

a ∈ Σ and q ∈ Q, and

ii. the automaton is returning, and for each a0 ∈ Σ0, there exists at most
one state q such that (q, a0) ∈ F (this state is denoted by qa0

acc). These
states may be equal for different a0.

The second condition ensures that if an input graph (V, v0, +, λ) is ac-

cepted, then it is accepted in the configuration (q
λ(a0)
acc , v0). Therefore, this

assumed accepting computation can be traced back, beginning from its final
configuration, until either the initial configuration (q0, v0) is reached (which
means that the automaton accepts), or a configuration without predecessors
is encountered (then the automaton does not accept this graph). This reverse
computation can be carried out by another reversible GWA, which will be
constructed in the next Section 5.

Lemma 2. On each finite input graph (V, v0, +, λ), a reversible graph-walking
automaton beginning in an arbitrary configuration (q̂, v̂) either halts after
finitely many steps, or returns to the configuration (q̂, v̂) and loops indefi-
nitely.

Proof. Suppose, for the sake of contradiction, that the computation of a
reversible graph-walking automaton beginning in (q̂, v̂) goes into an infi-
nite loop, and this loop does not pass through the configuration (q̂, v̂). Let
(q̃, ṽ) be the first repeated configuration. Since it is not equal to the con-
figuration (q̂, v̂), it had predecessors both the first and the second time it
was visited. Let (q, v) and (q′, v′) be these two predecessor configurations;

14

they must be distinct, because otherwise this would be a repeated configu-
ration encountered earlier than (q̃, ṽ). Because the automaton is direction-
determinate, ṽ = v + d(q̃) = v′ + d(q̃), and hence v = v′ = ṽ − d(q̃). Then
δλ(v)(q) = δλ(v)(q

′) = q̃, while q 6= q′, which contradicts the reversibility of
the automaton.

The second case in Lemma 2 allows a reversible automaton to be non-
halting, if its initial configuration can be re-entered. This possibility is ruled
out by the following extra condition on the automaton.

Definition 5. A direction-determinate automaton A = (Q, q0, δ, F) is said
to have separated initial state, if

• δa(q0) is undefined for all a ∈ Σ \ Σ0,

• the initial state of A is not re-enterable, that is, δ−1
a (q0) = ∅ for every

a ∈ Σ (in particular, d(q0) is undefined).

Lemma 3. A reversible graph-walking automaton with a separated initial
state, starting in the initial configuration, halts on every input graph.

Lemma 3 immediately follows from Lemma 2, as Definition 5 rules out
one of its cases.

The above definition of reversible automata has one more imperfection:
while such automata may accept only in a single designated configuration,
there are no limitations on where they may reject. Thus, backtracking a
rejecting computation is not possible, because it is not known where it
ends. The below strengthened definition additionally requires rejection to
take place in a unique configuration, analogous to the accepting configura-
tion.

Definition 6. A strongly reversible automaton is a reversible automaton
A = (Q, q0, δ, F) with separated initial state, which additionally satisfies the
following conditions:

iii. for every non-initial label a ∈ Σ\Σ0, the partial function δa is a bijection
from { p ∈ Q | −d(p) ∈ Da } to { q ∈ Q | d(q) ∈ Da },

iv. for each initial label a0 ∈ Σ0, there is at most one designated rejecting
state qa0

rej ∈ Q (these states may be equal for different a0), for which
neither δa0(q

a0
rej) is defined, nor (qa0

rej, a0) is in F ,

v. for all a0 ∈ Σ0 and for all states q ∈ Q \ {qa0
acc, qa0

rej}, δa0(q) is defined
if and only if −d(q) ∈ Da0 or q = q0.

The requirement on the range of δa, with a ∈ Σ \ Σ0, in condition (iii)
means that if a-labelled nodes have a direction d ∈ Da for reaching a state
q ∈ Q, then there is a state p ∈ Q, in which this direction d can be used to

15

get to q. The requirement on the domain of δa means that this function is
defined precisely for those states p, which can be possibly entered in a-labelled
nodes, that is, for such states p, that the direction for entering p leads to
these nodes. This in particular implies that whenever a computation of a
strongly reversible automaton enters any configuration (p, v) with λ(v) /∈
Σ0 (that is, v 6= v0), the next step of the computation is defined and the
automaton cannot halt in this configuration. Similarly, condition (v) ensures
that the computation cannot halt in the initial node (labelled with a0), unless
it reaches either the corresponding accepting state qa0

acc or the corresponding
rejecting state qa0

rej. Since Lemma 3 guarantees that the computation of a
strongly reversible automaton beginning in the initial configuration always
halts, one can conclude that it always halts with its head scanning the initial
node, and either in the accepting state or in the rejecting state.

Lemma 4. For every finite input graph (V, v0, +, λ), a strongly reversible
graph-walking automaton, starting in the initial configuration, either accepts
in the configuration (q

λ(v0)
acc , v0) or rejects in the configuration (q

λ(v0)
rej , v0).

The transformation of a deterministic automaton to a reversible one de-
veloped in this paper ensures this strongest form of reversibility.

Theorem 2. For every direction-determinate returning graph-walking au-
tomaton with n states, there exists a strongly reversible graph-walking au-
tomaton with 2n + 1 states recognizing the same set of graphs.

Theorems 1–2, along with Lemma 1, together imply the following trans-
formation:

Corollary 1. For every graph-walking automaton with n states and d direc-
tions, there exists a strongly reversible graph-walking automaton with 6dn+1
states recognizing the same set of graphs.

A given n-state GWA is first transformed to a direction-determinate GWA
with dn states according to Lemma 1. The latter GWA has an equivalent
returning direction-determinate GWA with 3dn states by Theorem 1. Finally,
applying Theorem 2 to this automaton yields a strongly reversible GWA with
6dn + 1 states.

Corollary 2. For every signature, the class of sets of graphs over that sig-
nature recognized by graph-walking automata is effectively closed under all
Boolean operations.

More precisely, for a signature with d directions, the complement of an n-
state GWA can be represented using 6dn+1 states, by making the automaton
strongly reversible and then inverting the acceptance decisions. The union of
an m-state and an n-state GWAs is representable using 6dm + n + 1 states,
by making the first automaton strongly reversible, accepting if it accepts,

16

and switching to the second automaton if the first automaton rejects. The
intersection of such automata can be represented using 3dm + n states, by
making the first automaton direction-determinate and returning according to
Lemma 1 and Theorem 1; if this automaton accepts, one can proceed with
executing the second automaton.

5 Reversing a reversible automaton

The overall idea of reversibility is that a computation can be reconstructed
from its final configuration, by retracting the steps of the automaton. This
section shows how to construct a GWA Ar that simulates a given reversible
GWA A backwards.

Given an input graph, the automaton Ar shall follow the unique compu-
tation of A leading to its accepting configuration, reconstructing its steps in
the reverse order. If this computation leads Ar to the initial configuration
of A, then Ar may accept. Otherwise, if A rejects this graph, then the au-
tomaton Ar will eventually find a configuration of A without predecessors,
where it can reject.

The details of the construction are much simplified by assuming the fol-
lowing property.

Definition 7. A direction-determinate automaton is said to be without in-
accessible transitions, if whenever a state q ∈ Q has a transition defined on
a symbol a ∈ Σ, or is accepting there, this state must be reachable from the
appropriate direction, unless the pair (q, a) corresponds to an initial config-
uration. In other words, for all (q, a) ∈ (Q × Σ) \ ({q0} × Σ0), if δa(q) is
defined or (q, a) ∈ F , then −d(q) ∈ Da.

If a given automaton does not satisfy this condition, then its inaccessible
transitions can be undefined without affecting the set of graphs accepted by
this automaton.

Let A = (Q, q0, δ, F) be a reversible automaton without inaccessible tran-
sitions. Define a new direction-determinate automaton Ar = (Q′, q′0, δ

′, F ′)
with separated initial state, using the set of states

Q′ = [Q] ∪ {q′0},
where [Q] = { [q] | q ∈ Q } is a copy of Q and q′0 is a new initial state.
These states are accessed from the directions d′([q]) = −d(q) for all q ∈ Q.
Whenever the new automaton is in a state [q], with the head observing a node
v, this corresponds to the original automaton’s being in the state q, observing
the neighbouring node v+d(q). Note that by looking at v, the automaton Ar

knows the label of the node from which A came to v+d(q), and according to
this label it decides from which stateA came to the configuration (q, v+d(q)).
Thus the reverse computation carried out by Ar follows the state and the

17

Figure 5: Simulating a computation of a reversible GWA A (from q0 to qa0
acc)

by a reverse computation of the GWA Ar (from q′0 to [δa0(q0)]).

position of the head of a forward computation of A, but the state and the
position are always out of synchronization by one step.

The computation of the reversed automaton begins by the following tran-
sitions from q′0, for every initial label a0 ∈ Σ0:

δ′a0
(q′0) =

{
[qa0

acc], if qa0
acc exists and is different from q0,

undefined, otherwise.

After this initial transition, the computation proceeds by executing transi-
tions of A in reverse. This is achieved by defining the transition from a state
[q], with q ∈ Q, in a node labelled with a ∈ Σ, as follows:

δ′a([q]) =

{
[p], if δ−1

a (q) = {p} and (p, a) /∈ {q0} × Σ0,

undefined, otherwise.

Note that δ−1
a (q) = {p} is equivalent to δa(p) = q, because the automaton

A is reversible. There are two cases of undefined transitions. First, if δ−1
a (q)

is not a singleton, then δ−1
a (q) = ∅, that is, the current configuration of

A has no predecessors; then the automaton Ar rejects. The second case is
δ−1
a (q) = {q0} and a = a0 ∈ Σ0: if Ar encounters such a configuration, this

means that the initial configuration of A has been reached, and hence the
graph is to be accepted. Accordingly, the set of accepting configurations of
Ar is

F ′ =
{

([δa0(q0)], a0)
∣∣ a0 ∈ Σ0, δa0(q0) is defined

}∪{ (q′0, a0) | (q0, a0) ∈ F }.

In the notation of Definition 4(ii), for every initial label a0 ∈ Σ0, q′a0
acc =

[δa0(q0)], if δa0(q0) is defined, and q′a0
acc = q′0, if qa0

acc = q0.

18

Lemma 5. For every reversible automaton A without inaccessible transi-
tions, the above construction correctly defines a reversible automaton Ar with-
out inaccessible transitions and with separated initial state, which recognizes
the same set of graphs as A.

Proof. First, it will be verified that the construction correctly defines a
direction-determinate automaton, that is, if a transition from a node la-
belled by a is defined, then the necessary direction to the target state is in
Da. First consider transitions from the new initial state, which take place
only in the initial node. Assume that δ′a0

(q′0) is defined; then it is equal to
[qa0

acc], where qa0
acc is different from q0. Since A is without inaccessible transi-

tions, this accepting state should be enterable in the initial node, and thus
the set Da0 contains the direction −d(qa0

acc) = d′([qa0
acc]), as required. It re-

mains to consider transitions from the states of the form [q], with q ∈ Q.
If δ′a([q]) is defined, then it equals [p] for some p ∈ Q satisfying δa(p) = q
and (p, a) /∈ {q0} ×Σ0. Since A is without inaccessible transitions, the state
p must be reachable in a-labelled nodes, and so Da contains the direction
−d(p). As this direction −d(p) equals d′([p]), there exists a direction from
nodes labelled by a, which can be used by the reversed automaton Ar to go
to the state [p].

By definition, the resulting automaton is returning and has only one
accepting state for each a0 ∈ Σ0. It remains to show that each δ′a is injective.
If δ′a0

(q′0) were equal to δ′a0
([q]), for some q ∈ Q, then their common value

must be [qa0
acc], and hence δa0(q

a0
acc) = q, which is impossible, as the transition

function is not defined on accepting configurations. If δ′a([q]) = δ′a([s]), for
some q, s ∈ Q, then their common value is [p], where p ∈ Q satisfies both
δa(p) = q and δa(p) = s, which implies q = s. This confirms that Ar is
reversible.

In order to verify that Ar is without inaccessible transitions, assume first
that δ′a([q]) is defined. Then it is equal to [p], where the state p ∈ Q satisfies
q = δa(p). This implies that the direction d(q) belongs to Da, and since
d(q) = −d′([q]), it means that −d′([q]) ∈ Da, as required. Secondly, consider
any acceptance condition of Ar outside the initial state, which is of the form
([δa0(q0)], a0) ∈ F ′. Because δa0(q0) is defined, the corresponding direction
d(δa0(q0)) must belong to Da0 , which is again equivalent to the required
condition −d′([δa0(q0)]) ∈ Da0 .

The automaton Ar has separated initial state by definition.

To see that the reversed automaton recognizes the same graphs, consider
the computations of A and Ar on a graph (V, v0, +, λ). First note that
Ar accepts immediately in the initial configuration if and only if A does.
Now let (p0, u0), (p1, u1), . . . , (p`, u`) be a non-trivial accepting computation
of A. It will be verified that (q′0, u`), ([p`], u`−1), . . . , ([p1], u0) is an accepting
computation of Ar. The configuration (q′0, u`) is the initial configuration,

because u` = v0 as the automaton A is returning. Since p` = q
λ(u`)
acc and p` 6=

19

q0 (p` = q0 would mean that already (p0, u0) is an accepting configuration),
the first transition from (q′0, u`) is δ′λ(u`)

(q′0) = [p`], and the automaton goes

from u` to u` + d′([p`]) = u` − d(p`) = u`−1. For all i ∈ {1, . . . , ` − 1},
the computation of A satisfies δλ(ui)(pi) = pi+1 and the pair (pi, λ(ui)) does
not belong to {q0} × Σ0. Therefore, δ′λ(ui)

([pi+1]) = [pi] according to the
definition of δ′λ(ui)

, which shows that the above computation of Ar is correct

on states. Concerning directions, Ar goes from each configuration ([pi+1], ui),
with i ∈ {1, . . . , `− 1}, to the node ui + d′([pi]) = ui − d(pi) = ui−1. Finally,
the configuration ([p1], u0) is accepting, since u0 = v0 and p1 = δλ(v0)(q0).

Conversely, let (p′0, u0), (p
′
1, u1), . . . , (p

′
`, u`) be a non-trivial accepting

computation of Ar. Then for each i ∈ {1, . . . , `}, p′i = δ′λ(ui−1)(p
′
i−1),

which means that p′i = [pi] for some pi ∈ Q. Consider the sequence
(q0, v0), (p`, u`−1), . . . , (p1, u0) of configurations of A. Because (p′`, u`) is an
accepting configuration of Ar, u` = v0 and the corresponding state of A sat-
isfies p` = δλ(v0)(q0). Additionally, u`−1 = u` − d′(p′`) = v0 + d(p`). This
verifies that the second configuration in this sequence is obtained from the
initial configuration by one step of A. The definition of transitions of Ar

directly gives δλ(ui)(pi+1) = pi for i ∈ {1, . . . , ` − 1}, while the correspond-
ing motion over the nodes is ui + d(pi) = ui − d′(p′i) = ui−1. Finally, the

equality p′1 = δ′λ(v0)(q
′
0) gives p1 = q

λ(v0)
acc , which implies that A accepts in the

configuration (p1, u0). This shows that the given sequence is an accepting
computation of A.

If the reversible automatonA additionally has separated initial state, then
the definition of transitions δ′a([q]) of Ar can be equivalently reformulated as
follows:

δ′a([q]) =

{
[p], if δ−1

a (q) = {p}, with p 6= q0,

undefined, otherwise (that is, if δ−1
a (q) = ∅ or δ−1

a (q) = {q0}),

for q ∈ Q and a ∈ Σ. This in particular implies that for such an automaton
A, no transition of Ar leads to the state [q0]. Therefore, the automaton AR

obtained from Ar by removing [q0] is still equivalent to A.

Lemma 6. For every reversible automaton A without inaccessible transitions
and with separated initial state, the automaton (AR)R is isomorphic to A.

Proof. Assuming A = (Q, q0, δ, F), the set of states of (AR)R is { [[q]] |
q ∈ Q, q 6= q0 }∪{q′′0}. The isomorphism maps q0 to q′′0 and each q ∈ Q\{q0}
to [[q]].

First, it will be verified that accepting states in A and (AR)R exist for
the same initial labels a0 ∈ Σ0, and that every accepting state qa0

acc of A is
mapped to the corresponding accepting state q′′a0

acc of (AR)R. The accepting
state q′′a0

acc is defined as the initial state q′′0 if and only if q′a0
acc is equal to the

initial state q′0 of AR, which is equivalent to qa0
acc = q0. The other accepting

20

states of (AR)R are q′′a0
acc = [δ′a0

(q′0)], for a0 ∈ Σ0, such that δ′a0
(q′0) is defined.

However, δ′a0
(q′0) is defined if and only if qa0

acc 6= q0 exists, and it is equal to
[qa0

acc]. This shows that q′′a0
acc exists and is different from q′′0 precisely when qa0

acc

exists and is different from q0, and in this case q′′a0
acc = [[qa0

acc]].
The directions for entering states in (AR)R correspond to those in A, since

d′′([[q]]) = −d′([q]) = d(q) for all q ∈ Q \ {q0}. Transitions δ′′a(q′′0) from the
initial state of (AR)R are defined only for a ∈ Σ0, which is the same as for
δa(q0) in A. For a0 ∈ Σ0, δ′′a0

(q′′0) = [q′a0
acc], if the accepting state q′a0

acc exists
and is different from q′0. This is the case if and only if δa0(q0) is defined, and
in this case q′a0

acc = [δa0(q0)], which proves that transitions from the initial
state in (AR)R agree with those in A. Finally, for q ∈ Q \ {q0}, according to
the above reformulation of the definition of transitions, δ′′a([[q]]) is defined if
and only if δ′a

−1([q]) contains a state of AR different from q′0, that is, there
exists p ∈ Q \ {q0} such that [q] = δ′a([p]). Additionally, if it is the case, then
δ′′a([[q]]) = [[p]]. Since q 6= q0, the condition [q] = δ′a([p]) is in turn equivalent
to p = δa(q). As A has separated initial state, the requirement that p 6= q0

also follows from p = δa(q). Therefore, δ′′a([[q]]) is defined if and only if δa(q)
is defined, and it is equal to [[δa(q)]], as required.

6 The reversibility construction

This section presents the fundamental construction behind all results of this
paper: the reversible simulation of an arbitrary deterministic graph-walking
automaton. Quite expectedly, this simulation will then be used to obtain
Theorem 2 on transforming a returning automaton to an equivalent reversible
automaton. Not so expectedly, the same simulation is behind Theorem 1 on
transforming an automaton to an equivalent returning automaton.

The construction to be presented is a generalization of Lemma 5 on
simulating a given reversible automaton backwards, by backtracking its po-
tential accepting computation. The generalized construction applies to any
direction-determinate automaton, which need not be reversible. Because of
the irreversibility, the original automaton may have multiple computations
arriving to the accepting configuration, of which at most one could begin in
the initial configuration. The task of the constructed automaton is to traverse
the tree of all computations leading to the accepting configuration (or, more
generally, to any fixed configuration), searching for the initial configuration.
The simulation alternates between following the transitions of the original
automaton as they are, and following them in the backward direction, as in
the above Lemma 5.

Lemma 7. For every direction-determinate automaton A = (Q, q0, δ, F)
without inaccessible transitions there exists a reversible automaton B =
(
−→
Q ∪ [Q], δ′, F ′) without an initial state, where

−→
Q = {−→q | q ∈ Q } and

[Q] = { [q] | q ∈ Q } are disjoint copies of Q, with the corresponding di-

21

rections d′(−→q) = d(q) and d′([q]) = −d(q), and with accepting states
F ′ =

{
([δa0(q0)], a0)

∣∣ a0 ∈ Σ0, δa0(q0) is defined
}
, which has the follow-

ing property: For every graph (V, v0, +, λ), its node v̂ ∈ V and a state q̂ ∈ Q
of the original automaton, for which (q̂, λ(v̂)) ∈ F and −d(q̂) ∈ Dλ(v̂), the
computation of B beginning in the configuration ([q̂], v̂ − d(q̂)),

• accepts in the configuration ([δλ(v0)(q0)], v0), if (q̂, v̂) 6= (q0, v0) and A
accepts this graph in the configuration (q̂, v̂),

• rejects in (
−→̂
q , v̂), otherwise.

Furthermore,

i. For every q ∈ Q and a ∈ Σ, the transition δ′a([q]) is undefined if and
only if d(q) /∈ Da or ([q], a) ∈ F ′ (where the latter means that a ∈ Σ0

and q = δa(q0)).

ii. For every p ∈ Q and a ∈ Σ, the transition δ′a(
−→p) is undefined if and

only if −d(p) /∈ Da or (p, a) ∈ F .

iii. For every r ∈ Q and a ∈ Σ\Σ0, δ′a
−1(−→r) = ∅ if and only if d(r) /∈ Da.

iv. For every r ∈ Q and a ∈ Σ \ Σ0, δ′a
−1([r]) = ∅ if and only if −d(r) /∈

Da or (r, a) ∈ F . Additionally, for a0 ∈ Σ0, if (r, a0) ∈ F , then
δ′a0

−1([r]) = ∅.

Proof. Assume any linear ordering on Q, under which q0 is the least element
of Q. Let min S and max S denote the least and the greatest element of
a nonempty set S ⊆ Q with respect to this ordering. Let nextS(q) with
q ∈ S ⊆ Q denote the least element of S strictly greater than q, provided
that it exists.

The new automaton searches through the tree of computations leading
to the configuration (q̂, v̂), looking for the initial configuration. This involves
both backward simulation of the original automaton, when exploring each
branch of this tree, as well as forward simulation, which is used when the
backward search results in a configuration unreachable by the original au-
tomaton, and hence the search should turn to the next branch. For that

purpose, the new automaton has the set of states
−→
Q ∪ [Q], with each state

from Q represented by two states, −→q ∈ −→
Q and [q] ∈ [Q]. In the states of

the form [q], the automaton simulates the computation backwards and has
d′([q]) = −d(q), while states −→q with d′(−→q) = d(q) are used for forward
simulation. Whenever the new automaton reaches a state [q] in a node v,
this means that the computation of the original automaton, beginning in the
state q with the head in the neighbouring node v + d(q), eventually leads to
the configuration (q̂, v̂). In this way, exactly as in Lemma 5, the backward
computation traces the state and the position of the head in a forward com-
putation, but the state and the position are always out of synchronization by

22

Figure 6: A reversible GWA B searching the tree of computations of a GWA
A: handling irreversibility δa(p) = δa(p

′) = q with δ−1
a (q) = {p, p′} and

p < p′.

one step. When the automaton switches to forward simulation, and reaches a
state −→q , its head position is synchronized with the state, and this represents
the original automaton’s being in the state q, observing the same node.

Consider the behaviour of the new automaton in a state [q], while observ-
ing a node labelled by a ∈ Σ. It is convenient to begin with the acceptance
conditions. If a ∈ Σ0 and q = δa(q0), then the new automaton B has found
the initial configuration of A, and it may accept; accordingly, the pair ([q], a)
belongs to F ′. Otherwise, if the state q is reachable from some other states
by the symbol a in the original automaton, then the constructed automaton
continues with the backward simulation by choosing the least of those pre-
decessor states, p = min δ−1

a (q), and moving to the state [p] in the direction
−d(p), as illustrated in Figure 6. This is done by the transition

δ′a([q]) = [min δ−1
a (q)], if δ−1

a (q) 6= ∅ and ([q], a) /∈ F ′. (1)

This is a transition in the direction d′([min δ−1
a (q)]), and it remains to argue

that nodes with the label a allow moving in this direction. Since δa(p) is
defined and the situation (p, a) ∈ {q0} × Σ0 is ruled out by the condition
([q], a) /∈ F ′, the assumption that the automaton A is without inaccessi-
ble transitions implies that the direction −d(p) = d′([p]) belongs to Da, as
required by the definition of graph-walking automata.

The other principal case in the backward simulation is when a branch of
the tree of computations is traced back to a configuration without predeces-
sors. Therefore, these computations cannot take place when starting from
the initial configuration of A, and the constructed automaton switches to
forward simulation, until it finds the next suitable branch of the tree. This

23

Figure 7: A reversible GWA B searching the tree of computations of an
irreversible GWA A: handling an unreachable configuration.

is done by the following transition:

δ′a([q]) = −→q , if δ−1
a (q) = ∅ and d(q) ∈ Da, (2)

which is compatible with the direction of the state −→q , as d′(−→q) = d(q) ∈ Da.
This case is illustrated in Figure 7.

The transitions on [q] with d(q) /∈ Da are undefined, because such states
cannot be reached from the proper direction in the backward simulation.
Actually, a configuration ([q], v), with λ(v) = a, makes no sense, since it
should represent the original automaton’s being in the state q in the node
v + d(q), whereas the latter node does not exist.

Transitions from forward states −→p ∈ −→
Q generally simulate the original

automaton A, while looking for converging computations, ready to backtrack
the next available branch in the tree of computations. Consider the case when
multiple branches of this tree converge at the present point, that is, δa(p) = q
and there exist other states p′ 6= p with δa(p

′) = q. Assume that the current
branch is not the last of these branches, so that there is a state p′ > p with
δa(p

′) = q. Let p′ be the least of such states, denoted by nextδ−1
a (q)(p). Then,

as illustrated in Figure 6, the simulation switches to backtracking the next
branch, proceeding to the state [p′] in the appropriate direction. Accordingly,
define the following transition:

δ′a(
−→p) = [p′], if δa(p) is defined, p′ = nextδ−1

a (δa(p))(p) and −d(p) ∈ Da.

(3)

The direction required for this transition always exists in Da, because the
automaton A has the transition δa(p

′) defined, and p′ 6= q0, as p′ is not the
least element of Q. Accordingly, the state p′ must be accessible by transitions
in the direction d(p′), which necessitates d′([p′]) = −d(p′) ∈ Da.

If there was no branching at the present point, or if there was a branching,
but the current branch is already the last of them (this is a single case), then

the forward simulation continues. This is what happens in the state
−→
p′ over

24

the symbol a in Figure 6. In general, such transitions are defined as follows:

δ′a(
−→p) =

−−→
δa(p), if δa(p) is defined, p = max δ−1

a (δa(p)) and −d(p) ∈ Da,
(4)

where the corresponding direction d′(
−−→
δa(p)) exists in Da, because it is the

same as d(δa(p)).
It remains to define the transitions of B in a state −→p in the case of

undefined δa(p):

δ′a(
−→p) = [p], if δa(p) is undefined, −d(p) ∈ Da, (p, a) /∈ F , (5)

where the assumption −d(p) ∈ Da guarantees that the required direction
d′([p]) = −d(p) exists in Da. These transitions shall never be used, but they
are necessary to comply with the definition of strong reversibility.

If the constructed automaton ever reaches any configuration (−→p , v) cor-
responding to an accepting configuration (p, v) of A, then it rejects, that
is, for every (p, a) ∈ F , δ′a(

−→p) is not defined. Note that these are the only
undefined transitions in the automaton, besides the inaccessible transitions
δ′a(
−→q) with −d(q) /∈ Da and δ′a([q]) with d(q) /∈ Da. Altogether, the above

construction correctly defines a direction-determinate automaton B, which
satisfies claims (i) and (ii) of the lemma.

Fix an input graph (V, v0, +, λ). For every configuration (p, v), let π(p, v)
denote the (uniquely determined) computation of A from (p, v). The above
ordering of states induces the following strict partial ordering on computa-
tions ofA, which accept in the configuration (q̂, v̂): a computation π(p`, u`) =
(p`, u`) . . . (p1, u1)(q̂, v̂) is less than π(p′`′ , u

′
`′) = (p′`′ , u

′
`′) . . . (p′1, u

′
1)(q̂, v̂) if

there exists such a number m 6 `, `′ that (pi, ui) = (p′i, u
′
i) for all i ∈

{1, . . . , m− 1} and pm < p′m.

(p`, u`) . . . (pm, um) (pm−1, um−1) . . . (p1, u1) (q̂, v̂)

< =

. . .

=

(p′`′ , u
′
`′) . . . (p′m, u′m) (p′m−1, u

′
m−1) . . . (p′1, u

′
1) (q̂, v̂)

Because the automaton A is direction-determinate, every configuration
(pi, ui) in a computation uniquely determines the previous node ui−1 =
ui − d(pi), and thus a computation is determined by its sequence of states
and its last node. Therefore, two computations ending with the same config-
uration are incomparable if and only if one of them is a suffix of the other.

The correctness statement of the construction reads as follows:

Claim 1. If the computation of the new automaton B beginning in ([q̂], v̂ −
d(q̂)) reaches a configuration ([q], v) in zero or more steps, then the computa-
tion of A beginning in (q, v+d(q)) accepts in the configuration (q̂, v̂). If addi-
tionally (q̂, v̂) 6= (q0, v0) and the computation of A beginning in (q0, v0) accepts

25

in (q̂, v̂) too, then the computation π(q0, v0) is neither less than π(q, v+d(q)),
nor a suffix of π(q, v + d(q)).

If the computation of B beginning in ([q̂], v̂−d(q̂)) reaches a configuration
(−→p , v), then the computation of A beginning in (p, v) accepts in (q̂, v̂). If
additionally (q̂, v̂) 6= (q0, v0) and the computation of A beginning in (q0, v0)
accepts in (q̂, v̂) too, then π(q0, v0) is greater than π(p, v).

The claim is proved by induction on the length of the computation of the
new automaton.

Basis. After zero steps of the new automaton, its current configuration
([q], v) has q = q̂ and v = v̂ − d(q̂), which means that (q, v + d(q)) = (q̂, v̂),
which is an accepting configuration of A. If (q̂, v̂) 6= (q0, v0), then this zero-
step computation π(q, v+d(q)) = (q̂, v̂) is incomparable with every non-trivial
computation accepting in the configuration (q̂, v̂).

Induction step I. Assume that the constructed automaton B reaches
a configuration ([q], v), for which the statement of the lemma holds true,
that is, the original automaton started in (q, v + d(q)) accepts in (q̂, v̂) and
π(q0, v0) is neither less than, nor a suffix of π(q, v + d(q)), all provided that
(q̂, v̂) 6= (q0, v0) and the computation of the original automaton beginning in
(q0, v0) accepts in (q̂, v̂).

Assuming that the constructed automaton does not accept in ([q], v),
consider the next step of its computation. First assume that δ−1

λ(v)(q) 6= ∅ and

let p = min δ−1
λ(v)(q). Then the new automaton makes a transition (1) from

([q], v) to ([p], v−d(p)), while the original automaton goes from
(
p, (v−d(p))+

d(p)
)

= (p, v) to (q, v+d(q)), from whence it accepts in (q̂, v̂) by the induction
assumption. Now let (q̂, v̂) 6= (q0, v0). Suppose, for the sake of contradiction,
that the computation of the original automaton beginning in (q0, v0) accepts
in (q̂, v̂) and π(q0, v0) < π(p, v). Since π(p, v) = (p, v) · π(q, v + d(q)) and
π(q0, v0) is not less than π(q, v + d(q)) by the assumption, it follows that
π(q0, v0) and π(p, v) must be different in the first step of π(p, v), that is,
π(q0, v0) = (q0, v0) . . . (p′, v) ·π(q, v+d(q)) and p′ < p. Then δλ(v)(p

′) = q and
so p′ ∈ δ−1

λ(v)(q), which contradicts the assumption that p is the least element

of δ−1
λ(v)(q). Finally, it has to be verified that π(q0, v0) is not a suffix of π(p, v).

Since it is not a suffix of π(q, v+d(q)) by the induction hypothesis, this could
only happen if π(q0, v0) = π(p, v). However, this would imply that v = v0

and q = δλ(v)(p) = δλ(v0)(q0), and therefore ([q], λ(v)) would belong to F ′,
which would contradict the assumption that B does not accept in ([q], v).

The other possible next step of the new automaton from the configura-
tion ([q], v) occurs for δ−1

λ(v)(q) = ∅: then it proceeds to the configuration

(−→q , v + d(q)), and it has to be established that the original automaton,
starting from (q, v + d(q)), accepts in (q̂, v̂). That is directly given by the
induction hypothesis for ([q], v), which furthermore states that if the original
automaton, starting from (q0, v0), accepts in (q̂, v̂) 6= (q0, v0), then π(q0, v0)
cannot be less than π(q, v + d(q)) and cannot be a suffix of π(q, v + d(q)).

26

To see that π(q0, v0) is greater than π(q, v + d(q)), it remains to argue that
π(q, v + d(q)) is not a proper suffix of π(q0, v0). Indeed, if it were a proper
suffix, then there would have been a previous configuration (p, v), from which
the original automaton would go to (q, v + d(q)); but this would imply that
p ∈ δ−1

λ(v)(q) and thus contradict the assumption.

Induction step II. Let the claim hold for a configuration (−→p , v) of the
automaton B, that is, the computation π(p, v) of A is assumed to accept in
(q̂, v̂), and in case the automaton A, beginning in (q0, v0), accepts in (q̂, v̂) 6=
(q0, v0) too, the computation π(q0, v0) is greater than π(p, v). The statement
of the claim is to be established for the configuration of the automaton B at
the next step after (−→p , v). Since the computation π(p, v) is accepting, there
are two possibilities: either it consists of a unique accepting configuration,
or begins with a transition to

(
δλ(v)(p), v + d(δλ(v)(p))

)
.

In the former case, the pair (p, λ(v)) belongs to F , which implies that
δ′λ(v)(

−→p) is not defined. Therefore, the configuration (−→p , v) of B is rejecting,
and it is not followed by any other configuration, so there is nothing to prove.

Assume that the computation π(p, v) of A is non-trivial, that is, it be-
gins with a transition. Denote the next state δλ(v)(p) by q. If p is the
greatest state in δ−1

λ(v)(q), then the constructed automaton follows the orig-

inal automaton forward, going from (−→p , v) to
(−→q , v + d(q)

)
. The compu-

tation π(q, v + d(q)) of the original automaton accepts in (q̂, v̂), since it is
a suffix of the computation π(p, v). If additionally the original automa-
ton accepts in (q̂, v̂) 6= (q0, v0) when beginning in (q0, v0), and π(q0, v0)
were less than π(q, v + d(q)), then π(q0, v0) would also be less than the
longer computation π(p, v), contradicting the induction hypothesis. For the
same reason, the computation π(q0, v0) cannot be a suffix of π(q, v + d(q)).
Suppose π(q, v + d(q)) is a proper suffix of π(q0, v0). Then, since π(p, v)
is not a suffix of π(q0, v0) by the induction hypothesis, the computations
π(p, v) = (p, v) · π(q, v + d(q)) and π(q0, v0) differ on the first step of π(p, v),
and π(q0, v0) = (q0, v0) . . . (p′, v) · π(q, v + d(q)) for some state p′ 6= p with
δλ(v)(p

′) = q. Then p′ < p, because p is known to be the greatest of such
states, and therefore π(q0, v0) < π(p, v), a contradiction.

Otherwise, if there is a greater state p′ > p with δλ(v)(p
′) = q, the

automaton B proceeds from (−→p , v) to ([p′], v − d(p′)), where p′ is the least
of such states, that is, p′ = nextδ−1

λ(v)
(q)(p). Then the original automaton in

the configuration (p′, v − d(p′) + d(p′)) = (p′, v) will apply the transition
δ(p′, λ(v)) = (q, d(q)) and arrive to the configuration (q, v +d(q)); this is also
the next configuration after (p, v), and hence the original automaton accepts
from it in (q̂, v̂). Now assume that the original automaton, beginning in
(q0, v0), accepts in (q̂, v̂) 6= (q0, v0). The computation π(q0, v0) cannot be a
proper suffix of π(p′, v), because π(p′, v) differs from π(p, v) only in the first
configuration. The computations π(q0, v0) and π(p′, v) also cannot be equal,
since that would imply p < p′ = q0, which is impossible, because q0 is the

27

least element of Q. Finally, suppose that the computation π(q0, v0) is less
than π(p′, v) = (p′, v) ·π(q, v+d(q)). Since π(q0, v0) is greater than π(p, v) by
the assumption, it is not less than π(q, v + d(q)), and hence the computation
π(q0, v0) must differ from π(p′, v) in the first configuration of π(p′, v), that
is, π(q0, v0) has a suffix (p′′, v) · π(q, v + d(q)) with δλ(v)(p

′′) = q and p′′ < p′.
On the other hand, p′′ > p, because otherwise π(q0, v0) would not be greater
than π(p, v). Altogether, p < p′′ < p′ and δλ(v)(p) = δλ(v)(p

′′) = δλ(v)(p
′) = q,

which contradicts the choice of p′ as the least element of δ−1
λ(v)(q) greater than

p. This completes the proof of Claim 1.

Claim 2. The constructed automaton B is reversible.

To see that for every label a ∈ Σ, no state of B can be reached from two

different states by a transition reading a, first consider any state −→r ∈ −→
Q .

This state can be reached by δ′a only using transitions of one of the forms
(2) and (4). There can be only one transition of the form (2) (it goes from
the state [r]), and it can occur only if δ−1

a (r) = ∅. On the other hand,
transitions of the form (4) occur only if δ−1

a (r) 6= ∅, and −→r can be reached
by such a transition from exactly one state, namely −→p with p = max δ−1

a (r).
This shows that |δ′a−1(−→r)| 6 1.

Every state [r] ∈ [Q] can be possibly reached by transitions of three
different types: (1), (3) and (5). Transitions of the first type occur only if r
is the least element of δ−1

a (δa(r)), and in this case, [r] can only be reached
from the state [q] with q = δa(r). Transitions of the second type (3) can only
occur if δa(r) is defined, but r is not the least element of δ−1

a (δa(r)); then
there is also at most one state from which [r] can be reached, namely −→p ,
where p is the predecessor of r in δ−1

a (δa(r)). Finally, there can be only one
possible transition of type (5), reaching [r] from the state −→r , and it occurs
only if δa(r) is not defined. Altogether, this proves that |δ′a−1([r])| 6 1.

Turning to the second condition in the definition of reversibility, by the
definition of F ′, the automaton B is returning and has at most one accepting
state for each a0 ∈ Σ0, which concludes the proof of Claim 2.

Claim 3. The automaton B satisfies assertions (iii) and (iv) of the lemma.

This claim is established by an analysis similar to the proof of Claim 2.

Let a ∈ Σ \ Σ0 and consider any state −→r ∈ −→
Q . If δ−1

a (r) = ∅, then −→r
can be reached by δ′a only using the transition (2), which is not defined if
and only if d(r) /∈ Da. If δ−1

a (r) 6= ∅, then this state can only be reached
by a transition (4) from a state −→p with δa(p) = r. Such a transition (4)
is always defined, because the last condition −d(p) ∈ Da is true due to the
assumptions that A is without inaccessible transitions and a /∈ Σ0. Since
d(r) ∈ Da always holds in the case δ−1

a (r) 6= ∅, assertion (iii) is verified also
in this case.

In order to verify the first part of assertion (iv), let a ∈ Σ \ Σ0 and
[r] ∈ [Q]. If δa(r) is defined and r is the least element of δ−1

a (δa(r)), then [r]

28

can be reached from the state [q] with q = δa(r) by a transition (1), that is,
δ′a
−1([r]) 6= ∅. At the same time, −d(r) ∈ Da (since there are no inaccessible

transitions in A) and (r, a) /∈ F (because the transition δa(r) is defined). If
δa(r) is defined, but r is not the least element of δ−1

a (δa(r)), then [r] can be
reached by a transition (3) from the state −→p , where p is the predecessor of r
in δ−1

a (δa(r)), and the assertion is verified in the same way as in the previous
case. Finally, if δa(r) is not defined, then the only possibility for reaching
[r] is by a transition (5) from the state −→r , and this transition does not exist
if and only if −d(r) /∈ Da or (r, a) ∈ F , as required. Altogether, it was
verified that B satisfies the first part of assertion (iv). In order to verify the
second part of this assertion, note that if a0 ∈ Σ0 and (r, a0) ∈ F , then δa0(r)
is undefined, and therefore only transitions (5) could be used to reach [r].
However, no such transition exists due to the assumption that (r, a0) ∈ F .
This concludes the proof of Claim 3.

It remains to verify the main claim of the lemma. Because the automaton
B is reversible, by Lemma 2, either the computation of B beginning in the
configuration ([q̂], v̂− d(q̂)) is finite, or it eventually returns back to ([q̂], v̂−
d(q̂)).

First assume that the configuration ([q̂], v̂− d(q̂)) is re-entered. Then the
node visited in the previous configuration must be v̂, and the automaton has
to use one of the rules (1), (3), or (5) in the last step. However, the first
two rules require that δλ(v̂)(q̂) is defined, while the last rule requires that
(q̂, λ(v̂)) /∈ F . Thus in all three cases a contradiction with the assumption
(q̂, λ(v̂)) ∈ F is obtained, which shows that the computation of B is finite.

Consider the case where the computation ends immediately in the con-
figuration ([q̂], v̂−d(q̂)). Because −d(q̂) ∈ Dλ(v̂) by assumption, the opposite
direction d(q̂) belongs to Dλ(v̂−d(q̂)). Therefore, by the earlier proved asser-
tion (i) of this lemma, the only reason why B could have undefined transi-
tion from the configuration ([q̂], v̂ − d(q̂)) can be that λ(v̂ − d(q̂)) ∈ Σ0 and
q̂ = δλ(v̂−d(q̂))(q0). This implies that v̂ − d(q̂) = v0, and consequently the
configuration ([q̂], v̂ − d(q̂)) of B is accepting, while the original automaton
goes from the initial configuration directly to (q̂, v̂).

If the computation of B ends after at least one step in a configuration
([q], v), for some q ∈ Q and v ∈ V , then d(q) ∈ Dλ(v), because this configu-
ration was entered using the direction d′([q]) = −d(q). Since δ′λ(v)([q]) is not

defined, by assertion (i), it must be the case that λ(v) ∈ Σ0 and q = δλ(v)(q0),
and so B accepts in ([q], v) = ([δλ(v0)(q0)], v0). At the same time, the original
automaton goes from the initial configuration to

(
δλ(v0)(q0), v0+d(δλ(v0)(q0))

)
and by Claim 1 it continues to (q̂, v̂), where it accepts.

Finally, if the computation of B ends in a configuration (−→p , v), for some
p ∈ Q and v ∈ V , then −d(p) ∈ Dλ(v), because the direction d′(−→p) = d(p)
was used at the last step. Therefore, by assertion (ii), the only reason why
the computation ends in (−→p , v) could be that (p, λ(v)) ∈ F . Because Claim 1

29

states that the computation of A beginning in (p, v) accepts in (q̂, v̂), this
computation must consist of a single configuration (p, v) = (q̂, v̂), which

shows that the configuration in which B rejects is (
−→̂
q , v̂). For the sake of

contradiction, suppose thatA accepts the graph in (q̂, v̂), and (q̂, v̂) 6= (q0, v0).
Then, by Claim 1, this accepting computation would be greater than the
computation of A beginning in (p, v). However, this is impossible, since the
computation beginning in (p, v) consists of a single configuration (q̂, v̂), which
is the last configuration of the accepting computation beginning in (q0, v0),
and, by definition, a computation cannot be greater than its suffix. Therefore,
in this case, either (q̂, v̂) = (q0, v0) or the computation of A beginning in
(q0, v0) does not accept in (q̂, v̂).

It has been verified that in each case one of the following two situations
arises: (i) the computation of B accepts in the configuration ([δλ(v0)(q0)], v0),
(q̂, v̂) 6= (q0, v0), while A accepts in the configuration (q̂, v̂); (ii) the compu-

tation of B rejects in (
−→̂
q , v̂), and either (q̂, v̂) = (q0, v0) or A does not accept

in (q̂, v̂). This concludes the proof of the lemma.

7 Proofs of the theorems

With Lemma 7 established, proofs of Theorems 1 and 2 shall now be obtained
by building upon the construction presented in the lemma.

In the first theorem, an arbitrary direction-determinate GWA A is trans-
formed to a returning direction-determinate GWA, which operates as follows:
first it simulates A until it accepts, and then backtracks the accepting com-
putation of A to its initial configuration, using the reversible automaton
constructed from A according to Lemma 7. If A rejects or loops, the con-
structed automaton will reject or loop in the same way, as it will never reach
the backtracking stage.

Proof of Theorem 1. Consider any direction-determinate automaton A =
(Q, q0, δ, F) and, without loss of generality, assume that this automaton is
without inaccessible transitions. Using Lemma 7, construct a reversible au-

tomaton B = (
−→
Q∪[Q], δ′, F ′) without an initial state. Define a new direction-

determinate returning automaton C = (Q ∪ −→Q ∪ [Q], q0, δ
′′, F ′′), where the

directions of the states are the same as in A and B.
The new automaton C begins its computation by simulating the original

automatonA using the states from Q; for that purpose, its transition function
δ′′ is defined as δ for states from Q:

δ′′a(q) = δa(q), if δa(q) is defined.

By this definition, if A loops, then C loops as well. If A rejects, then so does
C. But if the simulated automaton A is about to accept in a configuration

30

(q̂, v̂), then C instead switches to simulating the reversible automaton B using

the states from
−→
Q ∪ [Q]. The switch is done by a transition of the form

δ′′a(q̂) = [q̂], for all (q̂, a) ∈ F \ ({q0} × Σ0).

By this transition, the automaton C switches from the configuration (q̂, v̂) to
the configuration ([q̂], v̂−d(q̂)), from whence it operates as B. Then, accord-
ing to Lemma 7, the automaton B accepts in the configuration ([δa(q0)], v0),
as it is known that the original automaton A accepts this graph in (q̂, v̂). It
remains to set the transitions and acceptance conditions of C to simulate B.

The transition function δ′′ is defined as δ′ for states from
−→
Q ∪ [Q]:

δ′′a([q]) = δ′([q]), for [q] ∈ [Q],

δ′′a(−→q) = δ′(−→q), for −→q ∈ −→Q.

The constructed automaton C is set to accept whenever the simulated B
accepts, as well as in the special case ofA accepting in its initial configuration:

F ′′ = F ′ ∪ { (q0, a0) | a0 ∈ Σ0, (q0, a0) ∈ F }.

The second theorem, which asserts that a returning direction-determinate
GWA can be simulated by a strongly reversible GWA, is proved as follows.
Naturally, a given automaton A is simulated by a reversible automaton B of
Lemma 7. However, B is defined without an initial state, and its behaviour
in the beginning of the computation has to be defined. If A has a unique
accepting state, then it can only accept in a single configuration, and B
can directly proceed to backtrack the tree of computations leading to this
configuration. In the case of A with multiple accepting states, the automaton
B has multiple trees of accepting computations to backtrack, and one should
modify B, so that it considers these trees one by one. The below proof
fills out all details of this construction, necessary to satisfy all conditions in
the definition of strongly reversible automata, and proves that the resulting
automaton recognizes the same language as A.

Proof of Theorem 2. Let A = (Q, q0, δ, F) be a direction-determinate return-
ing graph-walking automaton. Without loss of generality, it can be assumed

that this automaton has no inaccessible transitions. Let B = (
−→
Q ∪ [Q], δ′, F ′)

be the reversible automaton without the initial state constructed from A ac-
cording to Lemma 7. Assume any linear ordering on Q. For every a0 ∈ Σ0,
denote by Fa0 the set { p ∈ Q | (p, a0) ∈ F, −d(p) ∈ Da0 } of all states of A,
which are accepting on initial nodes labelled by a0, excluding the case of
p = q0 with −d(p) /∈ Da0 . Define a new direction-determinate graph-walking
automaton C by modifying B as follows:

31

Figure 8: A strongly reversible GWA C searching through the accepting
computations of a GWA A.

• add a new separated initial state q′0,

• for every a0 ∈ Σ0 such that (q0, a0) ∈ F , add a new acceptance condi-
tion (q′0, a0) to F ′,

• for every a0 ∈ Σ0 such that (q0, a0) /∈ F and Fa0 6= ∅, add a new
transition δ′a0

(q′0) = [min Fa0],

• for every a0 ∈ Σ0 and every p ∈ Fa0 , which is not greatest in Fa0 , add
a new transition δ′a0

(−→p) = [nextFa0
(p)].

The appropriate directions for each of these rules belong to Da0 by the def-
inition of Fa0 , and none of these transitions were previously defined in B
according to claim (ii) of Lemma 7. Figure 8 illustrates how the constructed
automaton C considers the trees of all computations of A leading to its ac-
cepting configurations, one by one.

All mappings δa, for a ∈ Σ \ Σ0, in the automaton C are the same as
in B, and mappings δa0 , for a ∈ Σ0, remain injective, since no states [r],
with r ∈ Fa0 , belonged to the range of δa0 in B by the second assertion of
Lemma 7(iv). The automaton C is trivially returning, and for each a0 ∈ Σ0

there exists at most one state s ∈ −→
Q ∪ [Q] ∪ {q′0} such that (s, a0) ∈ F ′,

because such a state existed in B only if δa0(q0) was defined. This verifies
that C is reversible.

In order to verify that C is strongly reversible, let first a ∈ Σ \ Σ0. Then
δ′a([q]) is defined if and only if −d′([q]) ∈ Da, by claim (i) of Lemma 7, and
δ′a(
−→p) is defined if and only if −d′(−→p) ∈ Da, by claim (ii) of Lemma 7 (taking

into account that A is returning). This shows that the domain of δ′a is as
required by the first condition of the definition of strong reversibility. In the
same way, claims (iii) and (iv) of Lemma 7 imply that the range of δ′a satisfies
this condition as well.

32

For a0 ∈ Σ0, the rejecting state qa0
rej of C will be defined if and only if

Fa0 6= ∅ or (q0, a0) /∈ F . If Fa0 6= ∅, then define qa0
rej as

−−−−−→
max Fa0 . If Fa0 = ∅

and (q0, a0) /∈ F , then define qa0
rej as q′0. It remains to verify the last condition

in the definition of strong reversibility. For q ∈ Q such that [q] 6= qa0
acc, δ′a0

([q])
is defined if and only if −d([q]) ∈ Da0 , due to Lemma 7(i). For p ∈ Q such
that −→p 6= qa0

rej, according to Lemma 7(ii), δ′a0
(−→p) is defined in B if and only if

−d(−→p) ∈ Da0 and (p, a0) /∈ F , and it is additionally defined in C if and only
if p ∈ Fa0 and p 6= max Fa0 . Altogether, δ′a0

(−→p) is defined in C if and only if
−d(−→p) ∈ Da0 and p 6= max Fa0 , where the latter condition can be removed,
since it follows from the assumption −→p 6= qa0

rej. Finally, it has to be proved
that δ′a0

(q′0) is always defined, provided that q′0 /∈ {qa0
acc, q

a0
rej}. According to

the definition of C, δ′a0
(q′0) is not defined only if (q0, a0) ∈ F or Fa0 = ∅.

However, the former condition implies that q′0 = qa0
acc, and if it is not true,

that is, if (q0, a0) /∈ F , then Fa0 = ∅ implies q′0 = qa0
rej. Thus both conditions

contradict the assumption on q′0.
In order to prove that the automaton C accepts the same graphs as A,

observe first that C accepts immediately in the initial configuration (q′0, v0)
if and only if A accepts immediately in the initial configuration (q0, v0).
Assume that they do not accept immediately. Then A can only accept in
one of the configurations (q, v0), with q ∈ Fλ(v0)\{q0}. If A rejects because of
Fλ(v0) = ∅, then C rejects immediately in the initial configuration. Otherwise,
the computation of C begins by moving to the configuration ([min Fλ(v0)], v0−
d(min Fλ(v0))). By the main claim of Lemma 7, the computation continues
by successively considering all states p ∈ Fλ(v0), according to the ordering of
states; for each of these states it begins in the configuration ([p], v0 − d(p)),
accepts if p 6= q0 and A accepts in (p, v0), and otherwise goes to (−→p , v0), from
where it switches to the next state from the set Fλ(v0) by continuing to the
configuration ([nextFλ(v0)

(p)], v0 − d(nextFλ(v0)
(p))) using the new transitions

added to B. If A does not accept in any of the configurations (p, v0) with

p 6= q0, then C eventually rejects in the configuration (
−−−−−−→
max Fλ(v0), v0).

8 Application to various types of automata

The results on transforming graph-walking automata to several special forms
presented in Sections 4–6 apply to GWAs with any set of directions and over
any signature, so that in each case, each transformation preserves the set
of accepted graphs. Therefore, these results also apply to each of the well-
known models of computation presented in Sections 2–3 as graph-walking
automata. The aim of this section is to revisit all those models and apply
the results of Section 4 to each of them.

Proposition 1. An arbitrary n-state 2DFA can be transformed to a 2n-
state direction-determinate 2DFA, to a (2n + 1)-state returning direction-
determinate 2DFA, and to a (4n + 3)-state strongly reversible 2DFA.

33

Indeed, for 2DFAs, the set of directions D = {−1, +1} is a two-element
set, and hence the transformation to direction-determinate duplicates the
number of states. In order to make a direction-determinate 2DFA returning,
it is sufficient to add one extra state, in which the automaton will move the
head to the left-end marker after it decides to accept. Applying Theorem 2
to the resulting automaton gives the promised strongly reversible 2DFA with
4n + 3 states.

In the case of 2DFAs, Theorem 2 is essentially a generalization of the con-
struction by Kondacs and Watrous [28] from 1DFAs to direction-determinate
2DFAs. The transformation of an n-state 2DFA to a 2DFA with 4n + const
states that halts on every input, presented by Geffert et al. [17], most likely
results in the same reversible automaton as constructed in Proposition 1,
but both main steps of the construction are amalgamated into one. Thus,
the two-step transformation proving Proposition 1 explains the construction
given by Geffert et al. [17].

In the special case of 2DFAs over a one-letter alphabet, the above con-
struction can be implemented using fewer states, as follows.

Proposition 2. An n-state 2DFA over a one-letter input alphabet Σ = {a}
can be transformed to an (n + 1)-state direction-determinate 2DFA, to an
(n + 2)-state returning direction-determinate 2DFA, and to a (2n + 5)-state
strongly reversible 2DFA.

The improvement lies with the efficient transformation to direction-
determinate, which follows from a transformation of an n-state 2DFA over a
one-letter alphabet to an equivalent (n+1)-state sweeping 2DFA, due to the
authors [29, Thm. 2]. Then, one extra state is used to return to the left-end
marker, and Theorem 2 is applied as in the proof of Proposition 1.

It is possible to improve the construction in Proposition 1 to yield only
4n + 1 states, and the construction in Proposition 2 can similarly produce
2n+3 states [30]. This is achieved essentially by integrating the construction
for parking the head within the construction of Theorem 2, specialized for
two-way automata.

Turning to tree-walking automata, Muscholl et al. [37] proved that an
n-state TWA can be transformed to a halting TWA with O(n2) states, using
another implementation of the general method described by Sipser [42]. This
result can be now improved as follows.

Proposition 3. Any n-state TWA over k-ary trees can be transformed
to a 2kn-state direction-determinate TWA, to a (2kn + k)-state returning
direction-determinate TWA, and to a (4kn+2k +1)-state strongly reversible
TWA.

Here the transformation to direction-determinate multiplies the number
of states by |D| = 2k. Parking the head after acceptance generally requires
only one extra state, in which the automaton will go up to the root. However,

34

in order to keep the resulting automaton direction-determinate, one has to
use k extra states q1

return, . . . , qk
return with d(qi

return) = −i. Reversibility is
ensured by Theorem 2, which produces 2(2kn + k) + 1 states, as stated.

Proposition 4. An n-state 4DFA can be transformed to a 4n-state direction-
determinate 4DFA, to a (4n+4)-state returning direction-determinate 4DFA,
and to a (8n + 9)-state strongly reversible 4DFA.

Transformation to direction-determinate multiplies the number of states
by |D| = 4. In order to return to the initial node after acceptance, it is
sufficient to use four states: one state to move in the direction (−1, 0) up to
a marker >, another one to make one step from that marker in the direction
(+1, 0), one more state to move in the direction (0,−1) to the initial node,
and finally, an extra state to move in the direction (0, +1), in case the ac-
ceptance decision is made at a left marker `. If the acceptance decision is
made at a right marker a, then the existing state for moving in the direction
(0,−1) can be used to get out of that node. It remains to apply Theorem 2
to the resulting automaton.

The next model are the multi-head automata. Their reversibility was first
investigated by Morita [36], who defined reversible automata as those satis-
fying the first condition of Definition 4 in this paper, but not its second con-
dition (the one on acceptance only in the initial node and in a unique state).
Morita [36] presented the construction for reversing a reversible automaton,
as in Lemma 5 in this paper, as well as a construction for transforming
a “weak” reversible automaton (without the conditions on acceptance as-
sumed in this paper) to a reversible automaton in the sense of this paper,
which furthermore rejects only in the initial node (as in Definition 6(iv) in
this paper). However, the general problem of transforming any deterministic
k-head 2DFA to a reversible multi-head 2DFA recognizing the same language
was left open. In a follow-up paper, Axelsen [3] has shown that the family of
reversible multi-head 2DFAs is equal in power to the reversible logarithmic
space, and hence, by the results of Lange et al. [33], to the deterministic
logarithmic space. These results imply that reversible multi-head 2DFAs are
equivalent in power to deterministic multi-head 2DFAs, though it remained
unclear, whether transforming a multi-head 2DFA to an equivalent reversible
machine may require using any extra heads.

This paper contributes a stronger result, that for every k > 1, the re-
versible k-head 2DFAs recognize the same languages as the deterministic
k-head 2DFAs.

Proposition 5. Any n-state k-head 2DFA can be transformed to a (3k−1)n-
state direction-determinate k-head 2DFA, to a ((3k−1)n+k)-state returning
direction-determinate k-head 2DFA, and to a (2(3k − 1)n + 2k + 1)-state
strongly reversible k-head 2DFA.

35

Since the set of directions D = {−1, 0, +1}k \ {0}k has cardinality
|D| = 3k − 1, the transformation to direction-determinate incurs a (3k − 1)-
times blowup. The resulting automaton is then modified to return to the ini-
tial node after acceptance by parking its k heads to the left-end marker one by
one, using k states qpark 1, . . . , qpark k with d(qpark i) = (0, . . . , 0,−1, 0, . . . , 0),
with−1 as the i-th component. Applying Theorem 2 to the resulting automa-
ton with (3k−1)n+k states yields the desired strongly reversible automaton.

The case of multi-tape 2DFAs is handled identically.

Proposition 6. An n-state k-tape 2DFA can be transformed to equivalent
direction-determinate, returning and direction-determinate, and strongly re-
versible k-tape 2DFAs with the same number of states as in Proposition 5.

Proposition 7. An n-state k-pebble 2DFA can be transformed to a (2k+2)n-
state direction-determinate k-pebble 2DFA, to a ((2k + 2)n + k + 2)-state
returning direction-determinate k-pebble 2DFA, and to a ((4k+4)n+2k+5)-
state strongly reversible k-pebble 2DFA.

For k-pebble 2DFAs, the set of directions D = {−1, +1, ↓1, ↑1, . . . , ↓k, ↑k}
has cardinality 2k + 2, which explains the size of the direction-determinate
automaton. The transformation to a returning direction-determinate au-
tomaton requires k + 2 extra states, because in order to return to the initial
node, one must sweep through the entire tape to pick up all the pebbles.

Proposition 8. An n-state Turing machine operated in marked space s(n)
using an m-symbol work alphabet (including the blank symbol, but not includ-
ing the end-markers) can be transformed to an (m2−m+4)n-state direction-
determinate Turing machine operating in the same space using the same al-
phabet, to an ((m2−m + 4)n + m + 2)-state returning direction-determinate
Turing machine of the same kind, and to a (2(m2−m + 4)n + 2m + 5)-state
strongly reversible Turing machine that again works in the same marked space
s(n) using the same m-symbol work alphabet.

Here |D| = m2−m+4, because there are m(m−1) directions for rewriting
letters and 4 directions for moving the heads. Once a direction-determinate
automaton with |D| · n states is obtained, it can be made returning by em-
ploying 1 + (m − 1) + 1 + 1 extra states to (a) move the head on the work
tape to the right, (b) scan the work tape from right to left, rewriting each
non-blank symbol with a blank, and then (c) move the head on the input
tape to the left.

The list of such results can be continued further, by representing various
models of computation with a bounded graph of memory configurations as
graph-walking automata, and then applying the results of this paper.

36

References

[1] S. Abramsky, “A structural approach to reversible computation”, The-
oretical Computer Science, 347:3 (2005), 441–464.

[2] A. V. Aho, J. D. Ullman, “Translations on a context free grammar”,
Information and Control, 19:5 (1971), 439–475.

[3] H. B. Axelsen, “Reversible multi-head finite automata characterize re-
versible logarithmic space”, Language and Automata Theory and Appli-
cations (LATA 2012, A Coruña, Spain, 5–9 March 2012), LNCS 7183,
95–105.

[4] C. H. Bennett, “Logical reversibility of computation”, IBM Journal of
Research and Development, 17:6 (1973), 525–532.

[5] C. H. Bennett, “The thermodynamics of computation—a review”, In-
ternational Journal of Theoretical Physics, 21:12 (1982), 905–940.

[6] C. H. Bennett, “Time/space trade-offs for reversible computation”,
SIAM Journal on Computing, 81 (1989), 766–776.

[7] M. Blum, C. Hewitt, “Automata on a 2-dimensional tape”, 8th Annual
Symposium on Switching and Automata Theory (SWAT 1967, Austin,
Texas, USA, 18–20 October 1967), 155–160.

[8] M. Bojańczyk, T. Colcombet, “Tree-walking automata cannot be deter-
minized”, Theoretical Computer Science, 350:2–3 (2006), 164–173.

[9] M. Bojańczyk, T. Colcombet, “Tree-walking automata do not recognize
all regular languages”, SIAM Journal on Computing, 38:2 (2008), 658–
701.

[10] M. Bojańczyk, M. Samuelides, T. Schwentick, L. Segoufin, “Expres-
sive power of pebble automata”, (ICALP 2006, Venice, Italy, 9–16 July
2006), vol. 1, LNCS 4051, 157–168.

[11] L. Budach, “Automata and labyrinths”, Mathematische Nachrichten,
86:1 (1978), 195–282.

[12] H. Buhrman, J. Tromp, P. Vitányi, “Time and space bounds for re-
versible simulation”, Journal of Physics A: Mathematical and General,
34:35 (2001), 6821–6830.

[13] B. Courcelle, “Graph rewriting: An algebraic and logic approach”,
Handbook of Theoretical Computer Science, Volume B, 1990, 193–242.

37

http://dx.doi.org/10.1016/j.tcs.2005.07.002
http://dx.doi.org/10.1016/S0019-9958(71)90706-6
http://dx.doi.org/10.1007/978-3-642-28332-1_9
http://dx.doi.org/10.1007/978-3-642-28332-1_9
http://dx.doi.org/10.1147/rd.176.0525
http://dx.doi.org/10.1007/BF02084158
http://dx.doi.org/10.1137/0218053
http://dx.doi.org/10.1109/FOCS.1967.6
http://dx.doi.org/10.1016/j.tcs.2005.10.031
http://dx.doi.org/10.1016/j.tcs.2005.10.031
http://dx.doi.org/10.1137/050645427
http://dx.doi.org/10.1137/050645427
http://dx.doi.org/10.1007/11786986_15
http://dx.doi.org/10.1007/11786986_15
http://dx.doi.org/10.1002/mana.19780860120
http://dx.doi.org/10.1088/0305-4470/34/35/308
http://dx.doi.org/10.1088/0305-4470/34/35/308

[14] P. Crescenzi, C. H. Papadimitriou, “Reversible simulation of space-
bounded computations”, Theoretical Computer Science, 143:1 (1995),
159–165.

[15] J. Engelfriet, H. J. Hoogeboom, “Tree-walking pebble automata”, Jewels
are Forever, Contributions on Theoretical Computer Science in Honor
of Arto Salomaa, 1999, 72–83.

[16] J. Engelfriet, H. J. Hoogeboom, “Automata with nested pebbles capture
first-order logic with transitive closure”, Logical Methods in Computer
Science 3:2–3 (2007), 1–27.

[17] V. Geffert, C. Mereghetti, G. Pighizzini, “Complementing two-way finite
automata”, Information and Computation, 205:8 (2007), 1173–1187.

[18] N. Globerman, D. Harel, “Complexity results for two-way and multi-
pebble automata and their logics”, Theoretical Computer Science, 169:2
(1996), 161–184.

[19] T. Harju, J. Karhumäki, “The equivalence problem of multitape finite
automata”, Theoretical Computer Science, 78:2 (1991), 347–355.

[20] P.-C. Héam, “A lower bound for reversible automata” RAIRO Informa-
tique Théorique et Applications, 34:5 (2000), 331–341.

[21] M. Holzer, M. Kutrib, A. Malcher, “Complexity of multi-head finite au-
tomata: Origins and directions”, Theoretical Computer Science, 412:1–2
(2011), 83–96.

[22] J. E. Hopcroft, J. D. Ullman, “Some results on tape bounded Turing
machines”, Journal of the ACM, 16 (1967), 168–177.

[23] P. Jančar, F. Mráz, M. Plátek, J. Vogel, “Restarting automata”, Funda-
mentals of Computation Theory (FCT 1995, Dresden, Germany, 22–25
August 1995), LNCS 965, 283–292.

[24] T. Kamimura, G. Slutzki, “Parallel two-way automata on directed or-
dered acyclic graphs”, Information and Control, 49:1 (1981), 10–51.

[25] C. A. Kapoutsis, R. Královic, T. Mömke, “Size complexity of rotating
and sweeping automata”, Journal of Computer and System Sciences,
78:2 (2012), 537–558.

[26] J. Kari, “Reversible cellular automata”, Developments in Language The-
ory (DLT 2005, Palermo, Italy, 4–8 July 2005), LNCS 3572, 57–68.

[27] J. Kari, V. Salo, “A survey on picture-walking automata”, Algebraic
Foundations in Computer Science, LNCS 7020, 2011, 183–213.

38

http://dx.doi.org/10.1016/0304-3975(95)80031-4
http://dx.doi.org/10.1016/0304-3975(95)80031-4
http://dx.doi.org/10.2168/LMCS-3(2:3)2007
http://dx.doi.org/10.2168/LMCS-3(2:3)2007
http://dx.doi.org/10.1016/j.ic.2007.01.008
http://dx.doi.org/10.1016/j.ic.2007.01.008
http://dx.doi.org/10.1016/S0304-3975(96)00119-3
http://dx.doi.org/10.1016/S0304-3975(96)00119-3
http://dx.doi.org/10.1016/0304-3975(91)90356-7
http://dx.doi.org/10.1016/0304-3975(91)90356-7
http://dx.doi.org/10.1051/ita:2000120
http://dx.doi.org/10.1016/j.tcs.2010.08.024
http://dx.doi.org/10.1016/j.tcs.2010.08.024
http://dx.doi.org/10.1145/321495.321508
http://dx.doi.org/10.1145/321495.321508
http://dx.doi.org/10.1007/3-540-60249-6_60
http://dx.doi.org/10.1016/S0019-9958(81)90438-1
http://dx.doi.org/10.1016/S0019-9958(81)90438-1
http://dx.doi.org/10.1016/j.jcss.2011.06.004
http://dx.doi.org/10.1016/j.jcss.2011.06.004
http://dx.doi.org/10.1007/11505877_5
http://dx.doi.org/10.1007/978-3-642-24897-9_9

[28] A. Kondacs, J. Watrous, “On the power of quantum finite state au-
tomata”, 38th Annual Symposium on Foundations of Computer Science
(FOCS 1997, Miami Beach, Florida, USA, 19–22 October 1997), IEEE,
66–75.

[29] M. Kunc, A. Okhotin, “Describing periodicity in two-way determinis-
tic finite automata using transformation semigroups”, Developments in
Language Theory (DLT 2011, Milan, Italy, 19–22 July 2011), LNCS
6795, 324–336.

[30] M. Kunc, A. Okhotin, “Reversible two-way finite automata over a unary
alphabet”, TUCS Technical Report 1024, Turku Centre for Computer
Science, December 2011.

[31] M. Kutrib, A. Malcher, “Reversible pushdown automata”, Journal of
Computer and System Sciences, 78:6 (2012), 1814–1827.

[32] R. Landauer, “Irreversibility and heat generation in the computing pro-
cess”, IBM Journal of Research and Development, 5:3 (1961), 183–191.

[33] K.-J. Lange, P. McKenzie, A. Tapp, “Reversible space equals determin-
istic space”, Journal of Computer and System Sciences, 60:2 (2000),
354–367.

[34] Y. Lecerf, “Machines de Turing réversibles”, Comptes Rendus de
l’Académie des Sciences, 257 (1963), 2597–2600.

[35] S. Lombardy, “On the construction of reversible automata for reversible
languages”, Automata, Languages and Programming (ICALP 2002,
Málaga, Spain, 8–13 July 2002), LNCS 2380, 170–182.

[36] K. Morita, “Two-way reversible multi-head finite automata”, Funda-
menta Informaticae, 110:1–4 (2011), 241–254.

[37] A. Muscholl, M. Samuelides, L. Segoufin, “Complementing deterministic
tree-walking automata”, Information Processing Letters, 99:1 (2006),
33-39.

[38] P. Panaite, A. Pelc, “Exploring unknown undirected graphs”, Journal
of Algorithms, 33:2 (1999), 281–295.

[39] J.-E. Pin, “On the languages accepted by finite reversible automata”,
Automata, Languages and Programming (ICALP 1987, Karlsruhe, Ger-
many, 13–17 July 1987), LNCS 267, 237–249.

[40] M. O. Rabin, D. Scott, “Finite automata and their decision problems”,
IBM Journal of Research and Development, 3:2 (1959), 114–125.

39

http:dx.doi.org/10.1109/SFCS.1997.646094
http:dx.doi.org/10.1109/SFCS.1997.646094
http://dx.doi.org/10.1007/978-3-642-22321-1_28
http://dx.doi.org/10.1007/978-3-642-22321-1_28
http://dx.doi.org/10.1016/j.jcss.2011.12.004
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1006/jcss.1999.1672
http://dx.doi.org/10.1006/jcss.1999.1672
http://dx.doi.org/10.1007/3-540-45465-9_16
http://dx.doi.org/10.1007/3-540-45465-9_16
http://dx.doi.org/10.3233/FI-2011-541
http://dx.doi.org/10.1016/j.ipl.2005.09.017
http://dx.doi.org/10.1016/j.ipl.2005.09.017
http://dx.doi.org/10.1006/jagm.1999.1043
http://dx.doi.org/10.1007/3-540-18088-5_19
http://dx.doi.org/10.1147/rd.32.0114

[41] D. Ranjan, R. Chang, J. Hartmanis, “Space bounded computations:
review and new separation results”, Theoretical Computer Science, 80:2
(1991), 289–302.

[42] M. Sipser, “Halting space-bounded computations”, Theoretical Com-
puter Science, 10:3 (1980), 335–338.

[43] M. Sipser, “Lower bounds on the size of sweeping automata”, Journal
of Computer and System Sciences, 21:2 (1980), 195–202.

[44] W. Thomas, “On logics, tilings, and automata”, Automata, Languages
and Programming (ICALP 1991, Madrid, Spain, 8–12 July 1991), LNCS
510, 441–454.

[45] T. Toffoli, N. H. Margolus, “Invertible cellular automata: A review”,
Physica D: Nonlinear Phenomena, 45:1–3 (1990), 229–253.

40

http://dx.doi.org/10.1016/0304-3975(91)90391-E
http://dx.doi.org/10.1016/0304-3975(91)90391-E
http://dx.doi.org/10.1016/0304-3975(80)90053-5
http://dx.doi.org/10.1016/0022-0000(80)90034-3
http://dx.doi.org/10.1007/3-540-54233-7_154
http://dx.doi.org/10.1016/0167-2789(90)90185-R

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematical Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978-952-12-2732-5
ISSN 1239-1891

	Introduction
	Graph-walking automata
	Common models of computation as graph-walking automata
	Reversibility and related notions
	Reversing a reversible automaton
	The reversibility construction
	Proofs of the theorems
	Application to various types of automata

