
Linas Laibinis | Inna Pereverzeva | Elena Troubitsyna

Formal Reasoning about Resilient
Goal-Oriented Multi-Agent Systems

TUCS Technical Report
No 1133, April 2015

Formal Reasoning about Resilient
Goal-Oriented Multi-Agent Systems

Linas Laibinis
Åbo Akademi University, Department of Computer Science

linas.laibinis@abo.fi

Inna Pereverzeva
Åbo Akademi University, Department of Computer Science

Turku Centre for Computer Science

inna.pereverzeva@abo.fi

Elena Troubitsyna

Åbo Akademi University, Department of Computer Science

elena.troubitsyna@abo.fi

TUCS Technical Report

No 1133, April 2015

Abstract

In this paper we present our formalisation of a resilient goal-oriented multi-
agent system and its essential properties. The formalisation covers the no-
tions of system goals and agents, various formal structures (functions and
relations) defining different interrelationships between these notions, as well
as constraints on the system dynamics allowing a multi-agent system to be-
come more reconfigurable and thus resilient in order to achieve the system
goals. The formalisation results in establishing connections between goals
at different levels of abstraction, system architecture and agent responsibil-
ities. The proposed formal systematisation of the involved concepts can be
seen as generic guidelines for formal development of reconfigurable systems.
Moreover, we demonstrate how such guidelines can be interpreted within the
Event-B framework.

Keywords: Formal reasoning, Multi-agent system, Goal-oriented develop-
ment, Resilience, Event-B

TUCS Laboratory
Embedded Systems Laboratory

1 Introduction

Resilience is an ability of a system to remain trustworthy despite changes
[15]. It is an evolution of dependability concept that puts an emphasis on
the ability of a system to adapt to different operating conditions. In this
paper, we view adaptability as an ability of a system to reconfigure and
continue to function in the presence of faults and other changes. Our aim
is to propose a comprehensive theoretical study of relevant aspects of the
system architecture and dynamic behaviour to facilitate formal development
of reconfigurable distributed systems.

We consider distributed systems that are composed of asynchronously
communicating heterogeneous components. The components interact with
each other to execute functions required from the system. Moreover, to facil-
itate system resilience, the system components cooperatively perform fault
tolerance activities as well as exchange information about their current sta-
tus. The cooperative nature of the component behaviour makes it convenient
to consider them as collaborating agents and the overall distributed system
as a multi-agent system correspondingly.

Often research on multi-agent systems focuses on studying the emerging
behaviour, i.e., it adopts a bottom-up approach that investigates whether
agent interactions give rise to the desired behaviour or properties. In our
work, we take an opposite approach: we aim at deriving the architectural and
behavioural constraints to guarantee system resilience, i.e., ensure that the
system, besides correct execution of its functions in the nominal conditions,
can also reconfigure and remain operational in the presence of faults and
other changes.

We rely on the goal-oriented paradigm because it provides us with a
suitable conceptual basis for our reasoning. Goals are functional and non-
functional1 objectives that the system should achieve [34, 36]. High-level
goals representing the overall system objectives can be decomposed into sub-
goals. Decomposition facilitates unfolding of the layered system architecture
and reasoning about system properties at different levels of abstraction. It
also allows us to eventually derive constraints on the agent behaviour and
ensure that their collaboration guarantees achieving the desired goals. The
goal-oriented framework also provides us with an especially suitable basis
for reasoning about reconfigurability. In particular, it allows us to define
reconfigurability as an ability of agents to redistribute their responsibilities
to ensure goal reachability.

Reasoning about reconfigurability within the goal-oriented multi-agent
framework spans over a large set of inter-twined concepts addressing both
system architecture and its dynamic behaviour. Therefore, there is a clear
need for a formal systematic study of these complex interdependencies. This

1The non-functional aspect is not considered in the paper.

1

is the task that we tackle in this paper. Namely, we propose a systematic
set-theoretic formalisation of the reconfigurability concept for multi-agent
goal-oriented framework. The formalisation results in establishing connec-
tions between goals at different levels of abstraction, system architecture
and agent responsibilities. The proposed formal systematisation of these
concepts can be also seen as generic guidelines for formal development of
reconfigurable systems. In this paper, we demonstrate how such guidelines
can be interpreted within the Event-B framework [1].

The paper is structured as follows. Section 2 overviews the kind of systems
and their properties we are interested in studying and briefly describes an
illustrative example of such systems – a multi-robotic cleaning system. In
Section 3 we gradually present our formalisation of a resilient goal-oriented
multi-agent system and its reconfiguration mechanisms. Section 4 discusses
how the formalised notions can be represented in a concrete formal framework
– Event-B. Finally, we overview the related work and give some concluding
remarks in Section 5.

2 Resilient Goal-Oriented Multi-Agent

Systems

Resilience is an ability of a system to remain trustworthy despite changes
[15]. To react on such changes, the system needs to reconfigure. The recon-
figuration might be reactive or proactive. In the former case, reconfiguration
is usually triggered by a component failure and the system should reconfig-
ure to achieve fault tolerance, i.e., perform error recovery. In the latter case,
the system might attempt to execute some of its services more efficiently,
e.g., by deploying the available idle components. In both cases, the system
components should collaborate to ensure system resilience.

In this paper, we study reconfigurability as an essential mechanism of
achieving resilience of distributed systems. Since the collaborative aspect
of the component behaviour is important for our study, we represent sys-
tem components as agents and the overall system as a multi-agent system
correspondingly.

Agents are autonomous software components that asynchronously com-
municate with each other. Each agent has a certain functionality that it
provides. In this paper, we consider heterogeneous multi-agent systems, i.e.,
agents may have different functionalities. Moreover, some agents might play
a role of supervisors of another agent or a group of agents. As a result
of reconfiguration, an agent might receive additional responsibilities, i.e., it
should become involved into an execution of tasks that were not allocated on
it initially. We assume that agents are co-operative, i.e., they always accept
new responsibilities. At the same time, the agents are unreliable, i.e., they

2

might fail and cease performing their functions. This might trigger system
reconfiguration. As a result, the responsibilities of the failed agents can be
re-allocated to the healthy ones. If an agent is healthy and idle, it can be
deployed to perform the functions of failed agents or it might also become
engaged into an execution of some other task, e.g., to improve the system
performance and/or increase the likelihood of successful task completion.

While developing a multi-agent system, we should establish a link be-
tween system requirements and the agent behaviour. It is widely recognised
that the goal-oriented development framework facilitates achieving this. The
key concept of the framework is the notion of a goal – a functional or non-
functional objective that a system should satisfy. Goals also constitute a
convenient mechanism for structuring requirements via goal decomposition.
In the decomposition process, the high-level system goals are iteratively de-
composed into subgoals. Moreover, the low-level subgoals can be directly
linked with the behaviour of agents, i.e., they can be used to derive require-
ments and constraints on the agent behaviour.

The goal-oriented framework provides us with a suitable basis for rea-
soning about reconfigurable multi-agent systems. It enables reasoning about
the system behaviour at different levels of abstraction. At the same time,
goal-decomposition process facilitates incremental unfolding of the system
architecture. It also helps us to build a hierarchy of agents according to
their responsibilities in achieving certain kind of goals. Moreover, the goal-
oriented framework allows us to formulate reconfigurability as an ability of
agents to redistribute their responsibilities to ensure goal reachability.

To summarise, in the rest of the paper we aim at studying the systems
that have the following characteristics:

• There is a number of main (global) goals defined for the system. The
goals can be decomposed into a subset of corresponding subgoals;

• The system consists of a number of agents – autonomic software com-
ponents;

• The agents are organised hierarchically, i.e., one agent may be a super-
visor of one or a group of other agents;

• The agents interact with each other in order to achieve the system
goals;

• In general, agent interactions can vary from simple information ex-
changes to requests for specific actions or services to be performed;

• The system agents are unreliable components that might fail during
system execution;

3

• In the case of agents failures, the system should, if possible, dynamically
reconfigure itself to achieve the overall system goal;

• The system can also reconfigure to achieve some of its goals more effi-
ciently by means of, e.g., deploying idle agents.

Next we describe our running example – a multi-robotic cleaning system
– that can be considered as an illustrative instance of the systems whose
properties we described above.

A Multi-Robotic Cleaning System. The main goal of the multi-
robotic system is to get a certain area cleaned by the means of involved system
agents. There are two types of agents that are responsible for achieving the
goal. The first type is base stations – the stationary devices that coordinate
cleaning activities by assigning cleaning tasks to the second type of agents
– robots. The robots are autonomous electro-mechanical devices that can
move, clean, as well as communicate with the base stations. Both base
stations and robots are unreliable, i.e., they can fail at any moment. In the
case of these failures, the system should, if possible, dynamically reconfigure
itself to achieve the overall system goal.

The whole territory to clean is divided into several zones, which are fur-
ther divided into a number of sectors. To clean the territory, every its zone
has to be cleaned. In its turn, to clean a zone, every its sector has to be
cleaned. Each zone has the associated base station that coordinates the
cleaning activities within the zone. In general, the coordination activities of
one base station may span over several zones. Moreover, each base station
supervises a number of robots attached to it by assigning cleaning tasks to
them.

Figure 1: Multi-Robotic Cleaning System

4

A base station might assign a robot a specific sector to clean. Upon re-
ceiving a cleaning assignment, the robot autonomously moves to this sector
and performs cleaning. After successfully completing its mission, the robot
returns back to the base station to receive a new assignment. The base sta-
tion keeps track of the cleaned and non-cleaned sectors. Moreover, the base
stations periodically exchange the information about their cleaned sectors.

While performing a given task, a robot might fail at any moment. In
that case, the base station may assign another active robot to perform the
failed task. A base station might fail as well. In that case, the healthy base
stations should redistribute the responsibility over the zones as well as the
control over the associated robots of the failed base station.

As we can see, such a multi-robotic system exhibits the general charac-
teristics and properties that we described above. We are going to use this
system as the running example for the rest of this paper.

3 Formalisation of a Resilient Goal-Oriented

MAS

In this section we present our formalisation of a resilient goal-oriented sys-
tem and its essential properties. The formalisation will cover the notions
of system goals and agents, various formal structures (functions and rela-
tions) defining different interrelationships between these notions, as well as
constraints on the system dynamics allowing a multi-agent system to be-
come more reconfigurable and thus resilient in order to achieve the system
goals. The formalisation summarises our experience in formal modelling and
verification of resilient goal-oriented multi-agent systems [22, 23, 24, 32, 13].

Notational conventions. In addition to the standard set-theoretical no-
tation we are going rely on (e.g., ∈,⊆,∩,∪,∅, etc), the operator \ is used
to denote set subtraction. T1 × T2 is a cartesian product of two types (sets)
T1 and T2. The notation P(T) stands for the powerset (set of all subsets)
type over elements of the type T , while T1 ↔ T2 denotes a relation between
elements of two types (sets), i.e.,

R : T1 ↔ T2 ⇔ R : P(T1 × T2).

Moreover, dom and ran are respectively the relation domain and range
operators, while R1;R2 stands for relational composition of two relations R1

and R2. Id represents the identity relation, while R∗ denotes the reflexive
transitive closure of a relation R, i.e.,

R∗ = Id ∪ R ∪ R;R ∪ R;R;R ∪

5

We will also use the transitive closure of a relation R, denoted as R+ and
defined as R+ = R∗\Id, or

R+ = R ∪ R;R ∪ R;R;R ∪

We will treat functions as a special kind of relations and relations as a special
kind of sets (i.e., sets of pairs, triples, etc). The notation (e1 7→ e2) ∈ R
will be used to check that two elements are related by the binary relation
or function R. Similarly, (e1 7→ e2 7→ e3) ∈ R will be used for checking
membership in a ternary relation.

3.1 A Goal-oriented State Transition System

We are going to build our formalisation of a goal-oriented multi-agent system
by gradually extending the standard definition of a state transition system,
typically defined as a triple (Σ, Init,Trans), where Σ represents all the system
states, Init stands for its possible initial states, and Trans defines all the al-
lowed transitions between system states. We start by introducing the notion
of system goals that such a state transition system should try to achieve.

Definition 1 Goal-oriented state transition system (GSTS). A GSTS
system is a tuple (G,Σ, Init, Trans,GMap), where G is a set of all possible
system goals, Σ is the system state space, Init is a set of initial system states,
Trans is a next-state relation of a GSTS system, and GMap is a function
mapping a system goal to a subset of system states, such that

(1.1) Init : P(Σ),

(1.2) Trans : Σ ↔ Σ,

(1.3) GMap : G → P(Σ),

(1.4) Init ̸= ∅,

(1.5) Init ⊆ dom(Trans),

(1.6) ∀g : G.GMap(g) ̸= ∅,

(1.7) ∀g : G. ∃σ, σ′ : Σ. σ ∈ Init ∧ (σ 7→ σ′) ∈ Trans∗ ∧ σ′ ∈ GMap(g).

The required properties (1.1), (1.2), (1.4), and (1.5) are inherited from the
standard definition of a state transition system. The two new elements of
a GSTS introduce the abstract notion of system goals (as the type G) and
relate these goals (via the function GMap) with specific system states where
these goals are considered to be achieved. Essentially, the function GMap
assigns semantics to any goal from G by associating it with a non-empty set of
states (a predicate) of Σ, as stated in (1.3) and (1.6). Finally, the last (1.7)

6

property of a GSTS requires that all the system goals must be achievable
after system initialisation, i.e., they should be true either initially or after a
number of system transitions defined by Trans.

Let us recall our running example – the multi-robotic cleaning system
described in Section 2. The set G of this system contains two kinds of goals:
“The zone j must be cleaned”, for any j ∈ 1..NumberOfZones, and “The
sector i of the zone j must be cleaned”, for any i ∈ 1..NumberOfSectors and
j ∈ 1..NumberOfZones.

What would be a possible definition of GMap for this system? Let us
consider the goal g =“The sector k of the zone l must be cleaned”, for some
fixed k ∈ 1..NumberOfSectors and l ∈ 1..NumberOfZones. The mapping
GMap(g) then may be defined as, e.g.,

GMap(g) = {σ | (SectorCleaned(σ))[l, k] = TRUE},

where SectorCleaned is a state variable (binary array) storing information
about the cleaned sectors. The type of such a variable is

Σ → (1..NumberOfZones× 1..NumberOfSectors → BOOL).

An important dynamic property of a GSTS system is stability with respect
to its goals, i.e., the system ability to retain the goals that have been already
achieved.

Definition 2 Stable GSTS. A GSTS system (G,Σ, Init,Trans,GMap) is
called stable if

(2.1) ∀σ, σ′ : Σ, g : G. (σ 7→ σ′) ∈ Trans ∧ σ ∈ GMap(g) ⇒
σ′ ∈ GMap(g)

The system stability is a very desirable system property to have (espe-
cially for formal verification), however, it is also quite strong constraint on
the system behaviour. For our example of the cleaning system, such an
assumption would mean that all the cleaning goals are achievable in short
duration, i.e., none of the cleaned sectors or zones gets ”dirty” again before
system termination.

So far, we considered system goals as members of a given set, which
can be pursued and accomplished completely independently. Often, we can
talk about some structure introducing inter-relationships between the sys-
tem goals, e.g., distinguishing particular goals and their subgoals. This also
implies that their semantic definitions (i.e., GMap functions) should be inter-
related too. We can define these interrelationships by introducing two new
structures – G graph and SGMap.

7

Definition 3 Structured GSTS. A GSTS system (G,Σ, Init,Trans,GMap)
is called structured if exist a relation on goals G graph and a function SGMap,
such that

(3.1) G graph : G ↔ G,
(3.2) SGMap : G → P(Σ),

(3.3) ∀g : G. (g 7→ g) /∈ G graph+,

(3.4) ∀g : G. GMap(g) ⊆ SGMap(g),

(3.5) ∀g, g′ : G. g′ ∈ Subgoals(g) ⇒ SGMap(g) ∩ GMap(g′) ̸= ∅,

where Subgoals(g) = {g′ : G | (g 7→ g′) ∈ G graph}.

Moreover, the following is true

(3.6) ∀σ : Σ, g : G. σ ∈ SGMap(g) ∧ σ /∈ GMap(g) ⇒
∃σ′ : Σ. (σ 7→ σ′) ∈ Trans ∧ σ′ ∈ GMap(g).

Mathematically, G graph stands for an acyclic graph on goals. It describes
relationships between different goals, e.g., how a particular goal can be split
into its subgoals and so on. The property (3.3) states that a goal cannot be a
subgoal of itself, i.e., the graph does not contains loops. The properties (3.4)
- (3.6) give an alternative definition of the states associated with a particular
goal, given as a function SGMap, in connection to the corresponding states
of its subgoals. Specifically, (3.4) states that achieving g according to GMap
implies that the goal g was achieved according to SGMap as well, while
(3.5) requires that achieving any of subgoals must contribute to that of the
parent goal. Intuitively, SGMap(g) stands for the necessary precondition for
achieving g, relating it with an arbitrary expression on the subgoals of g.

Finally, the last property (3.6) requires that, once the associated expres-
sion on subgoals SGMap is satisfied, the system always has an opportunity (a
respective state transition) to complete the parent goal g, i.e., reach a state
from GMap(g). We deliberately allow such a “gap” in terms of an extra
transition between achieving the main goal and that of its subgoals in the
system dynamics because, as we will see later, achieving different goals can
be responsibility of different system agents.

Let us go back to our running example. Since any zone is considered
cleaned only after all its sectors are cleaned, the relation G graph can be
simply defined as

{“The zone j must be cleaned” 7→ ”The sector i of the zone j must be cleaned” |
i ∈ 1..NumberOfSectors ∧ j ∈ 1..NumberOfZones}.

8

Moreover, for the goal g = “The zone l must be cleaned”, for some fixed l ∈
1..NumberOfZones, and its subgoals Subgoals(g) = {“The sector k of the zone l
must be cleaned” | k ∈ 1..NumberOfSectors}, the mapping SGMap(g) can be
defined as

SGMap(g) = {σ | ∀k ∈ 1..NumberOfSectors. (SectorCleaned(σ))[l, k] = TRUE},

where SectorCleaned is a state variable described above.
Having the goal structure defined, we can easily distinguish the top goals

of a structured GSTS. These are the goals that do not participate as subgoals
for any other goal.

Definition 4 Top goals. For a structured GSTS and its relation on goals
G graph, the system top goals are defined as

(4.1) TopG = dom(G graph)\ran(G graph).

Since G graph is acyclic, the set TopG is always non-empty.
In particular, the top goals are especially important when we consider

terminating GSTSs. The system termination can be easily formally defined
by analysing their next state relation Trans as follows.

Definition 5 Terminating GSTS. A GSTS is terminating if

(5.1) ran(Trans)\dom(Trans) ̸= ∅.

When such a system terminates, we usually expect a certain property to be
true on its top goals. A concrete choice depends of course on the considered
system. Two obvious solutions are formalised below. The first one requires
that the system in its terminating states achieves all its goals:

∀σ : Σ, g : G. σ ∈ ran(Trans)\dom(Trans) ∧ g ∈ TopG ⇒ σ ∈ GMap(g).

Alternatively, we can require that at least one top goal is achieved:

∀σ : Σ. σ ∈ ran(Trans)\dom(Trans) ⇒ ∃g : G. g ∈ TopG∧σ ∈ GMap(g).

For our running example, the top goals are obviously those that are re-
lated with zone cleaning. In the terminating states of the system, the cleaning
system is required to achieve all its goals (a property of the first kind). Alter-
natively, the system could have a failsafe mechanism installed, which must
be activated when completion of the cleaning (for whatever reason) becomes
impossible. In this case, a property of the second kind can be enforced,
requiring that either all the zones are cleaned or the failsafe procedure is
successfully finished.

9

3.2 Introducing Agents

Now we extend the definition of a goal-oriented state transition system pre-
sented in the previous section by introducing agents that can carry out tasks
leading to achieving the system goals.

Definition 6 Multi-agent goal-oriented state transition system (MAGSTS).
A MAGSTS system is a tuple (G,Σ, Init,Trans,GMap,A,Active) such that
(G,Σ, Init,Trans,GMap) is a GSTS, A is a set of all system agents, and
Active is a function returning a subset of active agents in a particular system
state, where

(6.1) Active : Σ → P(A).

The definition introduces a type (set) A for all possible system agents
and also associates a subset of active agents in the current system state via
the function Active. Our interpretation of “active” agents is that only active
agents can carry out the tasks in order to achieve the system goals. Inactive
agents are either those are not currently present in the system or those that
are failed and thus incapable to carry out any tasks.

If a multi-agent systems allows the agents to become active or inactive
(e.g., failed) at any moment, we call such a system open. Formally, we define
it as follows.

Definition 7 OpenMAGSTS. A MAGSTS system (G,Σ, Init,Trans,GMap,
A,Active) is open if the following properties hold:

(7.1) ∀σ : Σ, a : A. σ ∈ dom(Trans) ∧ a ∈ Active(σ) ⇒
∃σ′. (σ 7→ σ′) ∈ Trans ∧ Active(σ′) = Active(σ)\{a}

and

(7.2) ∀σ : Σ, a : A. σ ∈ dom(Trans) ∧ a /∈ Active(σ) ⇒
∃σ′. (σ 7→ σ′) ∈ Trans ∧ Active(σ′) = Active(σ) ∪ {a}.

In our running example, the set A include all the system base stations
and robots, active as well as inactive ones. Both base stations and robots
can fail at any moment, thus becoming inactive. If we require the described
cleaning system open, this would mean that some recovery mechanism must
be in place, allowing any failed base station or robot to be reintroduced into
the system as an active agent.

Since the set A contains all possible system agents, some of them may
have very different functionalities (abilities). In order to associate certain
classes of agents with specific types of system goals they are able to accom-
plish, we first introduce classifications of system agents and goals and then
define relationships between the introduced classes.

10

Definition 8 Typed MAGSTS. A structured MAGSTS system (G,Σ, Init,
Trans,GMap,A,Active) is typed if there exist the functions atype and gtype,
such that

(8.1) atype : A → AType,

(8.2) gtype : G → GType,

(8.3) ∀at : AType. ∃a : A. atype(a) = at,

(8.4) ∀gt : GType. ∃g : G. gtype(g) = gt,

(8.5) ∀g1, g2 : G, gt : GType. gtype(g1) = gt ∧ gtype(g2) = gt ∧ g1 ̸= g2 ⇒
GMap(g1) ∩GMap(g2) = ∅,

where AType and GType are abstract types containing all possible agent and
goal types respectively.

In (8.1) and (8.2), the functions atype and gtype associate each agent and
goal with their respective type. Both agent and goal types are nonempty in
the sense that they must have at least one agent or goal associated with them
(properties (8.3) and (8.4)). The last property (8.5) is introduced to ensure
that distinct goals of the same goal type can be achieved independently, i.e.,
can be assigned to different agents to accomplish them in parallel. However,
before giving such assignments to agents, we have to be sure that they are
able to accomplish the assigned tasks. To formalise this, we introduce a
special relation to represent interrelationships between different agent and
goal types.

Definition 9 Relationship between agent and goal types We say that
agent and goal types are related if there exists a relation AG Rel, such as

(9.1) AG Rel : AType ↔ GType,

(9.2) dom(AG Rel) = AType, and

(9.3) ran(AG Rel) = GType.

For convenience, the relation AG Rel can be represented as a pair of
functions A goals, A goals : AType → P(GType), and G agents, G agents :
GType → P(AType), such that

∀at : AType, gt : GType. gt ∈ A goals(at) ⇔ (at 7→ gt) ∈ AG Rel

and

∀gt : GType, at : AType. at ∈ G agents(gt) ⇔ (at 7→ gt) ∈ AG Rel.

11

From this definition, we immediately get that

∀at : AType, gt : GType. gt ∈ A goals(at) ⇔ at ∈ G agents(gt)

In our running example, AType can be easily defined as the set
{BaseStations, Robots}, whileGType is simply {CleaningZones,CleaningSectors}.
The relation AG Rel then interconnects the introduced agent and goal types
as follows:

{BaseStations 7→ CleaningZones,Robots 7→ CleaningSectors}.

Knowing the interrelationships between the agent and goal types allows
us to check in a straightforward way whether a concrete agent is able to
accomplish a specific goal.

Definition 10 Agent ability We say that an agent a : A is able to accom-
plish a goal g : G if

(10.1) atype(a) ∈ G agents(gtype(g))

or, equivalently,

(10.2) gtype(g) ∈ A goals(atype(a)).

Often, the hierarchical structure between goals and subgoals, formalised
by G graph, is reflected on the goal types as well.

Definition 11 Hierarchy of goal types We say a structured MAGSTS
system supports a hierarchy of goal types if there is exists a relation GT graph,
such that

(11.1) GT graph : GType ↔ GType,

(11.2) ∀gt ∈ GType. (gt 7→ gt) /∈ GT graph+,

(11.3) ∀g1, g2 : G. (gtype(g1) 7→ gtype(g2)) ∈ GT graph ⇒
gtype(g1) ̸= gtype(g2) ∧ (g1 7→ g2) ∈ G graph+.

For our running example, GT graph is simply a singleton set
{CleaningZones 7→ CleaningSectors}.

The hierarchical structures between goals and subgoals introduced above
define the existing dependencies between the goals and thus imply the manner
their achievement can be coordinated among the involved agents. Moreover,
the formalised connection between the agent and goal types clarifies which
agents can be given the tasks related with specific system goals.

12

3.3 Agent Subordination and Supervision

Having agent types and hierarchy of goal types defined makes it possible to
introduce a subordination structure between agent types.

Definition 12 Subordinated MAGSTS. A MAGSTS system (G,Σ, Init,
Trans,
GMap,A,Active)) is called subordinated if it is typed, supports a hierarchy
of goal types, and exists a relation on agent types A Sub, such that

(12.1) A Sub : AType ↔ AType,

(12.2) dom(A Sub) ∪ ran(A Sub) = AType,

(12.3) ∀at ∈ AType. (at 7→ at) /∈ A Sub+.

Moreover, for each at1, at2 : AType, such that (at1 7→ at2) ∈ A Sub, the
following property must hold

(12.4) ∃gt1, gt2 : GType.

(gt1 7→ gt2) ∈ GT graph ∧ gt1 ∈ A goals(at1) ∧ gt2 ∈ A goals(at2).

According to the definition (properties (12.1)–(12.3)), A Sub is acyclic
graph covering all system agent types. The last property (12.4) states the
required connection between two hierarchical structures: the goal type struc-
ture GT graph and the agent subordination structure A Sub. Namely, for
each pair of subordinated agent types, exists (at least one) pair of the re-
lated goal types such that goals of the parent goal type can be handled by
agents of the “master” agent type, while goals of the subgoal type can be
handled by agents of the subordinate agent type.

It is obvious that, for our running example, the only possible way to define
A Sub is as a singleton set {BaseStations 7→ Robots}. The base stations are
responsible for zone cleaning, which can be decomposed into cleaning of the
constituent sectors by robots. Since base stations are responsible for a higher
level goal (i.e., are aware of a ”bigger picture”), it is natural to appoint them
as supervisors with respect to robots.

If a system is centralised one, even members of the top agent type may
be needed to be supervised. In that case, the agent type hierarchy can be
artificially extended with the top element SystemType, which has a single
agent System as its member.

Similarly as for AG Rel, the relation A Sub can be represented as a
pair of functions AS goals, AS goals : AType → P(GType), and GS agents,
GS agents : GType → P(AType), such that

∀at : AType, gt : GType. gt ∈ AS goals(at) ⇔
∃gt′ : GType. (gt′ 7→ gt) ∈ GT graph ∧ gt′ ∈ A Goals(at)

13

and

∀gt : GType, at : AType. at ∈ GS agents(gt) ⇔
∃gt′ : GType. (gt′ 7→ gt) ∈ GT graph ∧ gt′ ∈ A Goals(at).

From this definition, we immediately get that

∀at : AType, gt : GType. gt ∈ AS goals(at) ⇔ at ∈ GS agents(gt)

The above definitions allow us to check in a straightforward way whether a
concrete agent is able to supervise accomplishing a specific goal.

Definition 13 Agent supervision We say that an agent a : A is able to
supervise a goal g : G if

(13.1) atype(a) ∈ GS agents(gtype(g))

or, equivalently,

(13.2) gtype(g) ∈ AS goals(atype(a)).

The notions about agents introduced so far (agent types, subordination,
ability to accomplish or supervise a particular goal) define required static
properties of a multi-agent goal-oriented system. The only exception is a
function Active, which returns a set of active agents in a particular system
state. Since agents can change their active/inactive status during system
execution, the function expresses a dynamic system characteristic.

In subordinated MAGSTSs, a part of system agents supervise activities
of other agents. Moreover, they can give concrete goal assignments to subor-
dinate agents, which, in turn, should “report” to their supervisors once the
assigned goal has been accomplished. The unreached system goals can be
also dynamically partitioned among the supervisor agents.

This allows us to introduce a few additional dynamic system character-
istics. Namely, in a specific dynamic system state, a particular agent can
be “attached” to another agent, which serves as its supervisor. A specific,
yet unreached goal can be put under responsibility of a particular supervisor
agent. Finally, a specific goal can be “assigned” by a supervisor to one of its
subordinate agents.

Let us now to define these dynamic notions formally.

Definition 14 Agent attachment A MAGSTS system (G,Σ, Init,Trans,
GMap,A,Active) supports agent attachment if there is a dynamic attribute

14

(function) Attached, such that

(14.1) Attached : Σ → P(A×A),

(14.2) ∀σ : Σ, a1, a2 : A. (a1 7→ a2) ∈ Attached(σ) ⇒
a1 ∈ Active(σ) ∧ a2 ∈ Active(σ) ∧ atype(a1) 7→ atype(a1) ∈ A Sub ∧
¬(∃a3 : A. a3 ̸= a1 ∧ (a3 7→ a2) ∈ Attached(σ)).

Moreover, the following property is true

(14.3) ∀σ : Σ, a1, a2 : A. a1 ∈ Active(σ) ∧ a2 ∈ Active(σ) ∧
atype(a1) 7→ atype(a2) ∈ A Sub ∧ ¬(∃a′1 : A. (a′1 7→ a2) ∈ Attached(σ))

⇒
∃(σ′ : Σ). (σ 7→ σ′) ∈ Trans ∧ (a1 7→ a2) ∈ Attached(σ′).

Therefore, for any agents a1, a2 and system state σ, the expression (a1 7→
a2) ∈ Attached(σ) implies that (i) both agents are active in σ, (ii) the agent
type of a2 is subordinate to that of a1, and (iii) the agent a2 is not currently
attached to any other supervisor agent (property (14.2)).

Moreover, a MAGST system supports agent attachment if, at any point
where the conditions for agent attachment are satisfied, the system has an
opportunity (but not an obligation) to do such an action (property (14.3)).

In our running example, any active and yet unattached robot can be
attached to any active base station. It can also change its supervisor base
station to a different active one.

Definition 15 Goal responsibility A MAGSTS system (G,Σ, Init,Trans,
GMap,A,Active) supports goal responsibility if there is a dynamic attribute
(function) Responsible, such that

(15.1) Responsible : Σ → P(G ×A),

(15.2) ∀σ : Σ, g : G, a : A. (g 7→ a) ∈ Responsible(σ) ⇒
a ∈ Active(σ) ∧ gtype(g) ∈ AS goals(atype(a)) ∧
¬(∃a′ : A. a′ ̸= a ∧ (g 7→ a′) ∈ Responsible(σ)).

Moreover, the following property is true

(15.3) ∀σ : Σ, g : G, a : A. a ∈ Active(σ) ∧ gtype(g) ∈ AS goals(atype(a)) ∧
¬(∃a′ : A. (g 7→ a′) ∈ Responsible(σ))

⇒
∃(σ′ : Σ). (σ 7→ σ′) ∈ Trans ∧ (g 7→ a) ∈ Responsible(σ′).

15

Therefore, for any goal g, agent a and system state σ, the expression
(g 7→ a) ∈ Responsible(σ) implies that (i) the agent a is active in the state σ,
(ii) the agent type allows it to supervise g, and (iii) the goal g is not currently
under responsibility of any other supervisor agent (property (15.2)).

Moreover, a MAGST system supports goal responsibility if, at any point
where the conditions for an agent taking responsibility for some goal are
satisfied, the system has an opportunity (but not an obligation) to do this
action (property (15.3)).

In our running example, any active base station can take responsibility
over a zone which is not yet responsibility of any other base station. Zone
responsibility can also “migrate” from one base station to another as a part
of the system reconfiguration.

Definition 16 Goal assignment A MAGSTS system (G,Σ, Init,Trans,
GMap,A,Active) supports goal assignment if there is a dynamic attribute
(function) Assigned, such that

(16.1) Assigned : Σ → P(G ×A×A),

(16.2) ∀σ : Σ, g : G, a1, a2 : A. (g 7→ a1 7→ a2) ∈ Assigned(σ) ⇒
(a1 7→ a2) ∈ Attached(σ) ∧ (g 7→ a1) ∈ Responsible(σ) ∧
gtype(g) ∈ A goals(atype(a2)) ∧
¬(∃g′ : G, a′ : A. g′ ̸= g ∧ a′1 ̸= a1 ∧ (g′ 7→ a′1 7→ a2) ∈ Assigned(σ)) ∧
¬(∃a′1, a′2 : A. a′1 ̸= a1 ∧ a′2 ̸= a2 ∧ (g 7→ a′1 7→ a′2) ∈ Assigned(σ)) ∧
σ /∈ GMap(g) ∧ ∃σ′ : Σ. (σ 7→ σ′) ∈ Trans ∧ σ′ ∈ GMap(g).

Moreover, the following property is true

(16.3) ∀σ : Σ, g : G, a : A. (a1 7→ a2) ∈ Attached(σ) ∧
gtype(g) ∈ A goals(atype(a2)) ∧ (g 7→ a1) ∈ Responsible(σ) ∧
¬(∃g′ : G, a′ : A. g′ ̸= g ∧ a′1 ̸= a1 ∧ (g′ 7→ a′1 7→ a2) ∈ Assigned(σ)) ∧
¬(∃a′1, a′2 : A. (g 7→ a′1 7→ a′2) ∈ Assigned(σ))

⇒
∃(σ′ : Σ). (σ 7→ σ′) ∈ Trans ∧ (g 7→ a1 7→ a2) ∈ Assigned(σ′),

Therefore, for any agents a1, a2, a goal g and system state σ, the ex-
pression (g 7→ a1 7→ a2) ∈ Assigned(σ) implies that (i) a2 is attached to a1
in the state σ, (ii) a1 is responsible for achieving the goal g in the state σ,
(iii) a2 is able to accomplish any goal of the type gtype(g), (iv) the agent
a2 is not assigned to any other goal, (v) the goal g is not assigned to any
other agent, (vi) the goal g is not yet completed, and (vii) once the goal g is

16

assigned, it can be completed at any moment (property (16.2)). The last two
properties allow us to associate the goal reachability with goal assignment,
and by transitivity, goal responsibility and agent attachment mechanisms.

Moreover, a MAGST system supports goal assignment if, at any point
where the conditions for goal assignment are satisfied, the system has an
opportunity (but not obligation) to do this action (property (16.3)).

In our running example, any attached and active robot without the cur-
rent cleaning assignment (e.g., just after finishing the previous one) can be
given a new cleaning assignment by its supervisor base station.

3.4 System Reconfiguration and Goal Reachability in
the Presence of Agent Failures

Even though the above definitions require the existence of system transitions
for the agents and goals that are “free”, i.e., have not been attached or
assigned, they implicitly cover two more kinds of system transitions:

1. Since all the definitions depend on the assumptions that the involved
agents are active, change of the agent status to inactive (e.g., agent
failure) during system transitions would mean automatic update of
Attached, Responsible and Assigned by removing all those records that
refer to the failed agents;

2. In situations when the involved agents remain active during the system
transitions, the above definitions do not forbid changing the actual
relationships between the agents and the goals. In other words, the
agents can be reattached, goal responsibility can be redistributed, and
goals can be reassigned among the active agents.

Let us explicitly define multi-agent systems that support the dynamic
reconfiguration described in the latter observation. Specifically, these are the
systems that allow redistributing (unassigned) goals to different responsible
agents or reattaching (unassigned) agents to different supervisor agents. The
multi-robotic cleaning system that we have used as the running example is
an instance of such systems.

Definition 17 Reconfigurable agent system A MAGSTS system (G,Σ,
Init,Trans,GMap,A,Active) is reconfigurable if it is structured, open, and
supports agent attachment, goal responsibility, and goal assignment. More-
over, the following properties hold

(17.1) ∀σ : Σ, g : G, : a1, a2 : A. (g 7→ a1) ∈ Responsible(σ) ∧
gtype(g) ∈ AS goals(atype(a 2)) ∧
¬(∃a3 : A. (g 7→ a1 7→ a3)) ∈ Assigned(σ)) ⇒

∃σ′ : Σ. (σ 7→ σ′) ∈ Trans ∧ (g 7→ a2) ∈ Responsible(σ′)

17

and

(17.2) ∀σ : Σ, a1, a2, a3 : A. (a1 7→ a2) ∈ Attached(σ) ∧
(atype(a3) 7→ atype(a2)) ∈ A Sub ∧
¬(∃g : G. (g 7→ a1 7→ a2)) ∈ Assigned(σ)) ⇒

∃σ′ : Σ. (σ 7→ σ′) ∈ Trans ∧ (a3 7→ a2) ∈ Attached(σ′)

In our first definition of a goal-oriented multi-agent system, we required
that any system goal is reachable from some initial system state. For a recon-
figurable MAGSTS system, we can formulate and prove a stronger property:
“Any goal that is not yet reached at any (non-final) system state is reach-
able.”

Theorem 1 Goal reachability in a reconfigurable agent system. For
a reconfigurable MAGSTS system (G,Σ, Init,Trans,GMap,A,Active), the fol-
lowing property is true:

∀σ : Σ, g : G. σ ∈ dom(Trans) ∧ σ /∈ GMap(g) ⇒
∃σ′ : Σ. (σ 7→ σ′) ∈ Trans+ ∧ σ′ ∈ GMap(g).

Proof 1 Let us consider an arbitrary state σ : Σ, such that σ ∈ dom(Trans),
and an arbitrary goal g : G, such that σ /∈ GMap(g). Moreover, as the
worst case scenario, let us assume that there is no single active agent able to
supervise this goal nor single active agent able to accomplish it. Formally,

¬(∃a : A. a ∈ Active(σ) ∧ gtype(g) ∈ AS goals(atype(a)))

and

¬(∃a : A. a ∈ Active(σ) ∧ gtype(g) ∈ A goals(atype(a))).

According to Definition 8 of a typed MAGSTS system, there should exists
an agent able to supervise the goal g as well as a one able to accomplish it.
Moreover, since our system is open, the second property of an open MAGSTS
system (Definition 7) states a possibility to activate any agent at an arbitrary
moment.

Let a super : A, such that

a super /∈ Active(σ) and gtype(g) ∈ AS goals(atype(a super))

be an agent able to supervise the goal g. Moreover, let σ1 : Σ, such that (σ 7→
σ1) ∈ Trans and Active(σ1) = Active(σ) ∪ {a super}, be a next state where

18

this agent is activated. The existence of such state is required by Definition
7.

In a similar way, we activate an agent for accomplishing the goal g,
a worker, such that

a worker /∈ Active(σ) and gtype(g) ∈ A goals(atype(a worker))

in a next state, σ2, such that

(σ1 7→ σ2) ∈ Trans and Active(σ2) = Active(σ1) ∪ {a worker}.

Relying on the definitions of agent attachment, goal responsibility and
goal assignment (Definitions 14, 15 and 16), we can construct a chain of
further states σ3, σ4, σ5, where a super and a workers become attached,
a super takes responsibility for the goal g, and a worker gets assigned the
goal g respectively. There could be also as many as necessary intermediate
state transitions where the statuses of a super and a worker are unaffected.

Finally, the definition of agent assignment (more specifically, the last con-
sequent of property (16.2) of Definition 16) also connects this notion with goal
reachability. Namely, for any state where a particular agent is assigned a spe-
cific goal, there exists a possible subsequent state where this goal is reached.
Since the state σ5 satisfies these criteria, we can claim that there exists a
state, σ′, such that

(σ5 7→ σ′) ∈ Trans ∧ σ′ ∈ GMap(g).

By transitivity, we proved that

(σ 7→ σ′) ∈ Trans+ ∧ σ′ ∈ GMap(g),

which is exactly what the theorem states.
In a similar manner, we can construct proofs for less adverse cases in-

volving agent failures (i.e., becoming inactive), which in turn lead to specific
agents becoming unattached, unassigned or specific goals losing the supervi-
sors responsible for their completion.

To complete the proof, we have also consider the system states when the
system has all the active agents needed to achieve a particular unreached goal,
however the specific agent attachment and goal responsibility distribution has
to be adjusted first. In other words, the system has to be reconfigured before
proceeding.

Let us again consider an arbitrary state σ : Σ, such that σ ∈ dom(Trans),
and an arbitrary goal g : G, such that

σ /∈ GMap(g) and ¬(∃a1, a2 : A. (g 7→ a1 7→ a2) ∈ Assigned(σ)).

The completion of g in the state σ is responsibility of the agent a super, i.e.,
(g 7→ a super) ∈ Responsible(σ).

19

Moreover, there exist the agents a other and a worker such that

(a super 7→ a worker) ∈ Attached(σ) and gtype(g) ∈ A goals(atype(a worker)).

In other words, a worker is attached to a other and is able to accomplish the
goal g. This also implies that a other is able to supervise the goal g.

Relying on the definition of a reconfigurable multi-agent system (Defini-
tion 17), we can state that exists a next state σ′′, where the agent a worker
is now attached to the new supervisor a super, i.e.,

(g 7→ a super) ∈ Responsible(σ′′) and a super 7→ a worker) ∈ Attached(σ′′).

Alternatively, we can state that exists a next state σ′′, where the respon-
sibility of completing g is now moved to the new supervisor a other, i.e.,

(g 7→ a other) ∈ Responsible(σ′′) and (a other 7→ a worker) ∈ Attached(σ′′).

In both cases, we can proceed by assigning the goal g to the agent a worker
and completing the goal as described above. In other words, we can show that
there is the state σ′ : Σ such that

(σ′′ 7→ σ′) ∈ Trans+ ∧ σ′ ∈ GMap(g).

By transitivity, we get that

(σ 7→ σ′) ∈ Trans+ ∧ σ′ ∈ GMap(g),

which is again exactly what we needed to prove.

2

The theorem requires for a multi-agent system to be open, which is not
always the case in practice. In general, even without the openness assump-
tion, we can still demonstrate goal reachability provided there always exists
at least one agent which is able to accomplish this goal as well as one agent
which is able to supervise it. The incorporated reconfigurability mechanisms
will be then still sufficient to enable completion of the goal. Alternatively, we
can quantitatively assess (based on the given agent failure and service rates)
goal reachability using probabilistic model checking. In our previous work
[32], we have employed such techniques for quantitative assessment of goal-
oriented multi-agent systems using the PRISM probabilistic model checker.
To enable probabilistic analysis of system models in PRISM, we have relied
on our continuous-time probabilistic extension of the Event-B framework
[33].

20

4 Formal Development of a Goal-Oriented

MAS in Event-B

In the previous section we presented a general theory for reasoning about
goal-oriented multi-agent state transition systems with incorporated recon-
figuration mechanisms. There are many formalisms that support modelling
and verification of state transition systems. In this section we will briefly
overview one of them – Event-B – and present a number guidelines demon-
strating how the notions defined above can be easily transferred and incorpo-
rated in Event-B. In a sense, by doing this we show a possible instantiation
of our general theory in a concrete formalism. In turn, this should facilitate
formal development of a goal-oriented MAS in Event-B.

4.1 Event-B: Background

Event-B is a state-based framework that promotes the correct-by-construc-
tion approach to system development and formal verification by theorem
proving. In Event-B, a system model is specified using the notion of an
abstract state machine [1]. An Abstract State Machine encapsulates the
model state, represented as a collection of variables, and defines operations on
the state, i.e., it describes the dynamic behaviour of a modelled system. The
variables are strongly typed by the constraining predicates that together with
other important properties of the systems are defined in the model invariants.
Usually, a machine has an accompanying component, called context, which
includes user-defined sets, constants and their properties given as a list of
model axioms.

Machine M
Variables v
Invariants I
Events

Init
evt1
· · ·
evtN

−→

Context C
Carrier Sets d
Constants c
Axioms A

Figure 2: Event-B machine and context

A general form for Event-B models is given in Fig. 2. The machine is
uniquely identified by its name M . The state variables, v, are declared in the
Variables clause and initialised in the Init event. The variables are strongly
typed by the constraining predicates I given in the Invariants clause. The
invariant clause might also contain other predicates defining properties (e.g.,
safety invariants) that should be preserved during system execution.

21

The dynamic behaviour of the system is defined by a set of atomic events.
Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, the guard Ge is a
predicate over the local variables of the event and the state variables of the
system. The body of an event is defined by a multiple (possibly nondeter-
ministic) assignment over the system variables. In Event-B, an assignment
represents a corresponding next-state relation Re. The guard defines the
conditions under which the event is enabled, i.e., its body can be executed.
If several events are enabled at the same time, any of them can be chosen
for execution nondeterministically.

If an event does not have local variables, it can be described simply as:

e =̂ when Ge then Re end.

Event-B employs a top-down refinement-based approach to system devel-
opment. Development starts from an abstract specification that nondeter-
ministically models the most essential functional requirements. In a sequence
of refinement steps, we gradually reduce nondeterminism and introduce de-
tailed design decisions. In particular, we can add new events, split events
as well as replace abstract variables by their concrete counterparts, i.e., per-
form data refinement. When data refinement is performed, we define gluing
invariants as a part of the invariants of the refined machine. They define the
relationship between the abstract and concrete variables.

Often a refinement step introduces new events and variables into the
abstract specification. The new events correspond to the stuttering steps
that are not visible at the abstract level, i.e., they refine implicit skip. To
guarantee that the refined specification preserves the global behaviour of the
abstract machine, we should demonstrate that the newly introduced events
converge. To prove it, we need to define a variant an expression over a
finite subset of natural numbers and show that the execution of new events
decreases it. Sometimes, convergence of an event cannot be proved due to a
high level of non-determinism. Then the event obtains the status anticipated.
This obliges the designer to prove at some later refinement step, that the
event indeed converges.

The consistency of Event-B models, i.e., verification of well-formedness
and invariant preservation as well as correctness of refinement steps, is demon-
strated by discharging a number of verification conditions – proof obligations.
The Rodin platform [27] provides an automated support for formal mod-
elling and verification in Event-B. In particular, it automatically generates
the required proof obligations and attempts to discharge them. The remain-
ing unproven conditions can be dealt with by using the provided interactive
provers.

22

Context C0
Sets Goals, Agents
Constants G graph,GraphClosure,Subgoals
Axioms
axm1: Goals ̸= ∅
axm2: Agents ̸= ∅
axm3: G graph ∈ Goals↔Goals
axm4: GraphClosure ∈ Goals↔Goals
axm5: G graph ⊆ GraphClosure
axm6: ∀g1, g2·(g1 7→ g2) ∈ G graph⇔

(g1 7→ g2) ∈ G graph ∨ (∃g3·(g1 7→ g3) ∈ G graph ∧ (g3 7→ g2) ∈ GraphClosure)
axm7: ∀g ·g ∈ Goals⇒ (g 7→ g) /∈ GraphClosure
axm8: ∀g ·g ∈ Goals⇒ Subgoals(g) = {g1 | (g 7→ g1) ∈ G graph}
...

Figure 3: Context C0

4.2 A Goal-Oriented MAS in Event-B

To formally develop a multi-agent system based on the theory presented in
the previous section, we have to translate or represent the introduced notions
and definitions in terms of the corresponding Event-B elements. Below we
present our guidelines for such a translation.

Event-B separates the static and dynamic parts of a model, putting them
into distinct yet dependent components called a context and a machine. Sim-
ilarly, for our theory, we must first distinguish static and dynamic concepts
and then do, if necessary, a further classification of them to translate the
resulting cases into specific Event-B elements. The obvious criterion for such
a separation is the direct dependence of the concept in question on the type
Σ denoting the system state space. To be precise, if its type depends on Σ
(see Table 1 for particular cases of such dependence), we consider a concept
is a dynamic one and it must be represented as one of the elements (e.g.,
state variables or events) in the model machine component(s). Otherwise, it
is considered static and becomes one of the elements of a model context.

Representation of static concepts of goal-oriented MAS in Event-
B. Using the above criterion, the static notions of our theory include the
types for all possible goals and agents (G and A) and their types (GType and
AType) as well as different structures defining various classifications and in-
terdependencies between elements of these types. The latter include G graph,
GT graph, atype, gtype, A goals, G agents, AG Rel, A Sub, AS goals,
GS agents, and so on.

We introduce static notions as sets and constants of a model context
and define their properties as a number of context axioms. For instance, the
following excerpt (Fig.3) defines the sets Goals and Agents (i.e., G and A) as
well as the constants G graph, GraphClosure (i.e., G graph+), and Subgoals.

Note that, since both our theory and Event-B are based set theory and

23

Context C1 extends C0
Sets GType, AType
Constants atype, gtype,GT graph,ROBOT,B STATION,ZONE CLEANING,AG Rel

SECTOR CLEANING,Robots,BStations,ZCleaning,SCleaning
Axioms
axm1: ZCleaning ⊆ Goals ∧ SCleaning ⊆ Goals
axm2: Robots ⊆ Goals ∧ BStations ⊆ Goals
axm3: (Goals = ZCleaning ∪ SCleaning) ∧ (ZCleaning ∩ SCleaning = ∅)
axm4: (Agents = Robots ∪ BStations) ∧ (Robots ∩ BStations = ∅)
axm5: GType = {ZONE CLEANING,SECTOR CLEANING}
axm6: AType = {ROBOT,B STATION}
axm7: gtype ∈ Goals → GType
axm8: atype ∈ Agents → AType
axm9: gtype[Robots] = {ROBOT}
axm10: gtype[BStations] = {B STATION}
axm11: atype[ZCleaning] = {ZONE CLEANING}
axm12: atype[SCleaning] = {SECTOR CLEANING}
axm13:GT graph ∈ GType↔GType
axm14:GT graph = {ZONE CLEANING 7→ SECTOR CLEANING}
axm15:AG Rel ∈ AType↔GType
axm16:AG Rel = {B STATION 7→ ZONE CLEANING,ROBOT 7→ SECTOR CLEANING}
...

Figure 4: Context C1

predicate calculus, the considered definitions are translated in a rather straight-
forward way. Such a translation gives a generic context that may be used
for modelling of a class of suitable systems or, alternatively, used in very
abstract models which are later refined by constraining (instantiating) the
defined structures for concrete cases.

In the following excerpt of a refined context (Fig.4), we constrain the
abstract definitions of Goals and Agents to those of our running example
(the multi-robotic cleaning system described in Section 2), as defined in the
axioms 1–4. We also give concrete definitions for the introduced types GType
and AType (axioms 5–6), the functions gtype and atype (axioms 7–12), and
the relation structures GT graph and AG Rel (axioms 13–16). It can be eas-
ily demonstrated that these axioms are proper instantiations of their general
definitions given in Definition 8 (atype, gtype), Definition 9 (AG Rel) and
Definition 11 (GT graph).

Representation of dynamic concepts of goal-oriented MAS in Event-
B. In general, the system dynamics (formalised as state transitions on state
space Σ constrained by the relation Trans) is represented as machine events
in Event-B. However, various introduced concepts that affect this dynamics
(e.g., connecting particular state transitions with goal and agent structures,
supervision and reconfiguration mechanisms, the properties to be preserved,
etc.) can be represented as different elements of an Event-B machine, such as
model variables, invariants, predicate expressions, or specific events. Table 1
gives a summary of such possible representations.

For instance, a number of dynamic system attributes (such as Active,

24

Table 1: Translation guidelines

Theory definition Event-B counterpart

Trans : Σ ↔ Σ initialisation and events of a machine

functions of the form Σ → T machine variables of the type T

GMap(g), SGMap(g) : G → P(Σ) a predicate over machine variables

a property of the form ∀σ : Σ. P (σ) a machine invariant

a property of the form

∀σ : Σ. P (σ) ⇒ ∃σ′. σ 7→ σ′ ∈ Trans ∧R(σ, σ′) a specific machine event

Machine M1
Sees C1
Variables Active,Attached, ...
Invariants
inv1: Active ∈ P(Agents)
inv2: Attached ∈ P(Agents×Agents)
inv3: ∀a1, a2· (a1 7→ a2) ∈ Attached ⇒ a1 ∈ Active ∧ a2 ∈ Active
inv4: ∀a1, a2· (a1 7→ a2) ∈ Attached ⇒ atype(a1) 7→ atype(a2) ∈ A Sub
inv5: ∀a1, a2· (a1 7→ a2) ∈ Attached ⇒ ¬(∃a3. a3 ̸= a1∧(a3 7→ a2) ∈ Attached)
...

Events

...
end

Figure 5: Model variables and invariants

Attached, Responsible, Assigned, etc.) are formalised as functions of the
form Σ → T . They can be naturally represented as model variables of the
type T . In their definitions, these attributes are usually associated with some
defining properties that are supposed to be preserved in each reachable state.
These properties then become invariants of the resulting Event-B model.

As an example, let us consider the definition of agent attachment (Def-
inition 14). It introduces a dynamic attribute (function) Attached : Σ →
P(A×A) with the following property (14.2)

∀σ : Σ, a1, a2 : A. (a1 7→ a2) ∈ Attached(σ) ⇒
a1 ∈ Active(σ) ∧ a2 ∈ Active(σ) ∧ atype(a1) 7→ atype(a1) ∈ A Sub ∧
¬(∃a3 : A. a3 ̸= a1 ∧ (a3 7→ a2) ∈ Attached(σ)).

In its turn, Attached depends on another dynamic attribute (state vari-
able) Active defined as Active : Σ → P(A). The following excerpt from an
Event-B machine (Fig.5) demonstrates how both Active and Attached can
be represented.

Another kind of dynamic properties is often expressed in the form

∀σ : Σ. P (σ) ⇒ ∃σ′. σ 7→ σ′ ∈ Trans ∧R(σ, σ′).

25

Events

...
Attach =̂
any a1, a2
where

a1 ∈ Active
a2 ∈ Active
atype(a1) 7→ atype(a2) ∈ A Sub
a1 7→ a2 /∈ Attached
¬(∃a3· a3 ∈ A ∧ (a3 7→ a2) ∈ Attached)

then
Attached := Attached ∪ {a1 7→ a2}

end

Figure 6: Model events

Essentially, such properties require existence a particular kind of state tran-
sitions in the system. Since state transitions are represented as model events
in Event-B, this is an indication that a specific model event should be con-
structed, thus implementing the given property.

Let us go back to the definition of agent attachment (Definition 14). The
last definition property (14.3) requires that

∀σ : Σ, a1, a2 : A. a1 ∈ Active(σ) ∧ a2 ∈ Active(σ) ∧
atype(a1) 7→ atype(a2) ∈ A Sub ∧ ¬(∃a′1 : A. (a′1 7→ a2) ∈ Attached(σ))

⇒
∃(σ′ : Σ). (σ 7→ σ′) ∈ Trans ∧ (a1 7→ a2) ∈ Attached(σ′).

As a result of event construction, the left hand side of implication then
becomes the event guard, while the right hand side defines the required action
of the event (see Fig.6).

Finally, in our formalisation the functions GMap : G → P(Σ) and
SGMap : G → P(Σ) relate goals with specific states where goals (or some
expressions on their subgoals) are considered as reached. In Event-B, we
can model these functions as particular predicates on state variables storing
such information about reached goals. Often, such information is partitioned
(stored on distinct variables) according to the involved goal type.

Let us consider again our example of the system with cleaning robots and
coordinating base stations. We have two types of goals – zone cleaning and
sector cleaning – which are responsibilities of base stations and robots respec-
tively. The information about reached goals can be stored in two distinct
boolean array variables: zone is cleaned for the goals in CleaningZones,
and sector is cleaned for the goals in CleaningSectors. Then GMap(g)
can be represented as the predicate zone is cleaned(g) = TRUE, if g ∈
CleaningZones, and sector is cleaned(g) = TRUE otherwise.

Recall that SGMap(g) serves as the precondition for reaching the goal
g, while the goal completion of g may not be officially recorded yet. In our

26

Variables state
Invariants
inv1: state ∈ State
Events

Goal not reached =̂
any g
status anticipated
where

state /∈ GMap(g)
then

state :| state′ ∈ State
end

Figure 7: Anticipated goal reachability

example system, SGMap(g) for g ∈ CleaningSectors may be represented,
e.g., as

CoverageSensor(r 7→ s) = TRUE,

for some robot r and sector s, indicating that the whole sector area has been
covered by the cleaning robot r, which may not yet reacted on that.

Goal reachability . In Definition 1, we define a goal-oriented multi-agent
system as such that has ability to reach any of its goal from its initial states:

∀g : G. ∃σ, σ′ : Σ. σ ∈ Init ∧ (σ 7→ σ′) ∈ Trans∗ ∧ σ′ ∈ GMap(g).

How can we enforce this property in Event-B? One possibility is to start with
a very abstract system with a single event (see Fig.7).

Here the single state variable state is completely non-deterministically
updated in the event Goal not reached. The anticipated status of the event
indicates that we promise to prove convergence of this event, thus showing
reachability of any system goal. The actual proof of such convergence is
postponed until some later refined model, which has enough implementation
details prove overall convergence based on a formulated variant expression.

Alternatively, we can rely on ProB, a model checker for Event-B, and ver-
ify goal reachability by formulating and checking the corresponding temporal
logic property for the considered system model.

5 Related Work and Conclusions

Related Work. The field of design of multi-agent systems has consider-
able evolved over the last decade. Surveying the literature on MAS reveals
a significant amount of research devoted to different agent organisation con-
cepts, agent specification languages and platforms, modelling and verification
agent behaviour, etc. The resulting approaches vary significantly in terms

27

of the covered topics, such as agent interoperability, communication, roles,
goals and beliefs. Below we outline only a few works most relevant to our
research.

The Tropos methodology [6] supports analysis and design in the develop-
ment of agent-based software systems. UML diagrams are used to represent
the system goals, agents, their capabilities and interdependencies, as well as
system properties and agent interactions. An extension of this work [21] also
supports modelling of agent errors and recovery activities.

Another proposed methodology - Multi-Agent System Engineering (MaSe)
[8] – guides the designer through the software lifecycle of a multi-agent sys-
tem. It allows graphically represent the system goals, the associated use cases
and agent roles. Finite state automata are used to express communications
between agent classes. The accompanied tool, the Agent Tool, supports the
agent system development following the MaSe methodology. An extension
of this work, Organization-based MaSE (O-MaSe) [9], provides a mechanism
for defining agent interactions with the environment via external actors as
well as defining the interaction protocols between the system and the actors.
O-MaSE makes use of UML class diagrams and does not support formal
notation.

Formal modelling of agent systems has been undertaken by [31, 30, 28, 29].
The authors have proposed an extension of the UNITY framework to explic-
itly define such concepts as mobility and context-awareness. The mobile
UNITY [31] extension proposes the notation to express mobile computations
and a logic for reasoning about components temporal properties. It also sup-
ports formal reasoning about mobile components and their behaviour. On
the other hand, the Context UNITY extension [29] formalises context-aware
computing, with the proposed notation to represent the system context. The
sensed aspects of the environment are used by the system to adjust its be-
haviour. In our formalisation we have pursued a different goal – we aimed
at formally guaranteeing that the specified agent behaviour with the incor-
porated reconfiguration mechanisms facilitates achieving the defined system
goals.

Formal modelling of fault tolerant MAS in Event-B has been also under-
taken by Ball and Butler [3]. They have proposed a number of informally
described patterns that allow the designers to incorporate well-known (static)
fault tolerance mechanisms into formal models. In our approach we consider
fault tolerance as a part of ensuring resilience of MAS. Moreover, we have
formalised a more advanced fault tolerance scheme that relies on goal real-
location and dynamic reconfiguration to guarantee goal reachability.

The use of model checking techniques for reasoning about MAS prop-
erties has been actively researched as well (see, e.g., [4, 5, 17, 11, 18]). In
particular, [5] presents a framework for verification of agent programs against
BDI (belief-desire-intention) agent specifications. In the proposed approach,

28

an agent system is first programmed using the logic-based agent oriented
programming language AgentSpeak(F). Then the AgentSpeak(F) programs
are translated into Promela – the specification language of the SPIN model
checker – to verify the resulting system. Ferrari et al. [10] describe a verifica-
tion of π-calculus based process algebra for mobile agents, while [18] presents
modelling of fault-tolerant agents by stochastic Petri nets. The paper [17]
describes the symbolic model checker MCMAS, specifically tailored for ver-
ification of MAS. The MCMAS tool takes as inputs models describing both
agents and working environment of a multi-agent system and applies the
epistemic logic to analyse it. However, model checking approaches typically
suffer from the state space explosion problem, which is especially acute for
large systems. As demonstrated by the proposed guidelines, our formalisa-
tion can be easily represented in the Event-B formalism. Since Event-B is
based on theorem proving, this would help to avoid the mentioned problem.

The foundational work on goal-oriented development has been done by
van Lamsweerde [7, 34, 36]. The proposed KAOS framework [7] provides a
goal-oriented approach for requirements modelling, specification, and anal-
ysis, to address both functional and non-functional system requirements.
Based on the KAOS framework, Lamsweerde [35] has proposed a method
for deriving the software architecture from its requirements. Specifically,
according to the method, the software specification is developed from the re-
quirements which is then used to build the architectural design. The design
is based with consecutive refinements, which take into account constraints
and non-functional goals. The KAOS approach is supported by the GRAIL
tool [7].

Over the last decade the goal-oriented approach has also received sev-
eral extensions that allow the designers to link it with formal modelling
[14, 25]. In particular, the work [14] presents the technique of translating
KAOS operational models into event-based tabular specifications that can
be then analysed by SCR* toolset [12]. The technique consists of a number
of transformation steps each of which solves semantic, structural or syntactic
dereferences between the KAOS and SCR (Software Cost Reduction) lan-
guages.

Significant amount of research has been devoted for translating formal
specifications of software operations built according to the KAOS goal-oriented
method into event-based transition systems. For example, the work [16]
presents an approach to use the formal analysis capabilities of LTSA (La-
belled Transition System Analyser) to analyse and animate KAOS opera-
tional models. The mapping allows designers to translate goal-oriented op-
erational requirements into a black-box event-based model of the software
behaviour expressed in a formalism appropriate to reason about behaviours
at the architectural level.

One of the first attempt to bridge KAOS operations with B specifica-

29

tion was presented in [26]. More recently, the study to formalise KAOS in
Event-B was attempted in [2]. The paper proposes a constructive approach
that allows to link high-level system requirements expressed as linear tem-
poral logic formulae to the corresponding Event-B elements. The notion of
a triggered event is used to translate time operators that are used in KAOS
models. Similar, Matoussi et al. [19, 20] describe works on coupling require-
ments engineering methods with formal methods. In contrast, in our work
we have relied on goals to facilitate structuring of the system behaviour,
while connecting them with agent collaboration and system reconfiguration
mechanisms.

In our previous work on goal reachability and agent collaboration, we
have investigated a colony of ants [13]. We have formalised the behaviour of
cooperative ants in Event-B and verified by proofs that the desired system-
level properties become achievable via agent collaboration. The proposed
approach allows the designers to rigorously define constraints on the envi-
ronment and the ant behaviour at different abstraction levels and systemat-
ically explore the relationships between system-level goals, environment and
autonomous ants.

Conclusions. The main paper contribution is the proposed theoretical
study of resilient goal-oriented multi-agent systems. The formalisation grad-
ually defines the main notions of such systems, together with their intricate
relationships between different agent and goal structures as well as the incor-
porated dynamic reconfiguration mechanisms. The latter allow the system to
become more resilient with respect to the system goals and also more collabo-
rative with respect to the involved system agents. The final theorem is proved
to formally demonstrate that all the introduced notions and mechanisms are
sufficient to ensure goal reachability in such a system. The presented work
is based on our experience in formal modelling and verification of resilient
goal-oriented multi-agent systems, see, e.g., [22, 23, 32, 13].

There is a number of features and properties of such systems that were
left out from this formalisation. For instance, it would be interesting to
more deeply investigate how the information about goal reachability is stored
(distinguishing the local and global knowledge) and later propagated from
agents to their supervisors and beyond. This issue is also directly related
with the representation of different levels of perception that some goal is
now completed, how this perception is propagated through the agent and
goal hierarchies, the order of this propagation and delays related with it.
In turn, such knowledge can be used to make the system reconfiguration
mechanisms more efficient by, e.g, avoiding in some cases to redo an already
accomplished goal after the supervisor agent responsible for this goal has
failed. The listed topics constitute the basis for our future work in this
research area.

30

References

[1] J.-R. Abrial. Modeling in Event-B. Cambridge University Press, 2010.

[2] Benjamin Aziz, Alvaro Arenas, Juan Bicarregui, Christophe Ponsard,
and Philippe Massonet. From goal-oriented requirements to event-b
specifications. In First NASA Formal Methods Symposium - NFM 2009,
pages 96–105, 2009.

[3] Elisabeth Ball and Michael Butler. Event-B Patterns for Specifying
Fault-Tolerance in Multi-agent Interaction. In Methods, Models and
Tools for Fault Tolerance, pages 104–129. Springer, 2009.

[4] Rafael Bordini, Michael Fisher, Carmen Pardavila, and Michael
Wooldridge. Model Checking AgentSpeak. In AAMAS 2003, pages
409–416. ACM Press, 2003.

[5] Rafael H. Bordini, Michael Fisher, Willem Visser, and Michael
Wooldridge. Verifying Multi-agent Programs by Model Checking. Au-
tonomous Agents and Multi-Agent Systems, 12(2):239–256, 2006.

[6] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopou-
los. Tropos: An agent-oriented software development methodology. Au-
tonomous Agents and Multi-Agent Systems, 8(3):203–236, 2004.

[7] Robert Darimont, Emmanuelle Delor, Philippe Massonet, and Axel van
Lamsweerde. GRAIL/KAOS: an environment for goal-driven require-
ments engineering. In Proceedings of the 19th International Conference
on Software Engineering, pages 612–613. ACM, 1997.

[8] Scott A. DeLoach. The mase methodology. 11:107–125, 2004.

[9] Scott A. DeLoach and Juan C. Garćıa-Ojeda. O-mase: a customisable
approach to designing and building complex, adaptive multi-agent sys-
tems. IJAOSE, 4(3):244–280, 2010.

[10] Gian-Luigi Ferrari, Stefania Gnesi, Ugo Montanari, and Marco Pistore.
A model-checking verification environment for mobile processes. ACM
Trans. Softw. Eng. Methodol., 12(4):440–473, October 2003.

[11] Jianye Hao, Songzheng Song, Yang Liu, Jun Sun, Lin Gui, Jin Song
Dong, and Ho-fung Leung. Probabilistic Model Checking Multi-agent
Behaviors in Dispersion Games Using Counter Abstraction. In PRIMA
2012, volume 7455 of LNCS, pages 16–30. Springer, 2012.

31

[12] Constance L. Heitmeyer, James Kirby, Bruce G. Labaw, and Ramesh
Bharadwaj. Scr*: A toolset for specifying and analyzing software re-
quirements. In Computer Aided Verification, 10th International Con-
ference, CAV ’98, volume 1427 of Lecture Notes in Computer Science,
pages 526–531. Springer, 1998.

[13] Linas Laibinis, Elena Troubitsyna, Zeineb Graja, Frédéric Migeon, and
Ahmed Hadj Kacem. Formal Modelling and Verification of Cooperative
Ant Behaviour in Event-B. In Software Engineering and Formal Methods
- 12th International Conference, SEFM 2014, volume 8702 of Lecture
Notes in Computer Science, pages 363–377. Springer, 2014.

[14] Renaud De Landtsheer, Emmanuel Letier, and Axel van Lamsweerde.
Deriving tabular event-based specifications from goal-oriented require-
ments models. Requir. Eng., 9(2):104–120, 2004.

[15] J.-C. Laprie. From Dependability to Resilience. In DSN 2008, Depend-
able systems and Networks. IEEE Computer Society, 2008.

[16] Emmanuel Letier, Jeff Kramer, Jeff Magee, and Sebastián Uchitel. De-
riving event-based transition systems from goal-oriented requirements
models. Autom. Softw. Eng., 15(2):175–206, 2008.

[17] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: A
Model Checker for the Verification of Multi-Agent Systems. In CAV
2009, volume 5643 of LNCS, pages 682–688. Springer, 2009.

[18] Michael R. Lyu, Xinyu Chen, and Tsz Yeung Wong. Design and evalua-
tion of a fault-tolerant mobile-agent system. IEEE Intelligent Systems,
19(5):32–38, 2004.

[19] Abderrahman Matoussi, Frédéric Gervais, and Régine Laleau. A first
attempt to express KAOS refinement patterns with event B. In Abstract
State Machines, B and Z, First International Conference, ABZ 2008,
page 338, 2008.

[20] Abderrahman Matoussi, Frédéric Gervais, and Régine Laleau. A goal-
based approach to guide the design of an abstract event-b specifica-
tion. In 16th IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS 2011, pages 139–148, 2011.

[21] Mirko Morandini, Loris Penserini, and Anna Perini. Towards goal-
oriented development of self-adaptive systems. In Proceedings of the
2008 International Workshop on Software Engineering for Adaptive and
Self-managing Systems, SEAMS ’08, pages 9–16. ACM, 2008.

32

[22] Inna Pereverzeva, Elena Troubitsyna, and Linas Laibinis. A Case
Study in Formal Development of a Fault Tolerant Multi-robotic Sys-
tem. In Software Engineering for Resilient Systems - 4th International
Workshop, SERENE 2012, Pisa, Italy, September 27-28, 2012. Proceed-
ings, volume 7527 of Lecture Notes in Computer Science, pages 16–31.
Springer, 2012.

[23] Inna Pereverzeva, Elena Troubitsyna, and Linas Laibinis. Formal De-
velopment of Critical Multi-agent Systems: A Refinement Approach. In
2012 Ninth European Dependable Computing Conference, Sibiu, Roma-
nia, May 8-11, 2012, pages 156–161. IEEE, 2012.

[24] Inna Pereverzeva, Elena Troubitsyna, and Linas Laibinis. Formal Goal-
Oriented Development of Resilient MAS in Event-B. In Reliable Soft-
ware Technologies - Ada-Europe 2012 - 17th Ada-Europe International
Conference on Reliable Software Technologies, Stockholm, Sweden, June
11-15, 2012. Proceedings, volume 7308 of Lecture Notes in Computer
Science, pages 147–161. Springer, 2012.

[25] Christophe Ponsard, Gautier Dallons, and Massone Philippe. From Rig-
orous Requirements Engineering to Formal System Design of Safety-
Critical Systems. In ERCIM News (75), pages 22–23, 2008.

[26] Christophe Ponsard and Emmanuel Dieul. From requirements models
to formal specifications in B. In Proceedings of the CAISE*06 Workshop
on Regulations Modelling and their Validation and Verification ReMo2V
’06, 2006.

[27] Rodin. Event-B Platform. online at http://www.event-b.org/.

[28] Gruia-Catalin Roman, Christine Julien, and Jamie Payton. A formal
treatment of context-awareness. In Fundamental Approaches to Software
Engineering, 7th International Conference, FASE 2004, volume 2984 of
Lecture Notes in Computer Science, pages 12–36. Springer, 2004.

[29] Gruia-Catalin Roman, Christine Julien, and Jamie Payton. Modeling
adaptive behaviors in context UNITY. Theor. Comput. Sci., 376(3):185–
204, 2007.

[30] Gruia-Catalin Roman and Peter J. McCann. A notation and logic for
mobile computing. Formal Methods in System Design, 20(1):47–68,
2002.

[31] Gruia-Catalin Roman, Peter J. McCann, and Jerome Y. Plun. Mobile
UNITY: reasoning and specification in mobile computing. ACM Trans.
Softw. Eng. Methodol., 6(3):250–282, 1997.

33

[32] Anton Tarasyuk, Inna Pereverzeva, Elena Troubitsyna, and Linas Laib-
inis. Formal development and quantitative assessment of a resilient
multi-robotic system. In Software Engineering for Resilient Systems,
5th International Workshop, SERENE 2013, Kiev, Ukraine, October 3-
4, 2013. Proceedings, volume 8166 of Lecture Notes in Computer Science,
pages 109–124. Springer, 2013.

[33] Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis. Integrating
stochastic reasoning into Event-B development. Formal Aspects of Com-
puting, 27(1):53–77, 2015.

[34] Axel van Lamsweerde. Goal-oriented requirements engineering: A
guided tour. In Requirements Engineering, pages 249–263, 2001.

[35] Axel van Lamsweerde. From system goals to software architecture.
In Formal Methods for Software Architectures, volume 2804 of Lecture
Notes in Computer Science, pages 25–43. Springer, 2003.

[36] Axel van Lamsweerde. Requirements Engineering: From System Goals
to UML Models to Software Specifications. Wiley, 2009.

34

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Information Technologies

Turku School of Economics

• Institute of Information Systems Sciences

ISBN 978-952-12-3207-7
ISSN 1239-1891

