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Abstract 

With the ongoing deployment of smart grids, price-responsive demand is playing an 

increasingly important role in the paradigm shifting of electricity markets. Taking a 

multi-agent system modeling approach, this paper presents a conceptual platform for 

discovering dynamic pricing solutions that reflect the varying cost of electricity in the 

wholesale market as well as the level of demand participation, especially regarding 

household customers and small and medium sized businesses. At first, an agent-based 

meta-model representing various concepts, relations, and structure of agents is 

constructed. Then a domain model can be instantiated based upon the meta-model. 

Finally, a simulation experiment is developed for use case demonstration and model 

validation. The simulation is for the supplier to obtain the profit-maximizing demand 

curve which has such a shape that it follows the spot price curve in inverse ratio. The 

result suggests that this multi-agent-based construct could contribute to 1) estimating 

the impacts of various time-varying tariff options on peak-period energy use through 

simulation, before any experimental pilots can be carried out; 2) modeling the electricity 

retail market evolving interactions in a systematic manner; 3) inducing innovative 

simulation configurations. 

 

Keywords: Agent-based Modeling, Computational Intelligence, Demand Response, 

Electricity Markets, Meta-model, Multi-agent Systems, Real-time Pricing, Smart Grids. 
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1.  Introduction 

The deployment of Advanced Metering Infrastructure (AMI) in many countries allows 

bi-directional communications between electricity consumers and suppliers. It is 

creating a platform for demand-responsive load control within the smart grids, which 

will shift the paradigm of electricity markets in many ways. Foreseeably, consumers 

will be able to manage and adjust their electricity consumption in response to real-time 

information and changing price signals. Accordingly, electric utilities will be capable of 

altering the timing, level of instantaneous demand, or the total electricity consumption 

at times of high wholesale market prices or when electric system reliability is 

jeopardized [1]. Such a price-responsive interaction between demand and supply (a.k.a. 

Demand Response) will in turn impact the spot market prices directly as well as over 

time [2], eventually, improve the link between wholesale and retail power markets 

which to a great extent are disconnected currently. The potential benefits of full 

participation by demand include flattening daily load patterns, optimizing the 

production portfolio by mitigating the variability of generation from renewable sources, 

and reducing the investment in reserve capacity needed to maintain resource adequacy 

and system reliability [3], thus improving overall market efficiency.  

However, in order for the above mentioned demand responsive paradigm to be realized, 

the understanding of the ever-evolving interaction between the demand and the supply 

sides in the electricity retail market is crucial. As the competitive electricity retail 

markets are relatively new and the demand response electricity markets are 

acknowledged as one of the most complex adaptive systems, there is an increasing need 

for advanced modeling approaches that simulate the emergent behavior (demand 

responsiveness) among market participants (e.g., consumers, suppliers, producers, 

prosumers, etc.). Agent-based modeling (ABM), compared to traditional system-

modeling techniques, is one appealing approach for studying how the market 

participants might act and react to the complex economic, financial, regulatory, and 

environmental circumstances embedded in the electricity sector.  

Agent-based modeling has been extensively studied for the simulation of electricity 

markets in recent decades, alongside with the electricity industry restructuring and the 

generation, transmission, distribution, and supply business entities unbundling. The 

large majority of ABM research related to the electricity markets simulation is centered 

around the analysis of market power and market mechanisms in the wholesale 

electricity trading. Very often the demand side is represented as a fixed and price-

insensitive load [4]. Only a handful of research has touched upon modeling the price-

responsive electricity consumer behavior at the retail level [28]-[31]. In this paper, we 

will introduce a multi-agent-based meta-model (MAMM) for systematically modeling 

the price-responsive emergent behavior in the context of demand response electricity 

retail market. The proposed MAMM is to present a conceptual platform for discovering 

dynamic pricing solutions that reflect the varying cost of electricity in the wholesale 

market as well as the level of demand participation (e.g., demand responsiveness vs. 
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various rate designs), especially regarding household customers and small and medium 

sized businesses. 

One of the unknowns in implementing dynamic pricing is whether and by how much 

customers would reduce peak loads in response to changing price signals [5]. Therefore, 

it would be necessary to estimate the impacts of various time-varying tariff options on 

peak-period energy use, before any experimental pilots can be carried out (Quite often, 

it is complicated, costly, and time-consuming to organize this kind of pricing pilot 

programs). Hence, the research objective of the agent-based demand modeling is to help 

address this estimation issue through simulation experiments. To be close to real 

conditions the simulation experiments ought to capture a large variety of aspects and 

side conditions influencing the energy consumption. Therefore, we introduce at first a 

MAMM that defines the concepts, relations, and structure of utility-based agents on 

abstraction level being independent of any concrete domain. Secondly, instantiating the 

MAMM with domain specific notions, e.g. with those needed for electricity market 

modeling, provides a uniform abstract interpretation of all domain models that conform 

to the MAMM. Thirdly, given a MAMM, it supports systematic construction of models 

that articulate different static, dynamic, and/or interactive aspects relevant to specific 

simulation experiment. Thus, our research goal in this paper is to demonstrate how the 

MAMM guided domain model construction can be exploited to address the impacts 

analysis problems of various time-varying tariff options by means of agent model 

simulation experiments.  

The paper is organized as follows: the next section will present the research method and 

related research. The conceptual construct will be introduced in Section 3&4. In Section 

5, a use case is used to demonstrate the simulation, in the meantime, to validate the 

conceptual model. In the final part of this paper, the conclusion will be drawn and future 

research will be addressed. 

 

2. Methodology and Related Works  

Agent-based modeling for electricity markets simulation has experienced increasing 

popularity in the past decades. For instance, within the research paradigm of Agent-

Based Computational Economics (ACE), agent-based simulation offers methods to 

understand electricity market dynamics and to derive advice for the design of 

appropriate regulatory frameworks [4]. Compared to other electricity market modeling 

approaches, such as optimization models or equilibrium models, agent-based modeling 

as a bottom-up approach has the advantage of integrating a high level of detail and 

players’ interactions, which are necessary to analyze short-term development in the 

electricity markets [6]. Agent-based models not only offered the possibility of 

realistically describing relationships in complex systems, but growing them in an 

artificial environment [7], thus the evolving behavior can be observed step by step [8].  
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A great deal of research in the field of agent-based simulation of electricity markets has 

concentrated on the analysis of market power and market design in wholesale electricity 

trading. Bower and Bunn (2000) present an agent-based simulation for analyzing 

trading arrangements in the England and Wales electricity market, in order to compare 

different market mechanisms. Consequently, various wholesale electricity market 

simulation models were developed by Bower et al. (2001) for German electricity sector, 

Cau and Anderson (2002) for the Australian National Electricity Market, and by the 

research group at Iowa State University for the Wholesale Power Market Platform 

proposed by the U.S. Federal Energy Regulatory Commission [12]-[14]. In addition, 

different computational algorithms were examined for the agent-based electricity 

market modeling. For instance, Visudhiphan and Ilić (1999, 2001, and 2002) modeled 

electricity trading strategies in the wholesale market by comparing different adaptation 

algorithms. On the other hand, some power market models applied genetic algorithms 

for representing the agents’ bidding behavior [18], [19], [21], whereas some AB models 

simulated the power market by applying Erev-Roth reinforcement learning algorithm 

[12]- [14], [20], [22]. Other simulation methods include learning Classifier Systems 

which are rule-based learning mechanisms combining reinforcement learning and 

genetic algorithms [23]-[27]. Very often, among the majority of agent-based electricity 

wholesale market studies, the demand side is simplified to a fixed and price inelastic 

aggregate daily curve. To certain extent, this reflects the disconnection of the wholesale 

and retail power markets, which will be the obstacle of improving the overall market 

efficiency as will be enabled by the smart grids functionality. 

In the meantime, only a few agent-based research modeled electricity consumer 

behavior at the retail level. Ehlen et al. (2007) presented a simulation based on N-

ABLETM, in which they studied the effects of residential real-time pricing contracts on 

demand aggregators’ load, pricing, and profitability. Müller et al. (2007) investigated 

the interdependencies between the customer’s engagement and the suppliers’ pricing 

strategies in the German retail market by modeling the suppliers as rationally bounded 

agents and by quantifying the households’ decision making (i.e., switching the supplier 

by agreeing on a new standard contract) with surveyed data. In addition, two agent-

based studies focused on the Time of Use (TOU) pricing for residential customers under 

different context. Roop and Fathelrahman (2003) simulated the changes in contracts in 

the context of a distribution grid model, by modeling the distribution grid based on the 

IEEE 13-bus test case and using a modified Roth-Erev algorithm for contract choice 

modeling. Hämäläinen et al. (2000) examined the consumption strategies of individual 

electricity consumers with electric space heating within a coalition. Based on the 

experiment conducted in Helsinki during the winter of 1996, they constructed different 

groups of consumer behavior to simulate this coalition.  

The heterogeneity of agent-based electricity market research, as discussed above, has 

led to that  the models are rarely comparable, and sometimes cannot be described in all 

necessary detail, especially in terms of electricity retail market simulation. Therefore, it 

is necessary and relevant to take an integral and systematic approach in this matter. 

Since price-responsive demand will play an important role in linking the electricity 

wholesale and retail markets driven by the smart grids functionality, we will propose a 
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multi-agent-based conceptual model for demand response retail market modeling in the 

following section.  

The multi-agent-based conceptual model is constructed with the deregulated European 

electricity market structure in mind, in which the electricity generation, transmission, 

distribution, and supply business are legally unbundled, with the generation and supply 

sectors open for free competition while the transmission and distribution business are 

subject to regulation due to their monopolistic nature. Any producers can deliver 

electricity to their respective common electricity wholesale market -- for example, the 

producers in Nordic area can deliver electricity to Nord Pool exchange. The electricity 

wholesale market consists of power producers, power suppliers, retailers, industry and 

other large undertakings. The electricity retail market includes all end-users equipped 

with hourly measured smart meters, for instance, industries, public/commercial 

buildings, households, small businesses, and so on. These are the prerequisites for the 

demand response under study. 

3. The Conceptual Platform 

Meta-modeling is used in Artificial Intelligence (AI) and knowledge engineering for the 

analysis, construction and development of generic concepts, rules, constraints, 

components, frames, and models applicable and useful to certain predefined problem 

domain. As a domain model (DM) is an abstraction of phenomena in the real world, a 

meta-model is the abstraction and specification of the properties of domain models. In 

other words, a domain model can be considered always as an instantiation of certain 

abstract meta-model. In the context of deregulated electricity markets, the function of 

the meta-model under study is to set up a conceptual platform for modeling the demand 

responsiveness against various dynamic pricing solutions. Since the agents of given 

domain are reflective to their environment changes (caused by other agents), they chose 

their reactive actions based on their own goals and try to follow certain utility function 

on that, we propose a customized version of utility-based agents meta-model introduced 

in [32].  

Our MAMM contains abstract concepts interrelated via abstract relations. Each domain 

model that refines MAMM is considered as an instantiation of MAMM. Since the 

domain model includes usually multiple notions all being instances of meta-notions of 

MAMM, the concrete selection of the domain concepts depends on the specific analysis 

problem the domain model has to be constructed for. To give some intuition about the 

notions of MAMM we describe them informally by showing their relationships in the 

form a semantic network depicted in Fig. 1.  

An agent has one or more roles; each of these roles determines one or more goals. The 

way how an agent reacts to the environment (to other agents) with different actions 

depends on its mode and the goal of given mode.  A mode includes a set of agent's 

states and related to given mode goal. Generally, we assume that our DMs are stationary 
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meaning that the agents' roles and their goals do not change during a simulation 

experiment. To fulfill its role an agent performs actions that are triggered by some 

event. The actions, in turn, can generate new events when terminating (atomic actions) 

or in the course of execution (non-atomic actions). Event is a notion related to both - 

time and state. Event reflects the instant of time when some change of state occurs (is 

observable/has some influence to other agents). Agent has a state that is defined as a 

valuation of agent attributes. Agent attributes which are used to define local state are 

usually called internals. Whereas, some of attributes can be shared (common) by many 

agents and define the global state, we call them externals. State is changed by actions. 

Action may have non-zero extent in time. Since each action describes only a subset of 

state changes, the action is enabled only in certain states (generally it does not exclude 

enabledness of some actions in all states). The agent's actions are grouped into modes to 

define the subspaces of the state space and are related to enabling conditions and events 

in modular way. The actions (except the mode changing actions) of a mode depend only 

on the states of the mode subspace. 

 

 
 

Figure 1.  Semantic network of the meta-model. 

For the clarity of further presentation we introduce some meta-notions that refine 
MAMM but are still domain independent. We call a set of actions to interaction if two or 
more agent's actions on shared externals are respectively in the changes and depends 
relations. An interaction is joint action if the actions of different agents share also a 
common start event.  

Before delving into MAMM based construction of DM we summarize the key properties 
of agents that constitute our further space of discourse: autonomy (capable of operating 
and making decision on its own), sociability (capable of interacting with other agents), 
reactivity (capable of responding to a perceived change of environment), proactivity 
(capable of acting on its own initiative in order to achieve certain goals/utilities), and 
adaptivity (with sophisticated learning capabilities) [33], [29].  
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4. Domain Model for Price-Responsive 

Demand Analysis  

The agent is to represent the market actors in the real world and act on behalf of them. 

In the context of electricity markets, it includes producers, transmission and distribution 

operators, suppliers, consumers, prosumers, and other load servicing entities (e.g., 

demand aggregators). Even though the environment is external and largely 

uncontrollable, it is necessary to be simulated also as an agent to make explicit the way 

how it will affect production and consumption activities of the market actors. 

For price-responsive demand modeling, a domain instantiation can be characterized as in 

Fig. 2.  Since the consumer and the supplier are the focal market players in this context, 

the focus of the DM is on the respective actions of the supplier and the consumer and on 

their interactions.  
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Consumer 

state 

has 

Cost-benefit 
considerations 

Load/consumption profile: low, med.-low, 

medium, med.-high, high 

 

Demographic 
attributes 

Risk preferences: low, 

medium, high 
 

Perceived 

savings: low, 

medium, high 

Inconvenience 

tolerance: low, 

medium, high 

Rescheduling 
cost: low, medium, 

high 

Price sensitivity: 
{yes, no} 

Feasibility to shift: 
{yes, no} 

Dem. profile: {occupancy, 
with/without EVs, electric 
space heating, ACs, etc.} 



 

8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Instantiation of MAMM with domain specific concepts. 

5. Use Case  

Based on the domain model described above, simulation experiments can be carried out. 

In this section, we will demonstrate a use case, in order to validate the conceptual 

construct. The simulation model is formalized and run on the UPPAAL environment, 

which is an academic-free modeling, simulation and model-checking tool.  

The simulation setup. As mentioned earlier, one of the potential benefits of demand 

response is to flatten daily load patterns. Therefore, the example scenario is for the 

supplier to obtain the ideal demand curve which has such a shape that it follows the spot 

price curve in inverse ratio. We introduce the model representing the Supplier-Consumer 

interaction with spot price and hourly consumption both being the interaction 

observables. Thus, the main actors in the simulation model are Consumer and Supplier. 

The third actor - Environment serves to demonstrate the flexibility and scalability of the 

model for different time scales and contexts. It allows us to take into account the 

dynamics of long term factors - outdoors temperature, hours of daylight etc. that all have 

impact on the consumption.  

Supplier 

state 

has 

ownership 

marketing 
strategies 

market share 

objectives 

dynamic pricing 
program design 

profit maximization 
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alternative rate 

design 

Risk management 
strategies 
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Simulation consists of 1 supplier and N consumers. The consumers belong to high 

consumption cluster (HCC), which makes steering their demand according to the spot 

price a priority in relation to the supplier’s goal of profit maximization. The spot price is 

based on the Nord Pool Spot published system price for Estonia during the 2
nd

 week of 

January, 2013 (see Table 1).  

Table 1. Elspot prices [EE] in [EUR/MWh] (7.01-13.01, 2013) 

Time Mon Tue Wed Thu Fri Sat Sun 

00 - 01 40,08 37,94 33,32 34,16 33,3 32,88 34,96 

01 - 02 38,36 37,52 32,99 33,91 33,05 32,52 33,7 

02 - 03 37,9 36,9 32,85 32,97 32,96 32,29 33,12 

03 - 04 36,81 36,98 32,91 34,08 33 32,2 33,26 

04 - 05 36,87 36,86 35,71 35,75 33,89 34,27 34,18 

05 - 06 37,35 37,24 40 37,08 34,5 36,35 35,88 

06 - 07 37,29 37,9 44,62 38,82 40,22 39,39 40,6 

07 - 08 37,68 38,62 54,84 42,19 44,08 38,61 48,04 

08 - 09 37,82 39,27 54,93 45,59 48,02 40,09 44,03 

09 - 10 38,46 40,51 48,59 43,61 44,07 40,73 44,02 

10 - 11 44,04 41,22 46,8 42,49 44,06 41,73 44,02 

11 - 12 44,05 41,5 44,94 42,32 44,05 41,48 43,51 

12 - 13 40,11 41,23 44,77 42,44 44,07 44,02 44,02 

13 - 14 39,94 40,95 44,03 43,31 44,06 44 44,02 

14 - 15 40,97 40,95 45,15 44,46 44,02 44,01 44,02 

15 - 16 39,5 43,17 53,27 45,78 44,07 44,01 44,02 

16 - 17 40,39 46,98 52,68 51,64 44,06 44,02 44,01 

17 - 18 44,38 53,45 54,03 52,03 44,09 44 42,71 

18 - 19 47,73 49,16 45,29 44,08 42,24 40,18 41,28 

19 - 20 43,08 42,67 43,64 41,95 40,14 37,9 39,14 

20 - 21 40,63 40,11 40,47 40,51 39,03 32,97 38,05 

21 - 22 39,64 39,98 39,91 37,04 37,95 31,19 37,45 

22 - 23 39,66 40,13 36,39 33,78 35,04 15,09 36,49 

23 - 00 38,02 40,18 37,08 33,27 34,2 28,04 34,49 

 

The pricing algorithm. When designing the pricing function for hourly price we aim at 

getting the driving effects that smoothen sharp fluctuations in consumption without 

alternating HCC's total consumption and possibly increasing supplier’s profit. Also we 

set an upper limit 
TL

 to hourly price change  to avoid overshoots and instability of 

consumption. 

The basis of next day hourly price P'(T) at hour T is the spot price P(T) of the previous 

day at T. Let Q(T) be the consumption at T on previous day. Then the next day hourly 

price P'(T) at hour T is calculated in our simulation by formula (1).  
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where 

  is parameter to amplify or suppress the effect of calculated price correction; 


TL

 is acceptable price change (%);  

sign((T)) is the sign function with co-domain {-1, 1} showing if the price correction is 

positive or negative comparing to previous day spot price. 

The hourly price calculated by (1) is proportional to the difference P(T)·Q(T) - 

avg(P(T)·Q(T)), where avg(P(T)·Q(T)) is arithmetic mean of P(T)·Q(T) over 24 hours. 

The formula (2) guarantees that the calculated change of hourly price never exceeds the 

limit set by
TL

. That is needed for keeping the stability of price response.       

Consumer's behaviour. All consumers of HCC are modeled with the same model 

template. The template is parameterized with cluster specific attributes that allow 

modeling variations in cluster consumption patterns. 

The consumption pattern includes consumption activities, e.g. ironing, room heating, 

water heating, etc. Each activity is characterized by following attributes: enabling 

condition and consumption interval or function. When consumption dependency is well-

defined it is specified by means of explicit function. When non-determinism is 

presented in the consumption pattern the consumption interval is specified instead so 

that random value from that interval is generated for variable Q'(T) update. 

Since our simulations are approximating we abstract away from exact prices and use 

price intervals called Price Sensitivity Zones (PSZs) instead. PSZs approximate the 

price intervals acceptable for a customer for his/her consumption activities. PSZs may 

be different for different consumer clusters. For instance, PSZs of HCC are following: 

Z1 = [, 34], Z2 = [35, 39], Z3 = [40, 44], Z4 = [45, 49], Z5 = [50, 
T
] (EUR/MWh). The 

zones define the factor space of hourly price, where  and 
T
 denote respectively the 

bottom and top element of the price domain.  
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Table 2: Consumption patterns.  

Action 

(high consumer) 

Action enabling condition(s) Consumption 

interval/func. 

(W/h) Time interval Tolerable 

price  

Outdoors temp. 

Laundry, dish 

washing 

00 - 24 P  Z1 - [C1,C2] 

Ironing 19 - 22 P  Z1Z2 - [C3,C4] 

Water heating 06 - 23 P  Z1Z2 - [C4,C5] 

Cooking 07 - 08; 18 - 

19 
P  i=1,5 Zi - [C6,C7] 

Lighting 07 - 09; 18 - 

24 
P  i=1,5 Zi - [C8,C9] 

Heating 00 - 24 P  i=1,3 Zi T < Tcrit (Tcrit-T)*E 

Note:  

Tcrit  -- The highest outdoors temperature when to start the house heating (e.g., Tcrit = 16); 
E - amount of heating energy needed to compensate the decrease of outdoors temperature by one degree 
(e.g., E=50W). 

Model constructs. Now we can specify the formal models of agents Consumer, 

Supplier, and Environment that constitute our simulation use case.  

Consumer template. The template modeling Consumer is depicted in Fig. 3. To avoid the 

overloading of model templates with technical details we model time counting and 

energy metering functions in separate templates that have joint actions synchronized via 

channels 'evolve', 'sum_up', and 'spot_price' with the templates Consumer, Supplier, and 

Environment.  

Supplier template. As in Fig. 4, it has two actions 'Collect_consumption_data' and 

'Planning'. The later is joint action with implicit template Meter. Supplier waits until the 

metering of daily consumption is completed which triggers the action 'Planning' that 

calculates the next day hourly prices by function 'NewHourlyPrice' (following formula 

(1) and (2)). Recall that the consumer's choice of consumption actions depends on that 

hourly price.  

Environment template. To keep the simulation model tractable for given use case we 

model the dynamics of only one observable state component - 'OutDoorTemperature' as 

in Fig. 5. Changing fuel prices and macro-economic factors are assumed to be constants. 

Modeling the temperature changes allows to simulate the consumers' responses in 

broader variety of contexts, e.g., at very low winter temperatures, at sharp changes of day 

and night temperatures, etc. In our simulations, the actual outdoor temperatures in the 

period of 09 -10. 01, 2013 did not change considerably and have actually minor effect. 
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Figure 3.  Consumer template. 

 

 

Figure 4.  Supplier template. 

 

Figure 5.  Environment template.  
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Simulation results. Fig. 6 shows the dynamics of hourly spot prices: P - curve of real 

spot price of the first day (09.01.2013), P' - real spot price of the next day, P'model - spot 

price generated by the model as described in formula (1) and (2). As shown from the 

chart the model calculated price curve P'model is more conservative than real one P'. Fig. 7 

indicates that sharp peakes in P' comparing to P do not have considerable effect to the 

consumption. The consecutive days are chosen intentionally in the middle of week to 

reduce the effect of the weekend.  

 

Figure 6.  Comparison of real and simulated spot price.  

 

 

Figure 7.   Consumption depending on different price signals 

In Fig. 7 Q and Q' presents real aggregated consumption of all consumer clusters 

including industry on the same days of week (9.01.2013 and 10.01.2013) as reference to 

aggregated consumption pattern. According to our model assumptions the high (private) 

consumer's consumption patterns Qmodel and Q'model differ considerably from Q and Q' 

although the spot prices are same. Real price correction even introduces severe 

fluctuations in simulated high consumer behavior (see Q'model(P)). The pricing strategy 

specified in our Supplier model instead provides considerably better stabilizing effect 

(standard deviation decreases about 57%). 
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It is important to note that the simulation is based on a theoretical scenario. It does not 

take into account the impact of other market actor’s activities such as the producer’s 

actions and the environmental factors such as weather condition (except outdoors 

temperature) caused spot price change and demand adjustment. In addition, the agent 

capacity of learning and adaptation is not considered in the simulation. 

6. Conclusion 

Electricity markets are deemed as complex adaptive system. It will be even more so 

with the deployment of smart grids functionality. From a system analysis point of view, 

in this paper, we present a conceptual platform for modeling the price-responsive 

demand, in order to discover the dynamic pricing solutions that reflect the varying cost 

of electricity in the wholesale market as well as the level of demand participation. We 

took a bottom-up approach, i.e., multi-agent-based modeling approach, in the attempt to 

capture and observe the emergent behavior in the electricity demand and supply 

interactions. We hope that the proposed construct will contribute to both the real-world 

practice and the agent-based research community by allowing 1) to estimate the impacts 

of various time-varying tariff options on peak-period energy use through simulation, 

before any experimental pilots can be carried out; 2) to model the electricity retail 

market evolving interactions in a systematic manner; 3) to induce innovative simulation 

configurations. Going without saying, the applicability and scalability of this construct 

need to be further examined in future research. 
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