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Abstract 

The ongoing deployment of AMR (Automated Meter Reading) in the European 

electricity industry has introduced new challenges for companies in terms of how to fully 

utilise the timely measured AMR data, not only to enhance day-to-day operations, but 

also to facilitate demand response. We examine a business intelligence approach based 

on visual data mining techniques in the form of Self-Organising Maps. We cluster the 

customers in our sample according to the customers’ actual consumption behaviour in 

2009, and profile their electricity consumption with a focus on the comparison of two 

sets of seasonal and time based variables. The results suggest that such an analytical 

approach can discover hidden consumption patterns, allowing the electricity companies 

to gain better knowledge about their customers’ electricity usage. Additionally, we 

propose four time bands which can reveal more detailed information for the company to 

take into account regarding pricing differentiation or designing demand response tariffs. 

 

Keywords: Electricity Consumption Profiling, Business Intelligence, Visual Data 

Mining, Self-Organizing Maps, and Electricity Distribution 
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1. Introduction  

Within the electricity industry, the deployment of Automated Meter Reading (AMR, 

i.e., remotely-readable, two-way communication smart meters) has been a topical issue 

for some time, especially in Europe. The progress of such deployment varies across EU 

countries. While Italy and Sweden have completed their nation-wide smart meter 

installations, and Finland is due to finish its large scale rollout to both commercial and 

household customers by 2013, other countries such as the UK and Belgium are still in 

the trial or cost-benefit analysis stage. It is well-acknowledged by the electricity 

industry that the deployment of smart meters and smart metering will benefit the 

electricity distribution business in several ways. On the one hand, short term benefits 

will include more efficient and accurate billing, customer services, fault detection and 

automated healing, just to name a few, while in the long run, it could facilitate the 

development of smart grids, the integration of renewable energy resources (in particular, 

distributed generation), and ultimately the improvement of energy efficiency. On the 

other hand, the sheer amount of half-hourly or hourly measured electricity consumption 

data also introduces both opportunities and challenges for the electricity distribution 

system operators (DSOs) and /or the electricity retailers, in terms of how to manage and 

fully utilise such a wealth of data. So far, despite that there are successful business cases 

from Enel in Italy and Vattenfall Networks in Finland (Cotti and Millan 2011; Garpetun 

2011), the utilisation of smart meter data or smart metering is limited to either 

enhancing distribution operation (e.g., automated fault detection and healing) or cost-

saving from manual customer meter reading. For example, Mutanen et al. (2008) 

presented a method for AMR data to be used to enhance distribution state estimation. 

Moreover, the utilisation of AMR measurements in improving the accuracy of load 

modelling has been studied (Mutanen et al. 2011). Several similar studies (Abdel-Aal 

2004; Charytoniuk and Chen 2000; Valtonen et al. 2010a; 2010b) have focused on 

AMR-based short-term load forecasting. Nonetheless, according to a recent report by 

CEER (Council of European Energy Regulators), among the three European countries 

who have made decision to roll out smart meters (i.e., Italy, Sweden, and Finland), none 

have a demand response scheme based on smart metering. According to CEER’s 

definition, demand response is about “Changes in electric usage by end-use 

customers/micro generators from their current/normal consumption/injection patterns 

in response to changes in the price of electricity over time, or to incentive payments 

designed to adjust electricity usage at times of high wholesale market prices or when 

system reliability is jeopardized. This change in electric usage can impact the spot 

market prices directly as well as over time” (CEER 2011). This implies that in order to 

fully utilise the business potential enabled by smart metering technologies, it requires 

not only that the energy customers be well-informed, but also the electricity end users’ 

active engagement is crucial. To this end, we perceive that the establishment of a 

demand response retail market requires that the DSOs or the electricity retailers have 

good knowledge about their customers’ timely electricity consumption patterns. 

Therefore, we believe that there is room to explore the smart meter data deeper for more 

gold nuggets.  
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In this paper, we propose a business intelligence (BI) approach, based on visual data 

mining in the form of Self-Organizing Maps (SOM), namely electricity consumption 

time series profiling. Traditionally, the DSOs have classified customers according to 

their business nature (i.e., industrial, commercial, and residential) and their consumption 

bands (e.g., annual consumption < 2,000kWh, >5,000kWh, or > 18,000kWh) and 

housing types (e.g., detached houses, town houses, and multi-storeyed buildings) for 

household customers. Even in the same customer class, the consumption patterns may 

vary considerably due to customers’ business nature / life style diversity (Keppo and 

Räsänen 1999). Additionally, the customer type is usually determined when the 

electricity connection is contracted, which is highly likely out-dated because of later 

changes in the customer’s profile, for example, occupancy changes in a household. 

Now, smart meter data provides the opportunity to group and compare the customers 

according to their actual energy usage, especially taking seasonal variations into 

account.  

In this study, we analyse quasi-daily smart meter data for approximately 12,000 

customers in a Finnish region in 2009. We compare two sets of variables in terms of 

seasons and time bands partition. This is done to demonstrate (1) what insightful 

knowledge such a business intelligence approach (i.e., electricity consumption time 

series profiling) can offer, and (2) what is the added value for DSOs or electricity 

retailers in applying such an analytical approach for decision making support, with 

respect to pricing differentiation or designing demand response tariffs. 

The paper is organised as follows: in the next two sections, the methodology will be 

described first, followed by a brief introduction to the business case area. Thereafter, the 

experiment, results, and the analysis will be presented, and in the last part of this paper, 

the conclusion will be drawn and limitations and future research will be addressed. 

2. The SOM Method 

The Self-Organising Map (SOM) is a data-mining approach based upon Artificial 

Neural Networks (ANNs). ANNs are designed to mimic the basic learning and 

association patterns of the human nervous system, and consist of a number of neurons 

(simple processors) connected by weighted connections. ANNs learn by adjusting the 

weight of each connection, increasing or decreasing the importance of the input 

(information) being transferred, until a desired output is achieved. Essentially, they are 

non-linear, multivariate regression techniques, better able to handle erroneous and noisy 

data than parametric statistical tools (Bishop1995) 

The SOM is a widely used unsupervised neural network, particularly suitable for 

clustering and visualisation tasks (Han and Kamber 2000; Kohonen 1997). It is capable 

of projecting the relationships between high-dimensional data onto a two-dimensional 

display (or map), where similar input records are located close to each other (Kohonen 

1997). By adopting an unsupervised learning paradigm, the SOM conducts clustering 

tasks in a completely data-driven way (Kohonen 1997; Kohonen et al. 1996), i.e., no 

target outputs are required. Because of its robustness, it requires little a priori 
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information or assumptions concerning the input data, and is more tolerant towards 

difficult data, including non-normal distributions, noise, and outliers, than traditional 

statistical tools. In addition, the SOM’s ability to preserve the topological relationships 

of the input data and its excellent visualisation features motivated the authors to apply it 

in the present study. As the SOM algorithm itself is well-known, we refer readers to 

Kohonen (2001) for details. 

The SOM has been applied as an analytical tool in finance, medicine and engineering 

applications (Back et al. 2001; Deboeck and Kohonen 1998; Eklund et al. 2003; Kaski 

et al. 1998; Oja et al. 2002; Salin 2011; Yao et al. 2010). The SOM has also been used 

in the energy sector for e.g., power system stability assessment, on-line provision 

control, load forecasting, as well as electricity distribution regulation and benchmarking 

(Lendasse et al. 2002; Nababhushana et al. 1998; Rehtanz 1999; Riqueline et al. 2000; 

Liu et al. 2011).  

A SOM is typically composed of two layers: an input and an output layer. Each input 

field is connected to the input layer by exactly one node, which is fully connected with 

all the nodes in the output layer (Berry and Linoff 2004; Wiskott and Sejnowski 1998). 

When the number of nodes in the output layer is large, the adjacent nodes need to be 

grouped to conduct clustering tasks. Accordingly, Vesanto and Alhoniemi (2000) 

proposed a two-level approach, e.g., the SOM-Ward clustering, to perform clustering 

tasks. The dataset is first projected onto a two-dimensional display using the SOM, and 

the resulting SOM is then clustered. Several studies have shown the effectiveness of the 

two-level SOM, especially the superiority of the SOM-Ward over some classical 

clustering algorithms (Lee et al. 2006; Li et al. 2002; Samarasinghe 2007). 

As mentioned previously, the SOM-Ward clustering is a two-level clustering approach 

that combines local ordering of the SOM and Ward’s clustering algorithm to determine 

the clustering result. Ward’s clustering is an agglomerative (bottom-up) hierarchical 

clustering method (Ward 1963). The SOM-Ward starts with a clustering where each 

node is treated as a separate cluster. The two clusters with the minimum Euclidean 

distance are merged in each step, until there is only one cluster left on the map. The 

distance follows the SOM-Ward distance measure, which takes into account not only 

the Ward distance but also the topological characteristics of the SOM. In other words, 

the distance between two non-adjacent clusters is considered infinite, which means only 

adjacent clusters can be merged. A low SOM-Ward distance value represents a more 

natural clustering for the map, whereas a high value represents a more artificial 

clustering. In this way, the users can flexibly choose the most appropriate number of 

clusters for their data mining tasks.  

3. The Finnish Business Case 

The business case studied in this paper is provided by one DSO in Finland – Ålands 

Elandelslag (ÅEA, which is a non-profit ownership cooperative). ÅEA’s distribution 

area has distinct geographical features and customer structure. Åland is an autonomous 

Finnish archipelago region with nearly 300 habitable islands. It is situated between 
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mainland Finland in the east and Sweden in the west. ÅEA is responsible for the 

electricity distribution to 15 municipalities in Åland. Its distribution area covers 14,097 

customers, of which Jomala is the largest (2,290 customers) and Sottunga is the smallest 

(184 customers). Its distribution power lines totalled 3,217 km in 2009, with high 

voltage lines (10kV) 1,163 km and low voltage lines (0.4kV) 2,054 km. Åland’s 

geographical features determine that its economy is heavily dominated by shipping, 

trade, and tourism. The majority of the housing is in the form of summer cottages, 

detached houses, or town houses, while multi-storeyed buildings only account for a very 

small portion. 

According to Statistics Åland, in 2009, Åland’s electricity consumption by sector is as 

follows: Households (45.04%), Agriculture (7.01%), Industry (11.77%), Services 

(21.22%), and the Public Sector (14.97%), respectively. It shows that households, 

services, and the public sector constitute the majority in terms of electricity 

consumption in Åland. This differs from the electricity consumption breakdown on 

mainland Finland, where industry’s electricity consumption amounts to 46%, whereas 

housing and agriculture, and services and construction, consume 29% and 22% 

respectively (source: Energiateollisuus). 

The data investigated is from ÅEA meter reading registers in 2009. For each meter, the 

electricity usage is registered with 27 hours 20 minutes time intervals, due to the AMR 

and communication technology adopted (Turtle Automated Meter Reading system). The 

Turtle AMR uses the power line for data transmission. The data is collected by a 

receiver installed at a substation and held until requested by a computer at the main 

office, then sent via SMS. Turtle AMR also calculates the highest rate of electricity 

usage for each meter during each 27hrs20mins interval, i.e., the Peak Load. Therefore, 

the data from meter reading registers includes Meter ID, Electricity Usage, Reading 

Time, Peak Load, and Peak Time.  

The BI case analysis is carried out with a focus on three types of consumption time 

series, including (i) weekdays vs. weekends consumption comparison, (ii) consumption 

seasonality, and (iii) load patterns at various times of the day (i.e., different time bands).  

4. The Experiment, Results, and Analysis 

4.1. The Experiment  

Even though the ÅEA smart meter data is not hourly measured, it is still possible to 

look into customers’ electricity consumption patterns in terms of day-of-the-week, 

seasonal, and time band effects. Based on the meter register data, a great deal of data 

pre-processing work, including data transformation, aggregation, and normalisation, has 

to be performed to create customer signatures, with one record per customer and a range 

of variables capturing customers’ demographic and consumption related features. We 

excluded the customers whose records included less than one year, or whose annual 

consumption is 0 kWh. There are in total 11,964 customers included in this study. The 

variables used fall into two types based upon their purpose – one type is used to 
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describe the customer’s general consumption and demographic profile, and the other is 

to investigate customers’ weekday-weekend, seasonal, and time-band related 

consumption patterns. Regarding the second type, we compared two sets of variables – 

the first set is adopted from ÅEA’s partition as weekdays/weekends for the time of 

week, seasons (i.e., January-April, May-September, and October-December), and day 

time (7:00-23:00)/night time (23:00-7:00) for every 24hrs, which can be seen in ÅEA’s 

electricity tariff of Time rate; the second set is proposed by the authors, as 

weekdays/Saturday/Sunday for the day-of-week, seasons (i.e., Summer: March-

September, and Winter: October-February), and four time bands (i.e., 6:00-9:00, 9:00-

16:00, 16:00-22:00, 22:00-6:00) for every 24hrs. In total, there are 31 variables used in 

this analysis. The variables are described as follows: 

Average Consumption (kWh) – is the customer’s average consumption per 27hrs 

20mins +/- 8mins. 

Average Peak Load (kW) – is the customer’s average peak demand in 2009, which is 

based on the highest load aggregated from three consecutive 20min intervals during 

each 27hrs 20mins period. 

Electricity Rate – is the contractual electricity tariff the customer has chosen among 5 

categories: Normal rate, Economic rate, Time rate, Irrigation rate, and Temporary 

Working rate, which are provided by ÅEA (available at 

http://www.el.ax/files/tariffhafte_20110101.pdf, in Swedish). Due to the previously 

mentioned customer selection criteria set in pre-processing, the data records with 

Irrigation rate and Temporary Working rate are not included
1
. 

Housing Type – is based on historical statistics, provided by ÅEA as a reference 

variable, including 5 categorical attributes: Summer Cottage, Detached House, Town 

House, Multi-storeyed Building, and Others. Again, as with Electricity Rate, the data 

records with Housing Type as Others are not included in the final dataset. 

Seasonal and day-of-the-week Consumption (kWh) – includes Weekday Consumption1, 

Weekend Consumption1, Jan.-Apr. Consumption, May-Sep. Consumption, Oct.-Dec. 

Consumption, which are adopted from ÅEA’s Time-of-Use tariff; and Weekday 

Consumption2, Saturday Consumption, Sunday Consumption, Winter Consumption, 

and Summer Consumption, which are proposed by the authors. 

Time-based Peak Load (kW) – is the customer’s average peak demand at various times 

of the day, including: Peak Load_Day, Peak Load_Night, which are based on ÅEA’s 

electricity tariff; and  Peak Load_6-9, Peak Load_9-16, Peak Load_16-22, Peak 

Load_22-6, which are proposed by the authors. 

Time-based Peak Frequency (%) – is the percentage of peak demand occurring at 

different times of the day, including: Peak Frequency_Day, Peak Frequency_Night, 

which are based on ÅEA’s electricity tariff; and Peak Frequency_6-9, Peak 

                                       
 
1 Categorical variables, such as Electricity Rate and Housing Type, must be split into 

binary dummy variables in order to be used with the SOM, as they represent nominal 

data with no inherent numerical order or distance. 

http://www.el.ax/files/tariffhafte_20110101.pdf


 

6 

Frequency_9-16, Peak Frequency_16-22, Peak Frequency_22-6, which are proposed by 

the authors. 

In this study, Viscovery SOMine v.5.0 (http://www.eudaptics.com/) is used to perform 

the visual data mining task. SOMine uses an expanding map size and the batch training 

algorithm, allowing for efficient training of maps (Deboeck and Kohonen 1998). The 

SOM-Ward clustering method is also used to identify clusters based on actual 

consumption behaviour, which eliminates the need for subjective identification of 

clusters (Vesanto and Alhomiemi 2000). The two sets of seasonal and time-based 

variables are normalised according to the respective average value before map training, 

i.e., each entry in a field is divided by the mean of the entire field (Baragoin et al. 2001; 

Collica 2007). The purpose is to address the relative significance of the value of a 

particular variable against the overall mean of that variable. For example, customers 

exhibiting average consumption patterns are given normalised values of 1, while a 

normalised value of 2 implies that their consumption amount or peak load is two times 

more than the average. In addition, all the variables included in the training process 

were scaled to comparable ranges in order to prevent variables with large values from 

dominating the result. Viscovery SOMine offers two forms of scaling, linear and 

variance scaling. Linear scaling is simply a linear scaling based upon the range of the 

variable, and is suggested as default when the range of the variable is greater than eight 

times of its standard deviation. Otherwise, variance scaling is used. In this study, range 

scaling was applied to the variables of Electricity Rate and Housing Type, while 

variance scaling was applied to the others.  

We experimented with different combinations of parameters, and selected the map 

based on following criteria: average quantization error, normalized distortion measure, 

the meaningfulness of clusters, the visual interpretability, the smoothness of 

neighbourhood of each node, and the SOM-Ward cluster indicator. The map was trained 

using a map size of 279 nodes, a map ratio of 100:49, and a tension of 0.5. During the 

training process, the priority of categorical variables such as Electricity Rate and 

Housing Type, as well as the seasonal and time-based variables proposed by the 

authors, was set to 0. These variables thus have no influence on the training process. 

However, their distribution in each of the segments can be visualised on the map for 

comparison and profiling purposes.  

In order to evaluate the robustness of the training method, a supervised ten-fold cross-

validation was conducted. The entire training dataset was firstly partitioned into 10 

subsets, then using 9 out of the 10 subsets each time to reiterate the map training with 

the same set of training parameters as was described above. The map selecting criteria 

set above can be held over the ten-fold iteration.  

4.2. Results and Analysis 

4.2.1. Cluster Profiles 

The SOM divided the 11,964 customers into 4 clusters according to their consumption 

similarity in 2009. The SOM results can be seen in Figures 1-3. Since the warm colour 

code (e.g., red) in SOM map denotes high values while a cold colour code (e.g., blue) 
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represents low values, the characteristics of each cluster (I-IV) can be easily identified, 

as summarised in Table 1. A description of each cluster follows: 

Cluster I: High consumption customers 

Customers in cluster I account for 10% of total customers investigated and stand for 

28.9% of the total consumption. They have the highest consumption profile (Average 

Consumption 63.0 kWh and Average Peak Load 5.1 kW). The proportion of customers 

using the Economic rate in cluster I (19%) is much higher than that of the other three 

clusters, although 80% of the customers still prefer the Normal rate. The majority of 

customers in cluster I live in detached house (88%), while 7%, 4%, and 1% of them are 

in summer cottages, town houses, or multi-storeyed buildings, respectively. 

Cluster II: Medium-high consumption customers 

17% customers are in cluster II and they stand for 30.7% of the total consumption. They 

have the Medium-high consumption profile (Average Consumption 39.3 kWh and 

Average Peak Load 3.2 kW). Even though the majority housing type is detached house 

(75%), the proportion of summer cottage (18%) is the second highest after cluster IV. 

5% of the customers in this cluster chose Economic rate, while 94% of them went for 

Normal rate.  

Cluster III: Medium-low consumption customers 

Customers in cluster III account for 25.9% of the customer base and stand for 24.1% of 

the total consumption. They have Medium-low consumption profile (Average 

Consumption 20.3 kWh and Average Peak Load 2.0 kW). The characteristics of cluster 

III are very similar to those of cluster II in that most of the customers (96%) use Normal 

rate and 76% of the customers live in detached houses. But the proportion of town 

house owners (12%) is the highest comparing to the other three clusters. 

Cluster IV: Low consumption customers 

47.1% customers belong to cluster IV, which has the lowest consumption profile 

(Average Consumption 7.5 kWh and Average Peak Load 0.6 kW). They stand for 

16.2% of the total consumption. 99% of customers in cluster IV have the Normal tariff 

contracts. Summer cottage (70%) is the major housing type within cluster IV, while 

detached house, town house, and multi-storeyed building account for 18%, 8%, and 4%, 

respectively.  
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Figure 1: Cluster profiles 

4.2.2. Consumption Time Series Profiling 

4.2.2.1. Weekdays vs. Weekends Consumption Comparison 

Figures 2 and 3, specifically, reveal the patterns of each cluster (i.e., day-of-the-week, 

seasonal, and different time band consumption), and those of ÅEA’s customers in 

general. For instance, from cluster I through cluster IV, both weekday consumption- and 

weekend consumption- patterns (see Figure 2) are ranging from high, medium to low, 

which also are in accordance with the patterns of Average Consumption in Figure 1. In 

addition, if comparing the consumption during weekdays/weekends (see Figure 2), or 

weekdays/Saturday/Sunday (see Figure 3), the patterns are nearly identical. This implies 

that if ÅEA intended to shift customers’ demand between weekdays and weekends to 

mitigate system constrains or when the wholesale market price is high, ÅEA should 

devise enough incentive in their price signals for customers to adjust their consumption 

behaviour between weekdays and weekends. 

 

 

Figure 2: Consumption patterns with ÅEA variables 
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Figure 3: Consumption patterns with proposed variables 

4.2.2.2. Consumption Seasonality 

The customers’ seasonal consumption patterns vary. They follow the typical Nordic 

phenomena: electricity consumption is relatively higher in cold winter months than in 

summer time. This can be seen from both sets of seasonal consumption variables (see 

Figure 2 and Figure 3). However, it is important to note that there is a special group of 

customers in cluster IV (see Figure 4), whose electricity consumption in May-

September is higher than the rest of cluster IV. This special group can be identified both 

from Figure 2 (May-Sep Consumption) and Figure 3 (Summer Consumption), which 

emphasizes that the consumption pattern deviation of this special group of customers in 

summer time is without regard to the summer months partition (i.e., May-Sep. as 

following ÅEA, or March-Sep. as proposed by the authors). At this point, it 

demonstrates that such a SOM-based data mining approach can visualize latent 

information for companies to take into account.  

 

Figure 4: Special group of customers in cluster IV 

Based on the SOM visual clustering results, Figures 5, 6, and 7 summarize the 

comparison of various time series profiles among clusters. Figure 5 illustrates the 

consumption profile breakdown of each cluster and the special group within cluster IV, 

regarding weekday/weekend as well as seasonal consumption patterns. The different 
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clusters have distinct consumption profiles in different seasons. For instance, regarding 

the Medium-low consumption customers (cluster III), their electricity usage is relatively 

even across different seasons (Jan-Apr., May-Sep. and Oct.-Dec.) in 2009 (red line in 

Figure 5). But High and Medium-high consumption customers (green and purple lines 

in Figure 5) had lower electricity consumption in summer time, compared to their 

respective cold weather seasons. On the other hand, as was pointed out before, among 

Low consumption customers, their May-September period consumption is relatively 

higher than in the rest of the seasons (see two blue lines in Figure 5).  

 

Figure 5: Consumption profile breakdown 

 

Figure 6: Peak load profile breakdown 

4.2.2.3.  Load Patterns at Various Times of the Day 

Accordingly, one can see that the patterns in terms of Peak Load at day time (7:00-

23:00) and night time (23:00-7:00) (see Figure 2) are in line with the patterns of 

Average Peak Load in each cluster (see Figure 1). However, if examining Peak Load in 

4 time bands in Figure 3, instead of the 2 (i.e., Day and Night) in Figure 2, slightly 

different picture emerges: the customers in cluster I have relatively higher peak demand 

in the early morning (6:00-9:00) and in the late night (22:00-6:00), compared to usual 

working hours (9:00-16:00) or usual peak consumption time period (16:00-22:00). This 

is also represented in Figure 6, where the green line (High consumption customers of 

cluster I) bends up towards the ends considerably. It suggests that using the proposed 4 

time bands can reveal more detailed information about the customers’ consumption 

behaviour. And it might be beneficial if the company would consider using more than 2 

time bands in their Time-of-Use pricing. The evidence can also be seen from Peak 
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Frequency, i.e., where time-wisely speaking Peak Frequency at 6-9, 9-16, and 16-22 are 

equivalent to Peak Frequency_Day, but provide more information about consumption 

behaviour in different clusters. The comparison regarding how much extra information 

can be extracted with 4 time bands partition is shown in Figure 7. 

 

Figure 7: Time bands partition comparison 

Table 1.  Summary of Cluster Characteristics 

5. CONCLUSION 

In order to explore how DSOs or electricity retailers can fully utilise smart meter data to 

gain better knowledge about their customers’ timely electricity consumption patterns, 

and in turn to facilitate a demand response retail market, we have examined a SOM-

based business intelligence approach.  We studied a case company from Finland—

ÅEA’s AMR data in 2009, with the purpose of demonstrating (1) what kind of 

insightful knowledge such electricity consumption profiling approach can offer and (2) 

what is the added value for DSOs or electricity retailers in applying such a visual data 

mining driven analytical method in decision making support, especially with regard to 

pricing differentiation or demand response tariff. First, we used the SOM to cluster 

ID  
Consumption  

rank 

Daily 
consumption 

(kWh) 

Average 
Peak 

Demand 
(kW) 

Cluster Size  
and percentage 

of total 
consumption  

(%) 

Cluster Profile 

I 
 

 

High 

consumption 
63.0 5.1 10.0,    28.9 

80% Normal rate, 19% Economic rate, 1% Time rate 

88%  detached house, 7% summer cottage, 4% town 

house, and 1% multi-storeyed building 

II 
 

 

 

Medium-high 

consumption 
39.3 3.2 17.0,   30.7 

94% Normal rate, 5% Economic rate, 1% Time rate 

75% detached house, 18% summer cottage, 6% town 

house, and 1% multi-storeyed building  

III 
 

 

Medium-low 

consumption 
20.3 2.0 25.9,   24.1 

96% Normal rate, 1% Economic rate, 3% Time rate 

75% detached house, 9% summer cottage, 12% town 

house, and 4% multi-storeyed building 

IV 
 

 
Low consumption 7.5 0.6 47.1,   16.2 

99% Normal rate, 0.2% Economic rate, 0.5% Time rate 

18% detached house, 70% summer cottage, 8% town 

house, and 4% multi-storeyed building 
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11,964 customers into 4 groups according to their electricity consumption similarity in 

2009. Then, the consumption profile of each cluster was visualized through feature 

plane analysis. During the analysis we compared different variable sets in day-of-the-

week, season, and time band partition, in order to extract more detailed information 

about the customers’ consumption patterns. For instance, the result shows that there is a 

special customer group within the low consumption cluster IV, whose consumption 

pattern in summer time deviated from the rest of the cluster. Moreover, the consumption 

visualisation indicated that the benefit for ÅEA to design different Time-of-Use tariff on 

weekdays or weekends calls for a review of its pricing differentiation strategy. In 

addition, there is evidence that the authors’ proposed 4 time bands would provide more 

detailed information on customer consumption behaviour. To sum up, these can be seen 

as the contribution of this study. To this end, the conclusion can be drawn that the 

SOM-based visual data mining approach can provide insightful knowledge about the 

customer’s consumption behaviour. Based on better customer understanding, it would 

help the company in designing demand response tariffs in the future.  

Nevertheless, there are limitations to this study. First of all, the AMR data used in this 

study is not hourly measured, but quasi-daily, due to the AMR communication 

technology. Secondly, the scope of this analysis is determined by the specific data 

domain. Therefore, the discovered knowledge has its particular locality. However, such 

an analytical approach can be applied to other AMR data for further examination. 
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