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Failure Modes and Effect analysis (FMEA) is a widely used technique for inductive
safety analysis. FMEA provides the engineers with the valuable information about
failure modes of system components as well as procedures for error detection and
recovery. In this paper we propose an approach that facilitates representation of FMEA
results in formal Event-B specifications of control systems. We define a number of
patterns for representing the requirements derived from FMEA in formal system model
in Event-B. These patterns facilitate traceability of requirements and allow us to
increase automation of formal system development by refinement. Our approach is
illustrated by an example - a sluice system.

Keywords: formal specification, Event-B, FMEA, patterns, safety, control systems
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Formal modelling and verification are valuable for ensuring system dependability.
However, often formal development process is perceived as being too complex to be
deployed in industrial engineering process. Hence, there is a clear need for methods that
facilitate adopting of formal modelling techniques and increase productivity of their use.
Reliance on patterns – the generic solutions for certain typical problems – facilitates

system engineering because it allows the developers to document the best practices and
reuse previous knowledge. However, patterns defined for formal system development,
e.g., by Hoang et al. [17] focus on describing model manipulations only and do not
provide the insight on how to derive a formal model from textual requirements
description. The gap between requirements engineering and in particular safety analysis
and formal development has negative impact on requirements traceability and leaves the
developers without the guidance on how to represents certain types of requirements in
the formal model.
In this paper we propose an approach to automating formal system development by

refinement in Event-B. We demonstrate how to connect formal modelling and
refinement with Failure Modes and Effects Analysis (FMEA) via a set of patterns.
FMEA is a widely-used inductive technique for safety analysis [5, 13, 16]. It allows

the engineers systematically study of the causes of components faults, their global and
local effects, and the means to cope with these faults. These requirements are invaluable
for ensuring system dependability.
In this paper we propose a set of patterns formalising the requirements derived from

FMEA and enabling automatic transformation of system specification to incorporate
these results. Our formal modelling framework is Event-B – a state-based formalism for
formal system development by refinement and proof-based verification [1]. Event-B has
a mature tool support – Rodin platform [4]. Currently, the framework is actively used
by several industrial partners of EU FP7 project Deploy to develop dependable systems
from various domains.
The approach proposed in this paper allows us to automate the development process

by requiring the user merely to choose the types of patterns corresponding to certain
generic representation of FMEA results and instantiate these patterns with model-
specific information. As a result of pattern application the model is automatically
transformed to faithfully represent the desired requirements. In this paper we illustrate
our approach from excerpts from the automated development of sluice gate system [7].
Formal system development by refinement in Event-B allows us to verify (by proofs)

preservation of safety invariants event in presence of component failures identified by
FMEA. We believe that the proposed approach provides a good support for formal
development and improves traceability of safety requirements.
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The B Method is an approach for the industrial development of highly dependable
control systems. The method has been successfully used in the development of several
complex real-life applications [9]. Event-B [1] is a specialization of the B Method
aimed at facilitating modelling parallel, distributed and reactive systems. The Rodin
platform provides an automated support for modelling and verification in Event-B [4].
In Event-B system models are defined using the Abstract Machine Notation. An

abstract machine encapsulates the state (the variables) of a model and defines operations
on its state.
The machine is uniquely identified by its name MachineName. The state variables of

the machine are declared in the VARIABLES clause and initialized in the
INITIALISATION event. The variables are strongly typed by constraining predicates of
invariants given in the INVARIANTS clause. Usually the invariant also defines the
properties of the system that should be preserved during system execution. The data
types and constants of the model are defined in a separate component called
CONTEXT. The behaviour of the system is defined by a number of atomic events
specified in the EVENTS clause. An event is defined as follows:

E =WHEN g THEN S END

where the guard g is a conjunction of predicates defined over the state variables, and the
action S is an assignment to the state variables.
The guard defines when the event is enabled. If several events are enabled

simultaneously then any of them can be chosen for execution non-deterministically. If
none of the events is enabled then the system deadlocks.
In general, the action of an event is a composition of variable assignments executed

simultaneously. Variable assignments can be either deterministic or non-deterministic.
The deterministic assignment is denoted as x := E(v), where x is a state variable and
E(v) expression over the state variables v. The non-deterministic assignment can be
denoted as x :�S or x :| Q(v, x�), where S is a set of values and Q(v, x�) is a predicate.
As a result of the non-deterministic assignment, x gets any value from S or it obtains
such a value x� that Q(v, x�) is satisfied.
The main development methodology of Event-B is refinement. Refinement

formalises model-driven development and allows us to develop systems correct-by-
construction. Each refinement transforms the abstract specification to gradually
introduce implementation details. For a refinement step to be valid, every possible
execution of the refined machine must correspond to some execution of the abstract
machine.
The formal semantics of Event-B [1] provides us with a foundation for rigorous

reasoning about system correctness. The consistency (invariant preservation) and well-
definedness of Event-B models as well as correctness of refinement steps is
demonstrated by discharging proof obligations. The Rodin platform [4], a tool
supporting Event-B, automatically generates the required proof obligations and attempts
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to automatically prove them. Sometimes it requires user assistance by invoking its
interactive prover. However, in general the tool achieves high level of automation
(usually over 90%) in proving.
Next we describe specification and refinement of control systems in Event-B. It

follows the specification pattern proposed earlier [11].

���� ��������� ������� �������
The control systems are usually cyclic, i.e., at periodic intervals they get input from
sensors, process it and output the new values to the actuators. In our specification the
sensors and actuators are represented by the corresponding state variables. We follow
the systems approach, i.e., model the controller together with its environment – plant.
This allows us to explicitly state the assumptions about environment behaviour. At each
cycle the plant assigns the variables modelling the sensor readings. They depend on the
physical process of the plant and the current state of the actuators. In its turn, the
controller reads the variables modelling sensors and assigns the variables modelling the
actuators. We assume that the reaction of the controller takes negligible amount of time
and hence the controller can react properly on changes of the plant state.
In this paper, we focus on modelling failsafe control systems. A system is failsafe if

it can be put into a safe but non-operational state to preclude an occurrence of a hazard.
The general specification pattern for modelling a failsafe control system in Event-B

is shown in Fig. 1.

machine Abs_M sees Abs_C
variables flag Failure Stop
invariants
flag � PHASE
Failure � BOOL
Stop � BOOL
Failure=FALSE� Stop=FALSE
Failure=TRUE � flag�CONT � Stop=TRUE

events
event INITIALISATION
then
flag� ENV
Failure � FALSE
Stop � FALSE

end
event Environment
where
flag = ENV
Failure = FALSE
Stop = FALSE

then
flag� DET

end
event Detection
where
flag = DET
Failure = FALSE
Stop = FALSE

then
flag� CONT
Failure :� BOOL

end

event Normal_Operation
where
flag = CONT
Failure = FALSE
Stop = FALSE

then
flag� PRED

end
event Error_Handling
any res
where
flag = CONT
Failure = TRUE
Stop = FALSE
res�BOOL

then
flag� PRED
Stop � res
Failure � res

end
event Prediction
where
flag = PRED
Failure = FALSE
Stop = FALSE

then
flag� ENV

end
end

Fig. 1. An abstract specification of a control system.
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The abstract model Abs_M represents the overall behaviour of the system as an
interleaving between the events modelling the plant and controller. The behaviour of the
controller has the following stages: Detection; Control (Normal Operation or Error
Handling); Prediction. The stages are defined in the enumerated set PHASE: {ENV,
DET, CONT, PRED}. The variable flag of type PHASE models the current stage.
In the model invariant we declare the types of the variables and define conditions

when the system is operational or stopped.
The events Environment, Normal_Operation and Prediction are the very abstract

specifications of events (essentially placeholders) modelling environment behaviour,
controller reaction and computation of the next expected states of system components.
These events will be defined in details in the consequent refinement steps. The event
Detection non-deterministically models the outcome of error detection by assigning the
value TRUE to the variable Failure in case of an error and FALSE otherwise. As a
result of error recovery, abstractly modelled by the event Error_Handling, the normal
system operation can be resumed. In this case, the value of Failure is changed to
FALSE. However, if the error recovery is unsuccessful, the variable Stop obtains the
value TRUE and the system is shut down, i.e., the specification deadlocks.
In the next section we demonstrate how to arrive at a detailed specification of a

control system by refinement in Event-B. We use the sluice gate control system to
exemplify the refinement process.

�� ���������� �� ������� ������� �� �������
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The general specification pattern given in Fig.1 defines the initial abstract specification
for any typical control system, including the sluice gate control system that we describe
next. The sluice gate system shown in Fig.2 is a sluice connecting areas with
dramatically different pressures [7]. The pressure difference makes it unsafe to open a
door unless the pressure is levelled between the areas connected by the sluice door. The
purpose of the system is to adjust the pressure in the sluice area. Such a system can be
deployed, e.g., on a submarine to allow divers to get into the sea when the submarine is
submerged. The sluice gate system consists of two doors - door1 and door2 that can be
operated independently of each other and a pressure chamber pump that changes the
pressure in the sluice area. There are the following safety requirements imposed on the
system. A door may be opened only if the pressure in the locations it connects is
equalized. Since the pressure of two environments is different, at most one door can be
opened at any moment. The pressure chamber pump can only be switched on when both
doors are closed.
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Fig. 2. Sluice gate system.

The sluice gate system is equipped with the following sensors and actuators:
�three pressure sensors – they return the current pressure values in the room and in
the two areas adjacent to the room;

�two door position sensors – they give the current positions of two doors
respectively. Each sensor has a cold spare – a redundant sensor to which the
system can automatically switch;

�two switch sensors attached to each door – they signal when the door is fully
opened or closed;

�pressure chamber pump actuator – it changes the pressure inside the room
�two-way door motors - they open and close the doors
The system has physical redundancy (the door position sensors have spares) and

information redundancy (when doors are fully opened or closed door position sensor
readings should be in accordance with switch sensors).

���� ����������� ����� ��������� ��� �������� ��
����������

At the first refinement step we aim at introducing models of system components, error
detection procedures for their failure modes, as well as error masking and recovery
actions. We postpone refinement of the normal functional behaviour of the system until
the next refinement step.
To systematically define failure modes, detection and recovery procedures, for each

component we conduct Failure Modes and Effect Analysis. FMEA [5, 13, 16] is a well-
known inductive safety analysis technique. For each system component it defines its
possible failure modes, local and system effect of component failures, as well as
detection and recovery procedures. For instance, below is an excerpt from FMEA of
Door1 component of our sluice system.
The Door1 component is composed of several hardware units. Their failures

correspond to the failure modes of Door1 component. For the sake of brevity, we omit
showing FMEA for all failure modes of Door1 and next discuss how to specify error
detection and recovery for the failure mode described in FMEA table in Fig.3.
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Component Door1
Failure mode Door position sensor value is different from the door

closed sensor value
Possible cause Failure of position sensor or closed sensor
Local effects Sensor readings are not equal in corresponding states
System effects Switch to degraded or manual mode or shut down
Detection Comparison of the values received from position and

closed sensors
Remedial
action

Retry three times. If failure persists then switch to
redundant sensor, diagnose motor failure. If failure still
persists, switch to manual mode and raise the alarm. If
no redundant sensor is available then switch to manual
mode and raise the alarm.

Fig.3. FMEA table.

In the refined specification we introduce the variables representing the units of Door1:
door position sensor - door1_position_sensor, motor - door1_motor and door opened
and closed sensors - door1_opened_sensor, door1_closed_sensor. In the event
Environment we introduce the actions that change the values of
door1_position_sensor, door1_closed_sensor and door1_opened_sensor. In the event
Normal_Operation we define the action that non-deterministically changes the value
of door1_motor.
We refine the event Detection by splitting it into a group of events responsible for

the detection of each mode of failures of all system components. We introduce the
variable door1_fail to designate a failure of the door component. This failure is assigned
TRUE when any failure mode of Door1 component is detected. The event
Detection_door1_checks included in this group contains the actual checks for value
ranges and consistency:

event Detection_Door1_checks
where
grd1 flag = DET
grd2 Stop = FALSE

then
act1 door1_position_sensor_pred� bool((door1_position_sensor < d1_exp_min �

door1_position_sensor > d1_exp_max) � door1_sensor_disregard=FALSE)
act2 door1_closed_sensor_inconsistent� bool(¬(door1_closed_sensor=TRUE�

(door1_position=0 � door1_sensor_disregard=TRUE)))
<other checks>

end

The variables d1_exp_min and d1_exp_max are the new variables introduced to
model the next expected sensor readings. These variables are updated in the Prediction
event. The event Detection_Door1 combines the results of the checks of the status of
the door1 component as shown below.
The failure of the component Door1 is detected if any check of the error detection

events for any of its failure modes finds a discrepancy between a fault free and the
observed states. In the similar manner, the system failure is detected if failure of any of
system component – Door1, Door2 or PressurePump is detected, as specified in the
event Detection_Fault.
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event Detection_Doors1
where
grd1 flag = DET
grd2 Stop = FALSE

then
act1 door1_fail� bool(

door1_position_sensor_pred=TRUE �
door1_closed_sensor_inconsistent=TRUE �

<other check statuses>)
end

event Detection_Fault refines Detection
where
grd1 flag = DET
grd2 Stop = FALSE
grd3 door1_fail=TRUE �

door2_fail=TRUE �
pressure_fail = TRUE

with
Failure' Failure'=TRUE

then
act1 flag� CONT

end

Observe that by performing FMEA of all system components we obtain a systematic
textual description of all procedures required to detect component errors and perform
their recovery. We gradually by refinement introduce the specification of these
requirements into the system model.
While analysing the refined specification it is easy to note that there are several

typical specification solutions called patterns that represent certain groups of
requirements. This prompts the idea of creating an automated tool support that would
automatically transform a specification by applying the patterns chosen and instantiated
by the developer. In the next section we describe the essence and usage of such a tool.

�� �������� ��� ���� ��� ������������ �������
�� ���� �� �������
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Our approach aims at structuring and formalising FMEA results via a set of generic
patterns. These patterns serve as a middle hand between informal requirements
description and their formal Event-B model.
While deriving the patterns we assume that the abstract system specification adheres

to the generic pattern given in Fig.1 and components can be represented by the
corresponding state variables. Our patterns establish a correspondence between the
results of FMEA and Event-B terms.
We distinguish four groups of patterns: detection, recovery, prediction and

invariants. The detection patterns reflect such generic mechanisms for error detection as
discrepancy between the actual and expected component state, sensor reading outside of
the feasible range etc. The recovery patterns include retry of actions or computations,
switch to redundant components and safe shutdown. The prediction patterns represent
the typical solutions for computing estimated states of components, e.g., using the
underlying physical system dynamics or timing constraints. Finally, the invariant
patterns are usually used in combination with other types of patterns to postulate how a
model transformation affects the model invariant. This type contains safety and gluing
patterns. The safety patterns define how safety conditions can be introduced into the
model. The gluing patterns depict the correspondence between the states of refined and
abstract model.
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A pattern is a model transformation that upon instantiation adds or modifies certain
elements of Event-B model. By elements we mean the terms of Event-B mathematical
language such as variables, constants, invariants, events, guards etc. A pattern can add
or modify several elements at once. Moreover, it can be composed of several other
patterns.
To illustrate how FMEA results can be interpreted according to the proposed

patterns, let us consider FMEA of an abstract sensor. We assume that our sensor is a
value type sensor. We analyse the failure mode of providing incorrect data. To detect
such a fault, we compare received value with the predicted one (Expected value
detection pattern). The remedial action in this case can be divided into three actions.
The first action retries reading the sensor for a specified number of times (Retry
recovery pattern). The second action disables the faulty component and enables its
spare (Component redundancy recovery pattern). The third action, when the spare
component is failed either, it so switch the system from operational state to non-
operational one (Safe stop recovery pattern). The system effect can be represented as a
safety property (Safety invariant pattern). Moreover, we have to apply Gluing invariant
pattern to establish a correspondence between the refinement step introducing a model
of unreliable sensor and the abstract specification. Fig. 4 shows how patterns are
instantiated by the requirements defined in FMEA.

Fig. 4. FMEA representation patterns.

Each FMEA field is mapped to one or more patterns. Patterns have interdependencies
between them and hence they are composable. For instance, the recovery patterns have
to have references to the variables set by the sensor, and thus depend on the results of
the Value sensor pattern, the Expected value detection pattern needs to instantiate the
Range prediction pattern to have the values predicted from the previous control cycle.
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Each pattern creates Event-B elements specific to the pattern, and requires elements
created by other patterns. The illustrative example on Fig. 4 shows that instantiating the
Expected range pattern would create new constants and variables (dark grey rectangle)
and will instantiate the Value sensor pattern to create the elements it depends on (light
grey rectangle).

���� ���������� �� �������� ��������������
The automation of the pattern instantiation is implemented as a tool plugin for the
Rodin platform [4]. Technically, each pattern is a program written in a simplified
Eclipse Object Language (EOL). It is a general purpose programming language in the
family of languages of the Epsilon framework [10] which operates on EMF [3] objects.
It is a natural choice for automating model transformations since Event-B is
interoperable with EMF.
The tool extends the application of EOL to Event-B models: it adds simple user

interface features for instantiation, extends the Epsilon user input facility with discovery
of the Event-B elements, and provides a library of Event-B and FMEA-specific
transformations.
To apply a pattern, a user chooses a target model and a pattern to instantiate as

shown in Fig. 5. A pattern application may require user input, e.g., to variable names or
types, define references to existing elements of the model etc. The input is performed
through a series of simple dialogs. The requested input comprises the applicability
conditions of the pattern. In many cases it is known that instantiation of a pattern
depends primarily on the results of a more basic pattern. In those cases the former
directly instantiates the latter and reuses the user input. Also more generally, if several
patterns require the same unit of user input then the composition of such patterns will
ask for such input only once. Typically, a single pattern instantiation requires up to 3-4
inputs.

Fig.5. Screenshots of plug-in tool.
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If a pattern only requires user input and creates new elements then its imperative form is
close to declarative as shown in the example below:

var flag: Variable= chooseOrCreateVariable("Phase variable");
createTypingInvariant(flag, "PHASE");
var failure: Variable = chooseOrCreateVariable("Failure variable");
createTypingInvariant(failure, "BOOL");
newEvent("Detection")
.addGuard("phase_grd", flag.name + " = DET")
.addGuard("failure_grd", failure.name + " = FALSE")
.addAction("phase_act", flag.name + " := CONT")
.addAction("failure_act", failure.name + " :: BOOL");

Here the tool will ask the user to select two variables (or creates new ones). It will
create typing invariants a new model event with several guards and actions. Next we
illustrate the use of tool in the refinement of our sluice gate case study.

�� ��������� ���������� �������
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In section 3 we presented an excerpt showing how to (manually) model unreliable
positioning sensor and error recovery. In this section we demonstrate how to automate
the first refinement step. Fig.6 shows FMEA table for the “out of predicted range”
failure mode of the door position sensor.

Component Door1
Failure mode Door position sensor value out of expected range
Possible cause Loss of precision of sensor or motor failure
Local effects Sensor reading is out of expected range
System effects Switch to degraded or manual mode or shut down
Detection Comparison of received value with the predicted one
Remedial
action

The same as for Fig.3

Fig. 6. FMEA table for “out of predicted range” failure mode of positioning sensor.

Below we show an excerpt from a model obtained automatically via instantiation and
application of several patterns.
Upon instantiation, the Expected value detection and Value sensor patterns ensure

that the necessary variables exist, and the detection events are appropriately modified.
The Expected value detection pattern also instantiates the Range prediction pattern
which adds a non-deterministic assignment to the event Prediction. The Retry recovery
pattern adds the RetryPosition event. This event masks the sensor failure for the current
control cycle, and counts the number of retries. Upon an occurrence of a sensor failure
for a given number of times (3 in this example), the system has to shut down. This is
achieved by the event SafeStop, which is generated by the pattern with the same name.
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variables door1_position_sensor
door1_fail
door1_position_sensor_pred
d1_exp_max
d1_exp_min

event RetryPosition
where
grd1 flag = CONT
grd_pos door1_position_sensor_abs = TRUE �

door1_position_sensor_pred = TRUE
grd_retry retry<3

then
act1 door1_position_sensor_abs� FALSE
act2 door1_position_sensor_pred� FALSE
act3 door1_fail_masked� bool(

door1_opened_sensor_inconsistent=TRUE �
door1_closed_sensor_inconsistent=TRUE)

act4 retry� retry + 1
end

event Detection_Door1_checks
where
grd1 flag = DET
grd2 Stop = FALSE

then
act1 door1_position_sensor_pred� �����
(door1_position_sensor < d1_exp_min
� door1_position_sensor > d1_exp_max)
� door1_sensor_disregard=FALSE)

<other checks>
end

event SafeStop refines ErrorHandling
where
grd1 flag = CONT
grd2 (door1_fail=TRUE �

door1_fail_masked=TRUE) �
door2_fail=TRUE �
pressure_fail=TRUE

grd3 Stop = FALSE
with
res=TRUE

then
act1 flag� PRED
act2 Stop� TRUE

end

The Gluing invariant and Safety invariant patterns generate the gluing and safety
invariants correspondingly. The gluing invariants establish correspondence between
abstract and refined states. In particular, it stipulates the relationships between the
failures of all system components and the overall system failure, as well as between
component failure and the results of error detection of their constituent units. As shown
below, the safety invariant states that a door1 failure must lead to a safe stop.

invariants
@glue flag�DET� (Failure=TRUE� door1_fail=TRUE � door2_fail=TRUE � pressure_fail=TRUE)

@glue_door1_fail flag�CONT� (door1_fail=TRUE�
door1_position_sensor_abs=TRUE � door1_position_sensor_pred=TRUE �
door1_opened_sensor_inconsistent=TRUE � door1_closed_sensor_inconsistent=TRUE)

@safety door1_fail=TRUE � flag�CONT � flag�DET� Stop=TRUE

���� ������� ���������� �����
As the result of the first refinement step we have obtained a specification that contains
the detailed description of the FMEA-derived detection and recovery procedures.
However, the normal control operations are modelled non-deterministically. In the
second refinement step we introduce the detailed specification of the normal control
logic. This refinement step leads to refining the event Normal_Operation into a group
of events that model the actual control algorithm. These events model opening and
closing the doors as well as activation of the pressure chamber pump.
Refinement of the normal control operation results in restricting non-determinism.

This allows us to formulate safety invariants that our system guarantees:
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failure = FALSE � door1_position = door1_position� door1_position = 0
failure = FALSE � (door1_position > 0 � door1_motor=MOTOR_OPEN)�

pressure_value = PRESSURE_OUTSIDE
failure = FALSE � (door2_position > 0 � door2_motor=MOTOR_OPEN)�

pressure_value = PRESSURE_INSIDE
failure = FALSE � pressure_value � PRESSURE_INSIDE � pressure_value � PRESSURE_OUTSIDE�

door1_position=0 � door2_position=0
failure = FALSE � pump�PUMP_OFF� (door1_position=0 � door2_position=0)

These invariants formally define the safety requirements informally described in
subsection 3.1. While verifying correctness of this refinement step we formally ensure
(by proofs) that safety is preserved while the system is operational.
At the consequent refinement steps we introduce the error recovery procedures. This

allows us to distinguish between criticality of failures and ensure that if a non-critical
failure occurs then the system can still remain operational.

�� ����������
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Integration of the safety analysis techniques with formal system modelling has attracted
a significant research attention over the last few years. There are a number of
approaches that aim at direct integration of the safety analysis techniques into formal
system development. For instance, the work of Ortmeier et al. [14] focuses on using
statecharts to formally represent the system behaviour. It aims at combining the results
of FMEA and FTA to model the system behaviour and reason about component failures
as well as overall system safety. Our approach is different – we aim at automating the
formal system development with the set of patterns instantiated by FMEA results. The
application of instantiated patterns automatically transforms a model to represent the
results of FMEA in a coherent and complete way. The available automatic tool support
for the top-down Event-B modelling as well as for plug-in instantiation and application
ensures better scalability of our approach.
In our previous work, we have proposed an approach to integrating safety analysis

into formal system development within the Action System formalism [18]. Since Event-
B incorporates the ideas of Action Systems into the B Method, the current work is a
natural extension of our previous results.
The research conducted by Troubitsyna [19] aims at demonstrating how to use

statecharts as a middle ground between safety analysis and formal system specifications
in the B Method. This work has inspired our idea of deriving Event-B patterns.
Another strand of research aims at defining general guidelines for ensuring

dependability of software-intensive systems. For example, Hatebur and Heisel [6] have
derived patterns for representing dependability requirements and ensuring their
traceability in the system development. In our approach we rely on specific safety
analysis techniques rather than on the requirements analysis in general to derive
guidelines for modelling dependable systems.
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In this paper we have made two main technical contributions. Firstly, we derived a set
of generic patterns for elicitation and structuring of safety and fault tolerance
requirements from FMEA. Secondly, we created an automatic tool support that enables
interactive pattern instantiation and automatic model transformation to capture these
requirements in formal system development. Our methodology facilitates requirements
elicitation as well as supports traceability of safety and fault tolerance requirements
within the formal development process.
Our approach enables guided formal development process. It supports the reuse of

knowledge obtained during formal system development and verification. For instance,
while deriving the patterns we have analysed and generalised our previous work on
specifying various control systems [8, 11, 12].
We believe that the proposed approach and tool support provide a valuable support

for formal modelling that is traditionally perceived as too cumbersome for engineers.
Firstly, we define a generic specification structure. Secondly, we automate specification
of a large part of modelling decisions. We believe that our work can potentially enhance
productivity of system development and improve completeness of formal models.
As a future work we are planning to create a library of domain-specific patterns and

automate their application. This would results in achieving even greater degree of
development automation and knowledge reuse.
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Table A.1. Failure mode “contradictory sensor data” of Door1 component

Component Door1
Failure mode Door position sensor value is different from the door closed sensor value
Possible cause Failure of position sensor or closed sensor
Local effects Sensor readings are not equal in corresponding states
System effects Switch to degraded or manual mode or shut down
Detection Comparison of the values received from position and closed sensors
Remedial
action

Retry three times. If failure persists then switch to redundant sensor,
diagnose motor failure. If failure still persists, switch to manual mode and
raise the alarm. If no redundant sensor is available then switch to manual
mode and raise the alarm.

Table A.2. Failure mode “out of predicted range” of Door1 component

Component Door1
Failure mode Door position sensor value out of expected range
Possible cause Loss of precision of sensor or motor failure
Local effects Sensor reading is out of expected range
System effects Switch to degraded or manual mode or shut down
Detection Comparison of received value with the predicted one
Remedial
action

Retry three times. If failure persists then switch to redundant sensor,
diagnose motor failure. If failure still persists, switch to manual mode and
raise the alarm. If no redundant sensor is available then switch to manual
mode and raise the alarm.

Table A.3. Failure mode “contradictory sensor data” of Door2 component

Component Door2
Failure mode Door position sensor value is different from the door closed sensor value
Possible cause Failure of position sensor or closed sensor
Local effects Sensor readings are not equal in corresponding states
System effects Switch to degraded or manual mode or shut down
Detection Comparison of the values received from position and closed sensors
Remedial
action

Retry three times. If failure persists then switch to redundant sensor,
diagnose motor failure. If failure still persists, switch to manual mode and
raise the alarm. If no redundant sensor is available then switch to manual
mode and raise the alarm.

Table A.4. Failure mode “out of predicted range” of Door2 component

Component Door2
Failure mode Door position sensor value out of expected range
Possible cause Loss of precision of sensor or motor failure
Local effects Sensor reading is out of expected range
System effects Switch to degraded or manual mode or shut down
Detection Comparison of received value with the predicted one
Remedial
action

Retry three times. If failure persists then switch to redundant sensor,
diagnose motor failure. If failure still persists, switch to manual mode and
raise the alarm. If no redundant sensor is available then switch to manual
mode and raise the alarm.
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Table A.5. Failure mode “out of predicted range” of Pressure chamber component

Component Pressure chamber
Failure mode Pressure out of expected range
Possible cause Loss of precision of sensor or pump failure
Local effects Sensor reading is out of expected range
System effects Switch to degraded or manual mode or shut down
Detection Comparison of received value with the predicted one
Remedial
action

Retry three times. If failure persists then switch to redundant sensor,
diagnose pump failure. If failure still persists, switch to manual mode and
raise the alarm. If no redundant sensor is available then switch to manual
mode and raise the alarm.

Table A.6. Failure mode “out of predicted range” of Pressure sensor inside component

Component Pressure sensor inside
Failure mode Pressure out of expected range
Possible cause Loss of precision of sensor
Local effects Sensor reading is out of expected range
System effects Switch to degraded or manual mode or shut down
Detection Comparison of received value with the predicted one
Remedial
action

Retry three times. If failure persists then switch to redundant sensor. If
failure still persists, switch to manual mode and raise the alarm. If no
redundant sensor is available then switch to manual mode and raise the
alarm.

Table A.7. Failure mode “out of predicted range” of Pressure sensor outside component

Component Pressure sensor outside
Failure mode Pressure out of expected range
Possible cause Loss of precision of sensor
Local effects Sensor reading is out of expected range
System effects Switch to degraded or manual mode or shut down
Detection Comparison of received value with the predicted one
Remedial
action

Retry three times. If failure persists then switch to redundant sensor. If
failure still persists, switch to manual mode and raise the alarm. If no
redundant sensor is available then switch to manual mode and raise the
alarm.
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Each FMEA table shown in Appendix A corresponds to a set of patterns.

��� �� �������� ��� ����� ����
Value sensor pattern
Retry recovery pattern
Component redundancy recovery pattern
Safe stop recovery pattern
variables door1_position_sensor

door1_fail
door1_opened_sensor
door1_closed_sensor

event Detection_Doors
where
@grd1 flag = DET
@grd3 Stop = FALSE

then
act1 door1_position_sensor_abs� bool((

door1_position_sensor < 0 �
door1_position_sensor > 100) �
door1_sensor_disregard=FALSE)

act2 door1_position_sensor_pred� bool((
door1_position_sensor < d1_exp_min �
door1_position_sensor > d1_exp_max) �
door1_sensor_disregard=FALSE)

act3 door1_opened_sensor_inconsistent� bool(
¬(door1_opened_sensor=TRUE�
(door1_position=100 � door1_sensor_disregard=TRUE)))

act4 door1_closed_sensor_inconsistent� bool(
¬(door1_closed_sensor=TRUE�
(door1_position=0 � door1_sensor_disregard=TRUE)))

<other checks>
end

event RetryPosition
where
grd1 flag = CONT
grd_pos door1_position_sensor_abs = TRUE �

door1_position_sensor_pred = TRUE
grd_retry retry<3

then
act1 door1_position_sensor_abs� FALSE
act2 door1_position_sensor_pred� FALSE
act3 door1_fail_masked� bool(

door1_opened_sensor_inconsistent=TRUE �
door1_closed_sensor_inconsistent=TRUE)

act4 retry� retry + 1
end

event EnableRedundant
where
grd1 flag = CONT
grd2 retry_done=TRUE
grd3 door1_sensor_redundant_done=FALSE
grd4 door1_position_sensor_abs = TRUE �

door1_position_sensor_pred = TRUE
grd5 door1_sensor_redundant = TRUE

then
act1 door1_position_sensor_abs� FALSE
act2 door1_position_sensor_pred� FALSE
act3 door1_fail_masked� bool(

door1_opened_sensor_inconsistent=TRUE �
door1_closed_sensor_inconsistent=TRUE)

act4 door1_sensor_redundant� TRUE
act5 door1_sensor_redundant_done�TRUE

end

event SafeStop refines ErrorHandling
where
grd1 flag = CONT
grd2 (door1_fail=TRUE �

door1_fail_masked=TRUE) �
door2_fail=TRUE �
pressure_fail=TRUE

grd3 Stop = FALSE
with
res=TRUE

then
act1 flag� PRED
act2 Stop� TRUE

end

Safety invariant pattern
Gluing invariant pattern
invariants
@glue flag�DET � (Failure=TRUE� door1_fail=TRUE � door2_fail=TRUE � pressure_fail=TRUE)
@glue_door1_fail flag�CONT� (door1_fail=TRUE�

door1_position_sensor_abs=TRUE � door1_position_sensor_pred=TRUE �
door1_opened_sensor_inconsistent=TRUE � door1_closed_sensor_inconsistent=TRUE)

@glue_door1_masking flag=CONT � retry_done=TRUE � door1_sensor_redundant_done=TRUE�
(door1_fail_masked=TRUE� door1_position_sensor_abs=TRUE �
door1_position_sensor_pred=TRUE � door1_opened_sensor_inconsistent=TRUE �
door1_closed_sensor_inconsistent=TRUE)

@safety door1_fail=TRUE � flag�CONT � flag�DET � Stop=TRUE
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Expected value detection pattern
Value sensor pattern
Range prediction pattern
Retry recovery pattern
Component redundancy recovery pattern
Safe stop recovery pattern
variables door1_position_sensor

door1_fail
door1_position_sensor_pred
d1_exp_max
d1_exp_min

event Detection_Door1_checks
where
grd1 flag = DET
grd2 Stop = FALSE

then
act1 door1_position_sensor_pred� �����
(door1_position_sensor < d1_exp_min
� door1_position_sensor > d1_exp_max)
� door1_sensor_disregard=FALSE)

<other checks>
end

event RetryPosition
where
grd1 flag = CONT
grd_pos door1_position_sensor_abs = TRUE �

door1_position_sensor_pred = TRUE
grd_retry retry<3

then
act1 door1_position_sensor_abs� FALSE
act2 door1_position_sensor_pred� FALSE
act3 door1_fail_masked� bool(

door1_opened_sensor_inconsistent=TRUE �
door1_closed_sensor_inconsistent=TRUE)

act4 retry� retry + 1
end

event EnableRedundant
where
grd1 flag = CONT
grd2 retry_done=TRUE
grd3 door1_sensor_redundant_done=FALSE
grd4 door1_position_sensor_abs = TRUE �

door1_position_sensor_pred = TRUE
grd5 door1_sensor_redundant = TRUE

then
act1 door1_position_sensor_abs� FALSE
act2 door1_position_sensor_pred� FALSE
act3 door1_fail_masked� bool(

door1_opened_sensor_inconsistent=TRUE �
door1_closed_sensor_inconsistent=TRUE)

act4 door1_sensor_redundant� TRUE
act5 door1_sensor_redundant_done�TRUE

end

event SafeStop refines ErrorHandling
where
grd1 flag = CONT
grd2 (door1_fail=TRUE �

door1_fail_masked=TRUE) �
door2_fail=TRUE �
pressure_fail=TRUE

grd3 Stop = FALSE
with
res=TRUE

then
act1 flag� PRED
act2 Stop� TRUE

end

event Prediction refines Prediction
where
grd1 flag = PRED
grd2 door1_fail=FALSE � door2_fail=FALSE

� pressure_fail = FALSE
@grd3 Stop = FALSE

then
act1 flag� ENV
act2 d1_exp_min�min_door(door1_position�door1_motor)
act3 d1_exp_max�max_door(door1_position�door1_motor)
<other predictions>

end
Safety invariant pattern
Gluing invariant pattern
invariants
@glue flag�DET � (Failure=TRUE� door1_fail=TRUE � door2_fail=TRUE � pressure_fail=TRUE)

@glue_door1_fail flag�CONT� (door1_fail=TRUE�
door1_position_sensor_abs=TRUE � door1_position_sensor_pred=TRUE �
door1_opened_sensor_inconsistent=TRUE � door1_closed_sensor_inconsistent=TRUE)

@safety door1_fail=TRUE � flag�CONT � flag�DET � Stop=TRUE



��

��� �� �������� ��� ����� ����
Value sensor pattern
Retry recovery pattern
Component redundancy recovery pattern
Safe stop recovery pattern
variables door2_position_sensor

door2_fail
door2_opened_sensor
door2_closed_sensor

event Detection_Doors
where
@grd1 flag = DET
@grd3 Stop = FALSE

then
act5 door2_fail� bool((door2_position <

d2_exp_min � door2_position > d2_exp_max) �
(door2_position < 0 � door2_position > 100 �
door2_fail=TRUE) �
¬(door2_opened_sensor=TRUE� door2_position=100) �
¬(door2_closed_sensor=TRUE� door2_position=0))

<other checks>
end

event RetryPosition
where
grd1 flag = CONT
grd_pos door2_position_sensor_abs = TRUE �

door2_position_sensor_pred = TRUE
grd_retry retry<3

then
act1 door2_position_sensor_abs� FALSE
act2 door2_position_sensor_pred� FALSE
act3 door2_fail_masked� bool(

door2_opened_sensor_inconsistent=TRUE �
door2_closed_sensor_inconsistent=TRUE)

act4 retry� retry + 1
end

event EnableRedundant
where
grd1 flag = CONT
grd2 retry_done=TRUE
grd3 door2_sensor_redundant_done=FALSE
grd4 door2_position_sensor_abs = TRUE �

door2_position_sensor_pred = TRUE
grd5 door2_sensor_redundant = TRUE

then
act1 door2_position_sensor_abs� FALSE
act2 door2_position_sensor_pred� FALSE
act3 door2_fail_masked� bool(

door2_opened_sensor_inconsistent=TRUE �
door2_closed_sensor_inconsistent=TRUE)

act4 door2_sensor_redundant� TRUE
act5 door2_sensor_redundant_done�TRUE

end

event SafeStop refines ErrorHandling
where
grd1 flag = CONT
grd2 (door2_fail=TRUE �

door2_fail_masked=TRUE) �
door1_fail=TRUE �
pressure_fail=TRUE

grd3 Stop = FALSE
with
res=TRUE

then
act1 flag� PRED
act2 Stop� TRUE

end

Safety invariant pattern
Gluing invariant pattern
invariants
@glue flag�DET � (Failure=TRUE� door1_fail=TRUE � door2_fail=TRUE � pressure_fail=TRUE)
@glue_door2_fail flag�CONT� (door2_fail=TRUE�

door2_position_sensor_abs=TRUE � door2_position_sensor_pred=TRUE �
door2_opened_sensor_inconsistent=TRUE � door2_closed_sensor_inconsistent=TRUE)

@glue_door2_masking flag=CONT � retry_done=TRUE � door2_sensor_redundant_done=TRUE�
(door2_fail_masked=TRUE� door2_position_sensor_abs=TRUE �
door2_position_sensor_pred=TRUE � door2_opened_sensor_inconsistent=TRUE �
door2_closed_sensor_inconsistent=TRUE)

@safety door2_fail=TRUE � flag�CONT � flag�DET � Stop=TRUE
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Expected value detection pattern
Value sensor pattern
Range prediction pattern
Retry recovery pattern
Component redundancy recovery pattern
Safe stop recovery pattern
variables door2_position_sensor

door2_fail
door2_position_sensor_pred
d2_exp_max
d2_exp_min

event Detection_Door2_checks
where
grd1 flag = DET
grd2 Stop = FALSE

then
act1 door2_position_sensor_pred� �����
(door2_position_sensor < d2_exp_min
� door2_position_sensor > d2_exp_max)
� door2_sensor_disregard=FALSE)

<other checks>
end

event RetryPosition
where
grd1 flag = CONT
grd_pos door2_position_sensor_abs = TRUE �

door2_position_sensor_pred = TRUE
grd_retry retry<3

then
act1 door2_position_sensor_abs� FALSE
act2 door2_position_sensor_pred� FALSE
act3 door2_fail_masked� bool(

door2_opened_sensor_inconsistent=TRUE �
door2_closed_sensor_inconsistent=TRUE)

act4 retry� retry + 1
end

event EnableRedundant
where
grd1 flag = CONT
grd2 retry_done=TRUE
grd3 door2_sensor_redundant_done=FALSE
grd4 door2_position_sensor_abs = TRUE �

door2_position_sensor_pred = TRUE
grd5 door2_sensor_redundant = TRUE

then
act1 door2_position_sensor_abs� FALSE
act2 door2_position_sensor_pred� FALSE
act3 door2_fail_masked� bool(

door2_opened_sensor_inconsistent=TRUE �
door2_closed_sensor_inconsistent=TRUE)

act4 door2_sensor_redundant� TRUE
act5 door2_sensor_redundant_done�TRUE

end

event SafeStop refines ErrorHandling
where
grd1 flag = CONT
grd2 (door2_fail=TRUE �

door2_fail_masked=TRUE) �
door1_fail=TRUE �
pressure_fail=TRUE

grd3 Stop = FALSE
with
res=TRUE

then
act1 flag� PRED
act2 Stop� TRUE

end

event Prediction refines Prediction
where
grd1 flag = PRED
grd2 door1_fail=FALSE � door2_fail=FALSE � pressure_fail

= FALSE
grd3 Stop = FALSE

then
act1 flag� ENV
act4 d2_exp_min�min_door(door2_position�door1_motor)
act5 d2_exp_max�max_door(door2_position�door1_motor)
<other predictions>

end
Safety invariant pattern
Gluing invariant pattern
invariants
@glue flag�DET � (Failure=TRUE� door1_fail=TRUE � door2_fail=TRUE � pressure_fail=TRUE)

@glue_door1_fail flag�CONT� (door2_fail=TRUE�
door2_position_sensor_abs=TRUE � door2_position_sensor_pred=TRUE �
door2_opened_sensor_inconsistent=TRUE � door2_closed_sensor_inconsistent=TRUE)

@safety door2_fail=TRUE � flag�CONT � flag�DET � Stop=TRUE
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Expected value detection pattern
Value sensor pattern
Range prediction pattern
Retry recovery pattern
Component redundancy recovery pattern
Safe stop recovery pattern
variables pressure_value

pressure_fail
pressure_pred
pressure_exp_max
pressure_exp_min

event Detection_Door1_checks
where
grd1 flag = DET
grd2 Stop = FALSE

then
act1 pressure_pred� �����
(pressure_value < pressure_exp_min
� pressure_value > pressure_exp_max)
� pressure_disregard=FALSE)

<other checks>
end

event RetryPressure
where
grd1 flag = CONT
grd_pos pressure_abs = TRUE �

pressure_pred = TRUE � retry<3
then
act1 pressure_abs� FALSE
act2 pressure_pred� FALSE
act3 retry� retry + 1

end

event SafeStop refines ErrorHandling
where
grd1 flag = CONT
grd2 pressure_fail=TRUE
grd3 Stop = FALSE

with
res=TRUE

then
act1 flag� PRED
act2 Stop� TRUE

end

event Prediction refines Prediction
where
grd1 flag = PRED
grd2 door1_fail=FALSE � door2_fail=FALSE � pressure_fail

= FALSE
grd3 Stop = FALSE

then
act1 flag� ENV
act6 pressure_exp_min�

min_pressure_exp(pressure_value�pump)
act7 pressure_exp_max�

max_pressure_exp(pressure_value�pump)
<other predictions>

end

Safety invariant pattern
Gluing invariant pattern
invariants
@glue flag�DET � (Failure=TRUE� door1_fail=TRUE � door2_fail=TRUE � pressure_fail=TRUE)

@safety pressure_fail =TRUE � flag�CONT � flag�DET � Stop=TRUE
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context c0
constants ENV DET CONT PRED
sets PHASE
axioms
@axm1 partition(PHASE, {ENV}, {DET}, {CONT}, {PRED})

end

�������� ������� ��

machine m0
sees c0

variables flag Failure Stop
invariants
@inv1 flag � PHASE
@inv2 Failure � BOOL
@inv3 Stop � BOOL
@inv4 Failure=FALSE� Stop=FALSE
@inv5 Failure=TRUE � flag�CONT � Stop=TRUE

events
event INITIALISATION
then
@act1 flag� ENV
@act2 Failure� FALSE
@act3 Stop� FALSE

end

event Environment
where
@grd1 flag = ENV
@grd2 Failure = FALSE
@grd3 Stop = FALSE

then
@act1 flag� DET

end

event Detection
where
@grd1 flag = DET
@grd2 Failure = FALSE
@grd3 Stop = FALSE

then

@act1 flag� CONT
@act2 Failure :� BOOL

end

event NormalOperation
where
@grd1 flag = CONT
@grd2 Failure = FALSE
@grd3 Stop = FALSE

then
@act1 flag� PRED

end

event ErrorHandling
any res
where
@grd1 flag = CONT
@grd2 Failure = TRUE
@grd3 Stop = FALSE
@grdres res�BOOL

then
@act1 flag� PRED
@act3 Stop� res
@act4 Failure� res

end

event Prediction
where
@grd1 flag = PRED
@grd2 Failure = FALSE
@grd3 Stop = FALSE

then
@act1 flag� ENV

end
end
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context c1
extends c0

constants min_door max_door
OPEN_DOOR1 OPEN_DOOR2 CLOSE_DOOR1 CLOSE_DOOR2 NULL_CMD
POSITION
MOTOR_OPEN MOTOR_CLOSE MOTOR_OFF
min_pressure_exp max_pressure_exp
PRESSURE_INSIDE PRESSURE_OUTSIDE
PUMP_INC PUMP_DEC PUMP_OFF
FAULT_TYPES

sets CMDMOTOR PUMP

axioms
@axm1 �x·(x�� � x�0 � x�100� x�POSITION) //door position: 0-closed, 100-opened
@axm2 partition(MOTOR, {MOTOR_OFF},{MOTOR_OPEN},{MOTOR_CLOSE})
@axm3 min_door � POSITION ×MOTOR� POSITION //lesser expectation limit of

an opening door
@axm4 �x·x�POSITION � min_door(x�MOTOR_OFF)=x //if the motor is off, we expect

our door to be stable
@axm5 �x·x�POSITION � min_door(x�MOTOR_OPEN)=x //during opening the door

should at least stay the same
@axm6 �x·x�POSITION � x>0� min_door(x�MOTOR_CLOSE)<x //closing
@axm7 min_door(0�MOTOR_CLOSE)=0
@axm10 max_door � POSITION ×MOTOR� POSITION
@axm11 �x·x�POSITION � max_door(x�MOTOR_OFF)=x
@axm12 �x·x�POSITION � x<100� max_door(x�MOTOR_OPEN)>x
@axm13 �x·x�POSITION � max_door(x�MOTOR_CLOSE)=x
@axm14 max_door(100�MOTOR_OPEN)=100

theorem@thm1 �x,a·x�POSITION � a�MOTOR � min_door(x�a)�max_door(x�a)

@axm20 partition(CMD, {NULL_CMD}, {OPEN_DOOR1}, {OPEN_DOOR2},
{CLOSE_DOOR1}, {CLOSE_DOOR2})

@axm30 partition(PUMP, {PUMP_OFF},{PUMP_INC},{PUMP_DEC})
@axm31 min_pressure_exp �� × PUMP� �
@axm32 max_pressure_exp �� × PUMP� � //the same as for the doors
@axm33 PRESSURE_INSIDE = 100
@axm34 PRESSURE_OUTSIDE = 0

@axm40 FAULT_TYPES = 2
end



��

���������� �� ������� ��

machine m1 refines m0 sees c1

variables
door1_position
door1_position_sensor
door2_position
d1_exp_min
d1_exp_max
d2_exp_min d2_exp_max
door1_fail
door1_fail_masked
door1_position_sensor_abs
door1_position_sensor_pred
door1_opened_sensor_inconsistent
door1_closed_sensor_inconsistent
door2_fail door1_motor
door2_motor
pressure_value
pressure_exp_min
pressure_exp_max
pump
pressure_fail
cmd
flag
Stop
door1_opened_sensor
door1_closed_sensor
door2_opened_sensor
door2_closed_sensor
faults_detected
retry
door1_sensor_redundant
retry_done
door1_sensor_redundant_done
door1_sensor_disregard

invariants
@inv1 door1_position � �
@inv2 door1_position_sensor � � // 0-closed, 100-open
@inv3 door1_position_sensor_abs � BOOL
@inv4 door1_position_sensor_pred � BOOL
@inv5 door1_opened_sensor_inconsistent�BOOL
@inv6 door1_closed_sensor_inconsistent�BOOL
@inv7 d1_exp_max�POSITION
@inv8 d1_exp_min�POSITION
@inv9 door1_fail�BOOL
@inv10 door1_fail_masked�BOOL
@inv11 door1_sensor_redundant_done�BOOL
@inv12 door1_sensor_disregard�BOOL
@inv13 door2_position � �
@inv14 d2_exp_max�POSITION
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@inv15 d2_exp_min�POSITION
@inv16 door2_fail�BOOL
@inv17 faults_detected � �
@inv18 retry_done � BOOL
@inv19 door1_fail_masked�BOOL
@inv20 door1_motor�MOTOR
@inv21 door2_motor�MOTOR
@inv22 pressure_value � �
@inv23 pressure_exp_min � �
@inv24 pressure_exp_max � �
@inv25 pressure_fail�BOOL
@inv26 door1_sensor_redundant�BOOL
@inv27 pump�PUMP
@inv28 retry��
@inv29 door1_opened_sensor � BOOL
@inv30 door1_closed_sensor � BOOL
@inv31 door2_opened_sensor � BOOL
@inv32 door2_closed_sensor � BOOL

@glue flag�DET� (Failure=TRUE� door1_fail=TRUE � door2_fail=TRUE � pressure_fail=TRUE)

@safety1 door1_fail=TRUE � flag�CONT � flag�DET� Stop=TRUE
@safety2 door2_fail=TRUE � flag�CONT � flag�DET� Stop=TRUE
@safety3 pressure_fail=TRUE � flag�CONT � flag�DET� Stop=TRUE

@glue_door1 flag�CONT � faults_detected=2� (door1_fail=TRUE�
door1_position_sensor_abs=TRUE � door1_position_sensor_pred=TRUE �
door1_opened_sensor_inconsistent=TRUE � door1_closed_sensor_inconsistent=TRUE)

@glue_door1_masking flag=CONT � retry_done=TRUE � door1_sensor_redundant_done=TRUE�
(door1_fail_masked=TRUE� door1_position_sensor_abs=TRUE �
door1_position_sensor_pred=TRUE �
door1_opened_sensor_inconsistent=TRUE �
door1_closed_sensor_inconsistent=TRUE)

events
event INITIALISATION
then
@act1 flag� ENV
@act2 Stop� FALSE
@act3 door1_position� 0
@act4 door1_position_sensor� 0
@act5 door2_position� 0
@act7 door1_motor�MOTOR_OFF
@act8 door2_motor�MOTOR_OFF
@act9 d1_exp_min�0
@act10 d1_exp_max�0
@act11 d2_exp_min�0
@act11 d2_exp_max�0
@act12 door1_fail�FALSE
@act13 door2_fail�FALSE
@act14 pressure_value� PRESSURE_INSIDE
@act15 pressure_fail�FALSE
@act16 pressure_exp_min� PRESSURE_INSIDE
@act17 pressure_exp_max� PRESSURE_INSIDE
@act18 pump�PUMP_OFF
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@act19 door1_opened_sensor� FALSE
@act20 door1_closed_sensor� TRUE
@act21 door2_opened_sensor� FALSE
@act22 door2_closed_sensor� TRUE
@act23 faults_detected� 0
@act24 door1_position_sensor_abs� FALSE
@act25 door1_position_sensor_pred� FALSE
@act26 door1_opened_sensor_inconsistent� FALSE
@act27 door1_closed_sensor_inconsistent� FALSE
@act28 retry_done� FALSE
@act29 retry� 0
@act30 door1_fail_masked� FALSE
@act31 door1_sensor_redundant�TRUE
@act32 door1_sensor_redundant_done�FALSE
@act33 door1_sensor_disregard�FALSE

end

event Environment refines Environment
where
@grd1 flag = ENV
@grd2 Stop = FALSE

then
@act1 flag� DET
@act2 door1_position_sensor :� �
@act4 pressure_value :� �
@act5 door1_opened_sensor :� BOOL
@act6 door1_closed_sensor :� BOOL
@act7 door2_opened_sensor :� BOOL
@act8 door2_closed_sensor :� BOOL
@act9 faults_detected� 0

end

event Detection_Doors
where
@grd1 flag = DET
@grd3 Stop = FALSE
@grd5 faults_detected = 0

then
@act1 door1_position_sensor_abs� bool((door1_position_sensor < 0 �

door1_position_sensor > 100) � door1_sensor_disregard=FALSE)
@act2 door1_position_sensor_pred� bool((door1_position_sensor < d1_exp_min �

door1_position_sensor > d1_exp_max) � door1_sensor_disregard=FALSE)
@act3 door1_opened_sensor_inconsistent� bool(¬(door1_opened_sensor=TRUE�

(door1_position=100 � door1_sensor_disregard=TRUE)))
@act4 door1_closed_sensor_inconsistent� bool(¬(door1_closed_sensor=TRUE�

(door1_position=0 � door1_sensor_disregard=TRUE)))
@act5 door2_fail� bool((door2_position < d2_exp_min � door2_position > d2_exp_max) �

(door2_position < 0 � door2_position > 100 � door2_fail=TRUE) �
¬(door2_opened_sensor=TRUE� door2_position=100) �
¬(door2_closed_sensor=TRUE� door2_position=0))

@act6 pressure_fail�bool(pressure_value < pressure_exp_min �
pressure_value > pressure_exp_max)

@act10 faults_detected� faults_detected+1
end
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event Detection_Door1_fail
where
@grd1 flag = DET
@grd3 Stop = FALSE
@grd5 faults_detected = 1

then
@act1 door1_fail� bool(door1_position_sensor_abs=TRUE �

door1_position_sensor_pred=TRUE �
door1_opened_sensor_inconsistent=TRUE �
door1_closed_sensor_inconsistent=TRUE)

@act2 faults_detected� faults_detected+1
end

event Detection_NoFault refines Detection
where
@grd1 flag = DET
@grd3 Stop = FALSE
@grd4 faults_detected = 2
@grd2 door1_fail=FALSE � door2_fail=FALSE � pressure_fail = FALSE

with
@Failure' Failure'=FALSE

then
@act1 flag� CONT
@act2 retry_done�FALSE
@act3 door1_sensor_redundant_done�FALSE

end

event Detection_Fault refines Detection
where
@grd1 flag = DET
@grd2 Stop = FALSE
@grd4 faults_detected = 2
@grd3 door1_fail=TRUE � door2_fail=TRUE � pressure_fail = TRUE

with
@Failure' Failure'=TRUE

then
@act1 flag� CONT
@act2 retry_done�FALSE
@act3 door1_sensor_redundant_done�FALSE

end

event NormalSkip
refines NormalOperation
where
@grd1 flag = CONT
@grd4 ¬( door1_position_sensor_abs=TRUE � door1_position_sensor_pred=TRUE �

door1_opened_sensor_inconsistent=TRUE � door1_closed_sensor_inconsistent=TRUE)
@grd2 door1_fail=FALSE � door2_fail=FALSE � pressure_fail = FALSE
@grd3 Stop = FALSE

then
@act1 flag� PRED
@act2 door1_motor :�MOTOR
@act3 door2_motor :�MOTOR
@act4 pump :� PUMP

end
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event RetryPosition
where
@grd1 flag = CONT
@grd2 retry_done = FALSE
@grd3 door1_position_sensor_abs = TRUE � door1_position_sensor_pred = TRUE
@grd4 retry<3

then
@act1 door1_position_sensor_abs� FALSE
@act2 door1_position_sensor_pred� FALSE
@act3 door1_fail_masked� bool( door1_opened_sensor_inconsistent=TRUE �

door1_closed_sensor_inconsistent=TRUE)
@act4 retry� retry + 1 || @act5 retry_done�TRUE

end

event RetryFailed
where
@grd1 flag = CONT
@grd2 retry_done=FALSE
@grd3 ((door1_position_sensor_abs = TRUE � door1_position_sensor_pred = TRUE) � retry=3) �

(door1_position_sensor_abs = FALSE � door1_position_sensor_pred = FALSE)
then
@act1 door1_fail_masked� bool(door1_position_sensor_abs = TRUE �

door1_position_sensor_pred = TRUE � door1_opened_sensor_inconsistent=TRUE �
door1_closed_sensor_inconsistent=TRUE) || @act2 retry_done�TRUE

end

event EnableRedundant
where
@grd1 flag = CONT
@grd2 retry_done=TRUE
@grd3 door1_sensor_redundant_done=FALSE
@grd4 door1_position_sensor_abs = TRUE � door1_position_sensor_pred = TRUE
@grd5 door1_sensor_redundant = TRUE

then
@act1 door1_position_sensor_abs� FALSE
@act2 door1_position_sensor_pred� FALSE
@act3 door1_fail_masked� bool( door1_opened_sensor_inconsistent=TRUE �

door1_closed_sensor_inconsistent=TRUE)
@act4 door1_sensor_redundant� TRUE
@act5 door1_sensor_redundant_done�TRUE

end

event NoRedundant
where
@grd1 flag = CONT
@grd2 retry_done=TRUE
@grd3 door1_sensor_redundant_done=FALSE
@grd4 ((door1_position_sensor_abs = TRUE � door1_position_sensor_pred = TRUE) �

door1_sensor_redundant=FALSE) � (door1_position_sensor_abs = FALSE �
door1_position_sensor_pred = FALSE)

then
@act1 door1_fail_masked� bool(door1_position_sensor_abs = TRUE �

door1_position_sensor_pred = TRUE � door1_opened_sensor_inconsistent=TRUE �
door1_closed_sensor_inconsistent=TRUE)

@act2 door1_sensor_redundant_done�TRUE
end
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event SafeStop
refines ErrorHandling
where
@grd1 flag = CONT
@grd2 (door1_fail=TRUE � door1_fail_masked=TRUE) � door2_fail=TRUE � pressure_fail=TRUE
@grd3 Stop = FALSE
@grd4 retry_done=TRUE
@grd5 door1_sensor_redundant_done=TRUE

with
@res res=TRUE

then
@act1 flag� PRED
@act2 Stop� TRUE
@act3 door1_fail� door1_fail_masked
@act4 door1_fail_masked�FALSE
@act5 retry_done�FALSE
@act6 door1_sensor_redundant_done�FALSE

end

event ErrorHandling
refines ErrorHandling
where
@grd1 flag = CONT
@grd2 door1_fail=TRUE � door2_fail=TRUE � pressure_fail=TRUE
@grd3 Stop = FALSE
@grd4 retry_done=TRUE
@grd5 door1_sensor_redundant_done=TRUE

with
@res res=bool(door1_fail_masked=TRUE � door2_fail=TRUE � pressure_fail=TRUE)

then
@act1 flag� PRED
@act2 Stop� bool(door1_fail_masked=TRUE � door2_fail=TRUE � pressure_fail=TRUE)
@act3 door1_fail� door1_fail_masked
@act4 door1_fail_masked�FALSE
@act5 retry_done�FALSE
@act6 door1_sensor_redundant_done�TRUE

end

event Prediction refines Prediction
where
@grd1 flag = PRED
@grd2 door1_fail=FALSE � door2_fail=FALSE � pressure_fail = FALSE
@grd3 Stop = FALSE

then
@act1 flag� ENV
@act2 d1_exp_min�min_door(door1_position�door1_motor)
@act3 d1_exp_max�max_door(door1_position�door1_motor)
@act4 d2_exp_min�min_door(door2_position�door1_motor)
@act5 d2_exp_max�max_door(door2_position�door1_motor)
@act6 pressure_exp_min� min_pressure_exp(pressure_value�pump)
@act7 pressure_exp_max� max_pressure_exp(pressure_value�pump)

end
end
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machine m2 refines m1 sees c1

variables
failure
flag
Stop
pressure_value
door1_position
door2_position
door1_motor
door2_motor
pump
door1_sensor_disregard

invariants
@failure failure = bool(door1_fail=TRUE � door2_fail=TRUE � pressure_fail=TRUE)
@safety1 failure = FALSE � door1_position = door1_position� door1_position = 0 // only one door is

open at any given moment
@safety2 failure = FALSE � (door1_position > 0 � door1_motor=MOTOR_OPEN)�

pressure_value = PRESSURE_OUTSIDE // when the first door is open, the pressure must
be set to OUTSIDE

@safety3 failure = FALSE � (door2_position > 0 � door2_motor=MOTOR_OPEN)�
pressure_value = PRESSURE_INSIDE // when the second door is open, the pressure must
be set toINSIDE

@safety4 failure = FALSE � pressure_value � PRESSURE_INSIDE � pressure_value �
PRESSURE_OUTSIDE� door1_position=0 � door2_position=0 //when the pressure differs
from both sides - the doors must be closed

@safety5 failure = FALSE � pump�PUMP_OFF� (door1_position=0 � door2_position=0) //the doors
must be closed when pump is working

events
event INITIALISATION
then
@act1 flag� ENV
@act2 Stop� FALSE
@act3 door1_position� 0
@act4 door2_position� 0
@act5 door1_motor�MOTOR_OFF
@act6 door2_motor�MOTOR_OFF
@act7 pressure_value� PRESSURE_INSIDE
@act8 pump�PUMP_OFF
@act9 failure� FALSE

end

event open1 refines NormalSkip
where
@grd1 pressure_value = PRESSURE_OUTSIDE
@grd2 door1_position = 0
@grd3 door2_position = 0
@grd4 door1_sensor_disregard=FALSE

//do not allow opening the door when the position sensor is faulty
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@grd5 flag = CONT
@grd6 failure=FALSE
@grd7 Stop=FALSE

then
@act1 flag� PRED
@act2 door1_motor� MOTOR_OPEN

end

event opened1 refines NormalSkip
where
@grd1 door1_position = 100
@grd2 door1_motor =MOTOR_OPEN
@grd3 flag = CONT
@grd4 failure=FALSE
@grd5 Stop=FALSE

then
@act1 flag� PRED
@act2 door1_motor� MOTOR_OFF

end

event close1 refines NormalSkip
where
@grd1 door1_position = 100
@grd2 flag = CONT
@grd3 failure=FALSE
@grd4 Stop=FALSE

then
@act1 flag� PRED
@act2 door1_motor� MOTOR_CLOSE

end

event closed1 refines NormalSkip
where
@grd1 door1_position = 0
@grd2 door1_motor =MOTOR_CLOSE
@grd3 flag = CONT
@grd4 failure=FALSE
@grd5 Stop=FALSE

then
@act1 flag� PRED
@act2 door1_motor� MOTOR_OFF

end

event pressure_high refines NormalSkip
where
@grd1 door1_position = 0
@grd2 door2_position = 0
@grd3 pressure_value = PRESSURE_OUTSIDE
@grd0_1 flag = CONT
@grd0_2 failure=FALSE
@grd0_3 Stop=FALSE

then
@act1 flag� PRED
@act2 pump� PUMP_INC

end
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event pressure_highed refines NormalSkip
where
@grd1 pump = PUMP_INC
@grd2 pressure_value = PRESSURE_INSIDE
@grd3 flag = CONT
@grd4 failure=FALSE
@grd5 Stop=FALSE

then
@act1 flag� PRED
@act2 pump� PUMP_OFF

end

event pressure_low refines NormalSkip
where
@grd1 door1_position = 0
@grd2 door2_position = 0
@grd3 pressure_value = PRESSURE_INSIDE
@grd4 flag = CONT
@grd5 failure=FALSE
@grd6 Stop=FALSE

then
@act1 flag� PRED
@act2 pump� PUMP_DEC

end

event pressure_lowed refines NormalSkip
where
@grd1 pump = PUMP_DEC
@grd2 pressure_value = PRESSURE_OUTSIDE
@grd3 flag = CONT
@grd4 failure=FALSE
@grd5 Stop=FALSE

then
@act1 flag� PRED
@act2 pump� PUMP_OFF

end
end

At the resulting model we show all detection and recovery events for door1 only as they are identical to
those for door2 and chamber pump and can be found in Appendix B.
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