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Abstract

This document describes a compiler and programming caztstfar our experi-
mental RISC-based moving threads architecture. We distfube usage of this
compiler and show examples. However, this document is rgitgwser man-
ual, but we also describe implementation related detaitb@&fISC-based mov-
ing threads architecture is experimental in nature and radramework than a
product, and thus it as well as its simulator, compiler anidteel programming
constructs are all subject to future developments.

As it requires huge resources to write an industrial-leeehpiler, we heavily
use an existing compiler. The provided compiMTTHC, is an experimental light-
weight “extension” of the GNU GCC compiler (MIPS32) by macamstructions
and a runtime library for the architecture. Consequerttly,drogramming for the
moving threads architecture does not involve a new progragpfanguage, but
rather the typical language-level constructions are pledifor the programmer
through macro definitions and library functions and proceduAs the base lan-
guage, we use the plain C language. Naturally, the new laygge@nstructions are
mainly related to threads, thread creation and terminatsang the special RISC
instructions of the moving threads architecture.

Keywords: multi-core, moving threads, compiler
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1 Introduction

This document describes a compiler and programming caststfor our experi-
mental RISC-based moving threads architecture [11, 13}e®/e that there exists
also a non-RISC-based moving threads architecture [1-8]dMtuss of the us-
age of this compiler and show examples. However, this doatim@ot just a user
manual, but we also describe implementation related dedailthe RISC-based
moving threads architecture is experimental in nature aockra framework than
a product, and thus it as well as its simulator, compiler atated programming
constructs are all subject to future developments.

As it requires huge resources to write an industrial-leeghpiler, we have
decided to heavily use an existing compiler. The providedmter, MOTHC, is an
experimental light-weight “extension” of the GNU GCC cotepi(MIPS32) by
macro constructions and a runtime library for the architexirot h. h). Con-
sequently, the programming for the moving threads architeaoes not involve
a new programming language, but rather the typical langimags constructions
are provided for the programmer through macro definitiortsldomary functions
and procedures. As the base language, we use the plain Gilga§ij.

The moving threads architecture has a non-standard RIS@atisn set, al-
though most of the instructions are as in the ordinary RISA. [Eor this reason,
we also discuss implementation of thread creation and textioin using the spe-
cial RISC instructions of the moving threads architecture.

Next, we give an overview of the moving threads approach endrchitec-
ture in Section 2. The implemented subset of the MIPS32unstn set along
with the moving threads instructions are presented in 8&@@i The program-
ming language and library extensions of the architectuigivien in Section 4.
The guides for installing and using our compiler are listedections 5 and 6,
respectively. Finally the Section 7 ends the manual withmgdas of applications
for the moving threads architecture.



2 Overview of moving threads approach

Our RISC-based multicore architectural framework [11,i83dlesigned for im-
plementing a PRAM-based (Parallel Random Access Machijeapproach for
parallel programming. A goal is to provide better prograrbiiity of parallel sys-
tems, since the basis of PRAM approach is a synchronouscshemory based
execution of threads. The synchronous nature of execusisengially means that
there are pleanty of points in the program, where the prograncan relay that the
previous memory write (and read) instructions have takaeel Consequently,
the state of the program (concerning all threads) is cledrtla@refore designing
a correctly functioning multithreaded program becomeseea3he PRAM has
several variations regarding the choice of synchronimgtimints. The most strict
interpretation is that (implicit) synchronization takdage after executing a single
step from all currently existing threads. Our moving thieacchitecture follows
this approach.

We assume the architecture to consist of homogeneous dwesre con-
nected with an on-chip network, see Figure 1. Besides ratiugnary ALU capa-
bilities, each core maintains a rather large set of hardwwapported threads, has
separate memory and instruction caches, and has an on-etwonk interface.

C1: !
| thread . data
|| receive buffer -7|__cache &
L
'+ thread pool 7|  instruction execution -, .
p ‘ | 1 Main
i - memory
register file e pipeline = |
[ thread L. e instr. -
send buffer cache

Interconnection network between the cores

Figure 1: Overview of our multicore system.
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The system consists ofRISC-basedores an inter-connectionetwork between
the coresand amain memorysystem. Each core maintains a set of threads, can
execute instructions from those, send and receive threadse/network, and has
a cache memory for accessing a part of the main memory. EaelC¢dsees”
a unique fractionof the main memory via itslata cache- such memory loca-
tions are calledocal to C;. Thus, if a thread residing at cof¢ issues a memory
instruction concerning some memory location local to a0rethen the thread
must be moved t@’; before executing the instruction. Moving a thread basycall
means moving the contents of its registers and program eouiihe program,
being executed by a thread to be moved, is not moved, sinde@ae has an
instruction cachewhich contains fractions of all program codes being exatut
by the threads residing at that core.

A cache-based access to the memory system is provided Japeacessor
core. However, each core sees only a unique fraction of taetivnemory space,
and thus there are no cache coherence problems and whead thakes a refer-
ence out of the scope of the core’s memory area, the refergticiead must be
moved to the core that can access that part of the main memesydes a cache
to access the data memory, each core also has a cache faaprogtructions.

The idea is that each of the cores has at each logical stepdd thteads
(varying number) to execute, and the threads are indepénéleach other —i.e.
the core can take any of them and advance its execution. Bygtak instruction
cyclically from each thread, the core can wait for memoryeasctaking a long
time and even tolerate some of the delays caused by movinipibads. A key
idea is tohide the memory as well as network and other delay%eeping the
average number of threads per core at the same or highettharethe expected
delay of executing a single instruction from any thread.

For the creation and termination of threads at the prograrmgmanguage level,
we take the approach of supporting only implicit terminats well as creation of
threads. We do not consider Java-like explicit declaratithreads as first-class
objects as a feasible solution. In practice, we have a ghlatip-like construction
which creates threads with logical id-numbers in the irdEiiww, high] and each
of the threads starts by running the same program block. ddjedl thread id-
numbers are independent of physical thread and core numbknsagement of
the physical thread identity is completely handled by thel\Wware. The logical id-
numbers are program controlled, with an easy access visteegnstructions. We
also consider supporting nested thread creations. EaehdHaces an implicit
termination at the end of the program block (which was defimethe thread
creation statement).

2.1 Memory system

The moving threads architecture consists of three typeseshony. First, the
global main memory is divided into two types: a read-onlytrimstion memory
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and a read-write data memory. The third memory type consiste local storage
provided by thread local registers. In the current impletaigon, the word length
of 32 bits has been chosen for all registers. Unlike the texgsthe global main
memory types are shared between all threads.

The data and instruction memories have a flat 32-bit addgsses The in-
struction memory is automatically accessed by the exetwdiggine whenever
new instructions need to be fetched, while the data memagdsssed explicitly
from the program code via load and store instructions. Tballstorage provided
by the registers can be used via instructions with registearpeters. Since all
memory types have a dedicated access method, all kinds obrgeronflicts can
be avoided. The data memory’s address space is assumed utyyeopulated
with physical memory modules, however not necessarily withique module for
each core since the amount of interconnections with thegssmr may have strict
physical limitations. To simplify the model, we do not caesi any hardware
exceptions related to memory in this report.

All memory operations (and other instructions) have a unietcost in the
computational model. Physically the memory operations haase varying fetch
latencies depending on the exact location of the data in theany hierarchy.
When the latency prevents a thread from executing, the sidredutomatically
interleaves the execution with other instructions fromeotihreads that are ready
for execution. Obtaining optimal performance requiresro@ing both instruc-
tion and data memory accesses by using this parallel slaskBg¢

Optimizing instruction memory access is very limited. Theh#&ecture can
provide branch prediction, caching, and prefetching oheakines as core lo-
cal optimizations like in contemporary designs. Anothetirajzation can be
achieved with multithreading. If threads on the same coec@te the same part
of the program, the threads can share the same instructtaradd decrease in-
struction memory traffic via core’s local instruction cache

The architecture does not provide any explicit way for oting the use of
data memory. First, the memory is partitioned into blocks$ (. .23%) that are
scattered evenly among the cores using some hash functiomer@ly, the hash
function is calculated from the highesbits of the memory reference. Accessing
memory on another core triggers context switch and thregdation to that other
core. Optimal usage utilizes the computational power aadtbmory bandwidth
provided by the distributed low level architecture, budises to minimize the
thread moves, because the interconnection network alsmluintes limited band-
width and a communication latency. Locally within the conghen accessing
memory, the application can also make use of the memoryrolergparameters
(cache line width, associativity, replacement policy),jathis a common coding
practice with contemporary systems with hierarchical mgmo

The registers provide a constant time, low latency accesbkdJglobal main
memory, which is partitioned between the cores, the regsgtace is local to the
thread and migrates along with the thread when the threashist@ another core
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or forked.

2.2 Interconnection network

The details of the interconnection network for the movingéus architecture are
discussed in another technical report about the implertientaf the architecture
simulator [9].

2.3 Execution core

Each core (Figure 2) keeps track of the thread context fan eative thread ex-
ecuting in the core. The thread scheduling and migratiorharalled implicitly
by the hardware. The table of local threads can be furthéitipaed inton (e.qg.
4 or the number of pipeline stages) subtables to improveathsgitching perfor-
mance and possibly the register file bandwith with regisé@kis. In case the table
is divided into subtables, the optimal execution requirgsypating all subtables
with sufficient number of threads to hide the latency intretliby memory ac-
cesses and moving of threads, and to avoid pipeline stakbufable runs out of
executable threads. Currently, we only consider that 1.

The sufficient number of simultaneous threads depends dga#dymon the al-
gorithm, and statically on memory hierarchy propertiestiechetwork latencies.
Currently we do not have any realistic estimate for thesetH®ISMASIm archi-
tecture simulator [10] (Section 6.4) could be used to ptetiioamic latencies.

By default a strict PRAM style synchronization is achievadthe synchro-
nization wave technique [7]. The wave implicitly places adyonization bar-
rier between every two instructions for all active threaldsring a single virtual
time step of the PRAM, the threads are executed in arbitreslgro The hard-
ware guarantees a serial execution of memory requestsgdtimis step. How-
ever, the contents of a memory address and the result of nyeoperations in
case of simultaneous writes or simultaneous writes andsregelundefined. This
means that the architecture follows the EREW (ExclusivedREaclusive Write)
PRAM computational model. In fact, the architecture canaimally be seen as
an aCRCW (Arbitrary Concurrent Read, Concurrent Write) etdolut there is no
special support for concurrent operations and thus theirisdarger than on the
ordinary CRCW.

An alternative operation for the system (not implementedenily) is to trig-
ger the synchronization wave explicitly with a dedicatedayonization instruc-
tion. The idea behind relaxing this model is to decrease mheuat of synchro-
nization messages in the network, give more opportunitydtency hiding to
work efficiently and improve the performance by removing eressary data de-
pendencies with more independent thread local computation
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3 Instruction set

The architecture was designed to be based on the in-ord€ RE#I-store archi-
tecture [5]. The rationale behind this is that a RISC archite does not require
complex hardware implementation. Extracting the memondresses from loads
and stores is rather simple (used when migrating threaasaddlition, instead
of improving a single core’s execution performance by a waré support for
out-of-order execution, we rather use the chip space fotiphelicores. The first
generation of the design does not support SIMD instructiomsSIMD operations
could provide a cost-effective way to improve performanigeavallel algorithms.

In order to boost application development by making use dftieng devel-
opment toolchain, we settled on MIPS32 ISA [16]. Anothewgiale alternative
would be the ARM ISA [15]. From toolchain’s point of view, thestruction set
is not hard to switch later on — changes currently only afteetbackend of the
compiler and the architecture emulator’s execution pipgetnodel.

3.1 MIPS instruction set

The basic set of instructions consists of the MIPS32 in§voset. However, cur-
rently floating point, atomic, and trap instructions haveimplementation. Be-
cause of the execution pipeline design, instructions ysilpgjine registerai and

| o can be more freely used in various contexts unlike in thattoachl MIPS32.
These registers are thread local, but do not migrate withhitead, which forces
the compiler to make sure the values are stored to regulesteeg before a move.
In other cases, all instructions can be executed in any segweithout any special
cases.

The supported MIPS32 instructions can be divided in fouegaties:

e Arithmetic—logic: ADDI, ADDIU, ADD, ADDU, ANDI, AND, CLO,
CLZ, MOVN, MOVZ, MUL, NOP, NOR, ORI, OR, SLL, SLLV, SLTI,
SLTIU, SLT, SLTU, SRA, SRAV, SRL, SRLV, SUB, SUBU, XORI, and
XOR.

e Heavyweight Arithmetic: DIV, DIVU, MADD, MADDU, MFHI, MFLO,
MSUB, MSUBU, MTHI, MTLO, MULT, and MULTU.

e Load and stores LB, LBU, LH, LHU, LUI, LWL, LWR, LW, SB, SH, and
SW.

e Branches and jumps BEQ, BGEZAL, BGEZ, BGTZ, BLEZ, BLTZAL,
BLTZ, BNE, JALR, JAL, JR, and J.

The differences between the first two categories are in thefisi andl o reg-
isters. The arithmetic instructions in the latter categstigre the result in two
registers. All other instructions write back the resultimepst one register.
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3.2 Thread instructions

The concurrency model for the moving threads architecta® motivated by the
fork—join programming model; the control flow is organizesssabsequent blocks
of sequential and parallel code (see Figure 3). The blockshen be recursively
split further into a new sequence of these blocks. The achite forks new
threads at the beginning of a parallel block and joins thatece child threads at
the end of the block. These operations are explicitly hahdlgh two kinds of
thread instructions: forks and joins. A detailed explaorabf the instructions and
their effects is given next in this section.

Figure 3: The fork—join pattern.

The architecture does not require a strict symmetry betwieesad instruc-
tions, i.e. the high level fork—join model provides only d@seat of the available
functionality and is one of the possible parallel programgrmnodels; the instruc-
tion set uses the forks and joins as primitives. There aedlery functions for
discovering the current thread index. Multi-level indeaes implementable, but
the hardware only keeps track of the topmost index. The @sdaf the "outer
loops” must be stored to a stack implemented with eithestegs or a dedicated
main memory location.

To simplify the implementation, thread instructions use same shared gen-
eral purpose registers for storing their state. The prograris responsibility is
to keep track of this data (mostly thread index value aftéoak), and to restore
the thread to a consistent state before callimg n (core and thread slot index
values). ThePar do macro defined in Section 4.3.4 is given as an example of
a high level construct designed to automatically keep tzcthis data for the
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programmer.

3.2.1 Fork

TheFor k operation forks new child threads. The amount of new thréaggo
create is given either as an immediate argument (encodeattast phe instruction
word) or as a register argument (index of the register coimgithe number).

The thread creation is split evenly among the cores. Thabnsa system
consisting ofn processor cores, the equation= a - n + b, where0 < b < n,
defines the numbers of threads to fork on each of the coresa Tégresents the
amount of new threads on coreés. . (n — 1), b on thenth core. Ifb is zero, all
cores forka new threads. In case the number of threads to fork is smhberthe
amount of cores, all child threads are forked locally on tae core.

The new threads get a unique id, starting froend ending withn — 1. This
enumeration follows the numbering of the cores: the id offits¢ thread on core
i comes after the id of the last thread on core 1. All the other thread local
data (registers, program counter) are copied from the p#rezad. Typical ways
to achieve parallelism under this assumption is to accdtseht data using the
varying id number or use it for branching to make the coneuroentrol flows
diverge.

On top of this, the actual implementation Bbr k is a bit more complex.
A distributed thread forking is used to minimize networkffica the amount of
packets to send is proportional to the amount of cores, rntbetamount of threads
to fork. To achieve this, the fork is divided to two operasothe remote and local
fork. The idea of the remote fork is to propagate the knowdedfjthe fork to
all cores. The cores then locally fork the right number oé#us. Instead of a
single master thread, this approach also requires perecorglinator threads. All
created threads keep track of the originating core anddhpeaition in the thread
table to make the joins later possible in a distributed manne

Next we list the actual instructions used to implement trecdbed fork func-
tionality. TheFORK andFORKI instructions describe the remote forks, and the
FORKL describes the version local to every core.

FORKI The execution oFORKI broadcasts a thread creation packet to each
core (Figure 4).

Core 1
Core 0

Core N
Figure 4. Broadcast of the fork packet to other cores.
The semantics of the instruction are:
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1.
2.
3.
4.

pc < thread’s oldoc value + 4
nextinstruction— next instruction in the instruction memory
register 2%— number of coordinating threads made

state— async wait

The outgoing network packet consists of the issuing theeattite, with the
following differences:

1.

2
3.
4

nextlnstruction— FORKL

. register 25— issuing core’s id

register 26— issuing thread’s slot id

. register 27— total number of threads to create

As FORKI is a type | instruction in MIPS terminology (see [16]), thenmer
of threads to create is given as an immediate value.

FORK The semantics dfORK are identical to those dfORKI . However, in-
stead of providing the number of threads to create as an inateaghlue, the value
is indirectly given via a register referencEORK is thus a type R instruction in
MIPS terminology.

FORKL The local fork instruction spawns new child threads to thredH table
of the local core. The number of threads to fork is read froenrdgister 27. The
semantics of the instruction are:

1.
2.
3.
4.

pc < thread’s oldoc value + 4
nextinstruction— next instruction in the instruction memory
register 27%— number of child threads made on this core

state— async wait

The child threads are initialized with the following state:

a w0 nhoE

pc < thread’s oldpc value + 4

nextinstruction— next instruction in the instruction memory
register 25— issuing core’s id

register 26— issuing thread’s slot id

register 27— child thread’s id

The technique for computing the id values and amount of tlee¢a fork on
each core were described in the beginning of this section.
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3.2.2 Join

We assume that before calling adgi ns, the code inside the parallel block has
restored all thread related registers (registers 25 antb26é original state after
a previousFor k. Otherwise the operations will have undefined and potdytial
harmful behavior.

While the child threads are executing, the parent threadtenger-core coor-
dinator threads are permanently waiting. Nothing will geg these threads until
all the child threads have performed thei n. This leads to few invariants: the
core and the thread slot in the thread table remain constairtgdthe execution
of the parallel code block. The child threads use this inftion to locate the
original thread when joining; thdoi n will active thread move if execution is
attempted on a wrong core. The coordinating threads coataounter which is
decremented by an associated child thread every time thetbnead joins. The
last Joi n operation terminates the child thread and activates thedomating
thread. In similar way, the coordinating threads decreasedunter of the parent
thread after locating the correct core.

Next we list the actual instructions used to implement trexdbed join func-
tionality. TheJO NC instruction describes the join of a coordinator thread, and
theJA Ninstruction is directly used by the child threads.

JOIN The execution of instructiodO N performs the following operations:

1. The core id from the register 25bi(l) is compared with the core’s idi).
If rid # cid, the thread move to cored is started (Figure 5).

2. If rid = cid, the value of the register 2727) is decreased. However, the
thread, whose register is read from and written back to, imele by the
value of the register 26-26).

3. The program counter of the thread in st@6 is replaced with the program
counter value of the issuing thread.

4. The next instruction value of the thread in s1®6 is replaced wittJOINC.

5. If the newly written register value27 in slotr26 becomes zero, the thread
in slotr27 is activated (state transition Ready.

6. The issuing thread is terminated (state transitiofré®).

Core 1
- €
Core N

Figure 5: Migration of the join thread packets to the paremec
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As a result, the child thread terminates and the coordigdhiread continues
its execution with thelO NC instruction. Due to the indeterministic execution
order of concurrent threads during the same time step (se®B8&.3), a deter-
ministic point for joins might be required if the child thdsaperform branching.

The child threads created withFor k instruction should end their execution
with this instruction. In case the number of forked childeidis was less than the
number of cores, the indirection caused by the coordin&teads is not used —
in that case the child threads directly manipulate the sthtiee parent thread by
using theJA NCinstruction, which is described next.

JOINC TheJd NCinstruction is used "internally” by the moving threads pro-

cessor, when a coordinator thread activates to join to thenpahread. The in-

struction should be also used directly when no coordinét@aids were used.
The execution of instructiodO NC performs the following operations:

1. The core id from the register 25:i{) is compared with the core’s idi).
If rid # cid, the thread move to cored is started.

2. If rid = cid, the value of the register 2727) is decreased. However, the
thread, whose register is read from and written back to, el by the
value of the register 26-26).

3. The program counter of the thread in st@6 is replaced with the program
counter value of the issuing thread + 4.

4. The next instruction value of the thread in st@b is replaced witiNOP
(no operation).

5. If the newly written register value27 in slotr26 becomes zero, the thread
in slotr27 is activated (state transition Ready.

(o2}

. The issuing thread is terminated (state transitiofrée).

As a result, the coordinator thread terminates and the pHrezad continues
its execution first with NOP, then from the instruction felimg theJoi n of the
last child thread. Due to the indeterministic executioreomaf concurrent threads
during the same time step (see Section 2.3), a determipisint for joins might
be required if the child threads perform branching. Thigettine program counter
value is chosen from the program counter values propagatétetcoordinator
threads.

3.2.3 Other thread instructions

HALT In addition, an expliciHALT instruction is provided to stop the execu-
tion of a thread.HALT should be only used in the parent thread since it does no
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checks to see whether some other thread is waiting for tleadhto join. The

instruction does not perform any computation, it only shesthread’s status to
Free This effectively kills the thread by preventing the thresalection logic

from picking the thread anymore for execution.

3.3 An execution example with thread instructions

To demonstrate the use of thread instructions, we use a eifafk—join block
with only the NOP (no operation) instruction as its body (F&y6).

FORKI 16
FORKL
NCP

JAO N

JA NC
HALT

Figure 6: A simple four instruction fork—join example.

The amount of threads to create, 16 in the above example/gs gs an imme-
diate parameter. Using the forementioned semantic&@RKI instruction forks
16 new threads and sets the parent thread in wait mode NORanstruction is
executed by each of the child threads. The child thread$fthisir execution af-
ter issuing thed O N. The system internally proceeds witkd NC after theJO N
command. Finally, the program halts the execution WAL T. The timing of
these instructions on each core is listed in Tables 1 and @ nlimber of cores in
this system is 15.

| Thread creation |
| Thread id| Core| Instruction | PC | r25 (core)| r26 (slot)| r27 (count))|

Time: t (Fork)
0O | 0 | FORKI26) [100] 2 | 2 | -
Time: t+1 (Local fork
0 0 | FORKL Wait | 104 ? ? 1234
1 0 FORKL 104 0 0 16
15 14 FORKL 104 0 0 16

Table 1: Execution of FORK and FORKL.
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| Thread creation |
| Thread| Core| Instruction | PC | r25 (core)| r26 (slot)| r27 (count)|

Time: t+2 (nside the block
0 0 | FORKL Wait | 104 ? ? 1234
1 0 | FORKL Wait | 108 0 0 2
2 1 | FORKL Wait | 108 0 0 1
15 14 | FORKL Wait | 108 0 0 1
16 15 NOP 108 14 15 15
29 1 NOP 108 1 2 2
30 0 NOP 108 0 1 1
31 0 NOP 108 0 1 0
Time: t+3 Join)
0 0 | FORKL Wait | 104 ? ? 1234
1 0 | FORKL Wait | 108 0 0 2
2 1 | FORKL Wait | 108 0 0 1
15 14 | FORKL Wait | 108 0 0 1
16 15 JOIN 112 14 15 15
29 1 JOIN 112 1 2 2
30 0 JOIN 112 0 1 1
31 0 JOIN 112 0 1 0
Time: t+4 (Coordinator join
0 0 | FORKL Wait | 104 ? ? 1234
1 0 JOINC 112 0 0 0
2 1 JOINC 112 0 0 0
15 14 JOINC 112 0 0 0
Time: t+4 (After migration
0 0 | FORKL Wait | 104 ? ? 1234
1 0 JOINC 112 0 0 0
2 0 JOINC 112 0 0 0
15 0 JOINC 112 0 0 0
Time: t+5 (NOP after JOING
0 | 0 | NOP | 116 | ? | ? | 0
Time: t+6
0 | 0 | HALT | 120 | ? | ? | 0

Table 2: Execution of JOIN and HALT.
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3.4 ldeas for improving the instruction set

Even though the forks and joins are independent instrustiour architecture,
the currently implemented semantics do not directly supgpdghtweight mech-
anism for creating child threads that do not join, i.e. theepathread always
starts waiting. Some other concurrency models may expeattaf s1struction for
creating totally independent threads.

The return address of the parallel block is currently prepad from the child
threads to the parent thread (possibly via coordinatoreg garent thread could
also be explicitly provided with a return address.

It seems somewhat unrealistic to expect the thread opesatmexecute this
much functionality in a single time step. A physical projmyof the architecture
might split the concurrency instructions into smaller pigc
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4 Programming language

The role of the programming language is to provide a levellstraction for
programming the underlying architecture. In the contexthef moving threads
architecture, our goal was to design a suitable languagerégramming the ar-
chitecture on higher level than the assembler. The cumgplieimentation is based
on the C programming language and is provided as a 3rd pargrji extension.
The main goal was to provide a way to use the fork—join-motaehigh level loop
constructs with an automatic index tracking (similaf twr () in C).

4.1 Memory model

The virtual shared memory abstraction can be modeled wittls linear dense
address space. Thisis similar to C’s traditional memory ehdd/e fill the address
space from one end with the stack and from the other with tlap.hBlo kind of
thread level safety mechanism is provided for the main mgmor

The thread local storage in registers needs another mesthdor access. All
the concurrency instructions use the same general purpgesars for temporary
and return values as the other instructions. It is the respoity of the program-
mer or compiler to explicitly protect the registers agaiastidental overwrites.
These must be handled by e.g. the language’s flow analysialbggcthem via
functions (e.g. in a modified C language).

The current runtime implementation does not contain imeletation for dy-
namic heap memory management nor dynamic stack. On arthidevel the
system does not support virtual memory yet. As a tempordutieq, the stack
could also be defined statically by dividing a subset of thdr@sk space evenly
among threads by the compiler.

The reason for omitting these for now are potential perforceassues with
the memory accesses. For instance, even though some ofjtteeaidstack ad-
dresses reside on the same core, a stack access might ipemnsese thread mi-
grations. In worst case, every stack access triggers adimeae. In contempo-
rary systems the stack access is considered an efficieagstno heap fragmen-
tation, fast allocation and deallocation, works well widthes).

Clearly, the situation is at least as bad when dealing wi¢ghhisap memory.
In addition, dynamic memory management with e.g. a ceatgdlbookkeeping
structure might trigger a series of thread moves every timemaory area is allo-
cated and deallocated.

4.2 Concurrency model

In short, our language for the moving threads architecemeds the safety ques-
tions related to the concurrent execution almost completesolved. The unde-
terministic aCRCW hardware model explains how simultaseeads and writes
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to the same main memory address only lead to undefined statend sense
this is compatible with C’s single-threaded memory modetduse the isolation
between threads is handled on hardware, and the applicaiti® only needs to
guarantee the freedom from these memory conflicts. The @&gecannot make
this guarantee, but a runtime library or an improved languzamn be designed to
provide a set of parallel constructs that will not break thuarantee. As no single
concurrency model or language has become de facto solutemave left the
guestion unanswered.

4.3 Language constructs

Currently the following language constructs are providgdhe runtime library:
thread index queryfork, join, andpardo (parallel do). The first three provide an
explicit way of controlling the thread handling, whpardoprovides implicit syn-
chronization and thread creation for the provided blockarbfiel code. Each of
the constructs is explained in more detail in the followiregtons 4.3.1...4.3.5.
The functions are defined in the fit h. h.

4.3.1 Thread index query

The thread index query is provided by the functiamt not h_get _i ndex() .
The function returns the thread’s number from the reserggiter after doi n
operation (Section 3.2.2). Assigning the value to a vaeigévents the program-
ming language from rewriting it. The value is important hesait provides the
only point of variance between newly created threads.

The definition of the function is listed in Figure 7 and theuléag machine
code in Figure 8. The generated machine code varies betveegexts. Here it
copies the value to another registrO from the original location, registéik 1.

static __attribute_ ((always_inline))

int noth_get index() {
regi ster int idx;
asm("move %0, $k1" : "=r" (idx) : : "0");
return idx;

}

Figure 7: Listing of the functionnt not h_get _i ndex() .
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<not h_get _i ndex>:
0: 03601021 nove vO, k1l // copy index to a
4: 03e00008 jr ra /'l register variable

Figure 8: Listing of the functionnt not h_get _i ndex() implementation.

4.3.2 Fork

The hardware instructions for the fork operations are glesiwith the function
void nmot h_fork(int count). The function takes one argumerunt
the number of child threads to create. The parent thread hsléxecution until
all child threads have joined.

The definition of the function is listed in Figure 9 and theuledtag machine
code in Figure 10. The machine code assumes that the corpagises the param-
eter value via the regist&vO0.

static __attribute__((always_inline))

void noth_fork(register int count) {
register int ¢ asn("v0") = count;
asnm(".word (1879048192+(6<<3))"::"r"(c):"0");
asm(".word (1879048192+(6<<3)+1)"); // FORK + FORKL

}
Figure 9: Listing of the functiornoi d not h_fork(int count).

<not h_f or k>:
0: 00801021 nove v0,a0 // param as $a0
4: 70000030 fork vO
8: 70000031 fork
c: 03e00008 jr ra

Figure 10: Listing of the functiovoi d not h-fork(i nt count) imple-
mentation.

4.3.3 Join

The hardware instructions for the join operations are mlediwith the function
voi d not hj oi n(). The function joins the child thread by updating the the
counter of the parent thread and by terminating it. Whentildahreads have
joined, the execution continues via the parent thread.

The definition of the function is listed in Figure 11 and theuléing machine
code in Figure 12.
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static __attribute_ ((always_inline))

void noth_join() {
asm(".word (1879048192+(6<<3)+2) "); /1 JON
asm(".word (1879048192+(6<<3)+3) "); /1 JO NC

}

Figure 11: Listing of the functiomoi d not h_j oi n() .

<nmot h_j oi n>:

0: 70000032 join /1l join the child
4. 70000033 joinc /1l join the coordinator
8: 03e00008 jr ra

Figure 12: Listing of the functiomoi d not h_j oi n() implementation.

4.3.4 Pardo

Theparallel dofunction with the signaturpar do(i dx, max, bl ock) com-
bines the three previous operations. It spawnse child threads, assigns the
thread index to a thread local variabte: for each thread and starts executing the
code specified inlock with all child threads. The end of the block determines an
implicit synchronization point where the child threads jaiaed.

#def i ne pardo(idx, max, block) \
nmot h_f or k( max) ; \
{\
int idx = noth_get _index();\
bl ock\
ja
nmot h_j oi n();

435 Halt

A hal t function is also provided as a wrapper for tHBL T instruction for ter-
minating threads or the whole application.

The definition of the function is listed in Figure 13 and theuléing machine
code in Figure 14.
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static __attribute_ ((always_inline))
void noth_halt() {
asnm(".word (1879048192+(6<<3)+4)"); /1 HALT

}

Figure 13: Listing of the functiomoi d not h_hal t ().

<nmot h_j oi n>:
0: 70000034 halt /1l halt the thread
8: 03e00008 jr ra

Figure 14: Listing of the functiomoi d not h_hal t () implementation.

21



5 Installing the compiler

This section provides step by step instructions for comgilnd installing our
compiler. The compiler simply consists of the GNU GCC toalchwith the
m ps32 target and a simple library for moving threads architectaataining a
small set of architecture specific compile time and runtiarecfionality.

Some operating system distributions are equipped with a G&piler with
the ability to cross-compile to th& ps32 target. We have tested some of these,
e.g. the Embedded Debian Projelet ¢ p: / / ww. endebi an. or g/ ). These
packages may or may not work. Worth noting is that the exébesarom these
packages may have different naming conventions (with tiséoon build the tool
names are prefixed with "mips-"). As the installation instrans for these pack-
ages can be found from the websites of the projects, we dosmigk them here.

5.1 Downloading the compiler and dependencies

In these instructions we use the source code releases of GNUilB version
2.20.1 (linker, assembler) and GNU GCC version 4.5.1 todbaur toolchain.
The Binutils release is available froht t p: / / www. gnu. or g/ sof t war e/
bi nutil s/ and the GCC compiler from the mirrors listedhmt p: // gcc.
gnu. org/ gcc-4.5/.

The toolchain’s release notes list a set of build dependsmiich as GNU
binutils and GNU autotools. As we use the Debian Linux disttion in these
instructions, at the time of writing, the corresponding coamd for installing the
dependencies in Debian is presented in Figure 15.

# apt-get install flex bison |ibgnp3-dev |ibnpfr-dev
# apt-get install autoconf texinfo build-essential

Figure 15: Installation of gcc’s dependencies on Debian.

Our moving threads libraryyot h. h, and other possibly related files (e.g. the
most recent version of this manual) are freely availablenfrd t p: // st af f .
cs.utu.fi/research/ MOTH .

5.2 Compiling and installing the compiler

We assume that the (x86) system contains a fully functiom@lpilation toolchain
with the dependencies listed in Section 5.1 successfusiailed. The following
instructions compile binutils and gcc and install botli tesr / | ocal /. The file
nmot h. h from our distribution can be installed in many possible cliogies, for
instance in usr/ | ocal /i ncl ude/ .
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To make building faster, only the MIPS backend and the C é&odtare nec-

essary to compile the examples shown in this manual and neorerglly the pro-
grams written in the C programming language. The Figure bévshthe instal-
lation of binutils; the commands for compiling and instadjiGCC are shown in

Figure 17.

$ tar xf binutils-2.20.1.tar.bz2
$ cd binutils-2.20.1/

$ ./configure -target=m ps

$ make

$ sudo nmeke install

B P H P

Figure 16: Installation of binutils.

tar xf gcc-4.5.1.tar.bz2

cd gcc-4.5.1/

nmkdir objdir

cd objdir

../configure --enabl e-1anguages=c

--enabl e-target s=m ps
-target=m ps
-di sabl e-t hr eads
--disable-nmultilib
--di sabl e-1i brudf | ap
--di sabl e-1ibssp

make

sudo nmake install

Figure 17: Installation of gcc.

5.3 Testing the compiler

The compiler should now be fully operational. We can tesyitbnstructing and
compiling a simple program example (Figure 18). The sefftamed example
should compile without errors. If the libranyot h. h cannot be found, check
the include path settings. However, the resulting exedaitamot usable on our
architecture since we do not have a proper operating systdtryét. The way to
build useful programs is explained in the next section.
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$ echo "#include \"noth.h\"" > test.c
$ echo "int main(void) { pardo(i, 42, ) }" >>test.c

$ mips-gcc test.c -0 test

Figure 18: Testing the toolchain.
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6 Using the compiler

Currently our architecture comes without any kind of an apjeg system or pro-
duction ready support for one. As a result the ELF type basatypically pro-
duced by GCC cannot be loaded. This forces us to produce reaviés.

The raw binaries have few issues we need to solve when wafpgcations.
First, the C programs consist ofreai n() function. The location ofrai n()
varies between raw binaries and we can only set up the memacagidns of code
at the level of modules (compilation units). We solve thighwthe linker (linker
script in Figure 19) by relocating a short jump code (jumpecodFigure 20) to
the beginning ofrai n() to the hexadecimal address 0x4. Another problem is the
manual administration of the various sections (variougsypf static data, code)
in the memory space.

SECTI ONS {
out puta 0x4:
{
init.o (.text)
}
out putb 0x12:
{
${T}.o (.text)
}
. sdata 0x1000:
{
*(.sdat a)
}
. bss :
AT( 0x1000 + SI ZEOF(.sdata))
{
}
}

Figure 19: Linker script for the resulting raw binary.

extern int main(void);
void __start() {

mai n() ;

}

Figure 20: Jump code to the beginning of main().
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The main tools for generating code for out architecturenarps- as (GNU
assembler)m ps- 1 d (GNU linker), andm ps- gcc (GNU C compiler). The
resulting binary can be analyzed witlhj dunp (GNU object file disassembler).
Since the platform has been highly experimental so far, weige a simple script
for managing the forementioned issues. The script alsdajisgpoth optimized
and unoptimized disassembler output for each functionenothject file and the
for the resulting binary. The structure and use of this $esigdescribed in Section
6.1.

6.1 Using the frontend script

The basic usage of the frontend script is:
./ conpile.sh [source] [conpiler paraneters]

The compile.sh script accepts a single C source code as paaarti the com-
pilation process needs to be customized further, a list ofroand line switches
for the compiler can be passed after the source file name.

The frontend script compiles the application and also digplthe code for
final executable, object file, and the source file in threeroolst In the first two
columns both the unoptimized and optimized versions af@aled in a sequence
for debugging purposes. As an example, Figure 21 shows thwpitation of
output using the example code from Table 3 as its input.

= B._[11[3] + c._[41[1];

Figure 21: Compilation example.
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6.2 Known issues with compiler optimizations

The operation of the moving threads architecture is someinhampatible with
the standard MIPS32 code. The first difference is that thieuason set is only
a simple subset of all MIPS32 instructions. The compilerdseae work conser-
vatively with optimizations to avoid emitting incompatbbpcodes. The second
issue is with delay slots. The moving threads architectwesdot support de-
lay slots and the feature has to be switched off witmo- del ayed- br anch.
Unfortunately some general optimizations such @8 turn this on automatically.

The list of architecture flags set by the frontend script svaiin Figure 23
and the list of optimizations and deoptimizations respettiin Figure 22.

-funswi tch-1oops -foptim ze-sibling-calls -fsee
-fforward-propagate -fnerge-constants -fregnove
-fmerge-all -constants -fnodul o-sched-al | ow regnoves
-fthread-junps -fnodul o-sched -fsplit-w de-types
-fcse-foll owjunps -fcse-skip-blocks -fgcse-Ias
-fgcse -fgcse-Im-fgcse-sm-frerun-cse-after-1oop
-fgcse-after-rel oad -funsafe-| oop-optim zations
-fcrossjunping -fauto-inc-dec -fdce -fdse
-fif-conversion -fif-conversion2 -fschedul e-insns
-fdel ete-nul | -pointer-checks -fcaller-saves
-fexpensi ve-optim zations -ftree-reassoc

-ftree-pre -ftree-fre -ftree-copy-prop -ftree-salias
-fipa-pure-const -fipa-reference -fipa-pta

-fipa-cp -fipa-matrix-reorg -ftree-sink -ftree-ccp
-ftree-sra -ftree-store-ccp -ftree-ch -ftree-1oop-im
-ftree-dom nator-opts -ftree-dse -ftree-dce

-ftree-1 oop-optimze -fwhol e- program

-ftree-l oop-ivcanon -fivopts -ftree-copyrenane
-ftree-ter -ftree-vectorize -ftree-vect-1|oop-version
-ftree-vrp -ftracer -fvari abl e-expansi on-in-unroller
-fpredictive-comoning -fprefetch-1oop-arrays

- f peephol e -fpeephol e2 -freorder-bl ocks

-freorder-bl ocks-and-partition -freorder-functions
-fstrict-aliasing -fstrict-overflow -falign-I| oops
-falign-functions -falign-labels -falign-junps
-fcprop-regi sters -fguess-branch-probability
-fmove-1 oop-invariants -fdefer-pop -funit-at-a-tine
-fomt-frame-pointer -finline-small-functions
-finline-functions -Gs -fno-del ayed-branch

Figure 22: List of optimization flags set by the frontend gcri
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-mabi =32 -m ps32 -mo-shared -mo-I|sc -mmo-dsp
- mo- f used- madd - mo- check-zer o-di vi si on - mo- nt
-mMmo- m ps3d - nmo- mdnx - mMmo- pai r ed- si ngl e - mo- dspr 2

Figure 23: List of architecture flags set by the frontendpcri

6.3 Issues left for future development

Since the standard C compiler is not well suited for multetdtded programming
on our architecture, some problematic artefacts and bumpupe inefficient and
confusing binaries. For example standalone thread fumatiplementations have
bugs with backing up registers to the stack (elgtt p: // gcc. gnu. or g/
bugzi | | a/ show.bug. cgi ?i d=43700). This also affects inlined functions,
which have no need for stack. The GCC toolchain also doesemoh $0 support
the fact and instruction and data memory can overlap withoytconflicts.

The thread local state could be better used if the MIPS cplionvention
used by the GCC was replaced with something more approfdatave regis-
ters and/or to prevent unnecessary use of stack. The thoeatidtorage also
does not support any looping constructs or memory mappigh Eegister has
to be explicitly controlled by the user code. A higher levestom language or
metaprgoramming library would eliminate this problem. Téreguage could also
support other higher level parallel programming idiomdsas skeleton libraries
and also provide a set of parallel (and perhaps cache-obgyialgorithms.

Our runtime system does not implement any kind of dynamic orgrman-
agement in form of stack or heap. We cannot really build agydpmiplications
without dynamic memory management.

6.4 Simulating the applications with SMASImM

The simulation of applications on the moving threads aedhitre is described
in the technical reporSMASIm manual 1.012], which can be obtained from
http://tucs.fi/publications/insight.php?i d=t MaPaLelOa.
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7 Application examples

7.1 Sum of matrices

This example demonstrates the proper use of our platfornguke functionality
provided by the libraryrot h. h. In this program (Table 3) a naive algorithm for

computing the sum of two matrices of the same size, 16x3haws.
The example begins with the definition of a matrix structike.then initialize

the input matrices\/ and NV, and the result matrix). The matrix elements are
summed in a two-dimensional loop done with negped do statements. The
dimensions are given as boundspt@r dos and an index variable is provided by
the mechanism. These indexes are then used to access thet @ement in the
three matrices. Since the pardo is a macro in C, the premedeand unrolled
output is shown as a comment below the code. The resultimgsksnbler output

is given in the right column.

#include" not h. h"
#definem 16// dimensions
#definen 32

struct matrix { int _[m][n]; }; // definition

int main{void) {
struct matrix M,N,O;// inputs, result

pardo(i, m,
pardo(j, n,
M._[i][i] = N. _{i][i] + O. _[il[il;
)
)
}

[*
fork(16);
int i = moth_thread.id();
fork(32);
int j = moth_thread.id();
M._[i][] = N. [i]{i] + O. _i][il;
join();
join();
*/

li v1,16

fork v1# pardo #1

forkl

movevl,kl

li 20,32

fork aO# pardo #2

forkl

sll vO,v1,0x5

adduvi,vo,vl

lui a0,0x0

[ui vO,0x0

sll vi,v1,0x2

addiu a0,a0,136

addiu v0,v0,2184

addu a0,v1,a0

addu vO,v1,vO0# matrix B & C indices
lw a0,0(a0) load B’s element
Iw v0,0(v0)# load C’s element
lui a1,0x0

addiu al,a1,4232
adduvl,vl,al

addu v0,a0,v0# matrix A index
swvO0,0(v1)# store A’s element
join

joinc # join #1 (implicit)

join

joinc # join #2 (implicit)

Table 3: Program code of the matrix sum in C and MIPS assembly.
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