
Jari-Matti Mäkelä | Ville Leppänen

MOTHC manual, version 1.0

TUCS Technical Report
No 999, February 2011

MOTHC manual, version 1.0

Jari-Matti Mäkelä
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, 20520 Turku, Finland
jmjmak@utu.fi

Ville Leppänen
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, 20520 Turku, Finland
ville.leppanen@it.utu.fi

TUCS Technical Report

No 999, February 2011

Abstract

This document describes a compiler and programming constructs for our experi-
mental RISC-based moving threads architecture. We discussof the usage of this
compiler and show examples. However, this document is not just a user man-
ual, but we also describe implementation related details asthe RISC-based mov-
ing threads architecture is experimental in nature and morea framework than a
product, and thus it as well as its simulator, compiler and related programming
constructs are all subject to future developments.

As it requires huge resources to write an industrial-level compiler, we heavily
use an existing compiler. The provided compiler,MOTHC, is an experimental light-
weight “extension” of the GNU GCC compiler (MIPS32) by macroconstructions
and a runtime library for the architecture. Consequently, the programming for the
moving threads architecture does not involve a new programming language, but
rather the typical language-level constructions are provided for the programmer
through macro definitions and library functions and procedures. As the base lan-
guage, we use the plain C language. Naturally, the new language constructions are
mainly related to threads, thread creation and terminationusing the special RISC
instructions of the moving threads architecture.

Keywords: multi-core, moving threads, compiler

TUCS Laboratory
TUCS Algorithmics Laboratory

Contents

1 Introduction 2

2 Overview of moving threads approach 3
2.1 Memory system . 4
2.2 Interconnection network . 6
2.3 Execution core . 6

3 Instruction set 8
3.1 MIPS instruction set . 8
3.2 Thread instructions . 9

3.2.1 Fork . 10
3.2.2 Join . 12
3.2.3 Other thread instructions 13

3.3 An execution example with thread instructions 14
3.4 Ideas for improving the instruction set 16

4 Programming language 17
4.1 Memory model . 17
4.2 Concurrency model . 17
4.3 Language constructs . 18

4.3.1 Thread index query . 18
4.3.2 Fork . 19
4.3.3 Join . 19
4.3.4 Pardo . 20
4.3.5 Halt . 20

5 Installing the compiler 22
5.1 Downloading the compiler and dependencies22
5.2 Compiling and installing the compiler22
5.3 Testing the compiler . 23

6 Using the compiler 25
6.1 Using the frontend script . 26
6.2 Known issues with compiler optimizations 27
6.3 Issues left for future development 28
6.4 Simulating the applications with SMASim28

7 Application examples 29
7.1 Sum of matrices . 29

1

1 Introduction

This document describes a compiler and programming constructs for our experi-
mental RISC-based moving threads architecture [11,13]. Observe that there exists
also a non-RISC-based moving threads architecture [1–3]. We discuss of the us-
age of this compiler and show examples. However, this document is not just a user
manual, but we also describe implementation related details as the RISC-based
moving threads architecture is experimental in nature and more a framework than
a product, and thus it as well as its simulator, compiler and related programming
constructs are all subject to future developments.

As it requires huge resources to write an industrial-level compiler, we have
decided to heavily use an existing compiler. The provided compiler,MOTHC, is an
experimental light-weight “extension” of the GNU GCC compiler (MIPS32) by
macro constructions and a runtime library for the architecture (moth.h). Con-
sequently, the programming for the moving threads architecture does not involve
a new programming language, but rather the typical language-level constructions
are provided for the programmer through macro definitions and library functions
and procedures. As the base language, we use the plain C language [6].

The moving threads architecture has a non-standard RISC instruction set, al-
though most of the instructions are as in the ordinary RISC [14]. For this reason,
we also discuss implementation of thread creation and termination using the spe-
cial RISC instructions of the moving threads architecture.

Next, we give an overview of the moving threads approach and its architec-
ture in Section 2. The implemented subset of the MIPS32 instruction set along
with the moving threads instructions are presented in Section 3. The program-
ming language and library extensions of the architecture isgiven in Section 4.
The guides for installing and using our compiler are listed in Sections 5 and 6,
respectively. Finally the Section 7 ends the manual with examples of applications
for the moving threads architecture.

2

2 Overview of moving threads approach

Our RISC-based multicore architectural framework [11, 13]is designed for im-
plementing a PRAM-based (Parallel Random Access Machine; [4]) approach for
parallel programming. A goal is to provide better programmability of parallel sys-
tems, since the basis of PRAM approach is a synchronous shared memory based
execution of threads. The synchronous nature of execution essentially means that
there are pleanty of points in the program, where the programmer can relay that the
previous memory write (and read) instructions have taken place. Consequently,
the state of the program (concerning all threads) is clear and therefore designing
a correctly functioning multithreaded program becomes easier. The PRAM has
several variations regarding the choice of synchronization points. The most strict
interpretation is that (implicit) synchronization takes place after executing a single
step from all currently existing threads. Our moving threads architecture follows
this approach.

We assume the architecture to consist of homogeneous cores that are con-
nected with an on-chip network, see Figure 1. Besides ratherordinary ALU capa-
bilities, each core maintains a rather large set of hardware-supported threads, has
separate memory and instruction caches, and has an on-chip network interface.

Interconnection network between the cores

C4C1 C2 C3

C4C3C2C1

Main
memory

cache
instr.

data
cache

thread
send buffer

thread
receive buffer

thread

register file

pool instruction execution

pipeline

C1:

Figure 1: Overview of our multicore system.

3

The system consists ofc RISC-basedcores, an inter-connectionnetwork between
the cores, and amain memorysystem. Each core maintains a set of threads, can
execute instructions from those, send and receive threads via the network, and has
a cache memory for accessing a part of the main memory. Each core Ci “sees”
a unique fractionof the main memory via itsdata cache– such memory loca-
tions are calledlocal to Ci. Thus, if a thread residing at coreCi issues a memory
instruction concerning some memory location local to coreCj, then the thread
must be moved toCj before executing the instruction. Moving a thread basically
means moving the contents of its registers and program counter. The program,
being executed by a thread to be moved, is not moved, since each core has an
instruction cache, which contains fractions of all program codes being executed
by the threads residing at that core.

A cache-based access to the memory system is provided via each processor
core. However, each core sees only a unique fraction of the overall memory space,
and thus there are no cache coherence problems and when a thread makes a refer-
ence out of the scope of the core’s memory area, the referencing thread must be
moved to the core that can access that part of the main memory.Besides a cache
to access the data memory, each core also has a cache for program instructions.

The idea is that each of the cores has at each logical step a lotof threads
(varying number) to execute, and the threads are independent of each other – i.e.
the core can take any of them and advance its execution. By taking an instruction
cyclically from each thread, the core can wait for memory access taking a long
time and even tolerate some of the delays caused by moving thethreads. A key
idea is tohide the memory as well as network and other delaysby keeping the
average number of threads per core at the same or higher levelthan the expected
delay of executing a single instruction from any thread.

For the creation and termination of threads at the programming language level,
we take the approach of supporting only implicit termination as well as creation of
threads. We do not consider Java-like explicit declarationof threads as first-class
objects as a feasible solution. In practice, we have a parallel loop-like construction
which creates threads with logical id-numbers in the interval [low, high] and each
of the threads starts by running the same program block. The logical thread id-
numbers are independent of physical thread and core numbers. Management of
the physical thread identity is completely handled by the hardware. The logical id-
numbers are program controlled, with an easy access via register instructions. We
also consider supporting nested thread creations. Each thread faces an implicit
termination at the end of the program block (which was definedin the thread
creation statement).

2.1 Memory system

The moving threads architecture consists of three types of memory. First, the
global main memory is divided into two types: a read-only instruction memory

4

and a read-write data memory. The third memory type consistsof the local storage
provided by thread local registers. In the current implementation, the word length
of 32 bits has been chosen for all registers. Unlike the registers, the global main
memory types are shared between all threads.

The data and instruction memories have a flat 32-bit address space. The in-
struction memory is automatically accessed by the execution engine whenever
new instructions need to be fetched, while the data memory isaccessed explicitly
from the program code via load and store instructions. The local storage provided
by the registers can be used via instructions with register parameters. Since all
memory types have a dedicated access method, all kinds of memory conflicts can
be avoided. The data memory’s address space is assumed to be fully populated
with physical memory modules, however not necessarily witha unique module for
each core since the amount of interconnections with the processor may have strict
physical limitations. To simplify the model, we do not consider any hardware
exceptions related to memory in this report.

All memory operations (and other instructions) have a unit time cost in the
computational model. Physically the memory operations mayhave varying fetch
latencies depending on the exact location of the data in the memory hierarchy.
When the latency prevents a thread from executing, the scheduler automatically
interleaves the execution with other instructions from other threads that are ready
for execution. Obtaining optimal performance requires optimizing both instruc-
tion and data memory accesses by using this parallel slackness [8].

Optimizing instruction memory access is very limited. The architecture can
provide branch prediction, caching, and prefetching of cache lines as core lo-
cal optimizations like in contemporary designs. Another optimization can be
achieved with multithreading. If threads on the same core execute the same part
of the program, the threads can share the same instruction data and decrease in-
struction memory traffic via core’s local instruction cache.

The architecture does not provide any explicit way for optimizing the use of
data memory. First, the memory is partitioned into blocks (216 . . . 232) that are
scattered evenly among the cores using some hash function. Currently, the hash
function is calculated from the highestn bits of the memory reference. Accessing
memory on another core triggers context switch and thread migration to that other
core. Optimal usage utilizes the computational power and the memory bandwidth
provided by the distributed low level architecture, but also tries to minimize the
thread moves, because the interconnection network also introduces limited band-
width and a communication latency. Locally within the core,when accessing
memory, the application can also make use of the memory hierarchy parameters
(cache line width, associativity, replacement policy), which is a common coding
practice with contemporary systems with hierarchical memory.

The registers provide a constant time, low latency access. Unlike global main
memory, which is partitioned between the cores, the register space is local to the
thread and migrates along with the thread when the thread is sent to another core

5

or forked.

2.2 Interconnection network

The details of the interconnection network for the moving threads architecture are
discussed in another technical report about the implementation of the architecture
simulator [9].

2.3 Execution core

Each core (Figure 2) keeps track of the thread context for each active thread ex-
ecuting in the core. The thread scheduling and migration arehandled implicitly
by the hardware. The table of local threads can be further partitioned inton (e.g.
4 or the number of pipeline stages) subtables to improve thread switching perfor-
mance and possibly the register file bandwith with register banks. In case the table
is divided into subtables, the optimal execution requires populating all subtables
with sufficient number of threads to hide the latency introduced by memory ac-
cesses and moving of threads, and to avoid pipeline stall if asubtable runs out of
executable threads. Currently, we only consider thatn = 1.

The sufficient number of simultaneous threads depends dynamically on the al-
gorithm, and statically on memory hierarchy properties andthe network latencies.
Currently we do not have any realistic estimate for these, but the SMASim archi-
tecture simulator [10] (Section 6.4) could be used to predict dynamic latencies.

By default a strict PRAM style synchronization is achieved by the synchro-
nization wave technique [7]. The wave implicitly places a synchronization bar-
rier between every two instructions for all active threads.During a single virtual
time step of the PRAM, the threads are executed in arbitrary order. The hard-
ware guarantees a serial execution of memory requests during this step. How-
ever, the contents of a memory address and the result of memory operations in
case of simultaneous writes or simultaneous writes and reads are undefined. This
means that the architecture follows the EREW (Exclusive Read, Exclusive Write)
PRAM computational model. In fact, the architecture can semantically be seen as
an aCRCW (Arbitrary Concurrent Read, Concurrent Write) model, but there is no
special support for concurrent operations and thus their cost is larger than on the
ordinary CRCW.

An alternative operation for the system (not implemented currently) is to trig-
ger the synchronization wave explicitly with a dedicated synchronization instruc-
tion. The idea behind relaxing this model is to decrease the amount of synchro-
nization messages in the network, give more opportunity forlatency hiding to
work efficiently and improve the performance by removing unnecessary data de-
pendencies with more independent thread local computation.

6

6.

4.

4.

7.

5.

3.

3.

3.

4

2.
2.

2.

1.

4.

4.

4.

1.

1. SELECT &

CONTROL
TABLE

PC

ID

INSTR.

PC

INSTR.

ID

BUFFER

P
R

E
D

E
C

O
D

E

INSTRUCTION

DATA

A
D

D

A
D

D

A
D

D
A

LU

S
IG

N

S
H

IF
T

M
U

X

M
U

X

M
U

X

M
U

X

TABLE

THREAD

R
E

G
IS

T
E

R
 F

IL
E

DATA

CACHE

CACHE

E
Q

S
IG

N

ID

DATA

DATA

ID

F
ig

u
re

2
:

E
xecu

tio
n

co
re’s

d
atap

ath
.

7

3 Instruction set

The architecture was designed to be based on the in-order RISC load-store archi-
tecture [5]. The rationale behind this is that a RISC architecture does not require
complex hardware implementation. Extracting the memory addresses from loads
and stores is rather simple (used when migrating threads). In addition, instead
of improving a single core’s execution performance by a hardware support for
out-of-order execution, we rather use the chip space for multiple cores. The first
generation of the design does not support SIMD instructions, but SIMD operations
could provide a cost-effective way to improve performance of parallel algorithms.

In order to boost application development by making use of existing devel-
opment toolchain, we settled on MIPS32 ISA [16]. Another plausible alternative
would be the ARM ISA [15]. From toolchain’s point of view, theinstruction set
is not hard to switch later on – changes currently only affectthe backend of the
compiler and the architecture emulator’s execution pipeline model.

3.1 MIPS instruction set

The basic set of instructions consists of the MIPS32 instruction set. However, cur-
rently floating point, atomic, and trap instructions have noimplementation. Be-
cause of the execution pipeline design, instructions usingpipeline registershi and
lo can be more freely used in various contexts unlike in the traditional MIPS32.
These registers are thread local, but do not migrate with thethread, which forces
the compiler to make sure the values are stored to regular registers before a move.
In other cases, all instructions can be executed in any sequence without any special
cases.

The supported MIPS32 instructions can be divided in four categories:

• Arithmetic–logic : ADDI, ADDIU, ADD, ADDU, ANDI, AND, CLO,
CLZ, MOVN, MOVZ, MUL, NOP, NOR, ORI, OR, SLL, SLLV, SLTI,
SLTIU, SLT, SLTU, SRA, SRAV, SRL, SRLV, SUB, SUBU, XORI, and
XOR.

• Heavyweight Arithmetic: DIV, DIVU, MADD, MADDU, MFHI, MFLO,
MSUB, MSUBU, MTHI, MTLO, MULT, and MULTU.

• Load and stores: LB, LBU, LH, LHU, LUI, LWL, LWR, LW, SB, SH, and
SW.

• Branches and jumps: BEQ, BGEZAL, BGEZ, BGTZ, BLEZ, BLTZAL,
BLTZ, BNE, JALR, JAL, JR, and J.

The differences between the first two categories are in the use ofhi andlo reg-
isters. The arithmetic instructions in the latter categorystore the result in two
registers. All other instructions write back the result in at most one register.

8

3.2 Thread instructions

The concurrency model for the moving threads architecture was motivated by the
fork–join programming model; the control flow is organized as subsequent blocks
of sequential and parallel code (see Figure 3). The blocks can then be recursively
split further into a new sequence of these blocks. The architecture forks new
threads at the beginning of a parallel block and joins the created child threads at
the end of the block. These operations are explicitly handled with two kinds of
thread instructions: forks and joins. A detailed explanation of the instructions and
their effects is given next in this section.

Figure 3: The fork–join pattern.

The architecture does not require a strict symmetry betweenthread instruc-
tions, i.e. the high level fork–join model provides only a subset of the available
functionality and is one of the possible parallel programming models; the instruc-
tion set uses the forks and joins as primitives. There are also query functions for
discovering the current thread index. Multi-level indexesare implementable, but
the hardware only keeps track of the topmost index. The indices of the ”outer
loops” must be stored to a stack implemented with either registers or a dedicated
main memory location.

To simplify the implementation, thread instructions use the same shared gen-
eral purpose registers for storing their state. The programmer’s responsibility is
to keep track of this data (mostly thread index value after aFork), and to restore
the thread to a consistent state before callingJoin (core and thread slot index
values). ThePardo macro defined in Section 4.3.4 is given as an example of
a high level construct designed to automatically keep trackof this data for the

9

programmer.

3.2.1 Fork

TheFork operation forks new child threads. The amount of new threads(m) to
create is given either as an immediate argument (encoded as part of the instruction
word) or as a register argument (index of the register containing the number).

The thread creation is split evenly among the cores. That is,on a system
consisting ofn processor cores, the equationm = a · n + b, where0 < b < n,
defines the numbers of threads to fork on each of the cores. Thea represents the
amount of new threads on cores1 . . . (n − 1), b on thenth core. Ifb is zero, all
cores forka new threads. In case the number of threads to fork is smaller than the
amount of cores, all child threads are forked locally on the same core.

The new threads get a unique id, starting from0 and ending withm− 1. This
enumeration follows the numbering of the cores: the id of thefirst thread on core
i comes after the id of the last thread on corei − 1. All the other thread local
data (registers, program counter) are copied from the parent thread. Typical ways
to achieve parallelism under this assumption is to access different data using the
varying id number or use it for branching to make the concurrent control flows
diverge.

On top of this, the actual implementation ofFork is a bit more complex.
A distributed thread forking is used to minimize network traffic; the amount of
packets to send is proportional to the amount of cores, not tothe amount of threads
to fork. To achieve this, the fork is divided to two operations, the remote and local
fork. The idea of the remote fork is to propagate the knowledge of the fork to
all cores. The cores then locally fork the right number of threads. Instead of a
single master thread, this approach also requires per-corecoordinator threads. All
created threads keep track of the originating core and thread position in the thread
table to make the joins later possible in a distributed manner.

Next we list the actual instructions used to implement the described fork func-
tionality. TheFORK andFORKI instructions describe the remote forks, and the
FORKL describes the version local to every core.

FORKI The execution ofFORKI broadcasts a thread creation packet to each
core (Figure 4).

Figure 4: Broadcast of the fork packet to other cores.

The semantics of the instruction are:

10

1. pc← thread’s oldpc value + 4

2. nextInstruction← next instruction in the instruction memory

3. register 27← number of coordinating threads made

4. state← async wait

The outgoing network packet consists of the issuing thread’s state, with the
following differences:

1. nextInstruction← FORKL

2. register 25← issuing core’s id

3. register 26← issuing thread’s slot id

4. register 27← total number of threads to create

As FORKI is a type I instruction in MIPS terminology (see [16]), the number
of threads to create is given as an immediate value.

FORK The semantics ofFORK are identical to those ofFORKI. However, in-
stead of providing the number of threads to create as an immediate value, the value
is indirectly given via a register reference.FORK is thus a type R instruction in
MIPS terminology.

FORKL The local fork instruction spawns new child threads to the thread table
of the local core. The number of threads to fork is read from the register 27. The
semantics of the instruction are:

1. pc← thread’s oldpc value + 4

2. nextInstruction← next instruction in the instruction memory

3. register 27← number of child threads made on this core

4. state← async wait

The child threads are initialized with the following state:

1. pc← thread’s oldpc value + 4

2. nextInstruction← next instruction in the instruction memory

3. register 25← issuing core’s id

4. register 26← issuing thread’s slot id

5. register 27← child thread’s id

The technique for computing the id values and amount of threads to fork on
each core were described in the beginning of this section.

11

3.2.2 Join

We assume that before calling anyJoins, the code inside the parallel block has
restored all thread related registers (registers 25 and 26)to the original state after
a previousFork. Otherwise the operations will have undefined and potentially
harmful behavior.

While the child threads are executing, the parent thread andthe per-core coor-
dinator threads are permanently waiting. Nothing will trigger these threads until
all the child threads have performed theJoin. This leads to few invariants: the
core and the thread slot in the thread table remain constant during the execution
of the parallel code block. The child threads use this information to locate the
original thread when joining; theJoin will active thread move if execution is
attempted on a wrong core. The coordinating threads containa counter which is
decremented by an associated child thread every time the child thread joins. The
last Join operation terminates the child thread and activates the coordinating
thread. In similar way, the coordinating threads decrease the counter of the parent
thread after locating the correct core.

Next we list the actual instructions used to implement the described join func-
tionality. TheJOINC instruction describes the join of a coordinator thread, and
theJOIN instruction is directly used by the child threads.

JOIN The execution of instructionJOIN performs the following operations:

1. The core id from the register 25 (rid) is compared with the core’s id (cid).
If rid 6= cid, the thread move to corerid is started (Figure 5).

2. If rid = cid, the value of the register 27 (r27) is decreased. However, the
thread, whose register is read from and written back to, is defined by the
value of the register 26 (r26).

3. The program counter of the thread in slotr26 is replaced with the program
counter value of the issuing thread.

4. The next instruction value of the thread in slotr26 is replaced withJOINC.

5. If the newly written register valuer27 in slot r26 becomes zero, the thread
in slot r27 is activated (state transition toReady).

6. The issuing thread is terminated (state transition toFree).

Figure 5: Migration of the join thread packets to the parent core.

12

As a result, the child thread terminates and the coordinating thread continues
its execution with theJOINC instruction. Due to the indeterministic execution
order of concurrent threads during the same time step (see Section 2.3), a deter-
ministic point for joins might be required if the child threads perform branching.

The child threads created with aFork instruction should end their execution
with this instruction. In case the number of forked child threads was less than the
number of cores, the indirection caused by the coordinator threads is not used –
in that case the child threads directly manipulate the stateof the parent thread by
using theJOINC instruction, which is described next.

JOINC TheJOINC instruction is used ”internally” by the moving threads pro-
cessor, when a coordinator thread activates to join to the parent thread. The in-
struction should be also used directly when no coordinator threads were used.

The execution of instructionJOINC performs the following operations:

1. The core id from the register 25 (rid) is compared with the core’s id (cid).
If rid 6= cid, the thread move to corerid is started.

2. If rid = cid, the value of the register 27 (r27) is decreased. However, the
thread, whose register is read from and written back to, is defined by the
value of the register 26 (r26).

3. The program counter of the thread in slotr26 is replaced with the program
counter value of the issuing thread + 4.

4. The next instruction value of the thread in slotr26 is replaced withNOP
(no operation).

5. If the newly written register valuer27 in slot r26 becomes zero, the thread
in slot r27 is activated (state transition toReady).

6. The issuing thread is terminated (state transition toFree).

As a result, the coordinator thread terminates and the parent thread continues
its execution first with NOP, then from the instruction following theJoin of the
last child thread. Due to the indeterministic execution order of concurrent threads
during the same time step (see Section 2.3), a deterministicpoint for joins might
be required if the child threads perform branching. This time the program counter
value is chosen from the program counter values propagated to the coordinator
threads.

3.2.3 Other thread instructions

HALT In addition, an explicitHALT instruction is provided to stop the execu-
tion of a thread.HALT should be only used in the parent thread since it does no

13

checks to see whether some other thread is waiting for the thread to join. The
instruction does not perform any computation, it only sets the thread’s status to
Free. This effectively kills the thread by preventing the threadselection logic
from picking the thread anymore for execution.

3.3 An execution example with thread instructions

To demonstrate the use of thread instructions, we use a simple fork–join block
with only the NOP (no operation) instruction as its body (Figure 6).

FORKI 16
FORKL
NOP
JOIN
JOINC
HALT

Figure 6: A simple four instruction fork–join example.

The amount of threads to create, 16 in the above example, is given as an imme-
diate parameter. Using the forementioned semantics, theFORKI instruction forks
16 new threads and sets the parent thread in wait mode. TheNOP instruction is
executed by each of the child threads. The child threads finish their execution af-
ter issuing theJOIN. The system internally proceeds withJOINC after theJOIN
command. Finally, the program halts the execution withHALT. The timing of
these instructions on each core is listed in Tables 1 and 2. The number of cores in
this system is 15.

Thread creation
Thread id Core Instruction PC r25 (core) r26 (slot) r27 (count)

Time: t (Fork)
0 0 FORKI(16) 100 ? ? -

Time: t+1 (Local fork)
0 0 FORKL Wait 104 ? ? 1234
1 0 FORKL 104 0 0 16

. . .
15 14 FORKL 104 0 0 16

Table 1: Execution of FORK and FORKL.

14

Thread creation
Thread Core Instruction PC r25 (core) r26 (slot) r27 (count)

Time: t+2 (Inside the block)
0 0 FORKL Wait 104 ? ? 1234
1 0 FORKL Wait 108 0 0 2
2 1 FORKL Wait 108 0 0 1

. . .
15 14 FORKL Wait 108 0 0 1
16 15 NOP 108 14 15 15
. . .
29 1 NOP 108 1 2 2
30 0 NOP 108 0 1 1
31 0 NOP 108 0 1 0

Time: t+3 (Join)
0 0 FORKL Wait 104 ? ? 1234
1 0 FORKL Wait 108 0 0 2
2 1 FORKL Wait 108 0 0 1

. . .
15 14 FORKL Wait 108 0 0 1
16 15 JOIN 112 14 15 15
. . .
29 1 JOIN 112 1 2 2
30 0 JOIN 112 0 1 1
31 0 JOIN 112 0 1 0

Time: t+4 (Coordinator join)
0 0 FORKL Wait 104 ? ? 1234
1 0 JOINC 112 0 0 0
2 1 JOINC 112 0 0 0

. . .
15 14 JOINC 112 0 0 0

Time: t+4 (After migration)
0 0 FORKL Wait 104 ? ? 1234
1 0 JOINC 112 0 0 0
2 0 JOINC 112 0 0 0

. . .
15 0 JOINC 112 0 0 0

Time: t+5 (NOP after JOINC)
0 0 NOP 116 ? ? 0

Time: t+6
0 0 HALT 120 ? ? 0

Table 2: Execution of JOIN and HALT.

15

3.4 Ideas for improving the instruction set

Even though the forks and joins are independent instructions in our architecture,
the currently implemented semantics do not directly support a lightweight mech-
anism for creating child threads that do not join, i.e. the parent thread always
starts waiting. Some other concurrency models may expect a set of instruction for
creating totally independent threads.

The return address of the parallel block is currently propagated from the child
threads to the parent thread (possibly via coordinators). The parent thread could
also be explicitly provided with a return address.

It seems somewhat unrealistic to expect the thread operations to execute this
much functionality in a single time step. A physical prototype of the architecture
might split the concurrency instructions into smaller pieces.

16

4 Programming language

The role of the programming language is to provide a level of abstraction for
programming the underlying architecture. In the context ofthe moving threads
architecture, our goal was to design a suitable language forprogramming the ar-
chitecture on higher level than the assembler. The current implementation is based
on the C programming language and is provided as a 3rd party library extension.
The main goal was to provide a way to use the fork–join-model via high level loop
constructs with an automatic index tracking (similar tofor() in C).

4.1 Memory model

The virtual shared memory abstraction can be modeled with a simple linear dense
address space. This is similar to C’s traditional memory model: We fill the address
space from one end with the stack and from the other with the heap. No kind of
thread level safety mechanism is provided for the main memory.

The thread local storage in registers needs another mechanism for access. All
the concurrency instructions use the same general purpose registers for temporary
and return values as the other instructions. It is the responsibility of the program-
mer or compiler to explicitly protect the registers againstaccidental overwrites.
These must be handled by e.g. the language’s flow analysis by calling them via
functions (e.g. in a modified C language).

The current runtime implementation does not contain implementation for dy-
namic heap memory management nor dynamic stack. On architecture level the
system does not support virtual memory yet. As a temporary solution, the stack
could also be defined statically by dividing a subset of the address space evenly
among threads by the compiler.

The reason for omitting these for now are potential performance issues with
the memory accesses. For instance, even though some of the adjacent stack ad-
dresses reside on the same core, a stack access might incur expensive thread mi-
grations. In worst case, every stack access triggers a thread move. In contempo-
rary systems the stack access is considered an efficient storage (no heap fragmen-
tation, fast allocation and deallocation, works well with caches).

Clearly, the situation is at least as bad when dealing with the heap memory.
In addition, dynamic memory management with e.g. a centralized bookkeeping
structure might trigger a series of thread moves every time amemory area is allo-
cated and deallocated.

4.2 Concurrency model

In short, our language for the moving threads architecture leaves the safety ques-
tions related to the concurrent execution almost completely unsolved. The unde-
terministic aCRCW hardware model explains how simultaneous reads and writes

17

to the same main memory address only lead to undefined state. In one sense
this is compatible with C’s single-threaded memory model, because the isolation
between threads is handled on hardware, and the applicationcode only needs to
guarantee the freedom from these memory conflicts. The C language cannot make
this guarantee, but a runtime library or an improved language can be designed to
provide a set of parallel constructs that will not break thisguarantee. As no single
concurrency model or language has become de facto solution,we have left the
question unanswered.

4.3 Language constructs

Currently the following language constructs are provided by the runtime library:
thread index query, fork, join, andpardo (parallel do). The first three provide an
explicit way of controlling the thread handling, whilepardoprovides implicit syn-
chronization and thread creation for the provided block of parallel code. Each of
the constructs is explained in more detail in the following Sections 4.3.1 . . . 4.3.5.
The functions are defined in the filemoth.h.

4.3.1 Thread index query

The thread index query is provided by the functionint moth get index().
The function returns the thread’s number from the reserved register after aJoin
operation (Section 3.2.2). Assigning the value to a variable prevents the program-
ming language from rewriting it. The value is important because it provides the
only point of variance between newly created threads.

The definition of the function is listed in Figure 7 and the resulting machine
code in Figure 8. The generated machine code varies between contexts. Here it
copies the value to another register$v0 from the original location, register$k1.

static __attribute__((always_inline))
int moth_get_index() {
register int idx;
asm("move %0, $k1" : "=r" (idx) : : "0");
return idx;

}

Figure 7: Listing of the functionint moth get index().

18

<moth_get_index>:
0: 03601021 move v0,k1 // copy index to a
4: 03e00008 jr ra // register variable

Figure 8: Listing of the functionint moth get index() implementation.

4.3.2 Fork

The hardware instructions for the fork operations are provided with the function
void moth fork(int count). The function takes one argument,count,
the number of child threads to create. The parent thread halts its execution until
all child threads have joined.

The definition of the function is listed in Figure 9 and the resulting machine
code in Figure 10. The machine code assumes that the compilerpasses the param-
eter value via the register$v0.

static __attribute__((always_inline))
void moth_fork(register int count) {
register int c asm("v0") = count;
asm(".word (1879048192+(6<<3))"::"r"(c):"0");
asm(".word (1879048192+(6<<3)+1)"); // FORK + FORKL

}

Figure 9: Listing of the functionvoid moth fork(int count).

<moth_fork>:
0: 00801021 move v0,a0 // param as $a0
4: 70000030 fork v0
8: 70000031 forkl
c: 03e00008 jr ra

Figure 10: Listing of the functionvoid moth fork(int count) imple-
mentation.

4.3.3 Join

The hardware instructions for the join operations are provided with the function
void moth join(). The function joins the child thread by updating the the
counter of the parent thread and by terminating it. When all child threads have
joined, the execution continues via the parent thread.

The definition of the function is listed in Figure 11 and the resulting machine
code in Figure 12.

19

static __attribute__((always_inline))
void moth_join() {
asm(".word (1879048192+(6<<3)+2) "); // JOIN
asm(".word (1879048192+(6<<3)+3) "); // JOINC

}

Figure 11: Listing of the functionvoid moth join().

<moth_join>:
0: 70000032 join // join the child
4: 70000033 joinc // join the coordinator
8: 03e00008 jr ra

Figure 12: Listing of the functionvoid moth join() implementation.

4.3.4 Pardo

Theparallel dofunction with the signaturepardo(idx, max, block) com-
bines the three previous operations. It spawnsmax child threads, assigns the
thread index to a thread local variableidx for each thread and starts executing the
code specified inblock with all child threads. The end of the block determines an
implicit synchronization point where the child threads arejoined.

#define pardo(idx, max, block) \
moth_fork(max);\
{\

int idx = moth_get_index();\
block\

}\
moth_join();

4.3.5 Halt

A halt function is also provided as a wrapper for theHALT instruction for ter-
minating threads or the whole application.

The definition of the function is listed in Figure 13 and the resulting machine
code in Figure 14.

20

static __attribute__((always_inline))
void moth_halt() {
asm(".word (1879048192+(6<<3)+4)"); // HALT

}

Figure 13: Listing of the functionvoid moth halt().

<moth_join>:
0: 70000034 halt // halt the thread
8: 03e00008 jr ra

Figure 14: Listing of the functionvoid moth halt() implementation.

21

5 Installing the compiler

This section provides step by step instructions for compiling and installing our
compiler. The compiler simply consists of the GNU GCC toolchain with the
mips32 target and a simple library for moving threads architecturecontaining a
small set of architecture specific compile time and runtime functionality.

Some operating system distributions are equipped with a GCCcompiler with
the ability to cross-compile to themips32 target. We have tested some of these,
e.g. the Embedded Debian Project (http://www.emdebian.org/). These
packages may or may not work. Worth noting is that the executables from these
packages may have different naming conventions (with the custom build the tool
names are prefixed with ”mips-”). As the installation instructions for these pack-
ages can be found from the websites of the projects, we do not discuss them here.

5.1 Downloading the compiler and dependencies

In these instructions we use the source code releases of GNU Binutils version
2.20.1 (linker, assembler) and GNU GCC version 4.5.1 to build our toolchain.
The Binutils release is available fromhttp://www.gnu.org/software/
binutils/ and the GCC compiler from the mirrors listed inhttp://gcc.
gnu.org/gcc-4.5/.

The toolchain’s release notes list a set of build dependencies such as GNU
binutils and GNU autotools. As we use the Debian Linux distribution in these
instructions, at the time of writing, the corresponding command for installing the
dependencies in Debian is presented in Figure 15.

apt-get install flex bison libgmp3-dev libmpfr-dev
apt-get install autoconf texinfo build-essential

Figure 15: Installation of gcc’s dependencies on Debian.

Our moving threads library,moth.h, and other possibly related files (e.g. the
most recent version of this manual) are freely available from http://staff.
cs.utu.fi/research/MOTH/.

5.2 Compiling and installing the compiler

We assume that the (x86) system contains a fully functional compilation toolchain
with the dependencies listed in Section 5.1 successfully installed. The following
instructions compile binutils and gcc and install both to/usr/local/. The file
moth.h from our distribution can be installed in many possible directories, for
instance in/usr/local/include/.

22

To make building faster, only the MIPS backend and the C frontend are nec-
essary to compile the examples shown in this manual and more generally the pro-
grams written in the C programming language. The Figure 16 shows the instal-
lation of binutils; the commands for compiling and installing GCC are shown in
Figure 17.

$ tar xf binutils-2.20.1.tar.bz2
$ cd binutils-2.20.1/
$./configure -target=mips
$ make

$ sudo make install

Figure 16: Installation of binutils.

$ tar xf gcc-4.5.1.tar.bz2
$ cd gcc-4.5.1/
$ mkdir objdir
$ cd objdir
$../configure --enable-languages=c

--enable-targets=mips
-target=mips
-disable-threads
--disable-multilib
--disable-libmudflap
--disable-libssp

$ make

$ sudo make install

Figure 17: Installation of gcc.

5.3 Testing the compiler

The compiler should now be fully operational. We can test it by constructing and
compiling a simple program example (Figure 18). The self-contained example
should compile without errors. If the librarymoth.h cannot be found, check
the include path settings. However, the resulting executable is not usable on our
architecture since we do not have a proper operating system built yet. The way to
build useful programs is explained in the next section.

23

$ echo "#include \"moth.h\"" > test.c
$ echo "int main(void) { pardo(i, 42,) }" >> test.c

$ mips-gcc test.c -o test

Figure 18: Testing the toolchain.

24

6 Using the compiler

Currently our architecture comes without any kind of an operating system or pro-
duction ready support for one. As a result the ELF type binaries typically pro-
duced by GCC cannot be loaded. This forces us to produce raw binaries.

The raw binaries have few issues we need to solve when writingapplications.
First, the C programs consist of amain() function. The location ofmain()
varies between raw binaries and we can only set up the memory locations of code
at the level of modules (compilation units). We solve this with the linker (linker
script in Figure 19) by relocating a short jump code (jump code in Figure 20) to
the beginning ofmain() to the hexadecimal address 0x4. Another problem is the
manual administration of the various sections (various types of static data, code)
in the memory space.

SECTIONS {
outputa 0x4:

{
init.o (.text)
}

outputb 0x12:
{
${T}.o (.text)
}

.sdata 0x1000:
{

*(.sdata)
}

.bss :
AT(0x1000 + SIZEOF(.sdata))
{
}

}

Figure 19: Linker script for the resulting raw binary.

extern int main(void);

void __start() {
main();

}

Figure 20: Jump code to the beginning of main().

25

The main tools for generating code for out architecture aremips-as (GNU
assembler),mips-ld (GNU linker), andmips-gcc (GNU C compiler). The
resulting binary can be analyzed withobjdump (GNU object file disassembler).
Since the platform has been highly experimental so far, we provide a simple script
for managing the forementioned issues. The script also displays both optimized
and unoptimized disassembler output for each function in the object file and the
for the resulting binary. The structure and use of this script is described in Section
6.1.

6.1 Using the frontend script

The basic usage of the frontend script is:

./compile.sh [source] [compiler parameters]

The compile.sh script accepts a single C source code as parameter. If the com-
pilation process needs to be customized further, a list of command line switches
for the compiler can be passed after the source file name.

The frontend script compiles the application and also displays the code for
final executable, object file, and the source file in three columns. In the first two
columns both the unoptimized and optimized versions are displayed in a sequence
for debugging purposes. As an example, Figure 21 shows the compilation of
output using the example code from Table 3 as its input.

Figure 21: Compilation example.

26

6.2 Known issues with compiler optimizations

The operation of the moving threads architecture is somewhat incompatible with
the standard MIPS32 code. The first difference is that the instruction set is only
a simple subset of all MIPS32 instructions. The compiler needs to work conser-
vatively with optimizations to avoid emitting incompatible opcodes. The second
issue is with delay slots. The moving threads architecture does not support de-
lay slots and the feature has to be switched off with-fno-delayed-branch.
Unfortunately some general optimizations such as-O3 turn this on automatically.

The list of architecture flags set by the frontend script is shown in Figure 23
and the list of optimizations and deoptimizations respectively in Figure 22.

-funswitch-loops -foptimize-sibling-calls -fsee
-fforward-propagate -fmerge-constants -fregmove
-fmerge-all-constants -fmodulo-sched-allow-regmoves
-fthread-jumps -fmodulo-sched -fsplit-wide-types
-fcse-follow-jumps -fcse-skip-blocks -fgcse-las
-fgcse -fgcse-lm -fgcse-sm -frerun-cse-after-loop
-fgcse-after-reload -funsafe-loop-optimizations
-fcrossjumping -fauto-inc-dec -fdce -fdse
-fif-conversion -fif-conversion2 -fschedule-insns
-fdelete-null-pointer-checks -fcaller-saves
-fexpensive-optimizations -ftree-reassoc
-ftree-pre -ftree-fre -ftree-copy-prop -ftree-salias
-fipa-pure-const -fipa-reference -fipa-pta
-fipa-cp -fipa-matrix-reorg -ftree-sink -ftree-ccp
-ftree-sra -ftree-store-ccp -ftree-ch -ftree-loop-im
-ftree-dominator-opts -ftree-dse -ftree-dce
-ftree-loop-optimize -fwhole-program
-ftree-loop-ivcanon -fivopts -ftree-copyrename
-ftree-ter -ftree-vectorize -ftree-vect-loop-version
-ftree-vrp -ftracer -fvariable-expansion-in-unroller
-fpredictive-commoning -fprefetch-loop-arrays
-fpeephole -fpeephole2 -freorder-blocks
-freorder-blocks-and-partition -freorder-functions
-fstrict-aliasing -fstrict-overflow -falign-loops
-falign-functions -falign-labels -falign-jumps
-fcprop-registers -fguess-branch-probability
-fmove-loop-invariants -fdefer-pop -funit-at-a-time
-fomit-frame-pointer -finline-small-functions
-finline-functions -Os -fno-delayed-branch

Figure 22: List of optimization flags set by the frontend script.

27

-mabi=32 -mips32 -mno-shared -mno-llsc -mno-dsp
-mno-fused-madd -mno-check-zero-division -mno-mt
-mno-mips3d -mno-mdmx -mno-paired-single -mno-dspr2

Figure 23: List of architecture flags set by the frontend script.

6.3 Issues left for future development

Since the standard C compiler is not well suited for multi-threaded programming
on our architecture, some problematic artefacts and bugs produce inefficient and
confusing binaries. For example standalone thread function implementations have
bugs with backing up registers to the stack (e.g.http://gcc.gnu.org/
bugzilla/show bug.cgi?id=43700). This also affects inlined functions,
which have no need for stack. The GCC toolchain also does not seem to support
the fact and instruction and data memory can overlap withoutany conflicts.

The thread local state could be better used if the MIPS calling convention
used by the GCC was replaced with something more appropriateto save regis-
ters and/or to prevent unnecessary use of stack. The thread local storage also
does not support any looping constructs or memory mapping. Each register has
to be explicitly controlled by the user code. A higher level custom language or
metaprgoramming library would eliminate this problem. Thelanguage could also
support other higher level parallel programming idioms such as skeleton libraries
and also provide a set of parallel (and perhaps cache-oblivious) algorithms.

Our runtime system does not implement any kind of dynamic memory man-
agement in form of stack or heap. We cannot really build any big applications
without dynamic memory management.

6.4 Simulating the applications with SMASim

The simulation of applications on the moving threads architecture is described
in the technical reportSMASim manual 1.0[12], which can be obtained from
http://tucs.fi/publications/insight.php?id=tMaPaLe10a.

28

7 Application examples

7.1 Sum of matrices

This example demonstrates the proper use of our platform using the functionality
provided by the librarymoth.h. In this program (Table 3) a naive algorithm for
computing the sum of two matrices of the same size, 16x32, is shown.

The example begins with the definition of a matrix structure.We then initialize
the input matricesM andN , and the result matrixO. The matrix elements are
summed in a two-dimensional loop done with nestedpardo statements. The
dimensions are given as bounds topardos and an index variable is provided by
the mechanism. These indexes are then used to access the correct element in the
three matrices. Since the pardo is a macro in C, the preprocessed and unrolled
output is shown as a comment below the code. The resulting disassembler output
is given in the right column.

#include"moth.h"
#definem 16// dimensions
#definen 32

struct matrix{ int [m][n]; }; // definition

int main(void) {
struct matrix M,N,O;// inputs, result

pardo(i, m,
pardo(j, n,

M. [i][j] = N. [i][j] + O. [i][j];
)

)
}

/∗
fork(16);

int i = moth thread id();
fork(32);

int j = moth thread id();
M. [i][j] = N. [i][j] + O. [i][j];

join();
join();

∗/

li v1,16
fork v1 # pardo #1
forkl
movev1,k1
li a0,32
fork a0# pardo #2
forkl
sll v0,v1,0x5
addu v1,v0,v1
lui a0,0x0
lui v0,0x0
sll v1,v1,0x2
addiu a0,a0,136
addiu v0,v0,2184
addu a0,v1,a0
addu v0,v1,v0# matrix B & C indices
lw a0,0(a0)# load B’s element
lw v0,0(v0)# load C’s element
lui a1,0x0
addiu a1,a1,4232
addu v1,v1,a1
addu v0,a0,v0# matrix A index
sw v0,0(v1)# store A’s element
join
joinc # join #1 (implicit)
join
joinc # join #2 (implicit)

Table 3: Program code of the matrix sum in C and MIPS assembly.

29

References

[1] M. Forsell and V. Leppänen. Supporting Concurrent Memory Access and
Multioperations in Moving Threads CMPs. InProceedings of PDPTA 2010,
pages 377–383, 2010.

[2] M. Forsell and V. Leppänen. Moving Threads Processor Architecture.Jour-
nal of Supercomputing, page To appear, 2011.

[3] Martti Forsell and Ville Leppänen. MTPA - A Processor Architecture for
MP-SOCs Employing the Moving Threads Paradigm. InPDPTA, pages
198–204, 2009.

[4] S. Fortune and J. Wyllie. Parallelism in random access machines. InPro-
ceedings of the tenth annual ACM symposium on Theory of computing,
STOC ’78, pages 114–118, 1978.

[5] J.L. Hennessy, D.A. Patterson, D. Goldberg, and K. Asanovic. Computer
Architecture: A Quantitative Approach. Morgan Kaufmann, 2003.

[6] ISO. ISO C Standard 1999. Technical report, 1999. ISO/IEC 9899:1999
draft.

[7] V. Leppänen.Studies on the Realization of PRAM. PhD thesis, University of
Turku, TUCS, Lemminkaisenkatu 14, FIN-20520 Turku, Finland, nov 1996.
TUCS Dissertions No 3.

[8] V. Leppänen and M. Penttonen. Sparse networks: Balanceof processing and
communication. 2008.

[9] J.M. Mäkelä and V. Leppänen. Simulation platform forthe moving threads
architecture. Technical report, 2010.www.tucs.fi.

[10] J.M. Mäkelä and V. Leppänen. SMASim: A Cycle-accurate Scalable Multi-
core Architecture Simulator. InProceedings of the World Congress on En-
gineering, volume 1, 2010.

[11] J.M. Mäkelä and V. Leppänen. Towards programming onthe moving threads
architecture. InCompSysTech ’10: Proceedings of the International Confer-
ence on Computer Systems and Technologies, pages 137–142. ACM Press,
2010.

[12] J.M. Mäkelä, J. Paakkulainen, and V. Leppänen. Smasim manual, version
1.0. Technical Report 972, April 2010.www.tucs.fi.

30

[13] J. Paakkulainen, J.M. Mäkelä, V. Leppänen, and M. Forsell. Outline of
risc-based core for multiprocessor on chip architecture supporting moving
threads. InCompSysTech ’09: Proceedings of the International Conference
on Computer Systems and Technologies, pages 1–6. ACM Press, 2009.

[14] David A. Patterson and David R. Ditzel. The case for the reduced instruction
set computer.SIGARCH Comput. Archit. News, 8:25–33, October 1980.

[15] David Seal.ARM Architecture Reference Manual. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2000.

[16] MIPS Technologies.MIPS32R© Architecture for Programmers Volume II:
The MIPS32R© Instruction Set. 2001.

31

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-2553-6
ISSN 1239-1891

