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University of Turku, Department of Mathematics
FI-20014 Turku, Finland
makela@utu.fi

Yury Nikulin
University of Turku, Department of Mathematics
FI-20014 Turku, Finland
yurnik@utu.fi

TUCS Technical Report

No 920, December 2008



Abstract

Various type of optimal solutions of multiobjective optimization problems can
be characterized by means of different cones. Provided the partial objectives
are convex, we derive necessary and sufficient geometrical optimality condi-
tions for strongly efficient and lexicographically optimal solutions by using
tangent, contingent and normal cones. Combining new results with previ-
ously known ones, we derive two general schemes reflecting structural prop-
erties and interconnections of five optimality principles: weakly and properly
Pareto optimality, efficiency and strongly efficiency as well as lexicographic
optimality.

Keywords: Multiple criteria, strong efficiency, lexicographic optimality,
tangent cone, contingent cone, normal cone



1 Introduction

The major goal in multiobjective optimization is to find a compromise be-
tween several conflicting objectives which is best-fit to the needs of a decision
maker. This compromise is usually refereed to as an optimality principle.
Various mathematical definitions of the optimality principle can be derived
in several different ways depending on the needs of the solution approaches
used. Moreover, sometimes the use of one definition may be advantageous
to the use of the other definition due to computational complexity reasons.

The optimality principles considered in this paper are strong efficiency
and lexicographic optimality. The new results concerning some structural
properties of above mentioned optimality principles are obtained using geo-
metrical cone characterization approach. These results are combined with the
results previously known for the sets of efficient, weakly and proper Pareto
optimal solutions. As a result, we derive two general schemes reflecting struc-
tural properties and interconnections of five different optimality concepts:
weakly and properly Pareto optimality, efficiency and strongly efficiency as
well as lexicographic optimality.

A solution is Pareto optimal if improvement in some objectives can only
be obtained at the expense of some other objective(s). This traditional con-
cept is also known as efficiency, non-dominance or non-inferiority. The set
of weakly Pareto optimal solutions contains the Pareto optimal solutions
together with solutions where all the objectives cannot be improved simul-
taneously. On the other hand, Pareto optimal solutions can be divided into
properly and improperly Pareto optimal ones. Proper Pareto optimality can
be defined in different ways (see, e.g. [4]) but here we use only one of them
(according to Henig [1]).

Strong efficiency is generally referred to the solutions which deliver op-
timality to each objective. Despite feasibility of such solutions is rare, they
provide an important information on the lower bound for each objective in
the Pareto optimal set. They also play a crucial role in various multiobjective
methods and algorithms.

Lexicographic optimality principle is generally applied to the situation
where objectives have no equal importance anymore but ordered according
to their significance. A rigid arrangements of partial criteria with respect
to importance is often used for a wide spectrum of important optimization
problems, for example problems of stochastic programming, problems of ax-
iomatic systems of utility theory and so on. Observe also that any scalar
constrained optimization problem may be transformed to unconstrained bi-
criteria lexicographic problem by using as first criterion some exact penalty
function for problem constraints, and an original objective function as a sec-
ond constraint.

The five optimality concepts can be characterized with the help of differ-
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ent geometrical concepts, e.g. the use of cones is a natural choice in the case
of convex optimization. Sometimes, exploiting geometrical characterization
may be advantageous to using straightforward definitions of optimality due
to potential decrease of computational efforts needed.

Important tools of classical convex analysis in the sense of Rockafellar [7]
are tangent and normal cones of convex sets. In [5], different characterizations
of optimality by using tangent and normal cones were specified in convex case
for efficient, weakly and properly Pareto optimal solutions. In this paper, we
report about new results on characterization optimality for two well-known
classes of optimality which are strong efficiency and lexicographic optimality.
This will lead to a more global view at structural properties of five well-know
optimality principles in convex case. The results are summarized in two
interconnected schemes.

In what follows, we introduce the problem formulation as well as some
well-known results in Section 2. The new results concerning the set of
strongly efficient solutions are given in Section 3. The lexicographic opti-
mality is a subject of throughout research in Section 4. In section 5, we
illustrate the geometrical meaning of the main results for the case of two
objectives and different feasible regions specified by means of various norms.
The paper is concluded in Section 6.

2 Problem Formulation and Preliminaries

We consider general multiobjective optimization problems of the following
form:

min
x∈S

{f1(x), f2(x), . . . , fk(x)},

where the objective functions fi : Rn → R for all i ∈ Ik := {1, . . . , k} are
supposed to be continuous. The decision vector x belongs to the nonempty
feasible set S ⊂ Rn. The image of the feasible set is denoted by Z ⊂ Rk, i.e.
Z := f(S) and it is supposed to be convex. Elements of Z are termed objec-

tive vectors and they are denoted by z = f(x) = (f1(x), f2(x), . . . , fk(x))T .

The sum of two sets A and E is defined by A+E = {a+e | a ∈ A, e ∈ E}.
The interior, closure, convex hull and complement of a set A are denoted by
int A cl A, conv A and AC , respectively.

A set A is a cone if λx ∈ A whenever x ∈ A and λ > 0. We denote
the negative orthant of Rk by Rk

−
= {d ∈ Rk | di ≤ 0 for every i ∈ Ik}.

The positive orthant Rk
+, the standard ordering cone, is defined respectively.

Note, that Rk
−

and Rk
+ are closed convex cones. Furthermore, an open ball

with centre x and radius δ is denoted by B(x; δ).

In what follows, the notation z < y for z, y ∈ Rk means that zi < yi for
every i ∈ Ik and, correspondingly, z ≤ y stands for zi ≤ yi for every i ∈ Ik.
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Simultaneous optimization of several objectives for multiobjective opti-
mization problem is not a straightforward task. Contrary to the the single
objective case, the concept of optimality is not unique in multiobjective cases.

Below we give traditional definitions of two well-known and most funda-
mental principles of optimality.

Weak Pareto optimality. An objective vector z∗ ∈ Z is weakly Pareto optimal

if there does not exist another objective vector z ∈ Z such that zi < z∗i
for all i ∈ Ik.

Pareto optimality or efficiency. An objective vector z∗ ∈ Z is Pareto optimal

or efficient if there does not exist another objective vector z ∈ Z such
that zi ≤ z∗i for all i ∈ Ik and zj < z∗j for at least one index j.

Next we define the sets of weakly Pareto, Pareto and properly Pareto
optimal solutions by using the opposite of the standard ordering cone. It is
trivial to verify that the definitions of weak Pareto optimality and efficiency
formulated above are equivalent to those following below.

Definition 1 The weakly Pareto optimal set is

WP (Z) := {z ∈ Z | (z + int Rk
−
) ∩ Z = ∅},

the Pareto optimal set is

PO(Z) := {z ∈ Z | (z + Rk
−
\ {0}) ∩ Z = ∅},

and the properly Pareto optimal set is defined as

PP (Z) := {z ∈ Z | (z + C \ {0}) ∩ Z = ∅}

for some convex cone C such that Rk
−
\ {0} ⊂ int C.

Notice that the concept of proper Pareto optimality originates from the
idea of prohibiting an unbounded trade-off between objectives but preserving
the requirement of Pareto optimality. This limitation can be imposed either
analytically or geometrically that will lead to slightly different concepts of
proper Pareto optimality. We used the definition of proper Pareto optimality
given by Henig in [1], since his definition uses geometrical characterization
with help of convex ordering cone.

Obviously we have the following relationships between the different grades
of Pareto optimality: PP (Z) ⊂ PO(Z) ⊂ WP (Z). Next we define several
geometrical basic cones (see e.g. [7]).
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Definition 2 The contingent cone of a set Z ⊂ Rk at z ∈ Z is defined as

Kz(Z) := {d ∈ Rk | there exist tj ց 0 and dj → d such that z + tjdj ∈ Z}.

The normal cone of Z at z ∈ Z is the polar cone of the contingent cone, that

is,

Nz(Z) := Kz(Z)◦ = {y ∈ Rk | yTd ≤ 0 for all d ∈ Kz(Z)}.

The cone of feasible directions of a set Z ⊂ Rk at z ∈ Z is denoted by

Dz(Z) := {d ∈ Rk | there exists t > 0 such that z + td ∈ Z}.

By combining results from [3, 8] we have the following relations.

Lemma 1 If Z ⊂ Rk is convex, then

a) Kz(Z), Nz(Z) and Dz(Z) are convex;

b) Kz(Z) and Nz(Z) are closed;

c) 0 ∈ Kz(Z) ∩ Nz(Z) ∩ Dz(Z);

d) Z ⊂ z + Dz(Z) ⊂ z + Kz(Z);

e) Kz(Z) = cl Dz(Z).

To the end of this section we collect the geometrical optimality conditions
derived in [5] characterizing the different notions of Pareto optimality with
the contingent cone and the cone of feasible directions.

Theorem 1 If Z ⊂ Rk is convex, then

a) z ∈ PO(Z) ⇐⇒ Dz(Z) ∩ Rk
−
\ {0} = ∅;

b) z ∈ PP (Z) ⇐⇒ Kz(Z) ∩ Rk
−
\ {0} = ∅;

c) z ∈ WP (Z) ⇐⇒ Kz(Z) ∩ int Rk
−

= ∅ ⇐⇒ Dz(Z) ∩ int Rk
−

= ∅.

Similar optimality conditions can be derived for weakly and proper Pareto
optimality by using the normal cone [5].

Theorem 2 If Z ⊂ Rk is convex, then

a) z ∈ PP (Z) ⇐⇒ Nz(Z) ∩ int Rk
−
6= ∅;

b) z ∈ WP (Z) ⇐⇒ Nz(Z) ∩ Rk
−
\ {0} 6= ∅.
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3 Strong Efficiency

Let us first define the concept of strong optimality.

Definition 3 The strongly efficient set is defined as

SE(Z) := {z ∈ Z | (z + (Rk
+)C) ∩ Z = ∅}.

Strongly efficient solutions are sometimes called also ideal solutions. This
is due to fact that

SE(Z) =
k

⋂

i=1

arg min
x∈S

fi(x).

Clearly we have the following relationships between the different grades of
optimality: SE(Z) ⊂ PP (Z) ⊂ PO(Z) ⊂ WP (Z).

In this section we try to derive similar geometrical necessary and sufficient
optimality conditions presented in previous section also for strongly efficient
solutions. We start by verifying the result in part c) of Theorem 1.

Theorem 3 Let Z ⊂ Rk be convex. Then the next three properties are

equivalent.

a) z ∈ SE(Z);

b) Kz(Z) ∩ (Rk
+)C = ∅;

c) Dz(Z) ∩ (Rk
+)C = ∅.

Proof. Let us start by showing that a) implies b). Let z ∈ SE(Z) and
suppose to the contrary that Kz(Z)∩(Rk

+)C 6= ∅. Then there exist d ∈ (Rk
+)C

and dj → d, tj ց 0 such that z + tjdj ∈ Z. Because (Rk
+)C is open, there

exists m > 0 such that dj ∈ (Rk
+)C for every j ≥ m. On the other hand,

(Rk
+)C is a cone and tj > 0, thus tjdj ∈ (Rk

+)C for every j ≥ m. In other
words, (z+(Rk

+)C)∩Z 6= ∅. This contradicts the definition of strong efficiency
of z. Thus, b) follows.

The property b) implies c) because of Lemma 1, part e).
Finally, we prove that c) implies a). Let us suppose that Dz(Z)∩(Rk

+)C =
∅. If z /∈ SE(Z), then there exists d ∈ (Rk

+)C such that z + d ∈ Z. By
choosing t := 1, we have d ∈ Dz(Z), which contradicts (iii). Thus, z ∈
SE(Z). This ends the proof.

As a consequence we get the characterization of strongly efficient solutions
with the standard ordering cone.

Corollary 1 Let Z ⊂ Rk be convex. Then the next three properties are

equivalent.
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a) z ∈ SE(Z);

b) Kz(Z) ∩ Rk
+ = Kz(Z);

c) Dz(Z) ∩Rk
+ = Dz(Z).

Proof. By Theorem 3 part b) we have

z ∈ SE(Z) ⇐⇒ Kz(Z) ∩ (Rk
+)C = ∅

⇐⇒ Kz(Z) ⊂ ((Rk
+)C)C = Rk

+

⇐⇒ Kz(Z) ∩Rk
+ = Kz(Z).

The equivalence between parts a) and c) can be proved analogously. This
ends the proof.

Besides using contingent cones, strongly efficiency can alternatively be
characterized by employing normal cones, cf. Theorem 2.

However, in order to prove the next theorem, we must state a lemma.

Lemma 2 Let C1 and C2 be cones in Rk such that 0 ∈ C1 ∩ C2. If C1 and

C2 are

a) closed, then C1 + C2 is also closed.

b) convex, then C1 + C2 = conv (C1 ∪ C2).

Theorem 4 If Z ⊂ Rk is convex, then z ∈ SE(Z) if and only if

Nz(Z) ∩Rk
−

= Rk
−
.

Proof. Let z ∈ SE(Z), then by Theorem 3 we have Kz(Z)∩ (Rk
+)C = ∅.

Suppose to the contrary that Nz(Z)∩Rk
−
6= Rk

−
, in other words, Rk

−
is not a

subset of Nz(Z). Since both sets are closed (Lemma 1, part b)), there exists
y ∈ int Rk

−
such that y /∈ Nz(Z). This means, that yi < 0 for all i ∈ Ik and

there exist d ∈ Kz(Z) such that yTd > 0. Then, there exist j ∈ Ik such that
dj < 0, in other words d ∈ (Rk

+)C . Thus we have d ∈ Kz(Z)∩ (Rk
+)C , which

contradicts Theorem 3 part b).
As far as sufficiency is concerned, let us assume that Nz(Z) ∩Rk

−
= Rk

−
.

Then we have
(Nz(Z) ∩ Rk

−
)◦ = (Rk

−
)◦ = Rk

+. (1)

On the other hand, by Corollary 16.4.2 in [7] together with Lemma 1, parts
b) and c), and Lemma 2 parts a) and b) we get

(Nz(Z) ∩Rk
−
)◦ = cl (Nz(Z)◦ + (Rk

−
)◦)

= cl (Kz(Z) + Rk
+)

= Kz(Z) + Rk
+

= conv (Kz(Z) ∪ Rk
+). (2)
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Dz(Z) ∩ Rk
+ = Dz(Z)

m

z ∈ SE(Z) ⇐⇒ Kz(Z) ∩ Rk
+ = Kz(Z) ⇐⇒ Nz(Z) ∩ Rk

−
= Rk

−

⇓ ⇓ ⇓

z ∈ PP (Z) ⇐⇒ Kz(Z) ∩ Rk
−
\ {0} = ∅ ⇐⇒ Nz(Z) ∩ int Rk

−
6= ∅

⇓ ⇓

z ∈ PO(Z) ⇐⇒ Dz(Z) ∩ Rk
−
\ {0} = ∅ ⇓

⇓ ⇓

z ∈ WP (Z) ⇐⇒ Dz(Z) ∩ int Rk
−

= ∅ ⇐⇒ Nz(Z) ∩ Rk
−
\ {0} 6= ∅

m

Kz(Z) ∩ int Rk
−

= ∅

Figure 1: Collection of the relationships with properly Pareto optimality.

Combining (1) and (2) we get

Kz(Z) ∪ Rk
+ ⊂ Rk

+,

thus Kz(Z) ⊂ Rk
+, which means that

Kz(Z) ∩ (Rk
+)C = ∅,

and then by Theorem 3 part b) we have z ∈ SE(Z). This ends the proof.
The results related to the four optimality concepts and different cones in

case Z is convex are collected in Fig. 1.

4 Lexicographic Optimality

We start by giving a standard definition of the concept of lexicographic opti-
mality (see e.g. [4]). An objective vector z∗ ∈ Z is lexicographically optimal

if for any other objective vector z ∈ Z one of the following two conditions
holds:
1) z = z∗

2) ∃ i ∈ Ik : (z∗i < zi) ∧ (∀j ∈ Ii−1 : z∗j = zj), where I0 = ∅.

7



Next we will give one more equivalent definition of the lexicographic op-
timality: an objective vector z∗ ∈ Z is lexicographically optimal if

{

z ∈ Z | zi < z∗i , i = min{j ∈ Ik | zj 6= z∗j }
}

= ∅.

Note that the lexicographic optima may be obtained as a result of the
solution of single objective (scalar) problems sequence

L(i) = min{zi | z ∈ L(i−1)},

where i ∈ Ik, L(0) = Z, and zi denotes i-th objective. Thus L(k) will con-
stitute the set of lexicographically optimal solutions which we define below
by using the complement of the lexicographic cone. It is simple to verify
that all definitions are equivalent and referred to the following concept of
lexicographic optimality.

Definition 4 The lexicographically optimal set is

LO(Z) = {z ∈ Z | (z + (Ck
lex)

C) ∩ Z = ∅},

where the lexicographic cone is

Ck
lex := {0} ∪ {d ∈ Rk | ∃ i ∈ Ik such that di > 0 and dj = 0 ∀ j < i}.

Emphasize the following properties of the lexicographic cone [2]:

a) Ck
lex is pointed, i.e. l(Ck

lex) = Ck
lex ∩−Ck

lex = {0};

b) Ck
lex is not correct, i.e. cl Ck

lex + Ck
lex\l(C

k
lex) 6⊂ Ck

lex;

c) Ck
lex is not strictly supported, i.e. Ck

lex\l(C
k
lex) is not contained in an open

homogeneous half space.

Some more properties of Ck
lex can be easily verified:

d) Ck
lex is neither closed nor open;

e) (Ck
lex)

∗

:= {y ∈ Rk | yTd ≥ 0 for all d ∈ Ck
lex} = R+;

f) (Ck
lex)

◦

:= {y ∈ Rk | yT d ≤ 0 for all d ∈ Ck
lex} = R−.

It is evident that we have the following relationships between the different
optimalities: SE(Z) ⊂ LO(Z) ⊂ PO(Z) ⊂ WP (Z). However, nothing can
be said in general case about the relation of LO(Z) and PP (Z). The example
in the next section will illustrate this fact in the case of two objectives.

Now we will formulate the main results concerning lexicographic optimal-
ity characterization by means of different cones.
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Theorem 5 If Z ⊂ Rk is convex, then z ∈ LO(Z) if and only if

Dz(Z) ∩ (Ck
lex)

C = ∅.

Proof. Let z ∈ LO(Z). Let us suppose that there exists d ∈ Dz(Z) ∩
(Ck

lex)
C . Then there exists t > 0 such that z + td ∈ Z and td ∈ (Ck

lex)
C . This

implies that z + td ∈ (z + (Ck
lex)

C) ∩ Z and, by the definition of LO(Z), this
means that z /∈ LO(Z). Thus, we must have Dz(Z) ∩ (Ck

lex)
C = ∅.

On the other hand, let us assume that

Dz(Z) ∩ (Ck
lex)

C = ∅. (3)

Let us suppose that z /∈ LO(Z). Then there exists d ∈ (Ck
lex)

C such that
z+d ∈ Z. This implies (by selecting t = 1) that d ∈ Dz(Z). This contradicts
(3), in other words, z ∈ LO(Z). This ends the proof.

As a consequence we get the characterization of lexicographically optimal
solutions with the lexicographic cone.

Corollary 2 If Z ⊂ Rk is convex, then z ∈ LO(Z) if and only if

Dz(Z) ∩ Ck
lex = Dz(Z).

Proof. By Theorem 5 we have

z ∈ LO(Z) ⇐⇒ Dz(Z) ∩ (Ck
lex)

C = ∅

⇐⇒ Dz(Z) ⊂ ((Ck
lex)

C)C = Ck
lex

⇐⇒ Dz(Z) ∩ Ck
lex = Dz(Z).

The proof ends here.
The results related to the four optimality concepts and different cones in

case Z is convex are collected in Fig. 2.
Sometimes, the lexicographic optimality principle is defined in more gen-

eral way in order to reflect all possible objective orderings. This will lead
to the so-called generalized lexicographic optimality concept which we define
below.

Definition 5 The generalized lexicographic set GLO(Z) defined by all k!
permutations of objectives is:

GLO(Z) :=
⋃

s∈Sk

LOs(Z),

where

LOs(Z) :=
{

z ∈ Z |
(

z = z∗
)

∨

(

∃i ∈ Ik : (z∗si
< zsi

) ∧ (∀j ∈ Isi−1 : z∗sj
= zsj

)
)

}

,

and Sk is a set of all k! permutations of the numbers 1, 2, ..., k.
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Dz(Z) ∩ Rk
+ = Dz(Z)

m

z ∈ SE(Z) ⇐⇒ Kz(Z) ∩ Rk
+ = Kz(Z) ⇐⇒ Nz(Z) ∩ Rk

−
= Rk

−

⇓ ⇓

z ∈ LO(Z) ⇐⇒ Dz(Z) ∩ Ck
lex = Dz(Z)

⇓ ⇓ ⇓

z ∈ PO(Z) ⇐⇒ Dz(Z) ∩ Rk
−
\ {0} = ∅

⇓ ⇓

z ∈ WP (Z) ⇐⇒ Dz(Z) ∩ int Rk
−

= ∅ ⇐⇒ Nz(Z) ∩ Rk
−
\ {0} 6= ∅

m

Kz(Z) ∩ int Rk
−

= ∅

Figure 2: Collection of the relationships with properly Lexicographic opti-
mality.

The elements of the set LOs(Z) are called lexicographic optima with
respect to permutation s of objective order. Notice that LOs(Z) = LO(Z) if
s is identity permutation, i.e. s = (s1, s2, ..., sk) = (1, 2, ..., k). The elements
of the set GLO(Z) are called generalized lexicographic optima. It is easy to
see that any generalized lexicographic optimum belongs to the Pareto set,
i.e. the following chain of inclusions holds

SE(Z) ⊂ LO(Z) ⊂ GLO(Z) ⊂ PO(Z) ⊂ WP (Z).

Using Theorem 5 and Corollary 2, we obtain the following straightforward
results.

Corollary 3 If Z ⊂ Rk is convex, then

GLO(Z) =
⋃

s∈Sk

{

z ∈ Z |
(

Dz(Z) ∩ (Ck
lex)

C
)

s
= ∅

}

,

where ()s means that Dz(Z) and Ck
lex are taken respectively for each s ∈ Sk.

Corollary 4 If Z ⊂ Rk is convex, then

GLO(Z) =
⋃

s∈Sk

{

z ∈ Z |
(

Dz(Z) ∩ Ck
lex = Dz(Z)

)

s

}

.

10



5 Illustrative example for the case of two ob-

jectives

We will illustrate geometrical meaning of the basic results formulated above
for proper and lexicographic optimality via the following example in biobjec-
tive case.

To construct the example, we will use the following norms in an arbitrary
q-dimensional vector space Rq:

- L1 or linear norm

||y||1 :=
∑

i∈Iq

|yi|, y ∈ Rq;

- L2 or Euclidean norm

||y||2 :=

√

∑

i∈Iq

(yi)2, y ∈ Rq;

- L∞ or Chebyshev norm

||y||∞ := max
i∈Iq

|yi|, y ∈ Rq.

As follows from the results described in previous sections, the various
optimal solutions can be characterized with the help of contingent cone, cone
of feasible directions, normal cone and lexicographic cone which are depicted
for the case of two objectives on Figures 3, 4, 5 and 6, respectively.

Example. Let z := f(x) = (f1(x), f2(x)), where f1(x) = x1 and f2(x) =
x2. Assume that the sets of feasible solutions are given as

X1 :=
{

x | ||x||1 ≤ 1
}

,

X2 :=
{

x | ||x||2 ≤ 1
}

,

X3 :=
{

x | ||x||∞ ≤ 1
}

.

Then, respectively, we have

Z1 :=
{

(f1(x), f2(x)) : x ∈ X1

}

=
{

z | ||z||1 ≤ 1
}

,

Z2 :=
{

(f1(x), f2(x)) : x ∈ X2

}

=
{

z | ||z||2 ≤ 1
}

,

Z3 :=
{

(f1(x), f2(x)) : x ∈ X3

}

=
{

z | ||z||∞ ≤ 1
}

.

11



Using the results of theorems 1, 3 and 5, we get the following.
For Z1, we have

SE(Z1) =
{

z ∈ Z1 | Kz(Z1) ∩R2
+ = Kz(Z1)

}

= ∅ −no Figure;

PP (Z1) =
{

z ∈ Z1 | Kz(Z1) ∩R2
−
\ {0} = ∅

}

=
{

z | |z1| + |z2| = 1, z1 ≤ 0, z2 ≤ 0
}

−see Figure 7;

PO(Z1) =
{

z ∈ Z1 | Dz(Z1) ∩R2
−
\ {0} = ∅

}

=
{

z | |z1| + |z2| = 1, z1 ≤ 0, z2 ≤ 0
}

−see Figure 8;

WP (Z1) =
{

z ∈ Z1 | Dz(Z1) ∩ int R2
−

= ∅
}

=
{

z | |z1| + |z2| = 1, z1 ≤ 0, z2 ≤ 0
}

−see Figure 9;

LO(Z1) =
{

z ∈ Z1 | Dz(Z1) ∩ C2
lex = Dz(Z1)

}

=
{

(−1, 0)
}

−see Figure 10.

Next, the corresponding optimality sets for Z2 are

SE(Z2) =
{

z ∈ Z2 | Kz(Z2) ∩R2
+ = Kz(Z2)

}

= ∅ −no Figure;

PP (Z2) =
{

z ∈ Z2 | Kz(Z2) ∩R2
−
\ {0} = ∅

}

=
{

z | z2
1 + z2

2 = 1, z1 < 0, z2 < 0
}

−see Figure 11;

PO(Z2) =
{

z ∈ Z2 | Dz(Z2) ∩R2
−
\ {0} = ∅

}

=
{

z | z2
1 + z2

2 = 1, z1 ≤ 0, z2 ≤ 0
}

−see Figure 12;

WP (Z2) =
{

z ∈ Z2 | Dz(Z2) ∩ int R2
−

= ∅
}

=
{

z | z2
1 + z2

2 = 1, z1 ≤ 0, z2 ≤ 0
}

−see Figure 13;

LO(Z2) =
{

z ∈ Z2 | Dz(Z2) ∩ C2
lex = Dz(Z2)

}

=
{

(−1, 0)
}

−see Figure 14.
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Figure 3: The contingent cone Kz(Z).

Finally, for Z3, we have

SE(Z3) =
{

z ∈ Z3 | Kz(Z3) ∩R2
+ = Kz(Z3)

}

= {(−1,−1)} −see Figure 15;

PP (Z3) =
{

z ∈ Z3 | Kz(Z3) ∩R2
−
\ {0} = ∅

}

=
{

(−1,−1)
}

−see Figure 16;

PO(Z3) =
{

z ∈ Z3 | Dz(Z3) ∩R2
−
\ {0} = ∅

}

=
{

(−1,−1)
}

−see Figure 17;

WP (Z3) =
{

z ∈ Z3 | Dz(Z3) ∩ int R2
−

= ∅
}

=
{

z | z1 = −1,−1 ≤ z2 ≤ 1
}

=
⋃

{

z | z2 = −1,−1 ≤ z1 ≤ 1
}

−see Figure 18;

LO(Z3) =
{

z ∈ Z3 | Dz(Z3) ∩ C2
lex = Dz(Z3)

}

=
{

(−1,−1)
}

−see Figure 19.

Notice, that we have LO(Z1) ( PP (Z1), and LO(Z2)∩PP (Z2) = ∅, and
LO(Z3) = PP (Z3).

6 Concluding Remarks

Additionally to previously known cone characterizations of three optimal-
ity principles - efficiency, weakly and proper Pareto optimality, we have
characterized two other optimality concepts - strongly efficiency and lexi-
cographic optimality in terms of intersections of different cones. The results
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Figure 4: The cone of feasible directions Dz(Z).

Figure 5: The normal cone Nz(Z).

Figure 6: The lexicographic cone C2
lex.
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Figure 7: Detection of PP (Z1) by means of Kz(Z1) and R2
−
.

Figure 8: Detection of PO(Z1) by means of Dz(Z1) and R2
−
.

Figure 9: Detection of WP (Z1) by means of Dz(Z1) and intR2
−
.
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Figure 10: Detection of LO(Z1) by means of Dz(Z1) and C2
lex.

Figure 11: Detection of PP (Z2) by means of Kz(Z2) and R2
−
.

Figure 12: Detection of PO(Z2) by means of Dz(Z2) and R2
−
.

16



Figure 13: Detection of WP (Z2) by means of Dz(Z2) and intR2
−
.

Figure 14: Detection of LO(Z2) by means of Dz(Z2) and C2
lex.

Figure 15: Detection of SE(Z3) by means of Kz(Z3) and R2
+.
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Figure 16: Detection of PP (Z3) by means of Kz(Z3) and R2
−
.

Figure 17: Detection of PO(Z3) by means of Dz(Z3) and R2
−
.

Figure 18: Detection of WP (Z3) by means of Dz(Z3) and intR2
−
.
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Figure 19: Detection of LO(Z3) by means of Dz(Z3) and C2
lex.

were collected and summarized in two figures illustrating the interconnec-
tions between different optimality principles. The aim was to point out the
differences and similarities between the five optimality principles. As far as
the results are concerned, it would be also interesting to investigate in fu-
ture if similar characterizations can be obtained for the case where partial
objectives are non-convex.
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Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi



University of Turku

• Department of Information Technology

• Department of Mathematics
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