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Abstract

The paper presents a bi-objective integer programming model for routing and
scheduling in a time-dependent network, where edge weights vary with time. It can
be considered as an extension of the network flow model for the time-dependent
travelling salesman problem. The objective is to find an algorithmic solution for the
optimal sequence of location/time nodes which gives the shortest travel distance,
with maximum number of visits. A heuristic algorithm is proposed based on the bi-
objective integer programming model, for time splitting. The performance of the
algorithm on real large scale sets are evaluated. The results of this research can be
used in various logistic applications specifically maritime management services.

Keywords: Time-dependent network, Dynamic TSP, Single-machine scheduling,
Bi-objective programming
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1 Introduction

In many real life applications, there is a need to construct an efficient route, passing
through all or a subset of nodes in a network. One of the classical routing prob-
lems is to find a Hamiltonian circuit of minimal total weight connecting all nodes
in a weighted undirected graph. The fundamental problem is known as travelling
salesman problem (abbreviated as TSP). It is an NP-hard [1] problem in combina-
torial optimization that is of great importance also in operations research, network
logistics and computer science [2]. Classical formulations of TSP include integer
linear programs but the presence of an exponentially growing number of subtour
elimination constraints makes it intractable for solving by exact methods, for ex-
ample branch and bound type of algorithms that can only process networks up to
40-60 nodes on average [3]. Some significant improvement can be achieved when-
ever branch and bound methods are equipped with ad-hoc cutting plane generation
techniques [4] allowing us to calculate exact optimum for the middle size networks
up to one hundred thousand nodes with the help of supercomputers. The usage of
modern heuristics allows to process network of size up to a million nodes on stan-
dard CPUs, and such instances can be resolved to optimality with 2-3 percentage
accuracy [5].

Classical TSP has many variations including the one where nodes have dynam-
ically changing locations. This feature introduces a new level of complexity since
now the decision has to be made on not only node optimal sequencing but also on
time that every node must be visited. Time dependent nature of routing has to be
properly addressed in such models (see e.g. [6, 7]). As for applications, dynamic
TSP formulations appear very often in transportation and logistics, including mar-
itime logistics analytics [8]. In this report, we define the bi-objective dynamic TSP
as follows:

”Assume a variant of TSP problem, defined in a dynamic network of
n nodes, whose locations change during the time. The moving nodes
can appear in the area of measurement in different times, move along
a random route and exit the area after a while. The question is how to
travel among moving targets, such that we visit as many nodes as we
can, with the shortest possible distance”

The above optimization problem raised from a real logistic service problem for
optimizing the navigation of a service boat, measuring vessels’ gas emission. The
problem is a new variant of transportation in a dynamic network due to its unique
features and goals, and cannot be solved by any of the existing Mixed Integer Lin-
ear Programming (MILP) models for the time-dependent TSP. The present model
in this research, can be considered as an extension of Picard and Queyranne [10]
formulation, whose associated polytope is studied by Abeledo et al. [11].

In addition to combinatorial complexity, the presence of more than one opti-
mization goal, needed to be achieved on the way to accurate and adequate mod-
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Figure 1: Representation of graph G with n = 3 vertices and three time slots.

elling, may influence problem complexity. It is well-known that under multi-
objective framework a solution that is optimal with respect to one objective may
have arbitrarily bad value of the others, and thus, may be unacceptable for a deci-
sion maker in practical situations. Therefore, many problems arising in optimiza-
tion, applied mathematics and operations research should be ultimately considered
under multi-criteria framework due to existing of several conflicting goals or inter-
ests [9].

2 Problem formulation

Let N t = {vti |i ∈ {1, ..., n}, t ∈ T} be the set of n nodes whose locations depend
on time t ∈ T , where T is the total time interval during which visiting a node is per-
mitted, and Atl is the set of directed edges connecting nodes in a pair of times t and
l, with sources in N t and terminals in N l. Assume G = (∪t∈TN t,∪(t,l)∈T 2Atl)
is a multi-partite directed graph consisting the union of all sets of nodes N ts and
their pairwise connecting edges. The schematic representation of graph G is de-
picted in Figure 1. The problem is to find an itinerary with the shortest route length
within a specified time interval, that passes through as many nodes as possible with
a constant speed u, while every visit needs a processing time pi before leaving and
visiting the next node.

In order to formulate the above problem as a combinatorial problem, we need to
discretize the time interval T into a finite set of m time slots, indicated by K, where
the location of nodes are supposed to remain unchanged in each time slot. Suppose
that processing more than one node is not possible in a single time slot. Thus, we
define sk ∈ [tk, tk+1] to be the starting time for processing a node during the time
slot k ∈ K. Assume a depot node v0, which is not moving during the time, to be
the starting and ending points of the salesman’s tour. A feasible tour, consisting of
a sequence of {vki } can be generated by the following set of constraints, in terms
of binary variable xklij , which is equal to 1 if node vlj is visited immediately after
node vki ; and 0 otherwise:
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m−1∑
k=1

n∑
i=1

x0k0i = 1 (1)

l−1∑
k=1

n∑
i=0
(i ̸=j)

xklij =

m∑
k=l+1

n∑
i=0
(i ̸=j)

xlkji ∀j = 1...n ∀l = 2...m− 2 (2)

m−1∑
k=1

n∑
i=1

xkmi0 = 1 (3)

m∑
l=k+1

n∑
i,j=0
(i ̸=j)

xklij ≤ 1 ∀k = 0...m (4)

l−1∑
k=0

n∑
i,j=0
(i ̸=j)

xklij ≤ 1 ∀l = 0...m (5)

m∑
k,l=0
(l>k)

n∑
i=0
(i ̸=j)

xklij =

m∑
l,k=0
(k>l)

n∑
i=0
(i ̸=j)

xlkji ∀j = 0...n (6)

m∑
k,l=0
(l>k)

n∑
i=0
(i ̸=j)

xklij +
m∑

l,k=0
(k>l)

n∑
i=0
(i ̸=j)

xlkji ≤ 2 ∀j = 0...n (7)

xlkij ∈ {0, 1} ∀i, j = 1...n (i ̸= j) ∀k, l = 1...m (k < l) (8)

Initially, the flow starts from depot node v0. If the decision is made to move
to ith node at time slot k, then x0k0i = 1. So, we have the first constraint (1). after
reaching the node vki , the flow should exit that node at some later time slots l. So,
initialized by the previous constraint, a unit of flow propagates throughout two time
slots k and l according to the balance constraints (2) (flow conservation). The flow
turns back to depot node v0 at some time slot k using constraint (3). The inequal-
ities (4) and (5) prohibit entering to or exiting from a single node at multiple time
slots respectively. Constraints (6) and (7) restrict the flow to pass through every
node j at most once. Furthermore, constraint (2) maintains the connection of time
slots and (6) eliminates route breaks through the time slots sequence. Inequality
(7) acts as a subtour elimination constraint. So, we start from the depot, visit a
sequence of nodes along the route {(vki , vlj)|xklij = 1} of length at least 2 and turn
back to the depot. However, to create a Hamiltonian circuit of maximum length,
we need to define a parameter α to indicate the number of nodes that should be
visited. Thus, the objective of maximizing the number of visits can be defined as
the following inequality, and be added to the above set of constraints:

m∑
k,l=0
(l>k)

n∑
i,j=0
(i ̸=j)

xklij ≥ α (9)
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The primary objective is to minimize the travel distance, using the following ob-
jective function:

z =
m∑

k,l=0
(l>k)

n∑
i,j=0
(i ̸=j)

dklijx
kl
ij (10)

where dklij is the distance between nodes vki and vlj in G. This is one way to handle
multi-objective problems. The idea is referred to as ”goal programming”. That is,
we set a goal for one (or several) objective value(s) and find the optimal solution
for the other objective while meeting the goal(s). Here, the secondary objective
(maximizing the number of visits) is used as constraint to generate the Pareto fron-
tier. If we want to treat all objectives equally, we may formulate them as flexible
constraints and use minimization of their corresponding deviation variables. An-
other way of dealing with multi objectives is to give each objective a weight and
minimize the weighted aggregation. It can be proved that, if x is a Pareto optimal
solution for the problem, then there exist multipliers for the weighted Chebyshev
aggregation which gives the same Pareto optimal solution x. In case the weighted
sum scalarization is used, the calculation is more efficient but only the supported
Pareto points are found. More information on multi-objective optimization meth-
ods can be found in [13].

In order to create a time dependent route, we need to force visits occurring
within the given time window. In other words, if some processing starts at time sk
then the start time should occur within the kth time slot, and as a result satisfy the
following constraint:

s0 + wk ≤ sk ≤ s0 + w(k + 1) ∀k = 0...m (11)

where s0 is the start time at the first time slot (can be set to the time when working
starts), and w is the length of each time slot. In addition, enough time should be
reserved for processing and travelling to the next node before each visit, which can
be defined by the following scheduling constraint:

sk +
n∑

i,j=0
(i ̸=j)

(pi + tklij )x
kl
ij ≤ sl ∀k, l = 1...m (k ̸= l) (12)

where tklij is the time takes to travel along the edge (vki , v
l
j) with a specified constant

speed.

The solution of the introduced MILP model will return the shortest distance for
visiting at least α moving nodes, as well as start times of each visit in a given time
interval T . The model contains m2 + n(m− 1) + 2m+ 8 constraints. The upper
bound for the number of variables is n2m2. However, it depends on how long
each node is present in the area. The model returns the Pareto optimal solutions
for the defined problem. It can be solved by branch-and-bound and cutting plane
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methods integrated into standard MIP solvers, however, the large number of binary
variables and constraints make it inefficient when using on large-size real datasets.
In the next section, some heuristics on time and locations are applied which returns
an efficient solution within an acceptable execution time.

3 Heuristic solution algorithm

When there are lots of nodes moving simultaneously in the area, the number of
possible links and thus the number of feasible routes grows enormously. To formu-
late an efficient heuristic, we need to detect those links which have low (or zero)
chance of being included to the optimal solution. First of all, we remove links to
those nodes which are not accessible in their assigned time slots. That is, assum-
ing dtklij = dklij/u to be the time takes to travel between nodes vki and vlj with the
constant speed u, then the quadruples (i, j, k, l) is included only if:

(l − k)w + ϵi ≥ dtklij (13)

The tolerance ϵi is added because processing can occur at any moment within the
interval of a time slot. It can be adjusted according to the processing time, for in-
stance ϵi = w− pi. We also define a threshold τ for the maximum length of edges
that can be included in the search scope. The value of τ depends on the distances
and is determined by trial and error.

Splitting the time interval: One simple heuristic is to split the whole interval
T and construct a part of the route limited to each sub-interval. In experiments,
we see that by splitting the total time interval, although we may achieve a near
optimal number of visits, but it can violate the optimal travel distance considerably.
Therefore, we need to find good split points in the sense that it should not violate
the global optimality extremely, and yet it should help reducing the complexity
considerably. For this reason, we define a criterion D(k) for measuring the density
with respect to the sum of distances per square number of nodes in each time slot
k as follows:

D(k) =
1

r2(k)

n∑
i,j=0
(i ̸=j)

dkkij (14)

where r(k) is the total number of nodes present during the kth time slot. The status
of being present for a node is defined by the existence of its location/time informa-
tion. Thus, when nodes are out of the measurement area there is no data for them
and its link to other (present) nodes are removed so that they are not included in
the underlying network. If the value of D(k) is small and r(k) is relatively big in a
time slot k, it means that most nodes are located near each other, and thus there is a
high chance of achieving a bigger α which increases the computational complexity.
If we split the interval at dense points, we can probably reduce the execution time
significantly but it violates the optimal travel distance. Best candidates for split
points are waiting time slots of the optimal route which are unknown. However,
they are more probable to happen when no or few nodes are around and others are
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distant. Therefore, good candidates for split points are those with maximum values
of D(k) which implies that nodes are distant from each other when r(k) is locally
minimum or small.

4 Computational performance

In order to validate the performance of the introduced heuristic and comparing it
with the exact method, we implement the algorithm on real large-size datasets,
taken from [12], in which geographic coordinates of vessels during a 16-hour in-
terval are recorded for several days. The experiments are done on three sets of data
belonging to 21st and 12th of January, and 5th of July 2018, with 192 time slots
(every 5 minutes during 16 hours) and total number of 42, 60 and 29 vessels pass-
ing through the measurement area respectively. For the data of January, the interval
T is splitted into 6 sub-intervals according to the local maxima of D(k) and local
minima of r(k). Shorter sub-intervals are chosen for time slots with relatively large
number of present nodes in the beginning of the time interval T , where there are
lots of unvisited nodes. The diagram of D(k) at a scale of 1000/1 and r(k) for the
two datasets of January are illustrated in Figure 2. Vertical lines show split points
of the interval T . The processing time p = 3 minutes, and constant speed of 46
km/h is used in the experiments.

As the input information including time window, stationary point v0, loca-
tion/time information of target nodes (of those which are missed in the previous
round but still present, or those which arrive later in the area) and the value of α
differ in each sub-interval, we need to update input data before each solving of the
model. The output of each solution are the Pareto optimal travel distances with
respect to each α, a sequence of visited nodes with their location/time informa-
tion, start times of each process and a list of nodes which are not visited. The
stationary point in each new sub-interval is supposed to be the location/time node
corresponding to the last visit in the previous sub-interval. The execution time in-
cludes calculation of pairwise distances to generate the network and solving the
model for a given number of targets. The number of targets is supposed to be the
number of present nodes in a given sub-interval which are not yet visited. The
number of targets is reduced by one in each iteration and is assigned to α value.
The algorithm stops when a feasible solution is found for the given α. Tables 1
and 3 show total distance travelled for maximum possible α for consecutive sub-
intervals related to data of Jan.21 and Jan.12 respectively.

In the second set of experiments, we investigate the effect of splitting. Ta-
bles 2 and 4 show the maximum number of visits and their corresponding travel
distances, when less number of splits are generated for the same data of Jan.21
and Jan.12. In order to reduce the number of split points, we merge each two
consecutive sub-intervals to see the difference of maximum number of visits and
corresponding distances between the merged and splitted intervals.
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Figure 2: The upper and lower figures show status of Jan.12 and Jan.21 datasets
respectively. The horizontal line shows the time slots. Vertical lines show five split
points of the interval T . The blue diagram is the value of D(k) at a scale of 1000/1.
The green diagram is the number of nodes r(k) present in each time slot.
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Table 1: Maximum possible α and their travel distances for 6 sub-intervals related
to data of Jan.21, 2018

Interval No. of Targets Max. No. of
Visits (α)

Total Dis-
tance (km)

Exe. Time
(min:sec)

0-34 9 7 78.717 0:16
35-64 14 9 37.086 0:16
65-81 9 4 50.687 0:11
82-115 12 11 76.082 0:21
116-151 9 6 83.809 0:23
152-192 4 4 28.084 0:10
Entire day 42 41 354.465 1:37

Table 2: Maximum possible α and their travel distances for 3 sub-intervals related
to data of Jan.21, 2018

Interval No. of Targets Max. No. of
Visits (α)

Total Dis-
tance (km)

Exe. Time
(min:sec)

0-64 22 18 189.850 6:38
65-115 15 14 115.908 1:17
116-192 10 10 64.391 1:14
Entire day 42 42 370.465 9:09
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Figure 3: The optimal route for the corresponding maximum visits before changing
the current line for data of Jul.5, 2018.

For instance, splitting the interval [0, 64] into [0, 34] and [35, 64] for the data
of Jan.21 (Tables 1 and 2) results in losing two visits. In order to find out the
difference between travel distances for the same number of visits, we also calcu-
lated total travel distance corresponding to 16 visits for the interval [0, 64] to be
comparable with the splitted interval. The travel distance for the whole interval
[0, 64] without splits is 105.34 km for 16 visits. Comparing to the distance 115.80
km which is obtained by the sum of two distances for [0, 34] and [35, 64], there is
about 10 km extra travelling caused by one time splitting. Similar results are ob-
tained for Jan.12 dataset, shown in Tables 3 and 4. Comparing the interval [0, 55]
with the two sub-intervals [0, 34] and [35, 55], we see that the maximum number of
visits, 19, can be achieved after splitting but with an extra travel distance of about
46 km. As for execution time, splitting could save about 2.5 hours of calculation
for the interval of [0, 55]. In total, time splitting for Jan.12 dataset which includes
great number of nodes and time slots, reduced the execution time from 4.7 hours
to 13 minutes with a small change in the maximum α value. Therefore, good split-
ting enormously reduces the execution time without much violating the maximum
visits in general. Increasing the travel distance is the price we pay for accelerating
the execution time.

In practice, there is a limitation in fuel consumption and battery usage of the
service machine. Thus, we need to set a limit on the total distance travelled. For
this reason we can simply add a preferred upper bound to the objective. In this
case study, most vessels move in two lines in opposite directions (from east to west

9



Table 3: Maximum possible α and their travel distances for 6 sub-intervals related
to data of Jan.12, 2018

Interval No. of Targets Max. No. of
Visits (α)

Total Dis-
tance (km)

Exe. Time
(min:sec)

0-34 25 12 94.964 4:23
35-55 18 7 54.788 0:32
56-73 14 7 28.233 0:15
74-107 17 11 84.515 4:32
108-155 13 9 52.050 3:00
156-192 9 8 92.358 0:17
Entire day 60 54 406.908 12:59

Table 4: Maximum possible α and their travel distances for 3 sub-intervals related
to data of Jan.12, 2018

Interval No. of Targets Max. No. of
Visits (α)

Total Dis-
tance (km)

Exe. Time
(hour:min:sec)

0-55 31 19 102.841 2:37:16
56-107 26 18 112.459 1:25:56
108-192 20 19 165.121 0:39:59
Entire day 60 56 380.421 4:43:11

and vice versa). Based on this information, the third set of experiments is focused
on finding gaps between travel distances when number of visits increases. Exper-
iments are done on data of 5th of July 2018 which has small number of nodes
moving during the time interval so that the Pareto optima can be calculated for the
whole interval T . Results are shown in Table 5 for the data of Jul.5. Gaps in
distances occur mostly because of changing the lines. The two lines are approx-
imately 10 km apart from each other. Therefore, the preference to increase the
number of visits up to the next gap should be dominant over the extra distance we
need to add by changing the current line. The maximum number of visits for the
interval T is 23 out of 29 with three times changes of line. Figure 4 illustrates the
optimal route before each gap occurs. The rows in Table 5 are highlighted right be-
fore the need to change the current line, therefore they specify when a gap occurs
in travel distance. As can be seen in the results, 20 km of travel distance is saved if
we visit two nodes less than maximum possible α by avoiding one extra changing
of current line.
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Table 5: Pareto optima for data of Jul.5 2018 with total number of 29 nodes and
192 stages.

No. of Visits (α) Total Distance (km) Exe. Time (min:sec)
>23 Not Possible 4:28
23 138.58 3:34
22 131.75 2:46
21 117.71 2:48
20 108.50 2:11
19 101.29 2:18
18 91.52 1:30
17 82.33 0:45
16 75.61 0:47
15 69.42 0:40
14 56.79 0:38

5 Conclusions

In this paper, we constructed a mathematical model for bi-objective problem of
finding an efficient route, maximizing the number of nodes visited along a time-
dependent route and minimizing its total distance in a dynamic network. As an
output, a set of Pareto optimal solutions can be produced. The resulted integer
linear programming model can be computationally tackled with a help of some
splitting heuristics proposed. Initial experiments on real historical data sets have
provided preliminary evidence that the method can be efficiently used in practice
for some problems of maritime routing management. Further research will be re-
lated to direct testing of the model for some real situations in applied maritime
logistics analytics and justifying its application as a part of higher level hierarchi-
cal systems targeting autonomous navigation.
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