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Abstract

Comparing alternative models for a given biochemical syssemgeneral a very

difficult problem: the models may focus on different asp@ttthe same system
and may consist of very different species and reactions. numeerical setups
of the models also play a crucial role in the quantitative parison. When the
alternative designs are submodels of a reference modelkogkdown mutants
of a model, the problem of comparing them becomes simplesy &l have very

similar, although not identical, underlying reaction netls, and the biological

constraints are given by the ones in the reference modehdiiirtst part of our

study we review several known methods for model decompwosénd for quanti-

tative comparison of submodels. We describe the knockdouwtamts, elementary
flux modes, control-based decomposition, mathematicalhtrolled comparison

and its extension, local submodels comparison and a desapgiroach for com-
paring continuous submodels. In the second part of the papgresent a new
statistical method for comparing submodels that complésnére methods pre-
sented in the review. The main difference between our appraad the known

methods is related to the important question of how to chiesetimerical setup
in which to perform the comparison. In the case of the revieweethods, the

comparison is made in the numerical context of the referemagel, i.e., in each
of the alternative models both the kinetics of the reactimmd the initial values
of all variables are chosen to be identical to those from ¢ference model. We
propose in this paper a different approach, better suitedefgponse networks,
where each alternative model is assumed to start from itssteady state under
basal conditions. We demonstrate our approach on a casefsiuging on the

heat shock response in eukaryotes.

Keywords: quantitative model comparison — statistical methods — rabnt
based model decomposition — chaperone proteins — proteiip interactions
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1 Introduction

Much experimental and theoretical effort is invested naayadn analysing large
biochemical systems, e.g., metabolic pathways, regylaietworks, signal trans-
duction networks, aiming to obtain a holistic perspectik@vling a comprehen-
sive, system-level understanding of cellular behaviouris ©ften results in the
creation and analysis of very large and complex modelsp@ieompassing hun-
dreds of reactions and reactants, see e.g. [5]. Therefot@ning a global picture
of the system’s architecture, in particular understandigginteractions between
various components, or even just distinguishing a higlellé&nctional decom-
position of the network, constitutes a significant chalEengn important insight
here is that the architecture of some biological systergs,seme regulatory net-
works, is a consequence of functional requirements of thieeesystem. Even
though evolution is driven by random events, some desigia$), as having an ex-
tra feedback loop helping the system to correlate bettertgonse of the system
with its trigger, may offer a selective advantage and in timay get to dominate
the population, see [39]. Thus, comparing the performahddferent alternative
designs in terms of sub-components being on or off, one anisrmulate gen-
eral principles for how functional requirements correlaitdogically with various
designs.

Similar problems have been encountered for instance imergng sciences,
see [7], and a variety of strategies and approaches fomgpstich problems have
been already developed in this framework. Thus, when aitoi@iptain a system-
level understanding of such large biochemical networke, possible approach
is to adapt to systems biology some of the methods origigdtom engineering
sciences, especially from control theory, see e.g. [1221846, 47, 49, 53]. Such
methods have been used, as we also do in this paper, to ydeartibus functional
modules of a model, including feedback and feedforward raeisims. To identify
the quantitative contribution of each of the modules to tlubal behaviour of
the model, the general approach is to consider knockdowamsibf the initial
model, missing one or several of the modules. The main prolien becomes
an objective quantitative comparison of several alteveatubmodels for the same
biological process. We focus on this problem in our paperye concentrate on
the comparison of submodels of a given reference model. i$hig is a special
case of the general problem of alternative model comparisothe general case
it is a very difficult issue and is not in the scope of this study

The first part of our paper contains a review of existing téphes for model
decomposition and for quantitative comparison of subn®d®Ve describe the
knockdown mutants, elementary flux modes, control-basedrdposition, math-
ematically controlled comparison and its extension, Iecgdmodels comparison
and a discrete approach for comparing continuous submolaetise second part
of the paper we introduce a new approach to quantitative sdbhtomparison.
A main difference in our approach with respect to previoushoes is that we
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allow the alternative models to start from different irlitstates, rather than to
assume the initial state of the reference model. We arguettisais a better ap-

proach at least in the case of response networks, where ghensys assumed
to be in a steady state under basal conditions and exhibgmonse only as an
effect of an external trigger. To treat each model as a genaliiernative for the

biological process under study, we allow it to start fronoitsn steady state under
basal conditions. Finally, we illustrate our approach omsecstudy focusing on
the heat shock response in eukaryotes.

The numerical behaviour of any model is clearly sensitivéhs numerical
setup, i.e., the numerical values of the kinetic constantsd the initial values
of the model variables. In our approach for quantitative panson of alternative
submodels we adopt some statistical, parameter-independhods introduced
in [1, 2]. These methods aim to sample the numerical behawbthe model
through a sampling of the parameter space. We adopt in thierplae latin hyper-
cube sampling method of [14] that gives uniformly distrédisamples over each
parameter, of size independent of the number of parameteesbriefly survey
this method and apply it to the heat shock response in eutesyo

The heat shock response is an evolutionary conserved mesohanotecting
the cell against protein misfolding. In the case study famaw approach to quan-
titative submodel comparison we consider a model recenthpduced in [28].
The model was analysed in [8] using control-driven metholdere it was decom-
posed into several modules, including three feedback lodfesfocus in the case
study on identifying the numerical contribution of each lné$e feedback loops
to the global behaviour of the model. A local, point-wise @amson of the three
feedbacks was already done in [8], in the kinetic setup oféference model. In
this paper we do a global, parameter-independent analf/siee smumerical role
of each feedback, through a sampling of the whole parampéees

2 Methods for model decomposition

2.1 Knockdown mutants

A simple model decomposition consists of isolating a simgiecess or mech-
anism in the considered system. In this way the model is syt two parts:
the first one comprising the process of interest and the secontaining all the
remaining elements of the system. Although such decompositight seem un-
sophisticated, this approach is often very useful in disdog the role of a single
mechanism in a larger system. It is widely exploited in regegngineering, a pro-
cess aiming at revealing the technological principles ahaak, object or system.
In Section 3 we shortly describe the method of mathemayicalhtrolled com-
parison ([39]), where this simple decomposition approachtithe basis of the
method.



2.2 Elementary flux modes

Another well-established decomposition method for bioeical models appears
in the context of the analysis of metabolic pathways. It isgasy to define a path-
way in a given metabolic network. An intuitive definition ofpathway is a se-
guence of reactions linked by common metabolites ([19]ar&ples of metabolic
pathways are glycolysis or amino acid synthesis. Discageniew pathways in
alarge model driven only by biological intuition is even raalifficult. An attempt
to formalize the notion of pathway has been proposed in [@343, 42, 43, 44] in
the form of elementary flux modes. The intuitive meaning oelmentary flux
mode is a set of reactions whose combined quantitativeibatitn to the system
is zero. In other words, the net loss of substance causedybyeantion in that
set is compensated by a net gain in the same substance mhéyrisome other
reactions in the set. A formal definition of elementary fluxdes is beyond the
scope of this paper; instead we refer to [13, 19, 41, 42, 43pod4dletails. For any
given metabolic network, the full set of elementary fluxes ba determined us-
ing methods of linear algebra or dedicated software suchESAVIOOL ([30]).
The recognition of the elementary flux modes allows the dieteof the full set
of nondecomposable steady-state flows that the network wapost, including
cyclic flows. Any steady-state flux pattern can be expressea aon-negative
linear combination of these modes ([41, 42, 43]). The idexatielementary flux
modes should have clear biological interpretation: a fluxlenis a set of enzymes
that operate together at a steady state and a flux mode isrgkemyé the set of
enzymes is minimal, i.e. complete inhibition of any of theynes would result
in a termination of this flux ([41, 42, 43]). The lack of pogst to interpret
the modes in this way is a signal that the model under coregidermay not be
correct.

2.3 Control-based decomposition

A control-driven approach to model decomposition enalilesécognition of the
main functional modules of a system and their individualtdbaotion to the emer-
gent, complex behaviours of the system as a whole. In tu¢#n provide great
insight about various properties of a given biochemicateys e.g., robustness,
efficiency, reactivity, adaptation, regulation, synchration, etc. In particular,
by applying this approach, one usually aims to identify tre@mmegulatory com-
ponents of a given biochemical system: the process to béategy referred to
as theplant, thesensorsvhich monitor the current state of the process and send
the collected information to a decision-making module,thecontroller and the
actuatorthat modifies the state of the process in accordance withah&atler’'s
decisions, thus influences the activity of the plant. Oneéheffindamental con-
cepts in control theory is thieedback mechanismhich provides the means to
cope with the uncertainties: the information about theenirstate of the process
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is sent back to the controller, which reacts accordinglatalitate a dynamic com-
pensation for any disturbance from the intended behavibthieosystem. In the
case of a complex system this decomposition can be performaitferent ways

depending on what is considered to be the main role of thaesys.e. there
may be a few reasonable choices for the plant, and the remgagoimponents are
recognized with respect to the choice of the plant.

An easy example illustrating these concepts and theirantems is given by
the functioning principles of a motion activated spotlighiere, the controller
module is an electronic unit which receives an input fromrtiaion sensor and
then determines whether there are any changes in the emerdn The actuator
is a relay switch that operates the lighting system. Thigaor is activated by
the controller depending on the input sent by the sensom,Tthe switch is kept
on by the controller as long as movement is detected by threosen

How this control-driven approach can be exploited to ingagé and under-
stand regulatory networks can be seenin [7, 10, 18, 46, 4&ie Me shortly de-
scribe the approach taken in [10]. The authors make a thorstugly of the heat
shock response mechanismEscherichia colbased on modular decomposition.
A model for the system is built and functional modules, ile plant, sensors,
controller, and actuator are identified. The decompositameals the underlying
design of the heat shock response mechanism and its levehgdlexity, which,
as the authors show, is not justified if only the functioryadit an operational heat
shock system is required. Further, this observation leadse introduction and
analysis of hypothetical design variants (mutants) of thgimmal heat shock re-
sponse model. In the original model one feedforward (teatpee sensing) and
two feedback elements{® factor sequestration feedback loop and degrada-
tion feedback loop) can be isolated. The variants are oddatinrough the elimi-
nation of either ther3? degradation feedback loop or both feedbacks. Moreover,
the case without the feedforward element is also consigders=l[10] for detalils.
One by one the variants in order of increasing complexitycaresidered starting
from the simplest architecture containing just the feedfod element (thepen-
loop desigh. Based on numerical simulations, the authors demonstoatetiine
addition of subsequent layers of regulation, thereby m®ean the complexity of
the model, improves the performance of the response in tefsystemic proper-
ties such as robustness, noise reduction, speed of respodsEonomical use of
cellular resources. Moreover, this systematic approaehles the identification
of the role of each of the regulatory layers to the overalldw&bur of the system.
In consequence the authors succeed to perform an in-deptpactson between
different model variants.



3 Known methods for submodel comparison

Comparing alternative models for a given biochemical syssemgeneral a very
difficult problem, involving a deep analysis of both the urgieg network of re-
actions, the biological assumptions as well as the nuniesgtap. To decide what
are the benefits of one design over another, or to understhat ave the selec-
tion requirements involved in an evolutionary design, oeeds some unbiased
methods to objectively compare the alternative designs.

3.1 Mathematically controlled model comparison

One such method is the mathematically controlled compayig9], which pro-
vides a structured approach for comparing alternativelagony designs with re-
spect to some chosen measures of functional effectiveblster this approach,
mathematical models for both the reference design and teeatives are first
developed in the framework of canonical nonlinear modgliieferred to as S-
systems, [36], [37], and [38]. This canonical nonlinearesgntation, developed
within the power-law formalism, is a system of non-lineadioary differential
equations with a well-defined structure. Moreover, thisneavork allows the al-
ternative models to differ from the reference design in alg process, e.g., the
existence or not of some feedback mechanisms, which islpctha focuss of
the comparison. Then, in each of the alternative models etgetBe numerical
values of the parameters to be identical with those from éfierence model for
all processes other than the process of interest. This tea@so-called internal
equivalence between the reference model and the altegsatNext, various sys-
temic properties are selected and used to impose someaioistor all the other
parameters in the alternative designs. In general in tlisogeh, one imposes that
some steady state values or logarithmic gains are equag refarence model and
its alternatives. This provides a way to express the paemef the process of
interest in the alternative models as functions of the patars of the reference
model. Thus, one obtains a so-called external equivaleetveden the reference
model and the alternative designs, meaning that to an ettebserver the con-
sidered models are equivalent with respect to the selegstdmic properties. Fi-
nally, one chooses various measures of functional efiectiss depending on the
particularities of the biological context of these modeld ases them to compare
the alternative designs with the reference model. By doirgy time usually aims
to determine analytically the qualitative differencesimEn the compared mod-
els. This method was successfully used to compare alteenagulatory designs
in, e.g., metabolic pathways, [16], [40], in gene circu[ts;], in immune net-
works, [4]. Moreover, by introducing specific numericalues for the parameters
of the models, one is also able to quantify these differebagsat the same time,
the generality of the results is lost. Thus, in [2], the metlod mathematically
controlled comparison was extended to include some staiishethods, [1], [3],
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that allow the use of numerical values for the parametertevstill preserving the
generality of the conclusions.

3.2 An extension of the mathematically controlled comparison

The first step of this extension is to generate a represeatatisemble of sets of
parameter values. Since usually for biological systemeXaet statistical distri-
bution of the parameters values is not known, the most apiatepapproach is
to sample uniformly a given range of values. There exised#iit methods for
scanning a given interval of values, ranging from (more ss Bophisticated) ran-
dom samplings to some systematic deterministic scannirigods, see e.g. [34].
Using this ensemble of sets of parameters, we can then oohsattarge class of
numerical models both for the reference and for the altermdesigns. There are
two different methods to construct such a class of systemslicch we can then
investigate some statistical propertiesstfuctural classconsists of systems hav-
ing the same network topology, i.e., generated by the sampli the parameter
space. Abehavioural clasgonsists of systems that exhibit a particular systemic
behaviour, e.g., exhibiting a steady state behaviour ugislen conditions, or low
concentrations of intermediary products, or small valeegte parameter sensi-
tivity, see, e.g., [3]. The members of such a class are adxdaimtwo steps: first
generate a set of parameters by sampling the parameter, spacdest the sam-
ple for the desired systemic behaviour and keep only thoste s that fulfil the
conditions.

After constructing this large class of numerical modelhidot the reference
and the alternative architectures, one can start compénmgalues of a given
systemic property’ between the reference model and its alternative desigrns. On
way to do this is by using density plots of the rafido= P,.ference/ Paiternative
versus the value®,. . ..., Where the subscript indicates in which model the
property P was measured. Such density plots can be used for instanoenjuute
rank correlations between the considered prop&rfymeasured in the reference
model) and the values of the ratid. However, this is not easy to do if the den-
sity plots are very scattered. Then, one can construct sacpmlensity plots by
using the moving median technique as follows. Basicallydiesity plot can be
interpreted as a list oV pairs of values Py ference, 1), Which can be arranged
in a ordered listL with respect to the first compone,. r.,cnc.. Then, we pick
a window sizelV, usually much smaller than the sample si¥eand we com-
pute the mediarc R > of the ratio values and the median P > of the values
Preference, fOr the firstiW pairs in the listL. Then, we advance the window by one,
we collect the ratios and the valués. s.,,.. from the second until thél” + 1st
pair and compute the corresponding median vakieR > and< P >. This
process is continued until the last pair of the lists used for the first time. In
the secondary density plot, we will pair the computed value$ > with the
corresponding< P > values. This moving median technique is very useful since
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for a finite ordered sample of sizg, the moving median tends to the median of
the samples as the vallig approachesv. These secondary density plots can be
used to compare the efficiency of two classes of models frenptint of view of

a given systemic property.

3.3 Local submodels comparison

When the alternative designs are actually submodels of faeerece architecture,
there is also another approach, see [8], for performing dingparison. This is the
case when, for instance, one is interested in a functioray/ais of various mod-
ules of a large system. Then, the underlying reaction nétsvior the alternative
designs are very similar (although not identical), and kb biological con-
straints and the kinetics of the reactions are given by thbgee reference model.
The only remaining question regards the initial distribatof the variables in the
alternative models. In the mathematically controlled carmgon they are usually
taken from the reference model. However, for some biochansgstems this
choice might lead to biased comparisons. For instance gircdise of regulatory
networks, models should be in a steady state in the absertbe tigger of the
response and indeed the initial values of the reference hamdaisually chosen
in such a way to fulfil this condition. However, this will nahply in general that
also a submodel will be in its steady state if it uses the samtialivalues as the
reference model. Thus, the dynamic behaviour of the subhvatlée the result
of two intertwined tendencies: migrating from a possiblstable state and the
response to a trigger. If the focus of the comparison is éxtwet efficiency of the
response of various submodels to a trigger, then the appedaeroposed in [8]
is more appropriate, yielding biologically unbiased résuln this approach, the
initial distribution of the reactants is chosen in such a Weat the initial setup of
each submodel constitutes a steady state of that desiga abgence of a trigger.

3.4 Adiscrete approach for comparing continuous submodels

The application of the control-theoretical analysis digsat in Section 2 enables
the identification of the main functional modules, theiemtionnections and con-
trol strategies of a biochemical network. In particulars thpproach can be very
useful for identifying the main regulatory components ofi@chemical network,
including its feed-forward and feedback mechanisms. Thearder to identify
and quantify the exact role of each of these regulatory nmeshes, one usually
uses knockdown mutants, see [10], lacking one or more oétbesiponents. In
particular, the knockdown mutant models are submodelsefdference archi-
tecture. The approached proposed in [9], associates tokeackdown mutant a
Boolean formula describing its control architecture in tbkofving way. First, a
Boolean variable is associated to each of the regulating amsims. Then, using
the negation and conjunction of Boolean variables, one cée wiBoolean for-
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mula for each of the knockdown mutants describing which efrégulating mech-

anisms are present in their architecture. In particulasétBoolean formulas de-
scribe a property of the alternative designs which is inddpat of time, i.e., their

regulatory network. Moreover, one can go one step furthdrvarite a Boolean

formula describing all those mutant architectures thatvsaaiven behavioural

property, e.g., a high level of a given reactant or a givemetation between two

reactants. This formula is actually the conjunction of alb@an formulas char-
acterizing the architectures of the mutants exhibitingrdoired property. The
numerical comparison of the mutants is then performed biyaimg the Boolean

formulas associated to various behavioural properties.

4 A new approach for quantitative submodel com-
parison

Here we propose a new approach for quantitative comparisbilogical mod-
els. Before presenting the method itself, we clarify the aeldperminology which
is used in the description of our new approach. Usually lgickl models are ex-
pressed in terms of biochemical reactions. We will refer listaof such reactions
describing a biological mechanism ashischemical modelFrom the biochem-
ical model an associatedathematical modek derived by choosing one of the
two commonly used frameworks: either a deterministic oroatsastic formula-
tion. In the first case the biochemical reaction kineticg cgl the assumption that
the reaction rate at a certain point in time and space canfressed as a unique
function of the concentrations of all substances at thisitpoi time and space,
see [19]. Itis governed by theass action laywvhich can be shortly summarized
as follows: the rate of each reaction is proportional to traepct of the reactant
masses, with each mass raised to the power equal to the momisg stoichio-
metric coefficient ([19]). With this assumption, the matlagical formulation of
a biochemical model results in a system of ordinary diffee¢nmate equations
constituting the associated deterministic mathematicaeh In the second case,
single molecules and their interactions are consideredtadhanges in molec-
ular populations are described in terms of stochastic gsE® In the stochas-
tic framework the associated mathematical model is a coatis-time Markov
chain defined by a chemical master equation describing itine évolution of the
probability of the biochemical system to be in a certainest@ur new approach
for model comparison is designed and presented for therdetistic framework,
however we notice that it can be easily adapted for the sshichfarmulation.

As mentioned above, the assumption of the mass action &&letds to a sys-
tem of ordinary differential equations (ODE) constitutthg mathematical model.
The ODE system contains a certain number of parametersseagieg the kinetic
rate constants of the biochemical reactions. By assigningenigal values to the
parameters and setting the initial conditions for the equat we obtain arn-

8



stantiationof the mathematical model.

Our model comparison method can be outlined as followst,Fieving a bio-
chemical model of some biological mechanism, referred tbaeference model
(or reference architectuleof this system, we constructsaibmodelor alterna-
tive architecturg by eliminating certain reactions from the list of biochesti
reactions of the reference model. In this stage, we can fmmeke apply control-
based decomposition techniques to identify a number of hesgdand then study
them separately by considering a number of knockdown msifanking one or
more of the modules. Second, the associated mathematici#lsnboth for the
reference and alternative architecture are formulatedicilthat this procedure
assures that all the parameters of the alternative artinite@are common with
a subset of parameters of the reference model. Next, werpetfte statistical
sampling of the reference model and mutant behaviour. Eoaim we scan the
parameter value space of the reference model. This prousigsth a set of pa-
rameter value vectors. Each coordinate of these vectossecated with one of
the parameters in the reference model and determines e ofihe correspond-
ing parameter. We consider each of the vectors one by oneetteesparameters
of the reference model and the submodel in accordance véthdhsidered vec-
tor. Since, as mentioned above, the alternative architectntains only a subset
of the reference model parameters, only the values of certardinates are used
when setting the parameters of the submodel. Further, thal malues of the
variables of the reference model and the submodel are detarimdependently
of each other by a systemic property such as the system beagteady state in
a given setup. For example, in the general case of stressnm&spwe expect in
accordance with biological observations that a feasiblthemaatical model is in
a steady state under the unstressed, physiological conslitiVe call steady state
a numerical configuration of the model (given by numericdl®a for all vari-
ables and parameters of the model) such that starting frabhctnfiguration, the
model shows no change in the level of any of the variablestharavords, the net
loss per unit of time in every variable is exactly compengdtg the net gain per
unit of time in that variable. The steady states of a modebafaed by the val-
ues of its parameters and by the initial values of its vaesbNow, assuring that
both mathematical submodels satisfy such systemic piepartakes them suit-
able to be considered as viable alternative formal desoniptof the biological
mechanism being analysed. As a result we obtain the inatamts of the refer-
ence model and the submodel and we run numerical simuldtot®th of them
in order to evaluate their functional effectiveness. Hindlaving done this for
all sampled vectors, we summarize the obtained resulthiéovariants and com-
pare the models by use of some statistical measures. Mare¢bganethodology
allows us to consider more than one submodel and thus thaebteesults pro-
vide a basis for comparison between the different poteatichitectural designs
underlying the analysed biological mechanism.

For the parameter scanning, in the above procedure we ukditheypercube
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samplingmethod (LHS), originally introduced in [26]. It providesmsples which
are uniformly distributed over each parameter while the loeinof samples is
independent of the number of parameters. The sampling scleambe briefly
described as follows. First, the desired si¥eof the sampling set is chosen.
Next, the range interval of each parameter is partitionéal M non-overlapping
intervals of equal length. For each paramefémumerical values are randomly
selected, one from each interval of the partition accortbraguniform distribution
on that interval. Finally, thév sampled values for thieth parameter of the model
are collected on theth column of aV x p matrix, wherep is the number of model
parameters and the values on each column are shuffled raypd&srd result, each
of the N rows of the matrix contains numerical values for each oftharameters.
For a detailed description of this sampling scheme we rétereader to [14, 26],
see also [28] for an example of the application of this samgptnethod in the
context of model identifiability problem.

In the next sections we show how the described method, whesaimpling is
performed with the LHS approach, can be utilized in the cdserecently intro-
duced mathematical model for the eukaryotic heat shocloressp In particular,
we present how this method allows to discriminate betwe#ardint variants of
the model and to determine the roles of certain control mashas of the response
system.

5 Case study

5.1 A biochemical model for the heat shock response

The heat shock response (HSR) is a highly evolutionarily eoesl defence mech-
anism among organisms ([24]). It serves to prevent and rgpatein damage
induced by elevated temperature and other forms of envieoah, chemical or
physical stress. Such conditions induce the misfoldingrofgns, which in turn
accumulate and form aggregates with disastrous effechéocell. In order to sur-
vive, the cell has to abruptly increase the expression dfgtesck proteins. These
proteins operate as intra-cellular chaperones, i.e. ptayaal role in folding of
proteins and re-establishment of proper protein confaonatThey prevent the
destructive protein aggregation. We discern two main nesaitat account for the
strong interest in the heat shock response mechanism @osgrvecent years,
see e.g. [6, 32, 51]. First, as a well-conserved mechanisongrarganisms, it
is considered a promising candidate for disentangling tiggneering principles
being fundamental for any regulatory network ([10, 11, 20]).5Second, besides
their functions in the HSR, heat shock proteins have fundémh@nportance to
many key biological processes such as protein biogendsisadtling of dam-
aged proteins, activation of immune responses and siggalsee [17, 31]. In
consequence, a thorough insight into the HSR mechanisndwavle significant
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implications for the advancement in understanding thelgelbgy.

In order to coherently investigate the HSR a number of maétiead models
has been proposed in the literature, see e.g. [10, 25, 2483}3,In this study
we consider a recently introduced model of the eukaryotat Bbock response
([28] and [29]). In this model the central role is played by theat shock pro-
teins (sp), which act as chaperones for the misfolded proteinfp); the heat
shock proteins sequester the misfolded proteiggs: (nfp) and help the misfolded
proteins to regain their native conformatioprdt). The defence mechanism is
controlled through the regulation of the transactivatidthe hsp-encoding genes.
The transcription is initiated by heat shock factadisf), some specific proteins
which first form dimersi{sf;), then trimers lfsf3) and in this configuration bind
to the heat shock elementss¢), i.e. certain DNA sequences in the promotor re-
gions of thehsp-encoding genes. Once the trimers bind to the promoter elesme
(hsf3: hse), the transcription and translation of the-encoding genes boosts and,
in consequence, new heat shock protein molecules get syr¢ldeat a substan-
tially augmented rate.

When the amount of the heat shock proteins reaches a high lereug
that enables coping with the stress conditions, the praslucif new chaperone
molecules is switched off by the excess of the heat shoclepist To this aim
hsp form complexes with the heat shock factoiisp( hsf) in three independently
and concurrently running processes: 1) by binding to the lisg, 2) by break-
ing the dimers and trimers, and 3) by breaking ls&: hse, in result of which
the trimer gets unbound from the DNA and decomposed intoHsEenolecules.
This terminates the enhanced production of new heat shat&ipmolecules and
blocks the formation of newisf trimers. As soon as the temperature increases,
proteins present in the cell start misfolding. The misfdigeoteins titratehsp
away from thehsp: hsf complexes. This enables the accumulation of tiefe
molecules, which in turn form trimers and promote the praidncof new chaper-
ones. In consequence the response mechanism gets switth&tefull list of
biochemical reactions constituting the biochemical mdieh [28] is presented
in Table 1. The model is based only on well-documented reastivithout intro-
ducing any hypothetical mechanisms or experimentally ppstted biochemical
reactions. For a full presentation and discussion of thidehwe refer the reader
to [28].

Based on the assumption of mass-action law for all the reec({iD-(12) an as-
sociated mathematical model of the eukaryotic heat shagporese is obtained.
The resulting mathematical model is expressed in termsmffiest order, ordi-
nary differential equations. The full ODE system is showiiable 2, where by;
we denote the reaction rate constant of the irreversibletioa(i) in Table 1, by
k} the rate constant associated with the ‘left-to-right’ dfien of the reversible
reaction (i), whilek;” denotes the rate constant corresponding to its ‘righett-|
direction. ByT" we denote the numerical value of the temperature of the @mvir
ment in Celsius degrees. The rate coefficient of protein rusfg with respect to
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the temperature4(7")) in reaction (10) is given by the following formula:

0.4
QO(T) = (1 — ﬁ) . 1.4T_37 -1.45 - 10_5 5_1,
eT—

which is valid for7" in the range fron37 to 45. The formula was obtained based on
experimental investigations described in [22, 23], wagipally proposed in [27]
and adapted for use in the mathematical model of HSR in [2i8 Mathematical
model comprise36 independent kinetic parameters artdinitial conditions. In
the case of our method we do not fix the parameter values as ovesid [28]:
we neither fit nor validate the model with respect to expentakdata. Instead,
we sample the HSR model behaviour by randomly choosingrdiftesets of pa-
rameter values. This results not in one, but in a collectiangiances of the HSR
model. Notice that in the process of obtaining these ingsmo experimental
data are considered. Thus, the instances are not requihfsm any experi-
mental results. We discuss in details how the parameteesdtr the HSR model
are obtained in subsection 5.4.

5.2 Control-based decomposition

In [8] a control-driven modular decomposition of the heatdhresponse model
has been performed. In result, the model has been dividedont main func-
tional submodules usually distinguished in control engimegy: the plant, the sen-
sor, the controller and the actuator. In the case of the HS&ehtbe plant is the
misfolding and refolding of proteins, the actuator corssist the synthesis and
degradation of the chaperones, the sensor measures thefidwe in the sys-
tem and the controller regulates the level of DNA binding. rbtaver, within the
controller we distinguish three feedback mechanisms. Eeeljack loops are
responsible for sequestering the heat shock factors ierdiit forms by the chap-
erones. In this way the feedback loops are decreasing teedéDNA binding.
The three identified feedback mechanisms are the following:

e FBL1: sequestration of freef, i.e. reaction (5) (the ‘left-to-right’ direction
of reaction (5));

e FB2: breaking ohsf dimers and trimers, i.e. reactions (6) and (7);
e FB3: unbinding ofhsf; from hse and breaking the trimers, i.e. reaction (8).

The control-driven functional decomposition of the eukdity heat shock re-
sponse model is shown in Figure 1, where the reaction nunnbtsto the reac-
tions in Table 1. In Figure 2 a graphical illustration of tlwtrol structure, i.e. the
three feedback loops and their points of interactions viighrhainstream process,
is presented.
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5.3 The knockdown mutants

In [8] and [9] the reference architecture and seven knockdowtants (alternative
architectures) were considered. The mutants were obtéypediminating from
the reference architecture all possible combinations eftlinee feedback loops
FB1, FB2 and FB3. The mutants were denoted/as, whereX C {1,2,3} is
the set of numbers of the feedback mechanisms preseérikin

e M, is determined by reactions (1)-(4), (9)-(12) and, in thenieology of
control theory, is characterized by tbpen-loop design

e M, is determined by reactions (1)-(5), (9)-(12);

e M, is determined by reactions (1)-(4), (6)-(7), (9)-(12), ahd ‘right-to-
left’ direction of reaction (5);

e M; is determined by reactions (1)-(4), (8)-(12), and the ‘tgghleft’ direc-
tion of reaction (5);

e MM, is determined by reactions (1)-(7), (9)-(12);
e MM, 3 is determined by reactions (1)-(5), (8)-(12);

e M, 5 is determined by reactions (1)-(4), (6)-(12), and the ‘righleft’ di-
rection of reaction (5);

e MM, 5 3 is the reference architecture consisting of all reactiang12).

5.4 Statistical sampling of the mutant behaviour

We apply our model comparison method described in SectiantBet presented
model of eukaryotic heat shock response in order to inva&titpe functional role
of the feedback mechanisms. It is easy to seeilats non-responsive: starting
from a steady state at physiological conditions, 38°C, M, shows no increase
in DNA binding for any arbitrarily high temperature, see.[9]Ve removel/,
from further considerations. In our study we analyse the&ksbckdown mutants
My, M, Ms, Mo, M, 3 and M, 5 as the variants of the reference architecture
M, » 3. Our comparison method is applied in the following way. isssample
of 10.000 vectors of parameter values for the reference architeuistained by
the latin hypercube sampling described above. In our cassaimpled vectors are
of length15, i.e. the number of the unknown reference architecturenpaters.
The value of the 6th remaining parameter, i.e. thep degradation rate constant
is assumed to be known and is obtained based on the fact tiadhneck proteins
are generally long-lived proteins, see [35]. We choose tteg half-life to be

6 hours. Then, the procedure described next is repeatedaselydor each of the
six mutants. To begin with, each sampled vector of parametieles is used to
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setup the parameters in the mathematical models of thedmmesi mutant and the
reference architecturel(; , ;). It follows from the construct of the mutant that
the corresponding mathematical model contains only a subtbe parameters

of the reference model, so this step can be performed. Nexsteady state con-
centrations a87 °C both for the mutant and the reference model are numerically
computed and set as their respective initial states. Inwhiswe obtain two in-
stances of the mathematical models, i.e. one for the mutahtre second for the
reference model. Further, the temperature is increas¢2i°t0 and the quantities

0, = totalmfp(t)),
LTy tOtRIme()

O, = hsfs : hse(t)) — hsfs : hse(0),
S e (T () = by ()

1 T

O3 = —/ (totalhsp(t))dt,
T Jy
1 T

0, — ~ / (totalmfp(t))dt
T Jy

are computed both for the mutant and the reference instareeinitial 30 min.

of the response are considered for the computatidf;cnd©,. In the case of
O3 and©, the time range ol hours (" = 14400s) is taken into account. These
guantities are used to evaluate the functional effectised the mutant. Having
these quantities computed for all th& 000 sampled parameter values, the scatter
plot of the R, = ©OF'/O! against©) values is made, where the superscripts
andr indicate the instance for which; was computed, i.e. the instance of the
mutant or the reference model, respectively. Finally, tgimg median technique
is applied to the scatter plot with the window size setb®. These results in
a trend curve summarizing the data of the scatter plot anehtieng the overall
dependency between the considered quantities. Analqgmalare computed for
R, = ©F'/O%. Moreover, scatter plots @b; versus©, both for the mutant and
the reference architecture are made and the moving medihnitgie is applied
to each of these plots.

The mutants represent six different potential architestwof the heat shock
response mechanism and the sampling procedure, as expktose, provides
us with 10.000 different instantiations of each of the mutants and theresfee
architecture.

5.5 Results

In our analysis of the obtained results we assume that thesheak response
at raised temperatures is accompanied, and hence chaadiday the following
three phenomena:

1. increase in DNA-binding with respect to the steady-d&atel at37 °C,
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2. increase in the level aifp, and

3. increase in the level dfsp as the effect of the response to the higher level
of mfp in the cell.

We base our analysis of the architecture properties of fmatants with respect
to the reference architecture on the following ploi&: vs ©}, R, vs ©5, O3 vs
0, made for each of the mutants and for the reference architectwe refer
to the ©3 vs ©4 plot as the cost plot (or simply the cost) of the correspogdin
architecture. This is motivated by the fact that the efficienf the heat shock
response mechanism could be measured by the amount of ohapareeded to
cope with the intensified misfolding of proteins. Hypotbatly, a cell which
produces smaller amountsiadp than some other cell to cope with the heat shock
would be considered the one which manages with stress comgliat a lower
cost in terms of its resources than the latter one. Noticeshiewthat in our case
we are not assessing the ability of particular models to edageheat shock, i.e.
the sampled models are neither validated against expetafnaia nor classified
by any other means whether they enable the cell to surviveobmnthe stress
conditions. Hence the cost plots reflect just the generaleiecy of the models
instantiating a particular architecture to keep certaierage in time amounts of
hsp in response to different average levelsmafip present in the system. The
reference trend line indicates a clear linear dependerteyeles the average levels
of hsp andmfp, see Figure 7. The trend lines of all mutants, despite sonte mo
or less pronounced fluctuations in the region of srglivalues, can be seen as
increasing (Figure 5), which is in agreement with our chi@zation of the heat
shock response.

Considering the three mutants with only one feedback, /e, M and M3,
we observe that thenfp level peak value in the first0 min. of heat shock is
smaller than in the reference architecture: the ratjan Figure 3(a), 3(b) and
3(c) is always smaller thah This is especially pronounced in mutant instances
obtained with samples characterized by providing mdp peak values in the case
of the reference architecture. However, for all these niattre cost is definitely
higher than in the reference architecture, compare Fig(a® 5(b), 5(c) with
Figure 7. Notice also that th&/, mutant is more economic in terms of cost than
the two other mutants with only one feedback.

In the mutants\/ », M, 5 and M, 3 the mfp level also peaks at a lower value
than in the reference case, although this time Me; and M/, 3 mutants have
the cost comparable with the one of the reference archiectBoth M/, 3 and
M, 5 reveal the same linear relationship between the averagarasofhsp and
mfp as is observable in the reference case, however in both tesdésend line
is slightly shifted upwards with respect to the referenchisTndicates that the
mutants have a tendency to keep a bit higher than the refeemount ofhsp with
a certain amount of misfolded proteins (Figure 5(e), 5(f) Rigure 7). The same
is true also for thel/; , mutant. Although it admits an order of magnitude larger
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range of observable average amounts of misfolded protEigare 5(d)), the cost
plot restricted to®, moving median values less than or equdl0 is basically
identical with the cost plots of the two other mutants, segifé 6(a).

Another thing which we observe for the three mutants missmgfeedback is
that the samples characterized by significant increase iA-BiNding in the ref-
erence architecture, i.e. i and more, span a wide range of possible behaviours
in the mutants: from almost no DNA-binding increase to amease comparable
with the one observed for the reference architecture. Tdatufe is clearly vis-
ible in Figure 4(e) and 4(f) for the mutantd, ; and M, 3, respectively. In the
case of thel/; , mutant we need to zoom in Figure 4(d). To this aim we observe
in the scatter plot?, vs ©), for the M; , mutant that all points wittR, > 1000
are concentrated in the ranffe 0.0307] of ©} values (not shown). We exclude
all samples withoy in this range, irrespective of thg, value they admit in the
mutant. All in all2247 samples are filtered out and we apply the moving median
technique to the remaining ones. The resulting plot is shiowfFigure 6(b). It
clearly illustrates that the discussed feature is also eackexistic of thel/; , mu-
tant. This is not true for the three mutants with only one Besxk. In these cases
we do not observe any substantial increase in the DNA-bgdiith respect to
the steady-state levels &I °C for samples which generate such increase in the
reference case (Figure 4(a), 4(b) and 4(c)).

On the basis of the presented results, we notice that all ttants lacking
two feedbacks exhibit no heat shock response in the senke abbve definition:
as observed previously, there is no increase in the DNA#ndrhis is in agree-
ment with the results presented in [8], where the models wiitly one feedback
kept the DNA-binding at the maximum possible level botl8atC and 42°C
throughout the simulation time @&0.000s. The HSR can be observed however
in the mutants\/; 5 and M, 5. In the case of thél/; 5 mutant the HSR is still
observed, but only for a fraction of thig).000 sampled models, i.e. only those
parameter values for which the reference architecturdajisghe maximal pos-
sible increase in the peak of DNA-binding with respect todteady-state level at
37°C. This is in complete agreement with previous observatibas EB1 is the
most powerful feedback, see [8]. Since FB2 and FB3 inchudesequestration
as one of their features, they compensate partially forablke o6f FB1. However,
only FB2 or only FB3 are not enough to enforce the system’s betato have
the HSR characteristics. Despite its power, FB1 alone isradé@nough and one
of the other feedbacks is also needed in order to implemesg@onse mechanism
with the features describing the heat shock response.

6 Discussion

Very often, various experimental investigations of a gimochemical system
generate a large variety of alternative molecular desitins raising questions
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about comparing their functionality, efficiency, and raimess. Comparing alter-
native models for a given biochemical system is, in genaraéry difficult prob-
lem which involves a deep analysis of various aspects of theets: the under-
lying networks, the biological constraints, and the nuarsetup. The problem
becomes somewhat simpler when the alternative designsarallg submodels
of alarger model: the underlying networks are similar,@liggh not identical, and
the biological constrains are given by the larger modelnly eemains to decide
how to chose the numerical setup for each of the alternatibensdels, i.e., the
initial conditions and the kinetics.

In the first part of our study we review several known methaatsnhodel
decomposition and for quantitative comparison of subn®d®Ve describe the
knockdown mutants, elementary flux modes, control-basedrdposition, math-
ematically controlled comparison and its extension, lecddmodels comparison
and a discrete approach for comparing continuous submoletlse second part
of the paper we present a new statistical method for compautomodels that
complements the methods presented in the review. When clgppdse initial
setup for the alternative submodels, i.e., the initial galof all variables, one
approach is to take them from the reference model. This apgpres based on
the technique of mathematically controlled compariso®],[3ee also [10] and
[52] for some case studies using this method. However, irtése of biological
systems this approach may lead to biased conclusions. B@mnice, regulatory
networks exhibit a steady state behaviour in the absencenadilss. In general
for the reference model, the initial values of the varialaleschosen such that it
exhibits a steady state behaviour in the absence of a trigigsvever, this will not
insure that also the submodels of the reference model wiibéxthe same prop-
erty if they start from the same initial values. Thus, theatyical behaviours of
the considered submodels will exhibit the interwind infloes of two tendencies:
the migration from a (possibly) unstable state and the mespdo the stimulus.
In this context, an analysis of the efficiency of the respaanse the robustness
of the alternative models may lead to erroneous conclusiomslternative, we
propose in this paper to chose the initial values in such athatyeach alternative
design starts from its own steady state. Our main motivdtonhis is that we
considered all submodels to be viable alternatives for tbldgical system and,
as such, they should exhibit (some of) its main propertiegaRkng the values
of the kinetic parameters in each of the alternative subsdtiere are several ap-
proaches in the literature. In the mathematically corgbttomparison approach,
the values of the kinetic parameters in each of the altemdgsigns are uniquely
determined from the parameters of the reference model,.ged¥], [39]. An-
other approach is to chose in each alternative submodepémikent values for
the kinetic parameters, e.g., through parameter estimatia validation against
experimental data, see e.g., [8]. However, restrictingptaesparticular values for
the kinetic rate constants, will also confine the conclusioiour analysis to that
particular system. Instead, we take the approach proposdd and [2] and we
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sample a large set of parameter values from a given rangelwésiaThen we
use some statistical techniques to analyse various prep@fta general class of
systems which includes the considered system. In particidaeach sampled
parameter vector, various functional effectiveness measare computed both in
the reference and in the alternative models. Then by amajysith the density of
ratios plots and the moving median plots one can identifyqurahtify the differ-
ences in the dynamical behaviours of the considered magkd<.g., [3], [45] for
some case studies where these methods were applied.
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Reaction (Reaction numbér

2 hsf < hsf, (1)
hsf + hsfy < hsfy (2)
hsf3 + hse < hsfs: hse 3)
hsf3: hse — hsfs: hse + hsp 4)
hsp + hsf < hsp: hsf (5)
hsp + hsfy — hsp: hsf + hsf (6)
hsp + hsf3 — hsp: hsf 42 hsf (7)
hsp + hsfs: hse — hsp: hsf + hse 42 hsf (8)
hsp — 9)
prot — mfp (20)
hsp + mfp < hsp: mfp (12)
hsp: mfp — hsp + prot (12)

Table 1: The list of reactions of the biochemical model fartieat shock response
originally introduced in [28].
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Equation (Equation numbg@r

dlhsf]/dt = —2k: [hsf)? + 2k [hsfa] — k [hsf][hsf] + k; [hsfs] (13)
— k& [hsf][hsp] + k= [hsp: hsf] + kg [hsf2][hsp]
+ 2kz[hsf3)[hsp] + 2kg(hsfs: hse) hsp

dlhsfs] /dt = ki [hsf]2 — ko [hsfs] — ki [hsf][hsfa] + kj [hsfs] (14)
— kg hsfy][hsp]

dlhsfs) /dt = k; [hsf][hsfs] — kj [hsfs] — ki [hsfs][hse] + k; [hsfs:hse] (15

— kalhsfs][hsp] (16)
dhse]/dt = —k; [hsfs][hse] + k5 [hsfs: hse] + kg[hsfs: hse][hsp] (17)
d[hsf3: hse] /dt = ki [hsfs][hse] — k3 [hsfs: hse] — kg[hsfs: hse][hsp] (18)

dlhsp|/dt = ky[hsfs: hse] — ki [hsf][hsp] + k5 [hsp: hsf] — kg[hsfo][hsp]  (19)
— kr|hsfs][hsp] — kg[hsf3: hse][hsp| — & [hsp][mfp]
+ (kyy + k12)[hsp: mfp] — ko[hsp]

d[hsp: hsf] /dt = k7 [hsf][hsp] — ks [hsp: hsf] + kg[hsf][hsp] (20)
+ kr[hsfs][hsp] + kg[hsfs: hse][hsp]

d[mfp]/dt = ¢r(prot] — ki hsp][mfp] + k1, [hsp: mfp] (21)

d[hsp: mfp] /dt = ki [hsp][mfp] — (ki; + ki2)[hsp: mfp] (22)

d[prot]/dt = —¢r[prot] + ki2[hsp: mfp] (23)

Table 2: The system of differential equations of the matheabmodel associ-
ated with the biochemical model in Table 1.
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Protein misfolding and refolding

Reaction numbers: (10), (11), (12)

ACTUATOR

Task:
Regulate the level of hsp

Reaction numbers: (4), (9)

CONTROLLER

PLANT
Tk SENSOR]
ask: Task:

Measures the level
of [hsp]

Task:

- Modulation of the level of DNA binding
- Sequestration of free hsf

- hsf dimer and trimer breaking

- hsp-forced DNA unbinding

Rection numbers:

-0
- (6),(7)
-8

- (1);(2), 3), ()

Figure 1: The control-based decomposition of the heat shesgonse network.
The reaction numbers refer to the reactions in Table 1. Wetdethe ‘left-to-
right’ direction of reaction (5) by (5) and by (5) its ‘right-to-left’ direction.

FB,:HSF
sequestration
FB,: break dimers,
trimers
FB,: DNA unbinding
HSF HSF dimers, DNAbinding Gene transcription and
trimers protein synthesis

Protein folding

Figure 2: The control structure of the heat shock responsgonke. The three
identified feedback loops and their points of interactiothwine mainstream pro-

cess are depicted.
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Figure 3: The plots show the result of applying the moving i@edechnique to
the scatter plots o, vs O} obtained individually for each of the six considered
mutants. For each mutant and each sampled vector of panantte value of
R, was computed and plotted against the valu®eofobtained for the reference
architecture with the same parameter vector. Then, thengawiedian technique
was applied to discern the overall trend in the data depiotéte obtained scatter
plots. The window size of the moving median was s€tt@ and the sample size
of the vectors of parameter values was)00.
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Figure 4: The plots show the result of applying the moving i@edechnique to
the scatter plots oz, vs O} obtained individually for each of the six considered
mutants. For each mutant and each sampled vector of panantte value of
Ry was computed and plotted against the valu®egfbtained for the reference
architecture with the same parameter vector. Then, thengawiedian technique
was applied to discern the overall trend in the data depiotéte obtained scatter
plots. The window size of the moving median was s€tt@ and the sample size
of the vectors of parameter values was)00.
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Figure 5: The plots show the result of applying the moving i@edechnique to
the scatter plots of the cost, i.€3 vs ©,4, obtained individually for each of the
six considered mutants. For each mutant and each sampled eéparameters,
the values of©; and©, were computed and plotted against each other. Then,
the moving median technique was applied to discern the t¥s¥ad in the data
depicted in the obtained scatter plots. The window size@htlving median was
set to500 and the sample size of the vectors of parameter values vas0.
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Figure 6: (a) The zoomed in version of Figure 5(d) whéremoving median
is not greater than000. (b) A version of Figure 4(d) where samples with
©5 < 0.0307 were not considered. It shows that the samples charaddrzsig-
nificant increase in DNA-binding in the reference architeet(by 15 and more)
span a wide range of possible behaviours in Mg, mutant: from almost no
DNA-binding increase (the moving median 8f = 0.2) to an increase compa-
rable with the one observed for the reference architecthieerioving median of
Ry > 1).
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Figure 7: The plot shows the result of applying the moving imedechnique to
the scatter plots of the cost, i.©3 vs ©4, obtained for the reference architecture.
For each sampled vector of parameters, the valués;&nd©, were computed
and plotted against each other. Then, the moving mediamitpaod was applied
to discern the overall trend in the data depicted in the abthiscatter plot. The
window size of the moving median was setf@0 and the sample size of the
vectors of parameter values WES000.
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