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Abstract

Comparing alternative models for a given biochemical systemis in general a very
difficult problem: the models may focus on different aspectsof the same system
and may consist of very different species and reactions. Thenumerical setups
of the models also play a crucial role in the quantitative comparison. When the
alternative designs are submodels of a reference model, e.g. knockdown mutants
of a model, the problem of comparing them becomes simpler: they all have very
similar, although not identical, underlying reaction networks, and the biological
constraints are given by the ones in the reference model. In the first part of our
study we review several known methods for model decomposition and for quanti-
tative comparison of submodels. We describe the knockdown mutants, elementary
flux modes, control-based decomposition, mathematically controlled comparison
and its extension, local submodels comparison and a discrete approach for com-
paring continuous submodels. In the second part of the paperwe present a new
statistical method for comparing submodels that complements the methods pre-
sented in the review. The main difference between our approach and the known
methods is related to the important question of how to chose the numerical setup
in which to perform the comparison. In the case of the reviewed methods, the
comparison is made in the numerical context of the referencemodel, i.e., in each
of the alternative models both the kinetics of the reactionsand the initial values
of all variables are chosen to be identical to those from the reference model. We
propose in this paper a different approach, better suited for response networks,
where each alternative model is assumed to start from its ownsteady state under
basal conditions. We demonstrate our approach on a case study focusing on the
heat shock response in eukaryotes.

Keywords: quantitative model comparison — statistical methods — control-
based model decomposition — chaperone proteins — protein-protein interactions
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1 Introduction

Much experimental and theoretical effort is invested nowadays in analysing large
biochemical systems, e.g., metabolic pathways, regulatory networks, signal trans-
duction networks, aiming to obtain a holistic perspective providing a comprehen-
sive, system-level understanding of cellular behaviour. This often results in the
creation and analysis of very large and complex models, often encompassing hun-
dreds of reactions and reactants, see e.g. [5]. Therefore, obtaining a global picture
of the system’s architecture, in particular understandingthe interactions between
various components, or even just distinguishing a high-level functional decom-
position of the network, constitutes a significant challenge. An important insight
here is that the architecture of some biological systems, e.g. some regulatory net-
works, is a consequence of functional requirements of the entire system. Even
though evolution is driven by random events, some designs, such as having an ex-
tra feedback loop helping the system to correlate better theresponse of the system
with its trigger, may offer a selective advantage and in time, may get to dominate
the population, see [39]. Thus, comparing the performance of different alternative
designs in terms of sub-components being on or off, one aims to formulate gen-
eral principles for how functional requirements correlatebiologically with various
designs.

Similar problems have been encountered for instance in engineering sciences,
see [7], and a variety of strategies and approaches for solving such problems have
been already developed in this framework. Thus, when aimingto obtain a system-
level understanding of such large biochemical networks, one possible approach
is to adapt to systems biology some of the methods originating from engineering
sciences, especially from control theory, see e.g. [12, 18,21, 46, 47, 49, 53]. Such
methods have been used, as we also do in this paper, to identify various functional
modules of a model, including feedback and feedforward mechanisms. To identify
the quantitative contribution of each of the modules to the global behaviour of
the model, the general approach is to consider knockdown mutants of the initial
model, missing one or several of the modules. The main problem then becomes
an objective quantitative comparison of several alternative submodels for the same
biological process. We focus on this problem in our paper, i.e. we concentrate on
the comparison of submodels of a given reference model. Thisissue is a special
case of the general problem of alternative model comparison. In the general case
it is a very difficult issue and is not in the scope of this study.

The first part of our paper contains a review of existing techniques for model
decomposition and for quantitative comparison of submodels. We describe the
knockdown mutants, elementary flux modes, control-based decomposition, math-
ematically controlled comparison and its extension, localsubmodels comparison
and a discrete approach for comparing continuous submodels. In the second part
of the paper we introduce a new approach to quantitative submodel comparison.
A main difference in our approach with respect to previous methods is that we
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allow the alternative models to start from different initial states, rather than to
assume the initial state of the reference model. We argue that this is a better ap-
proach at least in the case of response networks, where the system is assumed
to be in a steady state under basal conditions and exhibit a response only as an
effect of an external trigger. To treat each model as a genuine alternative for the
biological process under study, we allow it to start from itsown steady state under
basal conditions. Finally, we illustrate our approach on a case study focusing on
the heat shock response in eukaryotes.

The numerical behaviour of any model is clearly sensitive tothe numerical
setup, i.e., the numerical values of the kinetic constants and of the initial values
of the model variables. In our approach for quantitative comparison of alternative
submodels we adopt some statistical, parameter-independent methods introduced
in [1, 2]. These methods aim to sample the numerical behaviour of the model
through a sampling of the parameter space. We adopt in this paper the latin hyper-
cube sampling method of [14] that gives uniformly distributed samples over each
parameter, of size independent of the number of parameters.We briefly survey
this method and apply it to the heat shock response in eukaryotes.

The heat shock response is an evolutionary conserved mechanism protecting
the cell against protein misfolding. In the case study for our new approach to quan-
titative submodel comparison we consider a model recently introduced in [28].
The model was analysed in [8] using control-driven methods where it was decom-
posed into several modules, including three feedback loops. We focus in the case
study on identifying the numerical contribution of each of these feedback loops
to the global behaviour of the model. A local, point-wise comparison of the three
feedbacks was already done in [8], in the kinetic setup of thereference model. In
this paper we do a global, parameter-independent analysis of the numerical role
of each feedback, through a sampling of the whole parameter space.

2 Methods for model decomposition

2.1 Knockdown mutants

A simple model decomposition consists of isolating a singleprocess or mech-
anism in the considered system. In this way the model is splitinto two parts:
the first one comprising the process of interest and the second containing all the
remaining elements of the system. Although such decomposition might seem un-
sophisticated, this approach is often very useful in discovering the role of a single
mechanism in a larger system. It is widely exploited in reverse engineering, a pro-
cess aiming at revealing the technological principles of a device, object or system.
In Section 3 we shortly describe the method of mathematically controlled com-
parison ([39]), where this simple decomposition approach is at the basis of the
method.
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2.2 Elementary flux modes

Another well-established decomposition method for biochemical models appears
in the context of the analysis of metabolic pathways. It is not easy to define a path-
way in a given metabolic network. An intuitive definition of apathway is a se-
quence of reactions linked by common metabolites ([19]). Examples of metabolic
pathways are glycolysis or amino acid synthesis. Discovering new pathways in
a large model driven only by biological intuition is even more difficult. An attempt
to formalize the notion of pathway has been proposed in [13, 30, 41, 42, 43, 44] in
the form of elementary flux modes. The intuitive meaning of anelementary flux
mode is a set of reactions whose combined quantitative contribution to the system
is zero. In other words, the net loss of substance caused by any reaction in that
set is compensated by a net gain in the same substance incurred by some other
reactions in the set. A formal definition of elementary flux modes is beyond the
scope of this paper; instead we refer to [13, 19, 41, 42, 43, 44] for details. For any
given metabolic network, the full set of elementary fluxes can be determined us-
ing methods of linear algebra or dedicated software such as METATOOL ([30]).
The recognition of the elementary flux modes allows the detection of the full set
of nondecomposable steady-state flows that the network can support, including
cyclic flows. Any steady-state flux pattern can be expressed as a non-negative
linear combination of these modes ([41, 42, 43]). The identified elementary flux
modes should have clear biological interpretation: a flux mode is a set of enzymes
that operate together at a steady state and a flux mode is elementary if the set of
enzymes is minimal, i.e. complete inhibition of any of the enzymes would result
in a termination of this flux ([41, 42, 43]). The lack of possibility to interpret
the modes in this way is a signal that the model under consideration may not be
correct.

2.3 Control-based decomposition

A control-driven approach to model decomposition enables the recognition of the
main functional modules of a system and their individual contribution to the emer-
gent, complex behaviours of the system as a whole. In turn, this can provide great
insight about various properties of a given biochemical system, e.g., robustness,
efficiency, reactivity, adaptation, regulation, synchronization, etc. In particular,
by applying this approach, one usually aims to identify the main regulatory com-
ponents of a given biochemical system: the process to be regulated, referred to
as theplant, thesensorswhich monitor the current state of the process and send
the collected information to a decision-making module, i.e. thecontroller and the
actuatorthat modifies the state of the process in accordance with the controller’s
decisions, thus influences the activity of the plant. One of the fundamental con-
cepts in control theory is thefeedback mechanism, which provides the means to
cope with the uncertainties: the information about the current state of the process
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is sent back to the controller, which reacts accordingly to facilitate a dynamic com-
pensation for any disturbance from the intended behaviour of the system. In the
case of a complex system this decomposition can be performedin different ways
depending on what is considered to be the main role of that system, i.e. there
may be a few reasonable choices for the plant, and the remaining components are
recognized with respect to the choice of the plant.

An easy example illustrating these concepts and their interactions is given by
the functioning principles of a motion activated spotlight. Here, the controller
module is an electronic unit which receives an input from themotion sensor and
then determines whether there are any changes in the environment. The actuator
is a relay switch that operates the lighting system. This actuator is activated by
the controller depending on the input sent by the sensor. Then, the switch is kept
on by the controller as long as movement is detected by the sensor.

How this control-driven approach can be exploited to investigate and under-
stand regulatory networks can be seen in [7, 10, 18, 46, 47]. Here we shortly de-
scribe the approach taken in [10]. The authors make a thorough study of the heat
shock response mechanism inEscherichia colibased on modular decomposition.
A model for the system is built and functional modules, i.e. the plant, sensors,
controller, and actuator are identified. The decompositionreveals the underlying
design of the heat shock response mechanism and its level of complexity, which,
as the authors show, is not justified if only the functionality of an operational heat
shock system is required. Further, this observation leads to the introduction and
analysis of hypothetical design variants (mutants) of the original heat shock re-
sponse model. In the original model one feedforward (temperature sensing) and
two feedback elements (σ32 factor sequestration feedback loop andσ32 degrada-
tion feedback loop) can be isolated. The variants are obtained through the elimi-
nation of either theσ32 degradation feedback loop or both feedbacks. Moreover,
the case without the feedforward element is also considered, see [10] for details.
One by one the variants in order of increasing complexity areconsidered starting
from the simplest architecture containing just the feedforward element (theopen-
loop design). Based on numerical simulations, the authors demonstrate how the
addition of subsequent layers of regulation, thereby increase in the complexity of
the model, improves the performance of the response in termsof systemic proper-
ties such as robustness, noise reduction, speed of responseand economical use of
cellular resources. Moreover, this systematic approach enables the identification
of the role of each of the regulatory layers to the overall behaviour of the system.
In consequence the authors succeed to perform an in-depth comparison between
different model variants.
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3 Known methods for submodel comparison

Comparing alternative models for a given biochemical systemis in general a very
difficult problem, involving a deep analysis of both the underlying network of re-
actions, the biological assumptions as well as the numerical setup. To decide what
are the benefits of one design over another, or to understand what are the selec-
tion requirements involved in an evolutionary design, one needs some unbiased
methods to objectively compare the alternative designs.

3.1 Mathematically controlled model comparison

One such method is the mathematically controlled comparison, [39], which pro-
vides a structured approach for comparing alternative regulatory designs with re-
spect to some chosen measures of functional effectiveness.Under this approach,
mathematical models for both the reference design and the alternatives are first
developed in the framework of canonical nonlinear modelling referred to as S-
systems, [36], [37], and [38]. This canonical nonlinear representation, developed
within the power-law formalism, is a system of non-linear ordinary differential
equations with a well-defined structure. Moreover, this framework allows the al-
ternative models to differ from the reference design in onlyone process, e.g., the
existence or not of some feedback mechanisms, which is actually the focuss of
the comparison. Then, in each of the alternative models one sets the numerical
values of the parameters to be identical with those from the reference model for
all processes other than the process of interest. This leadsto a so-called internal
equivalence between the reference model and the alternatives. Next, various sys-
temic properties are selected and used to impose some constraints for all the other
parameters in the alternative designs. In general in this approach, one imposes that
some steady state values or logarithmic gains are equal in the reference model and
its alternatives. This provides a way to express the parameters of the process of
interest in the alternative models as functions of the parameters of the reference
model. Thus, one obtains a so-called external equivalence between the reference
model and the alternative designs, meaning that to an external observer the con-
sidered models are equivalent with respect to the selected systemic properties. Fi-
nally, one chooses various measures of functional effectiveness depending on the
particularities of the biological context of these models and uses them to compare
the alternative designs with the reference model. By doing this, one usually aims
to determine analytically the qualitative differences between the compared mod-
els. This method was successfully used to compare alternative regulatory designs
in, e.g., metabolic pathways, [16], [40], in gene circuits,[15], in immune net-
works, [4]. Moreover, by introducing specific numerical values for the parameters
of the models, one is also able to quantify these differencesbut, at the same time,
the generality of the results is lost. Thus, in [2], the method of mathematically
controlled comparison was extended to include some statistical methods, [1], [3],
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that allow the use of numerical values for the parameters while still preserving the
generality of the conclusions.

3.2 An extension of the mathematically controlled comparison

The first step of this extension is to generate a representative ensemble of sets of
parameter values. Since usually for biological systems theexact statistical distri-
bution of the parameters values is not known, the most appropriate approach is
to sample uniformly a given range of values. There exist different methods for
scanning a given interval of values, ranging from (more or less sophisticated) ran-
dom samplings to some systematic deterministic scanning methods, see e.g. [34].
Using this ensemble of sets of parameters, we can then construct a large class of
numerical models both for the reference and for the alternative designs. There are
two different methods to construct such a class of systems for which we can then
investigate some statistical properties. Astructural classconsists of systems hav-
ing the same network topology, i.e., generated by the sampling of the parameter
space. Abehavioural classconsists of systems that exhibit a particular systemic
behaviour, e.g., exhibiting a steady state behaviour undergiven conditions, or low
concentrations of intermediary products, or small values for the parameter sensi-
tivity, see, e.g., [3]. The members of such a class are obtained in two steps: first
generate a set of parameters by sampling the parameter space, then test the sam-
ple for the desired systemic behaviour and keep only those systems that fulfil the
conditions.

After constructing this large class of numerical models both for the reference
and the alternative architectures, one can start comparingthe values of a given
systemic propertyP between the reference model and its alternative designs. One
way to do this is by using density plots of the ratioR = Preference/Palternative

versus the valuesPreference, where the subscript indicates in which model the
propertyP was measured. Such density plots can be used for instance to compute
rank correlations between the considered propertyP (measured in the reference
model) and the values of the ratioR. However, this is not easy to do if the den-
sity plots are very scattered. Then, one can construct secondary density plots by
using the moving median technique as follows. Basically, thedensity plot can be
interpreted as a list ofN pairs of values(Preference, R), which can be arranged
in a ordered listL with respect to the first component,Preference. Then, we pick
a window sizeW , usually much smaller than the sample sizeN and we com-
pute the median< R > of the ratio values and the median< P > of the values
Preference, for the firstW pairs in the listL. Then, we advance the window by one,
we collect the ratios and the valuesPreference from the second until theW + 1st
pair and compute the corresponding median values< R > and< P >. This
process is continued until the last pair of the listL is used for the first time. In
the secondary density plot, we will pair the computed values< R > with the
corresponding< P > values. This moving median technique is very useful since
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for a finite ordered sample of sizeN , the moving median tends to the median of
the samples as the valueW approachesN . These secondary density plots can be
used to compare the efficiency of two classes of models from the point of view of
a given systemic property.

3.3 Local submodels comparison

When the alternative designs are actually submodels of the reference architecture,
there is also another approach, see [8], for performing the comparison. This is the
case when, for instance, one is interested in a functional analysis of various mod-
ules of a large system. Then, the underlying reaction networks in the alternative
designs are very similar (although not identical), and boththe biological con-
straints and the kinetics of the reactions are given by thoseof the reference model.
The only remaining question regards the initial distribution of the variables in the
alternative models. In the mathematically controlled comparison they are usually
taken from the reference model. However, for some biochemical systems this
choice might lead to biased comparisons. For instance, in the case of regulatory
networks, models should be in a steady state in the absence ofthe trigger of the
response and indeed the initial values of the reference model are usually chosen
in such a way to fulfil this condition. However, this will not imply in general that
also a submodel will be in its steady state if it uses the same initial values as the
reference model. Thus, the dynamic behaviour of the submodel will be the result
of two intertwined tendencies: migrating from a possible unstable state and the
response to a trigger. If the focus of the comparison is exactly the efficiency of the
response of various submodels to a trigger, then the approached proposed in [8]
is more appropriate, yielding biologically unbiased results. In this approach, the
initial distribution of the reactants is chosen in such a waythat the initial setup of
each submodel constitutes a steady state of that design in the absence of a trigger.

3.4 A discrete approach for comparing continuous submodels

The application of the control-theoretical analysis described in Section 2 enables
the identification of the main functional modules, their interconnections and con-
trol strategies of a biochemical network. In particular, this approach can be very
useful for identifying the main regulatory components of a biochemical network,
including its feed-forward and feedback mechanisms. Then,in order to identify
and quantify the exact role of each of these regulatory mechanisms, one usually
uses knockdown mutants, see [10], lacking one or more of these components. In
particular, the knockdown mutant models are submodels of the reference archi-
tecture. The approached proposed in [9], associates to eachknockdown mutant a
Boolean formula describing its control architecture in the following way. First, a
Boolean variable is associated to each of the regulating mechanisms. Then, using
the negation and conjunction of Boolean variables, one can write a Boolean for-
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mula for each of the knockdown mutants describing which of the regulating mech-
anisms are present in their architecture. In particular, these Boolean formulas de-
scribe a property of the alternative designs which is independent of time, i.e., their
regulatory network. Moreover, one can go one step further and write a Boolean
formula describing all those mutant architectures that show a given behavioural
property, e.g., a high level of a given reactant or a given correlation between two
reactants. This formula is actually the conjunction of all Boolean formulas char-
acterizing the architectures of the mutants exhibiting therequired property. The
numerical comparison of the mutants is then performed by analysing the Boolean
formulas associated to various behavioural properties.

4 A new approach for quantitative submodel com-
parison

Here we propose a new approach for quantitative comparison of biological mod-
els. Before presenting the method itself, we clarify the adopted terminology which
is used in the description of our new approach. Usually biological models are ex-
pressed in terms of biochemical reactions. We will refer to alist of such reactions
describing a biological mechanism as itsbiochemical model. From the biochem-
ical model an associatedmathematical modelis derived by choosing one of the
two commonly used frameworks: either a deterministic or a stochastic formula-
tion. In the first case the biochemical reaction kinetics rely on the assumption that
the reaction rate at a certain point in time and space can be expressed as a unique
function of the concentrations of all substances at this point in time and space,
see [19]. It is governed by themass action law, which can be shortly summarized
as follows: the rate of each reaction is proportional to the product of the reactant
masses, with each mass raised to the power equal to the corresponding stoichio-
metric coefficient ([19]). With this assumption, the mathematical formulation of
a biochemical model results in a system of ordinary differential rate equations
constituting the associated deterministic mathematical model. In the second case,
single molecules and their interactions are considered andthe changes in molec-
ular populations are described in terms of stochastic processes. In the stochas-
tic framework the associated mathematical model is a continuous-time Markov
chain defined by a chemical master equation describing the time evolution of the
probability of the biochemical system to be in a certain state. Our new approach
for model comparison is designed and presented for the deterministic framework,
however we notice that it can be easily adapted for the stochastic formulation.

As mentioned above, the assumption of the mass action kinetics leads to a sys-
tem of ordinary differential equations (ODE) constitutingthe mathematical model.
The ODE system contains a certain number of parameters representing the kinetic
rate constants of the biochemical reactions. By assigning numerical values to the
parameters and setting the initial conditions for the equations, we obtain anin-
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stantiationof the mathematical model.

Our model comparison method can be outlined as follows. First, having a bio-
chemical model of some biological mechanism, referred to asthereference model
(or reference architecture) of this system, we construct asubmodel(or alterna-
tive architecture) by eliminating certain reactions from the list of biochemical
reactions of the reference model. In this stage, we can for example apply control-
based decomposition techniques to identify a number of modules, and then study
them separately by considering a number of knockdown mutants lacking one or
more of the modules. Second, the associated mathematical models both for the
reference and alternative architecture are formulated. Notice that this procedure
assures that all the parameters of the alternative architecture are common with
a subset of parameters of the reference model. Next, we perform the statistical
sampling of the reference model and mutant behaviour. To this aim we scan the
parameter value space of the reference model. This providesus with a set of pa-
rameter value vectors. Each coordinate of these vectors is associated with one of
the parameters in the reference model and determines the value of the correspond-
ing parameter. We consider each of the vectors one by one. We set the parameters
of the reference model and the submodel in accordance with the considered vec-
tor. Since, as mentioned above, the alternative architecture contains only a subset
of the reference model parameters, only the values of certain coordinates are used
when setting the parameters of the submodel. Further, the initial values of the
variables of the reference model and the submodel are determined independently
of each other by a systemic property such as the system being in a steady state in
a given setup. For example, in the general case of stress response, we expect in
accordance with biological observations that a feasible mathematical model is in
a steady state under the unstressed, physiological conditions. We call steady state
a numerical configuration of the model (given by numerical values for all vari-
ables and parameters of the model) such that starting from that configuration, the
model shows no change in the level of any of the variables. In other words, the net
loss per unit of time in every variable is exactly compensated by the net gain per
unit of time in that variable. The steady states of a model aredefined by the val-
ues of its parameters and by the initial values of its variables. Now, assuring that
both mathematical submodels satisfy such systemic properties makes them suit-
able to be considered as viable alternative formal descriptions of the biological
mechanism being analysed. As a result we obtain the instantiations of the refer-
ence model and the submodel and we run numerical simulationsfor both of them
in order to evaluate their functional effectiveness. Finally, having done this for
all sampled vectors, we summarize the obtained results for the variants and com-
pare the models by use of some statistical measures. Moreover, the methodology
allows us to consider more than one submodel and thus the obtained results pro-
vide a basis for comparison between the different potentialarchitectural designs
underlying the analysed biological mechanism.

For the parameter scanning, in the above procedure we use thelatin hypercube
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samplingmethod (LHS), originally introduced in [26]. It provides samples which
are uniformly distributed over each parameter while the number of samples is
independent of the number of parameters. The sampling scheme can be briefly
described as follows. First, the desired sizeN of the sampling set is chosen.
Next, the range interval of each parameter is partitioned into N non-overlapping
intervals of equal length. For each parameter,N numerical values are randomly
selected, one from each interval of the partition accordingto a uniform distribution
on that interval. Finally, theN sampled values for thei-th parameter of the model
are collected on thei-th column of aN×p matrix, wherep is the number of model
parameters and the values on each column are shuffled randomly. As a result, each
of theN rows of the matrix contains numerical values for each of thep parameters.
For a detailed description of this sampling scheme we refer the reader to [14, 26],
see also [28] for an example of the application of this sampling method in the
context of model identifiability problem.

In the next sections we show how the described method, where the sampling is
performed with the LHS approach, can be utilized in the case of a recently intro-
duced mathematical model for the eukaryotic heat shock response. In particular,
we present how this method allows to discriminate between different variants of
the model and to determine the roles of certain control mechanisms of the response
system.

5 Case study

5.1 A biochemical model for the heat shock response

The heat shock response (HSR) is a highly evolutionarily conserved defence mech-
anism among organisms ([24]). It serves to prevent and repair protein damage
induced by elevated temperature and other forms of environmental, chemical or
physical stress. Such conditions induce the misfolding of proteins, which in turn
accumulate and form aggregates with disastrous effect for the cell. In order to sur-
vive, the cell has to abruptly increase the expression of heat shock proteins. These
proteins operate as intra-cellular chaperones, i.e. play acrucial role in folding of
proteins and re-establishment of proper protein conformation. They prevent the
destructive protein aggregation. We discern two main reasons that account for the
strong interest in the heat shock response mechanism observed in recent years,
see e.g. [6, 32, 51]. First, as a well-conserved mechanism among organisms, it
is considered a promising candidate for disentangling the engineering principles
being fundamental for any regulatory network ([10, 11, 20, 50]). Second, besides
their functions in the HSR, heat shock proteins have fundamental importance to
many key biological processes such as protein biogenesis, dismantling of dam-
aged proteins, activation of immune responses and signalling, see [17, 31]. In
consequence, a thorough insight into the HSR mechanism would have significant
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implications for the advancement in understanding the cellbiology.
In order to coherently investigate the HSR a number of mathematical models

has been proposed in the literature, see e.g. [10, 25, 27, 33,48]. In this study
we consider a recently introduced model of the eukaryotic heat shock response
([28] and [29]). In this model the central role is played by the heat shock pro-
teins (hsp), which act as chaperones for the misfolded proteins (mfp): the heat
shock proteins sequester the misfolded proteins (hsp: mfp) and help the misfolded
proteins to regain their native conformation (prot). The defence mechanism is
controlled through the regulation of the transactivation of thehsp-encoding genes.
The transcription is initiated by heat shock factors (hsf), some specific proteins
which first form dimers (hsf2), then trimers (hsf3) and in this configuration bind
to the heat shock elements (hse), i.e. certain DNA sequences in the promotor re-
gions of thehsp-encoding genes. Once the trimers bind to the promoter elements
(hsf3: hse), the transcription and translation of thehsp-encoding genes boosts and,
in consequence, new heat shock protein molecules get synthesized at a substan-
tially augmented rate.

When the amount of the heat shock proteins reaches a high enough level
that enables coping with the stress conditions, the production of new chaperone
molecules is switched off by the excess of the heat shock proteins. To this aim
hsp form complexes with the heat shock factors (hsp: hsf) in three independently
and concurrently running processes: 1) by binding to the free hsf, 2) by break-
ing the dimers and trimers, and 3) by breaking thehsf3: hse, in result of which
the trimer gets unbound from the DNA and decomposed into freehsf molecules.
This terminates the enhanced production of new heat shock protein molecules and
blocks the formation of newhsf trimers. As soon as the temperature increases,
proteins present in the cell start misfolding. The misfolded proteins titratehsp

away from thehsp: hsf complexes. This enables the accumulation of freehsf

molecules, which in turn form trimers and promote the production of new chaper-
ones. In consequence the response mechanism gets switched on. The full list of
biochemical reactions constituting the biochemical modelfrom [28] is presented
in Table 1. The model is based only on well-documented reactions without intro-
ducing any hypothetical mechanisms or experimentally unsupported biochemical
reactions. For a full presentation and discussion of this model we refer the reader
to [28].

Based on the assumption of mass-action law for all the reactions (1)-(12) an as-
sociated mathematical model of the eukaryotic heat shock response is obtained.
The resulting mathematical model is expressed in terms of ten, first order, ordi-
nary differential equations. The full ODE system is shown inTable 2, where byki

we denote the reaction rate constant of the irreversible reaction (i) in Table 1, by
k+

i the rate constant associated with the ‘left-to-right’ direction of the reversible
reaction (i), whilek−

i denotes the rate constant corresponding to its ‘right-to-left’
direction. ByT we denote the numerical value of the temperature of the environ-
ment in Celsius degrees. The rate coefficient of protein misfolding with respect to
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the temperature (ϕ(T )) in reaction (10) is given by the following formula:

ϕ(T ) = (1 −
0.4

eT−37
) · 1.4T−37 · 1.45 · 10−5 s−1,

which is valid forT in the range from37 to45. The formula was obtained based on
experimental investigations described in [22, 23], was originally proposed in [27]
and adapted for use in the mathematical model of HSR in [28]. The mathematical
model comprises16 independent kinetic parameters and10 initial conditions. In
the case of our method we do not fix the parameter values as was done in [28]:
we neither fit nor validate the model with respect to experimental data. Instead,
we sample the HSR model behaviour by randomly choosing different sets of pa-
rameter values. This results not in one, but in a collection of instances of the HSR
model. Notice that in the process of obtaining these instances no experimental
data are considered. Thus, the instances are not required toconfirm any experi-
mental results. We discuss in details how the parameter values for the HSR model
are obtained in subsection 5.4.

5.2 Control-based decomposition

In [8] a control-driven modular decomposition of the heat shock response model
has been performed. In result, the model has been divided into four main func-
tional submodules usually distinguished in control engineering: the plant, the sen-
sor, the controller and the actuator. In the case of the HSR model the plant is the
misfolding and refolding of proteins, the actuator consists of the synthesis and
degradation of the chaperones, the sensor measures the level of hsp in the sys-
tem and the controller regulates the level of DNA binding. Moreover, within the
controller we distinguish three feedback mechanisms. The feedback loops are
responsible for sequestering the heat shock factors in different forms by the chap-
erones. In this way the feedback loops are decreasing the level of DNA binding.
The three identified feedback mechanisms are the following:

• FB1: sequestration of freehsf, i.e. reaction (5)+ (the ‘left-to-right’ direction
of reaction (5));

• FB2: breaking ofhsf dimers and trimers, i.e. reactions (6) and (7);

• FB3: unbinding ofhsf3 from hse and breaking the trimers, i.e. reaction (8).

The control-driven functional decomposition of the eukaryotic heat shock re-
sponse model is shown in Figure 1, where the reaction numbersrefer to the reac-
tions in Table 1. In Figure 2 a graphical illustration of the control structure, i.e. the
three feedback loops and their points of interactions with the mainstream process,
is presented.
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5.3 The knockdown mutants

In [8] and [9] the reference architecture and seven knockdown mutants (alternative
architectures) were considered. The mutants were obtainedby eliminating from
the reference architecture all possible combinations of the three feedback loops
FB1, FB2 and FB3. The mutants were denoted asMX , whereX ⊂ {1, 2, 3} is
the set of numbers of the feedback mechanisms present inMX :

• M0 is determined by reactions (1)-(4), (9)-(12) and, in the terminology of
control theory, is characterized by theopen-loop design;

• M1 is determined by reactions (1)-(5), (9)-(12);

• M2 is determined by reactions (1)-(4), (6)-(7), (9)-(12), andthe ‘right-to-
left’ direction of reaction (5);

• M3 is determined by reactions (1)-(4), (8)-(12), and the ‘right-to-left’ direc-
tion of reaction (5);

• M1,2 is determined by reactions (1)-(7), (9)-(12);

• M1,3 is determined by reactions (1)-(5), (8)-(12);

• M2,3 is determined by reactions (1)-(4), (6)-(12), and the ‘right-to-left’ di-
rection of reaction (5);

• M1,2,3 is the reference architecture consisting of all reactions (1)-(12).

5.4 Statistical sampling of the mutant behaviour

We apply our model comparison method described in Section 3 to the presented
model of eukaryotic heat shock response in order to investigate the functional role
of the feedback mechanisms. It is easy to see thatM0 is non-responsive: starting
from a steady state at physiological conditions, i.e.37 ◦C, M0 shows no increase
in DNA binding for any arbitrarily high temperature, see [9]. We removeM0

from further considerations. In our study we analyse the sixknockdown mutants
M1, M2, M3, M1,2, M1,3 andM2,3 as the variants of the reference architecture
M1,2,3. Our comparison method is applied in the following way. First, a sample
of 10.000 vectors of parameter values for the reference architectureis obtained by
the latin hypercube sampling described above. In our case the sampled vectors are
of length15, i.e. the number of the unknown reference architecture parameters.
The value of the16th remaining parameter, i.e. thehsp degradation rate constant
is assumed to be known and is obtained based on the fact that heat shock proteins
are generally long-lived proteins, see [35]. We choose heretheir half-life to be
6 hours. Then, the procedure described next is repeated separately for each of the
six mutants. To begin with, each sampled vector of parametervalues is used to
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setup the parameters in the mathematical models of the considered mutant and the
reference architecture (M1,2,3). It follows from the construct of the mutant that
the corresponding mathematical model contains only a subset of the parameters
of the reference model, so this step can be performed. Next, the steady state con-
centrations at37 ◦C both for the mutant and the reference model are numerically
computed and set as their respective initial states. In thisway we obtain two in-
stances of the mathematical models, i.e. one for the mutant and the second for the
reference model. Further, the temperature is increased to42 ◦C and the quantities

Θ1 = max
t∈[0s,1800s]

(totalmfp(t)),

Θ2 = max
t∈[0s,1800s]

(hsf3 : hse(t)) − hsf3 : hse(0),

Θ3 =
1

T

∫ T

0

(totalhsp(t))dt,

Θ4 =
1

T

∫ T

0

(totalmfp(t))dt

are computed both for the mutant and the reference instance.The initial 30 min.
of the response are considered for the computation ofΘ1 andΘ2. In the case of
Θ3 andΘ4 the time range of4 hours (T = 14400s) is taken into account. These
quantities are used to evaluate the functional effectiveness of the mutant. Having
these quantities computed for all the10.000 sampled parameter values, the scatter
plot of theR1 = Θm

1 /Θr
1 againstΘr

1 values is made, where the superscriptsm
andr indicate the instance for whichΘ1 was computed, i.e. the instance of the
mutant or the reference model, respectively. Finally, the moving median technique
is applied to the scatter plot with the window size set to500. These results in
a trend curve summarizing the data of the scatter plot and revealing the overall
dependency between the considered quantities. Analogicalplots are computed for
R2 = Θm

2 /Θr
2. Moreover, scatter plots ofΘ3 versusΘ4 both for the mutant and

the reference architecture are made and the moving median technique is applied
to each of these plots.

The mutants represent six different potential architectures of the heat shock
response mechanism and the sampling procedure, as explained above, provides
us with 10.000 different instantiations of each of the mutants and the reference
architecture.

5.5 Results

In our analysis of the obtained results we assume that the heat shock response
at raised temperatures is accompanied, and hence characterized, by the following
three phenomena:

1. increase in DNA-binding with respect to the steady-statelevel at37 ◦C,
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2. increase in the level ofmfp, and

3. increase in the level ofhsp as the effect of the response to the higher level
of mfp in the cell.

We base our analysis of the architecture properties of the six mutants with respect
to the reference architecture on the following plots:R1 vs Θr

1, R2 vs Θr
2, Θ3 vs

Θ4 made for each of the mutants and for the reference architecture. We refer
to theΘ3 vs Θ4 plot as the cost plot (or simply the cost) of the corresponding
architecture. This is motivated by the fact that the efficiency of the heat shock
response mechanism could be measured by the amount of chaperones needed to
cope with the intensified misfolding of proteins. Hypothetically, a cell which
produces smaller amounts ofhsp than some other cell to cope with the heat shock
would be considered the one which manages with stress conditions at a lower
cost in terms of its resources than the latter one. Notice however that in our case
we are not assessing the ability of particular models to copewith heat shock, i.e.
the sampled models are neither validated against experimental data nor classified
by any other means whether they enable the cell to survive or not in the stress
conditions. Hence the cost plots reflect just the general tendency of the models
instantiating a particular architecture to keep certain average in time amounts of
hsp in response to different average levels ofmfp present in the system. The
reference trend line indicates a clear linear dependency between the average levels
of hsp andmfp, see Figure 7. The trend lines of all mutants, despite some more
or less pronounced fluctuations in the region of smallΘ4 values, can be seen as
increasing (Figure 5), which is in agreement with our characterization of the heat
shock response.

Considering the three mutants with only one feedback, i.e.M1, M2 andM3,
we observe that themfp level peak value in the first30 min. of heat shock is
smaller than in the reference architecture: the ratioR1 in Figure 3(a), 3(b) and
3(c) is always smaller than1. This is especially pronounced in mutant instances
obtained with samples characterized by providing highmfp peak values in the case
of the reference architecture. However, for all these mutants the cost is definitely
higher than in the reference architecture, compare Figure 5(a), 5(b), 5(c) with
Figure 7. Notice also that theM2 mutant is more economic in terms of cost than
the two other mutants with only one feedback.

In the mutantsM1,2, M1,3 andM2,3 themfp level also peaks at a lower value
than in the reference case, although this time theM1,3 andM2,3 mutants have
the cost comparable with the one of the reference architecture. BothM1,3 and
M2,3 reveal the same linear relationship between the average amounts ofhsp and
mfp as is observable in the reference case, however in both casesthe trend line
is slightly shifted upwards with respect to the reference. This indicates that the
mutants have a tendency to keep a bit higher than the reference amount ofhsp with
a certain amount of misfolded proteins (Figure 5(e), 5(f) and Figure 7). The same
is true also for theM1,2 mutant. Although it admits an order of magnitude larger
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range of observable average amounts of misfolded proteins (Figure 5(d)), the cost
plot restricted toΘ4 moving median values less than or equal4000 is basically
identical with the cost plots of the two other mutants, see Figure 6(a).

Another thing which we observe for the three mutants missingone feedback is
that the samples characterized by significant increase in DNA-binding in the ref-
erence architecture, i.e. by15 and more, span a wide range of possible behaviours
in the mutants: from almost no DNA-binding increase to an increase comparable
with the one observed for the reference architecture. This feature is clearly vis-
ible in Figure 4(e) and 4(f) for the mutantsM1,3 andM2,3, respectively. In the
case of theM1,2 mutant we need to zoom in Figure 4(d). To this aim we observe
in the scatter plotR2 vs Θr

2 for theM1,2 mutant that all points withR2 > 1000
are concentrated in the range[0, 0.0307] of Θr

2 values (not shown). We exclude
all samples withΘr

2 in this range, irrespective of theR2 value they admit in the
mutant. All in all2247 samples are filtered out and we apply the moving median
technique to the remaining ones. The resulting plot is shownin Figure 6(b). It
clearly illustrates that the discussed feature is also a characteristic of theM1,2 mu-
tant. This is not true for the three mutants with only one feedback. In these cases
we do not observe any substantial increase in the DNA-binding with respect to
the steady-state levels at37 ◦C for samples which generate such increase in the
reference case (Figure 4(a), 4(b) and 4(c)).

On the basis of the presented results, we notice that all the mutants lacking
two feedbacks exhibit no heat shock response in the sense of the above definition:
as observed previously, there is no increase in the DNA-binding. This is in agree-
ment with the results presented in [8], where the models withonly one feedback
kept the DNA-binding at the maximum possible level both at37 ◦C and42 ◦C
throughout the simulation time of50.000s. The HSR can be observed however
in the mutantsM1,3 andM1,2. In the case of theM2,3 mutant the HSR is still
observed, but only for a fraction of the10.000 sampled models, i.e. only those
parameter values for which the reference architecture displays the maximal pos-
sible increase in the peak of DNA-binding with respect to thesteady-state level at
37 ◦C. This is in complete agreement with previous observations that FB1 is the
most powerful feedback, see [8]. Since FB2 and FB3 includehsf sequestration
as one of their features, they compensate partially for the lack of FB1. However,
only FB2 or only FB3 are not enough to enforce the system’s behaviour to have
the HSR characteristics. Despite its power, FB1 alone is alsonot enough and one
of the other feedbacks is also needed in order to implement a response mechanism
with the features describing the heat shock response.

6 Discussion

Very often, various experimental investigations of a givenbiochemical system
generate a large variety of alternative molecular designs,thus raising questions
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about comparing their functionality, efficiency, and robustness. Comparing alter-
native models for a given biochemical system is, in general,a very difficult prob-
lem which involves a deep analysis of various aspects of the models: the under-
lying networks, the biological constraints, and the numerical setup. The problem
becomes somewhat simpler when the alternative designs are actually submodels
of a larger model: the underlying networks are similar, although not identical, and
the biological constrains are given by the larger model. It only remains to decide
how to chose the numerical setup for each of the alternative submodels, i.e., the
initial conditions and the kinetics.

In the first part of our study we review several known methods for model
decomposition and for quantitative comparison of submodels. We describe the
knockdown mutants, elementary flux modes, control-based decomposition, math-
ematically controlled comparison and its extension, localsubmodels comparison
and a discrete approach for comparing continuous submodels. In the second part
of the paper we present a new statistical method for comparing submodels that
complements the methods presented in the review. When choosing the initial
setup for the alternative submodels, i.e., the initial values of all variables, one
approach is to take them from the reference model. This approach is based on
the technique of mathematically controlled comparison, [39], see also [10] and
[52] for some case studies using this method. However, in thecase of biological
systems this approach may lead to biased conclusions. For instance, regulatory
networks exhibit a steady state behaviour in the absence of stimulus. In general
for the reference model, the initial values of the variablesare chosen such that it
exhibits a steady state behaviour in the absence of a trigger. However, this will not
insure that also the submodels of the reference model will exhibit the same prop-
erty if they start from the same initial values. Thus, the dynamical behaviours of
the considered submodels will exhibit the interwind influences of two tendencies:
the migration from a (possibly) unstable state and the response to the stimulus.
In this context, an analysis of the efficiency of the responseand the robustness
of the alternative models may lead to erroneous conclusions. In alternative, we
propose in this paper to chose the initial values in such a waythat each alternative
design starts from its own steady state. Our main motivationfor this is that we
considered all submodels to be viable alternatives for the biological system and,
as such, they should exhibit (some of) its main properties. Regarding the values
of the kinetic parameters in each of the alternative submodes, there are several ap-
proaches in the literature. In the mathematically controlled comparison approach,
the values of the kinetic parameters in each of the alternative designs are uniquely
determined from the parameters of the reference model, see e.g., [10], [39]. An-
other approach is to chose in each alternative submodel independent values for
the kinetic parameters, e.g., through parameter estimation and validation against
experimental data, see e.g., [8]. However, restricting to some particular values for
the kinetic rate constants, will also confine the conclusions of our analysis to that
particular system. Instead, we take the approach proposed in [1] and [2] and we
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sample a large set of parameter values from a given range of values. Then we
use some statistical techniques to analyse various properties of a general class of
systems which includes the considered system. In particular, for each sampled
parameter vector, various functional effectiveness measures are computed both in
the reference and in the alternative models. Then by analysing both the density of
ratios plots and the moving median plots one can identify andquantify the differ-
ences in the dynamical behaviours of the considered models,see e.g., [3], [45] for
some case studies where these methods were applied.
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Reaction (Reaction number)

2 hsf ↔ hsf2 (1)

hsf + hsf2 ↔ hsf3 (2)

hsf3 + hse ↔ hsf3: hse (3)

hsf3: hse → hsf3: hse + hsp (4)

hsp + hsf ↔ hsp: hsf (5)

hsp + hsf2 → hsp: hsf + hsf (6)

hsp + hsf3 → hsp: hsf +2 hsf (7)

hsp + hsf3: hse → hsp: hsf + hse +2 hsf (8)

hsp → (9)

prot → mfp (10)

hsp + mfp ↔ hsp: mfp (11)

hsp: mfp → hsp + prot (12)

Table 1: The list of reactions of the biochemical model for the heat shock response
originally introduced in [28].
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Equation (Equation number)

d[hsf]/dt = −2k+
1 [hsf]2 + 2k−

1 [hsf2] − k+
2 [hsf][hsf2] + k−

2 [hsf3] (13)

− k+
5 [hsf][hsp] + k−

5 [hsp: hsf] + k6[hsf2][hsp]

+ 2k7[hsf3][hsp] + 2k8(hsf3: hse) hsp

d[hsf2]/dt = k+
1 [hsf]2 − k−

1 [hsf2] − k+
2 [hsf][hsf2] + k−

2 [hsf3] (14)

− k6[hsf2][hsp]

d[hsf3]/dt = k+
2 [hsf][hsf2] − k−

2 [hsf3] − k+
3 [hsf3][hse] + k−

3 [hsf3: hse] (15)

− k7[hsf3][hsp] (16)

d[hse]/dt = −k+
3 [hsf3][hse] + k−

3 [hsf3: hse] + k8[hsf3: hse][hsp] (17)

d[hsf3: hse]/dt = k+
3 [hsf3][hse] − k−

3 [hsf3: hse] − k8[hsf3: hse][hsp] (18)

d[hsp]/dt = k4[hsf3: hse] − k+
5 [hsf][hsp] + k−

5 [hsp: hsf] − k6[hsf2][hsp] (19)

− k7[hsf3][hsp] − k8[hsf3: hse][hsp] − k+
11[hsp][mfp]

+ (k−

11 + k12)[hsp: mfp] − k9[hsp]

d[hsp: hsf]/dt = k+
5 [hsf][hsp] − k−

5 [hsp: hsf] + k6[hsf2][hsp] (20)

+ k7[hsf3][hsp] + k8[hsf3: hse][hsp]

d[mfp]/dt = φT [prot] − k+
11[hsp][mfp] + k−

11[hsp: mfp] (21)

d[hsp: mfp]/dt = k+
11[hsp][mfp] − (k−

11 + k12)[hsp: mfp] (22)

d[prot]/dt = −φT [prot] + k12[hsp: mfp] (23)

Table 2: The system of differential equations of the mathematical model associ-
ated with the biochemical model in Table 1.
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Figure 1: The control-based decomposition of the heat shockresponse network.
The reaction numbers refer to the reactions in Table 1. We denote the ‘left-to-
right’ direction of reaction (5) by (5)+ and by (5)− its ‘right-to-left’ direction.

Figure 2: The control structure of the heat shock response network. The three
identified feedback loops and their points of interaction with the mainstream pro-
cess are depicted.
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(d) M1,2
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(e) M1,3
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(f) M2,3

Figure 3: The plots show the result of applying the moving median technique to
the scatter plots ofR1 vs Θr

1 obtained individually for each of the six considered
mutants. For each mutant and each sampled vector of parameters, the value of
R1 was computed and plotted against the value ofΘ1 obtained for the reference
architecture with the same parameter vector. Then, the moving median technique
was applied to discern the overall trend in the data depictedin the obtained scatter
plots. The window size of the moving median was set to500 and the sample size
of the vectors of parameter values was10.000.
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(b) M2
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(c) M3
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(d) M1,2
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(e) M1,3
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(f) M2,3

Figure 4: The plots show the result of applying the moving median technique to
the scatter plots ofR2 vs Θr

2 obtained individually for each of the six considered
mutants. For each mutant and each sampled vector of parameters, the value of
R2 was computed and plotted against the value ofΘ2 obtained for the reference
architecture with the same parameter vector. Then, the moving median technique
was applied to discern the overall trend in the data depictedin the obtained scatter
plots. The window size of the moving median was set to500 and the sample size
of the vectors of parameter values was10.000.
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(b) M2
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(c) M3
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(d) M1,2
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(e) M1,3
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(f) M2,3

Figure 5: The plots show the result of applying the moving median technique to
the scatter plots of the cost, i.e.Θ3 vs Θ4, obtained individually for each of the
six considered mutants. For each mutant and each sampled vector of parameters,
the values ofΘ3 andΘ4 were computed and plotted against each other. Then,
the moving median technique was applied to discern the overall trend in the data
depicted in the obtained scatter plots. The window size of the moving median was
set to500 and the sample size of the vectors of parameter values was10.000.
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(a) M1,2 (Θ4 moving median≤ 4000)
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(b) M1,2 (without samples withΘr

2
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0.0307)

Figure 6: (a) The zoomed in version of Figure 5(d) whereΘ4 moving median
is not greater than4000. (b) A version of Figure 4(d) where samples with
Θr

2 ≤ 0.0307 were not considered. It shows that the samples characterized by sig-
nificant increase in DNA-binding in the reference architecture (by 15 and more)
span a wide range of possible behaviours in theM1,2 mutant: from almost no
DNA-binding increase (the moving median ofR2 = 0.2) to an increase compa-
rable with the one observed for the reference architecture (the moving median of
R2 ≥ 1).
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Figure 7: The plot shows the result of applying the moving median technique to
the scatter plots of the cost, i.e.Θ3 vsΘ4, obtained for the reference architecture.
For each sampled vector of parameters, the values ofΘ3 andΘ4 were computed
and plotted against each other. Then, the moving median technique was applied
to discern the overall trend in the data depicted in the obtained scatter plot. The
window size of the moving median was set to500 and the sample size of the
vectors of parameter values was10.000.
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