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Abstract

Model refinement is an important aspect of the model-bujginocess. It can
be described as a procedure which, starting from an abstradé! of a system,
performs a number of refinement steps in result of which a rdetailed model
is obtained. At the same time, in order to be correct, the eafant mechanism
has to be capable of preserving already proven systemiditatare properties of
the original model, e.g. model fit, stochastic semantics, letthis study we con-
centrate on the refinement in the case of self-assembly mo8elf-assembly is
a process in which a disordered ensemble of basic compdioemts an organized
structure as a result of specific, local interactions ambegd components, with-
out external guidance. We develop a generic formal modelhisrprocess and
introduce a notion of model resolution capturing the maximsize up to which
objects can be distinguished individually in the model. Biljger objects are
treated homogenously in the model. We show how this sedrabl/ model can
be systematically refined in such a way that its resolutionbmaincreased and de-
creased while preserving the original model fit to experitaledata, without the
need for tedious, computationally expensive process drpater refitting. We
demonstrate how the introduced methodology can be apmliagteviously pub-
lished model: we consider the case-studynofitro self-assembly of intermediate
filaments.

Keywords: Model refinement — Model resolution — Self-assembly — Model fi
— Intermediate filaments
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1 Introduction

The great complexity of biological systems enforces thedrfee representing
them in formal models in order to investigate them and makeifip predictions
about their behaviour that can be tested in subsequentimgrgs. Starting from
a model abstracting a biological system, the iterative gsemf hypothesis gen-
eration, experimental design, experimental analysis,nandel refinement lies at
the core of systems biology ([4, 16, 22]). Even more, thigaaph is proposed as
the only logical way for biology to advance ([19]). Developnt and refinement
of a mathematical model of a biochemical process proceedgeneral, in accor-
dance with the following scenario. First, an abstractiorthef process is made
by identifying a relatively small set of biochemical reacts which are capturing
the main features of the process’ machinery. The chosernéinical reactions
may be very abstract themselves, i.e. one reaction may irefec@psulate many
real reactions which constitute a whole subprocess in agierganism. Second,
the molecular model formed of the chosen reactions is toamsfd into an asso-
ciated mathematical model. This usually involves two st@bgaining equations
describing the dynamics of the system by assuming some ipkopetic law, e.g.
mass-action law, Michaelis-Menten kinetics, etc., and tldentifying the model
parameter values so that the model fits some experimental dat

During the process of model development some simplificateomd abstrac-
tions are introduced. With time, there may be a necessityhiem to be refined
and modelled in a more detailed, accurate way. However, szarefulness is
required on this stage. For example, one could take all ttendted changes
into consideration while simply repeating the whole modeVelopment pro-
cedure. But this solution involves repeating from scratod ime-consuming,
computationally-intensive model fitting, see [5]. Anotlag@proach, not much in-
vestigated in the literature, is to refine the model in suclag thiat the previously
obtained fit is preserved. This basically implies derivihg parameter values of
the refined model from the ones of the original model.

In this study we concentrate on the step of model refinemetitenterative
cycle of systems biology, which is an important aspect oftloelel-building pro-
cess. In particular, we develop a refinement procedure farraly of ordinary
differential equation (ODE) models describing the procdself-assembly. Self-
assembly is a process in result of which some pronouncedtstas emerge out
of an ensemble of scattered basic elements. Important fa¢héhat the arrange-
ments take place based just on local interactions betwesuhlding blocks,
without any external guidance. In our work we develop a gerfermal model
for self-assembly. It consists of an ensemble of all possitbjects that can po-
tentially appear in the course of the self-assembly, a caitipa operation and
a mapping from objects of the ensemble to positive integérs.number is inter-
preted as the size of the considered object. The genericlralbol@s us to further
introduce the notion of model resolution. We continue bycdssing the refine-
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ment of such models, i.e. we formally show how the resolutiba self-assembly
model can be increased and decreased while preservingiteabmodel fit to
experimental data. We demonstrate how our methodologyfedssembly model
refinement can be applied to an existing model. To this aim tilieauthe previ-
ously published model of thim vitro assembly of intermediate filaments from
tetrameric vimentin, see [6, 15].

Our methodology of self-assembly model refinement is a @adr instance
of formal model refinement his topic has been extensively studied in Computer
Science, see, e.g., [3, 23, 24], especially in connectidortoal software spec-
ifications. The method we propose is an instancdaif refinementwhere one
replaces a variable with a set of other variables in a way ititedduces more
details into the model, while keeping the model constraintshanged.

The paper is organized as follows. First, a general, forrhalacterization
of the self-assembly process is presented. Then, the notiorodel resolution
is introduced and the model refinement procedure consistimgcreasing and
decreasing the model resolution while preserving the fitweemental data is
described. Finally, the technique is applied in a case stiyre the self-assembly
of intermediate filaments is considered.

2 A generic model for self-assembly

Self-assembly is a term coined to name processes in whicoaeddired ensemble
of basic components forms an organized structure as a refsafiecific, local
interactions among these components, without externaaguge. In a general
case, the process of self-assembly can be formalized asvill We consider
an ensembl& of all possible objects that can potentially appear in therse
of the self-assembly process, including the initial oneacheobjectO from the
ensemble has a scalar valsiee(O) associated with it and determined through
a mappingsize : £ — N,. Moreover, the objects frorfi can combine with each
other to form another object fro&in such a way that the sum of the sizes of the
objects equals the size of the resulting object. More foyndlwe denote the
composition operation with- , then

O14+0y,=0, = size(Oy) + size(Oq) = size(O,), (1)

whereO,. is the object assembled from component objéztsand O,. The en-
semblef together with the binary operation forms a structuré€, +), which in
abstract algebra is namedsamigroup Furthermore, this structure is homomor-
phic with the(N, , +) semigroup by theize map.

Our generic model for self-assembly is on a high level ofta@usion, focusing
on thesize of the emerging structures, while ignoring all details ¢ thpology
of such structuresSizehere can mean any semigroup homomorphism between
(€,+) and (N, +), as noted above. Intuitively, théze map would count the
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number of elementary blocks forming the self-assemblagsire under consid-
eration. This approach is applicable to any type of seléaddy processes: uni-
dimensional (such as the elongation of intermediate fildmehe case-study in-
vestigated in this paper), branched two-dimensional 8iras, three-dimensional
assemblies, etc. However, extending the dynamics ofthiedistribution of the
self-assembled structures with some of their topologiedhits would require
a very different type of modelling, which goes beyond thepscof our approach.
Through the mapize, for a fixedn € N, we define a family of object classes

S = {8V,...,8%, 8% }: 8™ contains all the objects from with sizei
fori=1,....n andS(;fH consists of all objects with size greater thanEach

object from& belongs to exactly one of these classes. Notice thawifor n we
haveS!™ = 8™ forall k € {1,...,n}.

The composition of objects i is described by a system of rules. For the
general characterization of self-assembly we will assumethe rules are at the
level of abstraction o™, i.e. that the system of rules is of the form

S8, foralll<i<j<mni+j>n+l;
SMsw 8w . foralll <i<un

foralll<i<j<n,i+j<n;
2)

n

S£n73+1 + S(;)-i-l - S(Z"JH-

In the case of biochemical systems these rules are usutdlyed to as (biochem-
ical) reactions and we will use this terminology in the fellag. The semantics
of the reactions in the above form can be described as: actdbpen cIassSi(")
combines with an object from cla§§") to form an object of cIaSSZ-(ﬁ; ifi+j<n
or S(QH if i+ > n+ 1. Notice that any reaction of this form automatically
satisfies the self-assembly condition (1).

In mathematical modelling itis common to associate a végi@mderstood as
a function)F : R, — R, with each of the sets iS™. We denote with#™ the
variable corresponding to the séﬁ") fori € {1,...,n,> n+ 1}. The value of
the variableF™ is interpreted as the concentration of objects from thecistel
setSi(”), present in the system undergoing self-assembly at a pktipoint in
time. Further, we assume that the kinetics of the reactisrimsed on théaw
of mass actior([17]). This law is a mathematical model of reaction dynasnic
it states that the reaction rate is proportional to the podityaof collision of the
reactants, while the probability itself is proportionalth@ product of concentra-
tions of reactants raised to the number in which they enterahction ([17]). We
usek;;, 1 < i < j < n+ 1to denote the respective proportionality factor, the
so-calledrate constantof the reaction with the left-hand side containifig’ (or
S, ifi=n+1)asone and?f.”) (or 8. if j = n+1) as the other term. For
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example,
S5 4 84 22y st

and
n n k ,M n
S+ S, 2 S

The change of concentrations in time of the objects undeggeelf-assembly can
be described using ordinary differential equations (ODEy) the law of mass
action, the system of ODEs associated with the self-asgesytem determined
by the reactions in (2) is

( (n) "
dE n n)r. . n)? n "
= =S ki FE [ A 5] = 2k B = hia B FS,
j=1
[igl
+ 3k BV ED forall1 <i<n, (3)
j=1
dF W plo w2
1<i<5<n,
i+j=>n+1

where]. . .] are used as the Iverson brackets ([14, 18]),]i.e j|is1if i # j and
0 otherwise. The negative term in the equationdﬁlg)ﬂ/dt originates from the

last rule in (2), where two objects from the Séj",fﬂ combine to form a bigger

object belonging to the same class. In consequencégjfhr1 two objects are
consumed and one is produced, thus the net result is thatlgeet @isappears

from 5(;73 1

3 A notion of model resolution

When considering the dynamics of the self-assembly proaass of the main
concerns is the distribution of the number of componentsiférént sizes in
time. To this aim we introduce the notion ofodel resolutionn the context of
self-assembly. We say thatself-assembly model is of resolutianf it consists
of the set of reactions describing the interactions betwhkerclasses of objects

Sf"), LS 8(2",Z+1, i.e. the set of rules of the form in (2). The associated math-
ematical model (ODE-based or not), comprising variatﬂé@, ce F,(L”), Fg”fﬂ

is also referred to as amresolution model. Thus, the system in (3) is a self-
assembly ODE model of resolution Intuitively, a self-assembly mathematical

model is of resolutiom if it allows for capturing the dynamics of the number (or
concentration) of components that are exactly of sizehere) < i < n.
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In light of this definition the superscrigt:) obtains a new meaning: it indi-
cates the resolution of the considered modeI,EJ@.) determines the concentra-

tion of objects of sizg in time in the model of resolution andSJ(.”) refers to the
class of objects of sizg which appears in the set of reactions of theesolution
self-assembly model. This will be useful when considerimg relationships be-
tween models of various resolutions in the subsequent stibss.

When setting the resolution of our generic self-assemblglehae effectively
partition the set of possible emerging structures into tlemending on their size:

(i) the set ofvisible assembliewhose size is at most the resolution level, and
(i) the set ofinvisible assembliewhose size is larger than the resolution level.

The self-assembly process can be modelled in all of its coatbrial details on
the set of visible assemblies, including the assembly gdfakible pairs of visible
assemblies and even their disassembly (disassembly is/eowet covered in our
case-study). For the invisible assemblies (size larger tha resolution level) we
only specify a number of generic reactions covering theingation. The idea
here is that the details of the dynamics of such assembléebeyrond the scope
(or beyond the experimental measuring capabilities) ofcourent model.

Choosing the resolution of a self-assembly model shouldooe ¢h a careful
way, so that it includes in its visible assemblies that pathe species space that
is important for the model. Changing the resolution of a nhoday be needed
during the modelling process, depending on the applicakonexample, a model
of relatively low resolution may be enough in the early stafjne process, when
no (or very few) assemblies of large size exist. Later on hvaweas the size of
the existing self-assembled structures grows, the madelky need to increase
the resolution level to be able to track the details of therenttions involving
larger structures. We discuss in the next section a methotttease the model
resolution in such a way that the model's numerical fit to expental data is
preserved. Note also that the resolution may be fixeqaiori to a level that is
higher than the number of available molecules, thus makiegwthole species
space visible, with the price that the manipulation of thelgigsuch as the model
fit and validation) may become computationally expensive.

3.1 Increasing the model resolution while preserving the mael
fit

In this section we concentrate on the refinement in the caieeddelf-assembly

models. The aim is to increase the range of component sizeghich the dis-

tribution in time is captured by the model, i.e. increase riin@lel resolution,

while preserving the data fit of the original model. In theteom of the associated
mathematical models, we say that a model of resolution 1 is a quantitative
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refinementof a model of resolutiom if and only if the following quantitative
refinement conditions are satisfied:

FMV) = FY(), 1<i<n (4)
and
n+1 n+1 n
FUAV () + PO ) = FUL (), (5)
forallt > 0.

In the case of the self-assembly ODE models of the form int(®),quanti-
tative refinement from resolution to n + 1 involves appropriate setting of the
rate constants and the initial values of the model of reswiut + 1 given the
rate constants and the initial values of the model of regmiut. We show in the
following how this should be performed.

We start our considerations with the statement of a lemma&earomg the
existence and uniqueness of solutions of the self-asse@bl system of any
fixed resolution.

Lemma 1. The system of ODEs for a self-assembly model of resolutiarhere
n € N, admits exactly one solution for any fixed initial condition

Proof. Let us rewrite (3) in the form
F' = F(F),

whereF(t) = [Fln)(t),...,F,(L”)(t),FSZL)H(t)]T and F : R**! — R"*! defines
a vector field onR™*!. A solution of this system is a functioR : J — R**!
defined on some interval C R such that, for alt € J, F'(t) = F(F(¢)).
Now, it is enough to observe that the right-hand sides of tugagons in (3)
are continuously differentiable with respect to the cooaties ofF. Thus, the
mappingF is Lipschitz continuous on a bounded domain ([8]) and by ticard-
Lindelof theorem ([8]) it follows that for any initial coriibns the considered
system has a unique soluti@tit). O

Equipped with Lemma 1, we continue to show how the refinemeatself-
assembly model can be effectively achieved. This is theerurdf the following
theorem, wheré, ;, 1 < i < j < n + 2 denote the rate constants of the+ 1)-
resolution model and&,,, 1 < p < ¢ < n + 1 are the rate constants of the
n-resolution model. A discussion about the biological b&sisthe numerical
choices made in Theorem 1 is included after its proof.

Theorem 1. Setting the kinetic rate constants of thre+ 1)-resolution model in
the following way
li; =k I1<i<j<n,
lins1:= kipn1 1 <1<,
liny2:=king1 1<i<n

3 3 —_ —_ ? 6
ln+1,n+2 =2 kn—i—l,n-{—la ( )
ln-i—l,n—l—l = kn—i—l,n-{—la

L ln+2,n+2 = kn—i—l,n-{—la
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and its initial values so that they satisfy

Fi(n-i-l)(o) _ Fi(n)(()), 1<i<n, (7)
FD(0) + FO1E0) = P, (0) (8)

ensures that the self-assembly ODE model of resolutienl is a quantitative
refinement of the self-assembly ODE model of resolution

Proof. Let us write the system of ODEs for the model of resolution 1:

dt :—Zlm’Fi F] [P # j] =21 F,
j=1
n+1 n+1 n+1 n+1
it FD YD — by FH RO
[i;l
+ 3 g FUVERY foralll < <o,
7j=1
dFén—i_l) - n+1 n+1 n+1 2
d:l ::_'EE:ZLn+1}§ i )Pg+j )_'2ln+Ln+1f¢+j ) (9)
7j=1
[51
n+1 n+1 n+1 n+1
- ln+1,n+2 Fr(z-i-—"l_ : Fén—:-; + Z lj,n+1—j Fg( v F¢E+J1r—)j
j=1
drty (n41) (D) | O (n+1) (1)
n+ n n n n
T > U FTVETY Y L BTV RN
1<i<j<n, Jj=1
1+j>n+2
\ + ln-i-l,n-l-lF?E-i-—il_l) - ln+2,n+2Fén—:-l2) :

n n+1 n+1l) -
Let us further denote bgi "+ the sum ofF\"\ " and F""")  iLe.
G0 () = FETV0) + FEI0).

With use of the expressions fdrF,ET{”/dt andng,ﬁQ/dt in (9), we can com-
pute the derivative of; (")

dGr ) RSy dEGE)

dt dt dt
[
=Yl BV EY ST 1 FTTU R 0)

1 1<i<j<n,
i+j>n+2

[NIB]
—

%

(n+1)2 (n+1) (n+1) (n+1)2
- ln+1,n+1 Fn+1 - ln+1,n+2 Fn+1 FZTH-? - ln+2,n+2FZn+2 .



By substituting the rate constants in the above expressiodad ™+ /dt in ac-
cordance with (6) we obtain that

dG(n+1)

= 2 R ETTVETY b (Y + FGL) =

1<i<j<n,
i+i>n+1

= > kg BTV ETY g GO (11)

1<i<j<n,
i+i>n+1

Now, by substituting the rate constants also in the equafnmﬂﬂ(”“) /dtin (9)
forall 1 <1i < n and combing with (11) we have that

(A"t n (n+1) 2(n+1) (n41)2
zit :_Zki’jFi £ [i # j] — 2 ki, I,
j=1
[5H]
ntl n n+1 n+1
— kiger FV GO 4 N7 g BT Y
j=1 (12)
forall1 <i <n,
dG(n+1) n n 2
pm = Z ki j Fz( +1) Fj( +1) I G +D?
1<i<j<n,
i+j>n+1

The above system is identical with (3) modulo the renamingasfables, i.e.
F"™ is in place of £ for all 1 < i < n andG®* is in place of F"), .
Hence, if the initial values are set up as stated in the tmeotieen (3) and (12)
constitute the same initial value problem. By the existearo@ uniqueness stated
in Lemma 1, there exists exactly one solution to this protaechthus we have that
FM() = F"™ @) forall 1 < i < nandGr) (1) = FOY (1) + FUEY (1) =

FUD ), O

>n+1

Notice that what is important for the refinement is that thigahvalues of the

n)

(n + 1)-resolution model satisfy (8), however how the initial \elof Fénﬂ IS
split into Fé’}jl)(o) andFS;sz)(O) is irrelevant, i.e. any partition of this value in

accordance with (8) leads to a quantitative refinement ofitbdel of resolution
n into a model of resolution + 1.
The choice of the kinetic rate constants in Theorem 1 for éfieed model is

consistent with the following basic principle:

by distinguishing several subtypes of a reactant, we
do not change the kinetics of the reactions they partic-
ipate in.



In other words, whenever we distinguish several subspeties!s, ..., A,, of

a speciesA, we consider in the refined model that each subspetjgzartici-
pates in the same reactions in whidhwas participating in the original model and
moreover, their kinetics is unchanged. (Extra biologicadwledge about kinetic
differences amond, .. ., A,, may be included in the model in a subsequent step;
we only focus here on setting up the more detailed model asuatigative refine-
ment of the original model.) Our reasoning about the modeiement is discrete,

in terms of a finite number of subspecies of a given speciesis€pently, our
reasoning about the reaction kinetics and its changesasdasrete, in terms of
collision-based reactions.

When seen as the result of a collision between the reactdrgskinetics
of a reaction depends on a biochemical constant (whose d#pends on the
specifics of the reactants and of the environment) and onuhear of possible
combinations of reactant molecules, see [9, 10] for a detaitesentation of this
approach. The number of such combinations in the case oflisionlA + B
(say, type 1) iS4] - [B], but in the case of a collisioA + A (say, type 2), it is
[A] - ([A] —1)/2, where[A], | B] denote the number of molecules of speciesnd
B, respectively. This is the fundamental reason Why ,,.» is set in Theorem 1
to a value that is twice as large as the kinetic rate constait$ corresponding
reaction in the original model. Indeed, reaction

k

SW. 48, B, s (13)

is replaced in the refined model with reactions

n n ln ,T n

S 4 s ey gt (14)
n n l’rL NS n

Sl sl b, gl ), (15)
n n ln ,T n

SUrtl 4 sty mretd, glvh), (16)

When reasoning about the kinetic rate constants of the cefiactions, we pre-
serve the same biochemical constants as in the case of tlimabnieaction (no
changes in the biochemical details of the subspecies asarenhjo the original
species, as formulated in our basic principle). The numbeombinations of re-
actants in the various reactions is however different: wagreactions (13), (14),
and (16) are of type 2 (as defined above), reaction (15) isp fiy If we chose
a discrete mathematical model formulation in terms of shstib processes, then
the kinetic rate constants of reactions (14)-(16) would détet@ be equal to that
of reaction (13). Translating such a model into a continy@IBE-based model
involves a change in the kinetic rate constants, where thiaaztion (15) is set
to twice that of reactions (13), (14), and (16) to accounttfar different way of
reasoning about collisions in discrete and in continuotsge Indeed, an ODE-
based model considers the kinetic of a reaction of type 2 twdygortional tg A)?,
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unlike in the case of a discrete model, where it is propoditm[A] - ([A] — 1) /2.
We refer to [9] for a detailed discussion on the relation$l@fwveen the stochastic
and the deterministic version of a biomodel. We also notedimailar choices for
the kinetic rate constants were made in [7] when dealing thighrefinement of
rule-based models. Finally, we remark that the calculatiarthe proof of Theo-
rem 1 show that our choice of kinetic rate constants, jusdtifie the biochemical
arguments above, lead to a numerically-correct quantgatiodel refinement.

Now, let us consider a more general case, namely the refitrevhamodel of
resolutionn to a model of resolution + m. In this case the refinement conditions
that need to be satisfied for al>> 0 are the following:

F™Mmey=F™@), 1<i<n

7 7

and
n+m n+m n
Zﬁ% )+ PO () = FOL ().
We start our con3|derat|ons by a simple lemma.

Lemma 2. The property of a self-assembly ODE model to be the quanttat
refinement of another model of lower resolution is transitive. if the model
M +m) of resolutionn 4+ m is the refined version of the modet ™ of resolution

n and M"+m+k) of resolutionn + m + k is the refined version of the model
MO+ then M +m+k) s a quantitative refinement df1(™), wheren, m, k are
positive integers.

Proof. By the refinement conditions we have that fortalt 0
{ F™) = F™™ @), 1<i<n,
S FU @) + UL (1) = FON
and

7 7

(n+m+k n+m-+k n+m
S Fani ) + FOEL () = FOIT.

{ v1<i<n+m Fl(n+m) (t) = F‘(n+m+k) (t)a
n—+m-1

>n+m-+k+1
This implies that
FM@)y = Fr™R), 1<i<n

and
(n) (n+m n+m+k (n+m-+k) o
F>n+1 Z Fn-i-z Z Fn+m+z F>n+m+k:+1(t)
n—i—m-l—k: n+m+k n+m+k
= Z F7(L+Z )+ Z Fn+m+z F£n+m+k)+1(t) =

m—i—k

_ Z F(n+m+k F(n+m+k) (t)

n—+i >n+m+k+1
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Thus it follows that the model of resolution+- m + & constitutes a refinement of
the model of resolution. O

In the next theorem we show how the quantitative refinemerth@fmodel
of resolutionn to the one of resolution + m can be effectively achieved. We
denote by, ;, 1 <1i < j <n+m+ 1the rate constants of tje + m)-resolution
self-assembly modeM ™*+™ and byk, ,, 1 < p < ¢ < n + 1 the ones of the
n-resolution self-assembly modgt ).

Theorem 2. Setting the kinetic rate constants of the + m)-resolution self-
assembly ODE modeU ™) in accordance with the rate constants of the
resolution self-assembly ODE model™ in the following way

li’jizki,j 1§Z§]§n+1,
li,n-l—j = ki,n-i—l 1 SZSTL, 2§] §m+17

bitin+i = kntin1 2<i<m+1, (17)
ln+i,n+j = 2kn+l,n+1 1 S 1 <] S m + 1’
and its initial values so that they satisfy
Fz(ner)(U) = Fi(")(O), 1<i<n, (18)
SOEIT(0) + FUL L (0) = FLL L (0) (19)

=1
ensures thatM (™™ is a quantitative refinement g1,

Proof. The proof is by induction om:. The basis of the induction which is the
step from resolutiom ton + 1 (m = 1) is given by Theorem 1. The statement
of Theorem 2 clearly holds in this case and we proceed to théeciive step. We
assume that the statement is true/ffor= = for somez > 2 and we consider the
case wheren = z 4+ 1. Theorem 1 assures that setting

( . .
R 1<i<j<n+s
(nt2+1)  _ j(n+z) .
llt,n+z+11) T ll(n+z)+1 1<:<n+ zZ,
n+z+ . gntz .
lint etz = lint i 1<i<n+z, (20)
l(n+z+1) o l(n+z)
n+z+1ln+z+1 7 "nidz4+lntz+D
l(n+z+1) —9 l("“s
ntz+1ln+z+42 7 “'ntz+lntz+1
l(n+z+1) L l(n+z)
\ ‘nt+z4+2,n+24+2 7 "ntz+lntz+1

and the initial values of’\"*> 7" and 71> Y) in such a way that

n+z+1 n+z+1 n+z
FEED0) + PUEED(0) = FUEELL(0) (21)

is satisfied results in a refinement from the self-assembligehtt*+2) of reso-
lution n + z to the modelM " *+*+1 of resolutionn + z + 1 (the subscripts of the
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kinetic rate constants in (20) indicate the reactions aadtiperscripts the models
in terms of their resolution). By the induction hypothestisg

(l§3+2)::kivj 1§i§j§n—|—1,
lz(z—:-? = Kint1 1<i<n,2<5 <2,
+ .
lﬁfﬁ-i,zrz-i-z kn—i—l n+1 2 S 1 S Z,
+ . .
1) = kg 1<i<j<z 22)
+ .
l§Z+Zz)+1 = Kint1 1<e<n,
+ .
iy = 2k 1<i<z,
l(n—i—z) —
\ ‘ntz+lntz+1l - ntlntl

and the initial values of""7*) and F{""**)_ | wherel < i < z in such a way that

Y EEP0) + FOEL(0) = FS)L (0) (23)
i=1

is satisfied gives a refinement g#(™ to M®™+2). Combining (20) with (22)
results in

D = by 1<i<j<n+l, (24)
LD = K 1<i<n, 2<j<z  (25)
) = Kt 2<i<z, (26)
) = 2kt 1<i<j<z, (27)
) =k 1<i<n, (28)
) = 2k 1<i<z, (29)
) =k 1<i<n, (30)
) =2k 1<i<z, (31)
lg—f;i—ff)z+z+1 1= Knt1,n41, (32)
e = 2 ks, (33)
lizyj-tig?z+z+2 = kn+17n+1- (34)

Putting together (25), (28) and (30) givéfé,*jrzj.*l) = kinp for1 <i < nand

2 < j < z+ 2; combining (26), (32) and (34) results i ;Z,:Zfl) = knt1nt1
for 2 < i < z 4 2; finally, (27), (29), (31) and (33) can be simply written as
1 = 2k for 1 < i < j < z + 2. Together with (24) this coincides
with (17). Moreover, (23) together with (21) gives (19). Bgroma 2, since
M) refinesmM ™ and M ++1 refinesM™+2), we have thatM =+ js

a refinement of\ (™. This proves the induction hypothesis. O
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3.2 Decreasing the model resolution while preserving the mo
del fit

Let us now consider the reverse problem. Given a self-adgamixlel of certain
resolution, say: + 1, we want to obtain a self-assembly model of resolution
such that the model of resolutien+ 1 constitutes its quantitative refinement. We
refer to this problem as the problem of decreasing modelugsn. As in the
case of increasing model resolution, the ODE systems oethes models are
(3) and (9). However, now the known rate constants are the ohéhe model
of resolutionn + 1, i.e. [;; forall 1 < ¢ < j < n + 2, and the task is to set
appropriately the values of the rate constadnts 1 < i < j < n+ 1 of the model
of resolutionn.

In this presentation we restrict our considerations to #méiqular case where
ki; =1, foralll <i<j <n.Thisisinaccordance with the biological motiva-
tion of the model: species that were modelled explicitlyha briginal model and
continue to be so in the new model should not see their kimneti@nged. From
a mathematical point of view, one could also consider a gérgproach where
the constants; ;, 1 < i < j < n are part of the unknowns. In this case, a similar
approach would be applicable, leading however to more cioatpld equations.

We investigate how to set the remaining constantskj.g., 1 <i <n+1,
so that the quantitative refinement conditions are satisBatce we Want for the
two models to satisfy (4) and (5), based on (3) and the fattitha= I, ; for all
1 <i < j < nthe derivatives o, 1 <i < nand(F1" + F{""})) can be
expressed as

dF(n—H

2

n+1 n+1) (n+1) nl n+1
_ki,n+1Fi( +)(FT§,+—’1_ F>n-:-2 Zlﬂ —J ! F( +)

forall1 <i <n,

dt - Z li’j FZ Fj

1<i<j<n,
i+j>n+1

n+1 n+1
L - kn+1,n+1 (Frs—l——"l_ ) Fﬁn—:—Q)) .

Now, we equalize the right-hand sides in the above systeim thé respective
right-hand sides in the model of resolution+ 1, i.e. (9), where the expressions

for the derivatives o, 7" and \""}) are added up to obtain an expression for

d(F,ET{l) Fﬁﬁlz )/dt. After simplifying we obtain that the rate constahis 1,
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1 <i <n+ 1 have to satisfy

li,n+1 E(n+1) Frgj——il_l) + li,n+2 E(n+1) Fériz—:-IZ)

= (35)

kiar FUD (FAD 4 RO

and
n+1)>2 n+1 n+1 n+1)2
ln+1,n+1 Fé_:l_ + ln+1,n+2 Fé-:l_ ) Fr(z+—’2_ ) + ln+2,n+2 Fén—:a)

= (36)

n+1
kn+l,n+1 (Fr(z-i-—’l_ ) +

independently of time, i.e. at any time pointwheret > 0. We do not reduce
(35) by dividing its sides b)Fi("“) since the variable for a particulammay be
identically zero. In such case the rate constant.; can admit an arbitrary value.
At the same time we notice that if for dll < i < n the variabledfi("“) are not
identically zero, then such reduction can be done withasg & generality and in
this case alk; ,,.; admit the same value.

The variablesFi("“)s are in fact functions of time which constitute a solution
to the system of nonlinear, first-order differential eqoas in (9). Having the
explicit solutions, one could easily check whether therstéx,, 1,1 <i <n+1
such that (35) and (36) are satisfied at any time pbint 0. However, to the
best of our knowledge, obtaining an analytical solution@pif a general case,
i.e. for arbitraryn, is infeasible. Thus, we consider numerical integratiothef
system and propose the following procedure for checkingtdrehe reduction
of resolution in the discussed case can be performed anasif lyow the rate
constants should be set. First, we numerically integrageQBE system for the
model of resolutiom + 1 in (9) to identify alli, 1 < i < n, for which the product
FMY (RO 4 pHD) s identically zero. In all these cases any arbitrary value

n+1
Fﬁn—:-Q))2

)

of the rate constarit; ,,; satisfies (35). For the remainitig we pick a time point

at which the product is non-zero and simply solve (35)Hpy.; at the chosen
time point. Similarly, we solve (36) for the value bf,,+1 at a time point at
which F,E’f{l) + Fﬁ’::; is non-zero. Second, in order to be correct, the values of
the rate constants have to satisfy the refinement conditidth®ut exception at
any arbitrary time point. The correctness can be checkecerigally by setting

the initial values of the:-resolution model as follows

{ EM(0):= F(0), 1<i<n,
n n+1 n+1
Fén)—i-l(o) = Fr(b—i-"l_ )(0) + FéniQ)(O)

and investigating whether the dynamics of the two consaieredels satisfy (4)
and (5). The numerical check provides the ultimate answeithér the resolution
decrease is realizable or not in the discussed case. Nbtiteftthe values of
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the rate constants of the model of resolution- 1, say M ™+ are such that
ln+17n+1 = ln+27n+2, ln+1,n—|—2 = 2ln+1,n+1 andlmﬂ = li,n+2’ forall1 < i < n,
then the decrease of resolution can be simply achieved mgaiathe sides of the
assignments in (6). In particular, A1 *+1 were the result of applying Theorem 1
to a model of resolutiom M), then this way of decreasing the resolution of
M@+ recoversm ™,

4 A case study: the self-assembly of intermediate fil-
aments

One of the characteristics of eukaryotic cells is the eristeof the cytoskeleton
— an intricate network of protein filaments that extendsugtmut the cytoplasm.
It enables the cells to adopt a variety of shapes, interacharecally with the en-
vironment, organize the many components in their intecarty out coordinated
and directed movements. It also provides the machineryntoacellular move-
ments, e.g. transport of organelles in the cytoplasm andegeegation of chro-
mosomes at mitosis ([1, 2]). There are three kinds of prdikeiments that form
the cytoskeleton: actin filaments, intermediate filamelis)(and microtubules.
Each kind has different mechanical properties and is adeehfitom an individ-
ual type of proteins. Actin filaments and microtubules amenked fromglobular
proteins éctinandtubulinsubunits, respectively), whereisrous proteinsare the
building blocks of intermediate filaments ([2, 11]). Thonda of these basic el-
ements assemble into a construction of girders and ropespheads throughout
the cell.

One of the main functions of intermediate filaments is to me\cells with
mechanical strength and they are especially prominentdarcytoplasm of cells
that are exposed to such conditions. For example, IFs aredabtly present along
nerve cells axons where they provide crucial internal tetément of these long
cell extensions. They can also be observed in great numbuausgtle cells and
epithelial cells. IFs are characterized by great tensingth. By stretching and
distributing the effect of locally applied forces, they f@ct cells and their mem-
branes against breaking due to mechanical shear. Compatlednvwerotubules
and actin filaments, IFs are more stable, tough and duralge,remain intact
during exposure of cells to salt solutions and nonionic rdetats, while the rest
of the cytoskeleton is mostly destroyed ([1]).

Intermediate filaments can be grouped into four classekeiBtin filaments
in epithelial cells; (2vimentin filamentsn connective-tissue cells, muscle cells
and supporting cells of the nervous system;n@rofilamentsn nerve cells; and
(4) nuclear laminswhich strengthen the nuclear membrane of all eukaryotis,ce
see [1]. In [15] a quantitative kinetic model for tievitro self-assembly of in-
termediate filaments from tetrameric vimentin was congidef he authors intro-
duced two molecular models (the so-calihpleand extendednodels) of this
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process. In general, the vitro assembly of vimentin IF proteins can be described
as a process consisting of three major phases: (i) formafitme unit-length fil-
aments (ULFs); (ii) longitudinal annealing of ULFs and gmogvfilaments; (iii)
radial compaction of immature @ nm diameter) filaments into maturél(nm
diameter) IFs ([12, 13]). However, in both models of [15] tagt, third phase was
excluded from consideration.

In the case of the simple model from [15], ULFs are treatedrdmary fila-
ments. Moreover, as discussed in [6, 15], the extensioremhéhts with tetramers
plays an insignificant numerical role. This correlates waithexperimental obser-
vation thatin vitro, starting from an initial pool of tetramers, tetramers §lyic
turn into ULFs. Thus, the filament elongation by tetramerisbited in the
beginning by the lack of filaments and later by the lack of teteamers. In con-
sequence, the assembly process is described through tbwifg sequence of
molecular events:

o s, oy Bum om B T
. - 37)
2 ng — ng

whereT; is interpreted as a tetramé@t, as an octamefi; as a hexadecamer and,
finally, 7% is an emerging filament, having at least one ULF.

In [6] and [15] the model is fit to experimental data of [15].€lfaw data con-
sists of four sets, each containing the length distribtioingrowing filaments at
distinct time points up t@0 min. The data sets are obtained for two initial concen-
trations of tetramers, i.€.45,M and0.9uM, in two cases: first, with adsorption
onto carbon-coated copper grids and second, with adsarptito mica support.
The filament length distributions are determined from etectmicroscopy (EM)
images and atomic force microscopy (AFM) images in the finst second case,
respectively. For each set the time-dependent mean fildergth (MFL) is cal-
culated and only the processed data are reported in [15].nTduels in [6, 15]
are capable of reproducing the experimental data on tinpertient dynamics of
the mean filament length, however are unsuitable for capguhie time-dependent
distribution of the filament lengths. In consequence, tharmation carried by the
available experimental data is not utilized to the full et he high resolution of
the data is not incorporated into the models, the predigioxeer of the models is
significantly limited since no predictions about the lengjgtributions in time are
possible, and the models cannot be fully validated agaiesavailable biological
knowledge. This highlights the necessity for high-resolutmodels as a tool for
better understanding of the still little-known process laifient self-assembly. In
order to meet this requirement, we apply our methodologyuaingjtative model
refinement to (37). By increasing the resolution with twowio tsteps we get the
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following models: first

2 T1 — T2 2T2 — T4
2T, X5 T 2Ty Ty (38)
2k ks
Ts + ng — ng QTZQ — ng
and next
k1 ko k3
2T1—)T2 QTQ—)T4 2T4—)T8
ks 2k 2k
2 Tg — TZIO Tg + Tg — TZIO Tg -+ T210 — TZIO
k 2k k
2Ty -4 Toyg To + Ts10 —= To1o 2719 5 Torp.

Note thatTy is not a product of any reaction and it will not become one in an
further refinement of the model. Since in our experimentalipeve havey(0) =

0, it follows that7y(t) = 0 for all ¢t > 0, i.e. reactionsy + Ty — 1519, 27Ty —
Tsq10 andTy + 1519 — 1530 can be eliminated. Thus, the model of resolutkon
coincides with the model of resolutign With the same reasoning, all models of
resolution betweefl and15 are identical. The model of resolutids is however
different:

o, T, 2T, X2 1, 27, X3 T,
kg 2k ky
2Tg — T16 Tg -+ T16 — T217 2 T16 — T217
2k k
Tys + Torr — Touz 2To17 L Torr.

Thus, in a model of resolution, for some arbitraryn > 8, the variables of
the model arely, 1, Ty, Ts, Tig, Toa, ..., Tap, TZn—l—la wherek = |_7’L/8J The
biological interpretation of the variablg;, 1 < i < k, is the species of filament
consisting ofi complete ULFs. Using the terminology of [6] and [15], these a
the filaments of length. Thus, our model of resolution is in fact the model
of resolution|n/8] in terms of the number of complete ULFs included in the
filament. This can be seen by rewriting the model (38) as\idI{with some of
the rate constants renamed):

o7 Ty, 27, 2 T,
2T, B By 2F P, (39)
k
Fi+ Fo % P, 2 Fay 5 Foo,

where F, stands for filament of length (denoted ag in (38)), andF%, stands
for the longer filaments (denoted &s, in (38)). The refinement of this model to
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Rate constant k; ks ks  ku ky, kg
Value 3 30 30 0.25 0.95 0.11

Table 1: Kinetic rate constant values of the extended IFasdembly model with
fast ULF formation (39). The unit |§ﬁ

a higher resolution level, say > 2, can be done as follows:

2Ty — 15
2T, =T,
2T, — Fy
Fi+ I — I
Fi+F, = F i€{2,...,n,>n+1} (40)
Fi+Fi— Fy 2<i1<n
F+F~LFy 2<i<j<n
Fi+Fopy —> Fopyy 2<i<n

Foppr + Foppr — Fopya,

where we adopt the convention that al¢ with indices greater tham are iden-
tified with £, .,. Model (39) has been experimentally validated in [6]. Using
the kinetic constants in Table 1, the numerical behaviouhefmodel correlates
very well with experimental data in [15] on the vitro assembly process of re-
combinant vimentin a37 °C. Next, we refine the model in (39) by setting= 10

in (40). In result we obtained a model of resolutithfor the process o vitro
intermediate filament self-assembly that preserves thererpntal data fit of the
original model. In Figure 1 the dynamics of the overall cartcation of filaments
predicted by (39) and the model of resolutibihare presented. Notice that the
results are identical, which is in complete agreement wigtheoretical delibera-
tions, and there is no need for tedious parameter estimationg the construction
of the high-resolution model.

5 Discussion
In this work we concentrated on model refinement, an impoapect of the
model-building process. In general, the concept of modelement can be de-

scribed as a procedure which, starting with an abstract hod@desystem, carries
out a number of refinement steps which lead to the construofia more detailed
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Figure 1: Comparison between the dynamics of the extendetbhod IFs self-
assembly with fast ULF formation originally introduced i8] [and the refined
version of resolution 0. (a) The original extended model with fast ULF forma-
tion introduced in [6]. The curve shows the concentratiorthef intermediate
filaments of any length in time. (b) The refined version withaletion10. The
colour curves of the subplot show the dynamics of IFs of leadtom the set
{1,...,10} and the overall concentration of filaments of length grettan10.
The black curve in the main plot is obtained by summing theceatrations in
time of filaments of length to 10 and those of length greater thaih Notice that
the two models predict identical overall concentrationkes in time.
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model. At the same time, in order to be correct, the refinemtmarchanism should
be capable of preserving already proven system propeiiithe @riginal model,
e.g. model fit, stochastic semantics, etc. In particulagunstudy we focused
on the issue of refining an ODE model describing the proceselbfassembly.
We introduced the notion of model resolution and showed l@arésolution can
be both increased and decreased while satisfying the comdit preserving the
model fit. Moreover, we showed how the technique can be apmian existing
model: we considered the case-study of self-assembly efrirediate filaments.

Restricted sets of reactions There are two ways of restricting the set of reac-
tions of a generic self-assembly model: either by considepist the intended
subset of all possible reactions or by setting to zero thetldrrate constants for
those reactions that are not taking place. It is worth nagi¢hat in both cases
the refinement procedure will lead to the correct, expectedah in the first case
none of the unwanted reactions will be introduced to the nedehand in the
second case all the new reactions related through the redimetm the original
reactions with the rate constant set to zero will remaintiaeci.e. their rate
constants will be zero as well.

Models of infinite resolution In this study we discussed the refinement of a self-
assembly model of resolutionto the model of resolution + m, wheren and

m are some fixed positive integers. One could however think mfi@ement

to the model of infinite resolution. Although we believe tloatr methodology
would work also in this case, formal theoretical consideret of this issue are
much more intricate. Already at the stage of writing the etiétial equations
of the model one needs to make sure that the appearing infiumition series
are convergent. For example, let us consider a model ofutsolo, i.e F' +

J N F, and refine it to a model of infinite resolution by assumingdonadance
with our methodology that; ; := 2k for1 < ¢ < j < oo andk;; := k for

1 < i < oo. The solution to the ODE model associated with theesolution
model, i.e.dF/dt = —kF?(t), can be obtained analytically?(t) = F(0)/(1 +

kt F(0)). In the case of the infinite resolution model one alreadysacproblem

of function series convergence while writing the differahéquations foir;s. For
each fixed;, the expression for the derivativig; /d¢ contains a finite number of
termsk; ; F; F; wherel+j = i with 1 <[ < j <4, and an infinite number of terms
—k; ;F;Fy wherej > 1. The trouble is whether the infinite serigs” , k; ;i Fj is
convergent for alt > 0 or whether the terms can be reordered in such a way that
the requirement of convergence is satisfied. The difficglipcreased by the fact
that the explicit formulas fof;s are unknown. Further, in order for the refinement
to be correct, the infinite function serigs;” | F;(¢) has to be convergent (),

ie.> 2 Fi(t) = F(t). If Y2, dF;(t)/dt were uniformly convergent, one could
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write .
dF/dt = " dFy(t)/dt. (41)

In order to check whether the refinement condition is satisfievould be enough
to verify (41) and make sure that >, F;(0) = F(0). To this aim, by the refine-
ment condition, the left-hand side in (41) could be written a

dF/dt = —k(i zn: F,_iF}),

n=1 i=1

where the Cauchy product ¢b >, F;(t))* is considered. Now, satisfiability
of (41) could be checked by proper reordering of the termshenhbioth sides
of (41). However, prior to this, one would need to make suet #fl the conver-

gence conditions required by such reorderings are fulfilé just signal this

issue here without providing a solution to this interestingblem and leave it for
further investigation.

Related work The discussed methods for decreasing and increasing thle+es
tion of self-assembly ODE models can be viewed as exampladagtations of
formal model refinement techniques from the field of compsitégnce to systems
biology. To the best of our knowledge, formal model refinetrieas not been ex-
plored much in the context of systems biology and this is tte fime that it is
considered in relation to computational ODE-based modasne attempts have
been made previously in the case of the rule-based formadisen[7, 21], where
the authors consider a process calledrtile refinementlt is a method to refine
rule sets in such a way that the stochastic semantics, elictat the number of
different ways in which a given rule can be applied to a sysismpreserved. It is
shown how to refine rules and how to choose the refined ratdsasdhie global
dynamics of the original and refined systems are the samembBog details we
refer to [7, 21].

In Section 3.1, we discussed the numerical choices for tteec@nstants of
the refined self-assembly model and we presented the boaloigasis for them.
However, in general, when considering refinement of reastaescribing assem-
bly of larger and lager complexes, one could think of degvilne rate constants
based on physical deliberations, i.e. try to estimate h@stbe of the complexes
influences the binding rates. Such an attempt was originadgle in [20], where
the collision probabilities in the stochastic approachhternical kinetics were re-
calculated with taking into account the change in the magkesmplexes under
formation. However, the solution presented in [20] is nanptetely satisfactory
due to the following two assumptions it is based on: i) raatstare shaped like
balls, and, especially, ii) the diameter of the balls repnéisg larger complexes
is the same as the diameter of the balls representing snrmajple@es. Neverthe-
less, this approach seems to have the potential to be dextlogher to correctly

21



address the problem of relationship between rate consténgsctions involving
reactants of same type but different sizes. We leave thesasting problem for
further investigation.
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