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Abstract

The multiobjective DC optimization problems arise naturally, for example, in
data classification and cluster analysis playing a crucial role in data mining. In
this paper, we propose a new multiobjective double bundle method designed for
nonsmooth multiobjective optimization problems having objective and constraint
functions which can be presented as a difference of two convex (DC) functions.
The method is descent and it generalizes the ideas of the double bundle method
for multiobjective and constrained problems. We utilize the special cutting plane
model angled for the DC improvement function such that the convex and the con-
cave behaviour of the function is captured. The method is proved to be finitely
convergent to a weakly Pareto stationary point under mild assumptions. Finally,
we consider some numerical experiments and compare the solutions produced by
our method with the method designed for general nonconvex multiobjective prob-
lems. This is done in order to validate the usage of the method aimed specially for
DC objectives instead of general nonconvex method.

Keywords: Multiobjective optimization, Nonsmooth optimization, Nonconvex
optimization, DC programming, Bundle methods
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1 Introduction

Multiobjective optimization problems arise naturally in the wide range of practi-
cal applications, since the objectives under the scope are usually simultaneously
related to various goals. Thus, compromises have to be made in order to obtain
a solution being as good as possible for every objective. The real-life applica-
tions for multiobjective optimization can be found, for instance, in the fields of
economics [32], engineering [29], and mechanics [30], to name but a few. Along
with multiobjective nature, many practical applications have nonsmooth (i.e. non-
differentiable) characteristics.

This paper focuses on multiobjective nonsmooth optimization, and the partic-
ular interest is in descent methods. The essential feature of a descent method is
the ability to obtain a better solution for each objective at every iteration. In liter-
ature, there are some nonsmooth descent methods for convex (see e.g. [4, 5, 18])
and for nonconvex (see e.g. [25, 28, 35, 40]) multiobjective problems. A descent
method can be used either by running it repeatedly from different starting points
and, therefore, obtain an approximation of the set of optimal solutions, or as a
component of some interactive method [27, 28, 31].

A wide subclass of nonconvex functions is formed by the functions having
special structure such that they can be decomposed as a difference of two con-
vex functions. These functions are called DC functions. The benefit of the
DC functions springs from the ability to utilize the convex analysis and the fact
that many functions can be expressed as a DC function. The DC decomposi-
tion is not unique, and unfortunately, it might be hard to single out. In practice,
the problems with objectives in explicit DC form arise, for instance, in cluster-
ing [3], spherical separability problems [9], production-transportation planning
[12], and wireless sensor network planning [1]. There exists a lot of studies
dedicated to the theory of the DC functions (see e.g. [10, 11, 39]) and to de-
velop single-objective methods for the DC objectives from the different bases (see
e.g. [7, 13, 15, 16, 20, 21, 33, 37]). However, the DC functions as the objectives of
the multiobjective optimization problem has attracted significantly less attention.
In [8, 34, 38], there are presented optimality conditions for the multiobjective DC
optimization problem. Additionally, few proximal point methods in [14] have
lately come to light.

The aim of this paper is to bring together two areas of optimization and to
design a new descent multiobjective method with DC objectives being able to
handle DC constraints. The new multiobjective double bundle method for DC
functions (MDBDC) utilizes the DC structure of the objective and the constraint
functions. The method is inspired by the good numerical performance of the
single-objective double bundle method for DC functions (DBDC) [16] and its
ability to find global solutions although it is only a local method.

The basic idea of MDBDC is to combine the main features of DBDC with the
use of the improvement function [18, 40] as, for instance, in the multiobjective
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proximal bundle method (MPB) [25, 28]. Along with the sketch of the method, we
prove the finite convergence of MDBDC to the weakly Pareto stationary solution
under mild assumptions. By the authors’ best knowledge, there does not exist
any other specially for multiobjective DC optimization designed descent method
such that weak Pareto stationarity of the solutions can be ensured instead of Pareto
criticality. We analyze the numerical performance of MDBDC, and compare the
results obtained by MDBDC with the ones obtained by MPB. MPB is used, since
it is a method for a problem with general nonconvex objectives having somehow
similar structure than our method. The purpose of this comparison is to motivate
the use of the method designed specially for the DC objectives instead of the
general nonconvex method.

The remainder of the paper is organized as follows. A brief summary of the
relevant material on multiobjective and DC optimization is given in Section 2.
Section 3 is devoted to derive the new MDBDC method and to prove its conver-
gence. In Section 4, we investigate the numerical properties of MDBDC. Finally,
in Section 5 some concluding remarks are given.

2 Preliminaries

We consider a multiobjective DC optimization problem of the form

min
x∈X

f1(x), . . . , fk(x), (1)

where X = {x ∈ Rn | gl(x) ≤ 0, l ∈ L} and L = {1, . . . ,m}. Additionally,
the set I = {1, . . . , k} denotes the indices of the objectives. The objectives fi :
Rn → R, i ∈ I and the constraints gl : Rn → R, l ∈ L are assumed to be DC
functions. A function f is a DC function if it can be decomposed as a difference
of two convex functions p : Rn → R and q : Rn → R such that f = p − q. This
is called a DC decomposition of f , where p and q are DC components.

The objectives and the constraints of the problem (1) may be nonsmooth. If
a DC function is nonsmooth, then at least one of the DC components is nons-
mooth. Based on the DC structure, DC functions are locally Lipschitz continuous
at x ∈ Rn (LLC) [11] meaning that there exist a Lipschitz constant K > 0 and
ε > 0 such that |fi(y)−fi(z)| ≤ K‖y−z‖ for all y, z ∈ B(x; ε),whereB(x; ε)
is an open ball with a center x and a radius ε.

Next we briefly recall relevant results from nonsmooth, DC and multiobjective
optimization. For more details we refer to [2, 6, 11, 24, 27, 39]. We begin with
two useful properties of DC functions. First, if f is of the form

f(x) = max
{
fj(x)

∣∣ j ∈ J ,J is finite and fj is a DC function
}
, (2)

then f is a DC function [11]. Second, for a DC function f , there exists the direc-
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tional derivative f ′(x;d) at x ∈ Rn in every direction d ∈ Rn [11] and

f ′(x;d) = lim
t↓0

f(x+ td)− f(x)

t
.

Thus, a DC function is said to be directionally differentiable at any x.
The subdifferential of a convex function f at the point x ∈ Rn is

∂cf(x) = {ξ ∈ Rn | f(y) ≥ f(x) + ξT (y − x) for all y ∈ Rn}

being a nonempty, convex and compact set. The element ξ ∈ ∂cf(x) is called a
subgradient of f at x. Additionally, for a convex function f and all d ∈ Rn at x
(see e.g. [2])

f ′(x;d) = max {ξTd | ξ ∈ ∂cf(x)}. (3)

We give the following two useful subdifferential calculus rules [2] for convex
functions. First, if f is the sum of convex functions fj , j ∈ J such that J is finite,
then

f(x) =
∑
j∈J

fj(x) and ∂cf(x) =
∑
j∈J

∂cfj(x). (4)

Second, we can obtain the subdifferential of f of the form (2) where fj involved
are convex with

∂cf(x) = conv {∂cfj(x) | j ∈ J (x)}, (5)

where conv denotes the convex hull of the set andJ (x) = {j ∈ J | fj(x) = f(x)}
is a set of active constraints.

The generalized subdifferential of a LLC function f at x ∈ Rn is [6]

∂f(x) = conv
{

lim
i→∞
∇f(xi) |xi → x and∇f(xi) exists

}
.

If f is convex, then ∂f(x) coincides with ∂cf(x).
The well-known necessary local optimality condition for unconstrained single-

objective optimization with a LLC objective f at x∗ ∈ Rn is that 0 ∈ ∂f(x∗).
The point x∗ is called Clarke stationary if this condition holds. Moreover, if f
is convex, then the condition ensures global optimality. For the unconstrained
single-objective DC problem with the objective f = p − q, if x∗ ∈ Rn is a local
optimum for this problem, then ∂q(x∗) ⊆ ∂p(x∗) [39]. Since this condition is
hard to verify in practice, the relaxed condition

∂p(x∗) ∩ ∂q(x∗) 6= ∅ (6)

is often used [39] and x∗ satisfying this is called a critical point. If x∗ is Clarke
stationary, then it is also critical.
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Next we consider the concept of optimality in constrained multiobjective op-
timization. The solution x∗ ∈ X is a global Pareto optimum for the problem (1)
if there does not exist another solution x ∈ X such that fi(x) ≤ fi(x

∗) for all
i ∈ I and fj(x) < fj(x

∗) for at least one j ∈ I. The solution x∗ ∈ X is a global
weak Pareto optimum for the problem (1), if there does not exist another solution
x ∈ X such that fi(x) < fi(x

∗) for all i ∈ I. Moreover, x∗ ∈ X is a local (weak)
Pareto optimum if there exists δ > 0 such that x∗ ∈ X is a global (weak) Pareto
optimum on X ∩B(x∗; δ). Based on the above definitions, every Pareto optimum
is a weak Pareto optimum.

In order to give an optimality condition for the constrained multiobjective
problem, we define some concepts related to cones of the set S ⊆ Rn [2]. First,
a set S is a cone if λx ∈ S for all λ ≥ 0 and x ∈ S. We denote by rayS =
{λs |λ ≥ 0, s ∈ S} and coneS = ray convS. Furthermore, we define a contin-
gent cone at x ∈ S and a polar cone, respectively,

KS(x) = {d ∈ Rn | there exist ti ↓ 0 and di → d with x+ tidi ∈ S},
S≤ = {d ∈ Rn | sTd ≤ 0, for all s ∈ S}.

Throughout the paper, we denote by

F (x) =
k⋃
i=1

∂fi(x) and G(x) =
⋃

l∈L(x)

∂gl(x),

where L(x) = {l ∈ L | gl(x) = 0}. In the following, we state a necessary condi-
tion for local weak Pareto optimality.

Theorem 2.1. [24] If x∗ ∈ X is a local weak Pareto optimum for the problem
(1), and the constraint qualification G≤(x) ⊆ KX(x) holds, then

0 ∈ conv F (x∗) + cl cone G(x∗), (7)

where cl is a closure of the set.

If the point x∗ satisfies the condition (7), then it is called weakly Pareto stationary.

3 Multiobjective double bundle method for DC func-
tions

In this section, we describe with details the new multiobjective double bundle
method (MDBDC) solving multiobjective optimization problems (1) with DC
functions as objectives and constraints. The method is descent, since it improves
all the objectives simultaneously at every iteration.

The basic idea of MDBDC is to use the same framework as the multiobjective
proximal bundle method (MPB) [25, 28]. We use the strategy for handling several
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objectives and constraints basing on the techniques in [18, 25, 40]. With this
strategy, we transform the multiobjective problem to a single-objective one. After
that, we employ a new cutting plane model similar to the one used in the proximal
bundle method for DC functions (PBDC) [15]. This model uses explicitly the DC
decomposition of the new objective in order to capture both the convex and the
concave behaviour of it. Finally, we modify the double bundle method for DC
functions (DBDC) [16] to solve the single-objective problem and to obtain the
weakly Pareto stationary solution for the original multiobjective problem (1).

3.1 Cutting plane model for DC functions and direction finding
We define the improvement function H : Rn × Rn → R [18, 40] by

H(x,y) = max{fi(x)− fi(y), gl(x) | i ∈ I, l ∈ L}. (8)

Since H( · ,y) is a maximum of DC functions, it is a DC function and its DC
decomposition can be obtained as in [11]. Let the DC decompositions of fi and gl
be fi = pi − qi for all i ∈ I and gl = rl − sl for all l ∈ L. The functions fi and gl
can be rewritten as

fi(x) = pi(x) +
k∑
j=1
j 6=i

qj(x) +
m∑
l=1

sl(x)−
k∑
j=1

qj(x)−
m∑
l=1

sl(x)

gl(x) = rl(x) +
m∑
j=1
j 6=l

sj(x) +
k∑
i=1

qi(x)−
k∑
i=1

qi(x)−
m∑
j=1

sj(x).

In order to simplify the notations, we denote

Ai(x,y) = pi(x) +
k∑
j=1
j 6=i

qj(x) +
m∑
l=1

sl(x)− fi(y) and (9)

Bl(x) = rl(x) +
m∑
j=1
j 6=l

sj(x) +
k∑
i=1

qi(x).

Now the DC decomposition of H( · ,y) can be written as H(x,y) = H1(x,y)−
H2(x), where

H1(x,y) = max{Ai(x,y), Bl(x) | i ∈ I, l ∈ L} and (10)

H2(x) =
k∑
i=1

qi(x) +
m∑
l=1

sl(x)
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and both H1( · ,y) and H2 are convex respect to x. Throughout the paper, the
vector y in (8)–(10) is treated as a constant. Therefore, for instance, ∂H(x,y) is
calculated respect to x.

The improvement function H( · ,y) has the following elementary properties
[25, 40] justifying the name and the use of it.

Theorem 3.1. The improvement function H( · ,y) (8) has the following proper-
ties:

(i) If H(x,y) < H(y,y), x,y ∈ Rn, then fi(x) < fi(y) for all i ∈ I and
gl(x) < 0 for all l ∈ L.

(ii) If the solution x∗ ∈ X is a global weak Pareto optimum of the problem (1),
then

x∗ = arg min
x∈Rn

H(x,x∗).

(iii) If 0 ∈ ∂H(x∗,x∗), then the solution x∗ ∈ X of the problem (1) is weakly
Pareto stationary.

Proof. (i) The claim follows immediately from the definition of H( · ,y) (8).
(ii) Assume that the solution x∗ is a global weak Pareto optimum of the problem
(1). Thus, x∗ ∈ X implying that gl(x∗) ≤ 0 for all l ∈ L. Hence, H(x∗,x∗) = 0.

Suppose, contrary to our claim, that x∗ 6= arg minx∈Rn H(x,x∗). Now there
exists y∗ ∈ Rn such thatH(y∗,x∗) < H(x∗,x∗) = 0. Based on (i), we know that
fi(y

∗) < fi(x
∗) for all i ∈ I and gl(y∗) < 0 for all l ∈ L meaning that y∗ ∈ X .

But this contradicts the assumption that x∗ is a globally weakly Pareto optimal
solution for the problem (1).
(iii) According to Theorem 3.23 in [2] and Lemma 2.10 in [24], we obtain

0 ∈ ∂H(x∗,x∗) = conv
{
F (x∗) ∪ G(x∗)

}
⊆ conv

{
convF (x∗) ∪ convG(x∗)

}
=
{
λ convF (x∗) + (1− λ) convG(x∗) |λ ∈ [0, 1]

}
.

Thus there exists λ∗ ∈ [0, 1] such that 0 ∈ convF (x∗) + cl coneG(x∗). Indeed,
if λ∗ ∈ (0, 1], we observe

0 ∈ convF (x∗) +
1− λ∗

λ∗
convG(x∗)

⊆ convF (x∗) + ray convG(x∗)

= convF (x∗) + coneG(x∗)

⊆ convF (x∗) + cl coneG(x∗).

On the other hand, if λ∗ = 0, then

0 ⊆ convG(x∗) ⊆ coneG(x∗) ⊆ convF (x∗) + cl coneG(x∗).

Therefore, x∗ satisfies the condition (7) implying weak Pareto stationarity of x∗.
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In the following, the index h relates to the h-th iteration and the current it-
eration point is denoted by xh ∈ Rn. We assume, that at each auxiliary point
yj ∈ Rn from the previous iterations, we can evaluate pi(yj), qi(yj), rl(yj), and
sl(yj) and arbitrary ξp,i(yj) ∈ ∂pi(yj), ξq,i(yj) ∈ ∂qi(yj), ξr,l(yj) ∈ ∂rl(yj),
and ξs,l(yj) ∈ ∂sl(yj) for all i ∈ I and l ∈ L. From these, Ai(yj,xh), Bl(yj),
H1(yj,xh), and H2(yj) can be composed by using formulas (9)–(10). Due to
the convexity, their subgradients ai, bl, h1, and h2, respectively, are obtained by
using the subdifferential calculus rules (4) and (5).

We collect information from the previous iterations into separate bundles. The
bundles corresponding to Ai( · ,xh) and Bl are

BhA,i =
{

(yj, Ai(yj,xh),ai,j) | j ∈ Jh1
}

and (11)

BhB,l =
{

(yj, Bl(yj), bl,j) | j ∈ Jh1
}

for all i ∈ I , l ∈ L, where ai,j ∈ ∂Ai(yj,xh) and bl,j ∈ ∂Bl(yj) are the arbitrary
subgradients and Jh1 is the set of indices. Moreover, we define bundles

BhA =
k⋃
i=1

BhA,i, BhB =
m⋃
l=1

BhB,l, and Bh1 = BhA
⋃
BhB.

For every j ∈ Jh1 , we have one element in the bundle Bh1 corresponding to the
triplet (yj, H1(yj,xh),h1,j), where h1,j ∈ ∂H1(yj,xh). The bundle related to
H2 is

Bh2 =
{

(yj, H2(yj),h2,j) | j ∈ Jh2
}
, (12)

where h2,j ∈ ∂H2(yj) and Jh2 is the set of indices. Note that the only restriction
for the bundles Bh1 and Bh2 is that they must contain the triplets related to the
current iteration point xh.

In the spirit of Theorem 3.1, we derive a method producing solutions x∗ ∈ X
such that 0 ∈ ∂H(x∗,x∗). First, our aim is to find a search direction dh ∈ Rn by
solving the problem

min
d∈Rn

H(xh + d,xh). (13)

In order to approximate the problem (13), we utilize the cutting plane model bas-
ing on the one presented in [15]. With this new model, we can take into account
both the convex and the concave behaviour of H( · ,xh) by linearizing its DC
components separately.

The convex DC components of H( · ,xh) can be linearized by using the clas-
sical cutting plane model [19, 26, 36]. We linearize all the components Ai( · ,xh)
and Bl(xh) of the first DC component H1( · ,xh):

Âhi (x) = max
j∈Jh

1

{
Ai(xh,xh) + aTi,j(x− xh)− αAi,j

}
and

B̂h
l (x) = max

j∈Jh
1

{
Bl(xh) + bTl,j(x− xh)− αBl,j

}
,

7



where ai,j ∈ ∂Ai(yj,xh) and bl,j ∈ ∂Bl(yj) for j ∈ Jh1 . The linearization errors
evaluated at xh for all j ∈ Jh1 are

αAi,j = αAi (xh,yj) = Ai(xh,xh)− Ai(yj,xh)− aTi,j(xh − yj) for all i ∈ I,
αBl,j = αBl (xh,yj) = Bl(xh)−Bl(yj)− bTl,j(xh − yj) for all l ∈ L.

Additionally, for each j ∈ Jh1 we denote by αH1,j the linearization error associated
with the triplet (yj, H1(yj,xh),h1,j) ∈ Bh1 . Thus, the linearization of the first DC
component H1 is

Ĥh
1 (x) = max{Âhi (x), B̂h

l (x) | i ∈ I, l ∈ L}. (14)

Similarly, we can linearize the second DC component H2 by

Ĥh
2 (x) = max

j∈Jh
2

{H2(xh) + hT2,j(x− xh)− αH2,j}, (15)

where h2,j ∈ ∂H2(yj) for j ∈ Jh2 and the linearization error evaluated at xh for
all j ∈ Jh2 is

αH2,j = αH2 (xh,yj) = H2(xh)−H2(yj)− hT2,j(xh − yj).

Furthermore, all the linearization errors are nonnegative [19].
Finally, we approximate H( · ,xh) by combining the convex cutting plane

models of its DC components. Thus, we obtain the following piecewise linear,
nonconvex DC approximation of H( · ,xh):

Ĥh(x) = Ĥh
1 (x)− Ĥh

2 (x).

The problem (13) is now estimated with the nonsmooth, nonconvex, and quadratic
DC problem

min
d∈Rn

P h(d) = Ĥh
1 (xh + d)− Ĥh

2 (xh + d) +
1

2t
‖d‖2, (16)

where t > 0 is a proximity parameter used widely at bundle methods while the
convex stabilizing term 1

2t
‖d‖2 keeps the approximation local enough and ensures

the existence of the search direction. The search direction obtained as a solution
of the problem (16) is denoted by dht .

We give the following properties making it legitimate to apply the new cutting
plane model Ĥh.

Lemma 3.2. The following properties hold:

(i) Ĥh
1 (xh + d) ≤ H1(xh + d,xh) and Ĥh

2 (xh + d) ≤ H2(xh + d).

(ii) For any t > 0, we have Ĥh(xh + dht )−H(xh,xh) ≤ − 1
2t
‖dht ‖2 ≤ 0.
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Proof. (i) These follow immediately from the definition of the cutting plane model.
(ii) For the feasible solution d′ = 0 of the problem (16), Ĥh

1 (xh+0) ≤ H1(xh,xh)
and

Ĥh
2 (xh + 0) = max

j∈Jh
2

{H2(xh)− αH2,j} = H2(xh),

since xh is included in Bh2 implying that there exists at least one j ∈ Jh2 such that
αH2,j = 0. Thus,

Ĥh(xh + d′) +
1

2t
‖d′‖2 = Ĥh

1 (xh + 0)− Ĥh
2 (xh + 0)

≤ H1(xh,xh)−H2(xh) = H(xh,xh),

and for the global solution dht of the problem (16), we obtain

Ĥh(xh + dht ) +
1

2t
‖dht ‖2 ≤ Ĥh(xh + d′) +

1

2t
‖d′‖2 ≤ H(xh,xh).

The solution dht of the problem (16) can be shown to be always bounded.

Lemma 3.3. For any proximity parameter t > 0, it holds that

‖dht ‖ ≤ 2t
(
‖h1(xh)‖+ ‖h2,max‖

)
,

where h1(xh) ∈ ∂H1(xh,xh) and ‖h2,max‖ = maxj∈Jh
2
{‖h2,j‖}.

Proof. Our proof begins with the following observation basing on the definition
of Ĥh

2 (15):

Ĥh
2 (xh + d) ≤ H2(xh) + max

j∈Jh
2

{
hT2,jd

}
≤ H2(xh) + ‖h2,max‖‖d‖. (17)

Now the element (xh, H1(xh,xh),h1(xh)), where h1(xh) ∈ ∂H1(xh,xh),
belongs to the bundle Bh1 , and from the definition of Ĥh

1 (14), it follows that for
all d ∈ Rn

Ĥh
1 (xh + d) ≥ H1(xh,xh) + h1(xh)

Td− αH1 (18)

= H1(xh,xh) + h1(xh)
Td,

where αH1 is the linearization error associated to (xh, H1(xh,xh),h1(xh)) and it
is equal to zero.

By combining (17) and (18) we obtain

Ĥh(xh + d) = Ĥh
1 (xh + d)− Ĥh

2 (xh + d)

≥ H1(xh,xh)−H2(xh) + h1(xh)
Td− ‖h2,max‖‖d‖

≥ H(xh,xh)−
(
‖h1(xh)‖+ ‖h2,max‖

)
‖d‖
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for all d ∈ Rn. According to Lemma 3.2 (ii),

− 1

2t
‖dht ‖2 ≥ Ĥh(xh + dht )−H(xh,xh) ≥ −

(
‖h1(xh)‖+ ‖h2,max‖

)
‖dht ‖

implying the statement.

In order to solve globally the direction finding problem (16), we notice that the
DC components of P h are Ĥh

1 (xh + d) + 1
2t
‖d‖2 and Ĥh

2 (xh + d). Furthermore,
the second DC component Ĥh

2 is polyhedral convex meaning that Ĥh
2 is of the

form max{uTkx − vk | k ∈ K}, where uk ∈ Rn, vk ∈ R, and K is finite. Thus,
we employ the solution approach presented in [20, 21, 33] to obtain the global
solution of the problem (16).

We can reformulate the objective function P h of the problem (16) by recalling
(15) in the form

P h(d) = min
j∈Jh

2

{
P h
j (d) = Ĥh

1 (xh + d)−H2(xh)− hT2,jd+ αH2,j +
1

2t
‖d‖2

}
.

Therefore, we obtain

min
d∈Rn

min
j∈Jh

2

{
P h
j (d)

}
= min

j∈Jh
2

min
d∈Rn

{
P h
j (d)

}
,

and for this reason, the order of the minimization can be changed in the problem
(16). Thus, due to the size of the bundle Bh2 , we solve |Jh2 | convex, nonsmooth
subproblems for j ∈ Jh2

min
d∈Rn

P h
j (d) = Ĥh

1 (xh + d)−H2(xh)− hT2,jd+ αH2,j +
1

2t
‖d‖2, (19)

and the solution of the subproblem j ∈ Jh2 is denoted by dht (j). Moreover, the
overall global solution dht of the problem (16) is dht = dht (j

∗), where the index
j∗ = arg min

{
P h
j

(
dht (j)

)
| j ∈ Jh2

}
. In practice, the size of Bh2 can be freely cho-

sen such that |Jh2 | ≥ 1, and therefore we can control the amount of computation.
The solution process can be eased by rewriting (19) as a smooth problem and
solving its dual.

3.2 Guaranteeing weak Pareto stationarity
Many methods for single-objective DC optimization with the objective f = p− q
stop after finding a critical point x′ ∈ Rn satisfying (6), since the stronger neces-
sary optimality condition ∂q(x∗) ⊆ ∂p(x∗) for a local optimum x∗ ∈ Rn is hard
to verify in practice. Reason for this is that we usually do not know, or cannot
calculate, the whole subdifferentials of DC components. Whenever x′ is critical,
then 0 ∈ ∂p(x′)− ∂q(x′). However, the subdifferential calculus [6] only implies

∂f(x′) ⊆ ∂p(x′)− ∂q(x′), (20)

10



where the equality holds if either p or q is differentiable at x′. Hence, we might
end up with a solution such that 0 ∈ ∂p(x′) − ∂q(x′) but 0 /∈ ∂f(x′). Due to
this, x′ might not be a local optimum or even a saddle point. Therefore, criticality
is a weaker condition than Clarke stationarity 0 ∈ ∂f(x∗) for a local optimum
x∗ ∈ Rn, which is often obtained in nonconvex optimization.

This kind of observation can be made in multiobjective optimization as well by
comparing weak Pareto stationarity (7) with the multiobjective Pareto criticality
condition given in [14]: in the unconstrained case, the solution x′ ∈ Rn is called
Pareto critical if

0 ∈ conv {∂pi(x′)− ∂qi(x′) | i ∈ I}. (21)

Indeed, it is easy to see that a weakly Pareto stationary point x∗ satisfies

0 ∈ conv {∂fi(x∗) | i ∈ I} ⊆ conv {∂pi(x∗)− ∂qi(x∗) | i ∈ I},

by applying (20) to (7). Thus, weak Pareto stationarity implies Pareto criticality.
However, the inverse does not necessarily hold. Consider the unconstrained

case of the problem (1) with two objectives having DC components as follows:

p1(x) = max{−x, 2x}, q1(x) = max{−2x, x},
p2(x) = max{x2, x}, q2(x) = max{0.5x2,−x},

where x ∈ R. In order to verify the condition (21), we consider the point x′ = 0
and check whether the intersection

λ∂p1(x
′) + (1− λ)∂p2(x

′) ∩ λ∂q1(x
′) + (1− λ)∂q2(x

′)

is an empty set or not. With λ = 1, the intersection is [−1, 2] ∩ [−2, 1] = [−1, 1].
This set is nonempty, and thus, the point x′ is Pareto critical. On the other hand,
0 /∈ conv {∂f1(x′), ∂f2(x′)} = {1}, and thus x′ is not weakly Pareto stationary.

In order to avoid the bad behaviour of Pareto critical points, we ensure weak
Pareto stationarity in MDBDC. By Theorem 3.1 (iii), a point x∗ ∈ Rn is weakly
Pareto stationary, if 0 ∈ ∂H(x∗,x∗), or in other words, if x∗ is Clarke stationary
for H( · ,x∗). Thus, it is sufficient to consider the single-objective DC problem
(13). Since we utilize only the DC structure of this problem, a natural approach
would be to verify the criticality condition (6). However, Clarke stationarity is
harder to obtain, and to achieve this, we apply the stopping procedure presented
in [16]. The beauty of this procedure lies in its ability to ensure that ξ1 − ξ2
such that ξ1 ∈ ∂p(x), ξ2 ∈ ∂q(x) belongs to the subdifferential of f = p − q at
x ∈ Rn. Moreover, if a point is not Clarke stationary, then the procedure generates
a descent direction.

We describe here only the most essential parts of this procedure, and all the
results presented regarding this procedure are valid for any DC function even if
we give them here for H( · ,y) = H1( · ,y) − H2. For more details we refer to
[16]. The stopping procedure needs one mild assumption holding in nearly all
practical applications:

11



A1 : The subdifferentials ∂H1(x,y) and ∂H2(x) are polytopes for each x ∈ Rn.

Recall that the directional derivative of a convex function can be written like
(3). Now we denote the directional derivatives of H1(x,y) and H2(x) respect to
x ∈ Rn in the direction d ∈ Rn by

H ′1(x;d) = max {wTd |w ∈ ∂H1(x,y)} and

H ′2(x;d) = max {wTd |w ∈ ∂H2(x)}.

For any d ∈ Rn, d 6= 0, we define the sets

σ1(x,y;d) = {ξ ∈ ∂H1(x,y) | ξTd = H ′1(x;d)} and

σ2(x;d) = {ξ ∈ ∂H2(x) | ξTd = H ′2(x;d)}.

Furthermore, let TDC be a set of full measure at the point x ∈ Rn such that
σ1(x,y;d) and σ2(x;d) are singletons for any d ∈ TDC .

Theorem 3.4. [16] Let x,y ∈ Rn, d ∈ TDC , σ1(x,y;d) = {ξ1} and σ2(x;d) =
{ξ2}. Then ξ1 − ξ2 ∈ ∂H(x,y)

Based on this result, in order to compute ξ ∈ ∂H(x,y) utilizing the DC compo-
nents, we need to find for any d ∈ Rn a direction d̄ ∈ TDC such that ‖d− d̄‖ < δ
for any sufficiently small δ ∈ (0, 1).

The stopping procedure guaranteeing Clarke stationarity bases on the follow-
ing result:

Theorem 3.5. [16] Let x ∈ Rn, d ∈ Rn be any direction such that d 6= 0 and
the assumption A1 be valid. Then for a given v ∈ V , where V = {v ∈ Rn |v =
(v1, . . . , vn), |vi| = 1, i = 1, . . . , n}, there exists α0 ∈ (0, 1] such that for all
α ∈ (0, α0]:

(i) d̄(α) = d+ en(α) ∈ TDC , where en(α) = (αv1, α
2v2, . . . , α

nvn).

(ii) σ1(x,y; d̄(α)) ⊂ σ1(x,y;d) ⊆ ∂H1(x,y) and σ2(x; d̄(α)) ⊂ σ2(x;d) ⊆
∂H2(x) for all y ∈ Rn.

(iii) ξ1 − ξ2 ∈ ∂H(x,y) for ξ1 ∈ σ1(x,y; d̄(α)), ξ2 ∈ σ2(x; d̄(α)), and all
y ∈ Rn.

In order to estimate the subdifferential ∂H(x,y), we briefly introduce the
Goldstein ε-subdifferential for the improvement function H [26]:

∂Gε H(x,y) = cl conv{∂H(z,y) | z ∈ B(x; ε)}.

Thus ∂H(x,y) ⊆ ∂Gε H(x,y) for each ε ≥ 0 and the smaller the parameter ε
is, the better estimate we get. In Algorithm 1, D1 = {d ∈ Rn | ‖d‖ = 1} is
a unit sphere in Rn and the set Uj is an approximation of ∂Gε H(x,y) such that
Uj ⊂ ∂Gε H(x,y) for all iterations j ≥ 0.

12



Algorithm 1 Guaranteeing Clarke stationarity
Data: The point x ∈ Rn under consideration, the descent parameter m1 ∈ (0, 1),
the stopping tolerance δ ∈ (0, 1), and the proximity measure ε > 0.

Step 0. (Initialization) Select the direction d0 ∈ D1 and find d̄0(α) ∈ TDC at x
using d0. Compute ξ1 ∈ σ1(x,x; d̄0(α)) and ξ2 ∈ σ2(x; d̄0(α)). Set
U0 = {ξ1 − ξ2}, x̃ = x and j = 0.

Step 1. (Clarke stationarity) Find ūj as the solution of the problem

min
u∈Uj

1

2
‖u‖2.

If ‖ūj‖ ≤ δ, then Clarke stationarity is obtained and EXIT with x+ = x.

Step 2. (Search direction) Compute the search direction dj+1 = −ūj/‖ūj‖.

Step 3. (New subgradient) Find d̄j+1(α) ∈ TDC at x̃ using dj+1. Compute ξ1 ∈
σ1(x̃, x̃; d̄j+1(α)) and ξ2 ∈ σ2(x̃; d̄j+1(α)). Set ξ̄j+1 = ξ1 − ξ2. If
x 6= x̃, then go to Step 5.

Step 4. (Descent test) If (ξ̄j+1)
Tdj+1 ≤ −m1‖ūj‖, then go to Step 6.

Step 5. (Update) Set Uj+1 = conv {Uj
⋃
{ξ̄j+1}}, x̃ = x and j = j + 1. Go to

Step 1.

Step 6. (Step-length) Calculate

β∗ = arg max{β ≥ 0 |H(x+ βdj+1,x)−H(x,x) < 0}.

If β∗ ≥ ε, then x+ = x+β∗dj+1, and EXIT. Otherwise, x̃ = x+β∗dj+1

and go to Step 3.
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3.3 Algorithm
In this section, we combine the above presented subsections and give a detailed
description of MDBDC. In order to guarantee the convergence of MDBDC, we
suppose that A1 is satisfied along with the following assumption for the level set
at the starting point x0 ∈ X:

A2 : The level set F0 = {x ∈ X | fi(x) ≤ fi(x0), for all i ∈ I} is compact.

To simplify the presentation, we divide MDBDC into four algorithms. Al-
gorithm 2 gives the outline of the whole method while Algorithm 3 describes
the main iteration of MDBDC being the heart of the method by producing new
iteration points. Additionally, we use Algorithm 1 presented in Section 3.2 to
ensure weak Pareto stationarity and the scaling procedure Algorithm 4 described
later in this section. The scaling procedure is applied in order to avoid numerical
difficulties.

The proximity parameter t is updated in two places: during the execution of
the main iteration and between two main iterations. In the latter case, the updating
procedure in Step 2 of Algorithm 2 is inspired by the weighting update method
given in [19], and t may either increase or decrease. In Step 5 of Algorithm 3, t
may only decrease.

We begin by discussing about Algorithm 2. First we notice that the lineariza-
tion errors can be updated by using the following formulas for all i ∈ I and l ∈ L

αAi (xh+1,yj) =αAi (xh,yj) + Ãi(xh+1)− Ãi(xh)− aTi,j(xh+1 − xh) (22)

αBl (xh+1,yj) =αBl (xh,yj) +Bl(xh+1)−Bl(xh)− bTl,j(xh+1 − xh)
αH2 (xh+1,yj) =αH2 (xh,yj) +H2(xh+1)−H2(xh)− hT2,j(xh+1 − xh),

where Ãi(x) = A(x,x) + fi(x). Thus, we store only elements (ξ, α) in Bh1 and
Bh2 , where ξ is a subgradient and α is the corresponding linearization error instead
of the triplets in (11) and (12).

In the beginning of Step 3, the bundles Bh+1
1 and Bh+1

2 can be freely chosen,
and it is possible to reset either the bundle Bh+1

1 or Bh+1
2 or even both. How-

ever, both of these bundles must contain at least one element in Step 1. This is
guaranteed, since at the end of Step 3, we add elements corresponding to the new
iteration point xh+1 into both bundles.

Next we discuss about the main iteration of MDBDC in Algorithm 3. Since
the current iteration point xh does not change during the execution of Algorithm
3, we omit the index h, expect for xh, to simplify the algorithm. The execution
of Algorithm 3 either yields a new iteration point or ensures Clarke stationarity of
our current solution.

In practice, the sizes of the bundles are limited. The size of B1 has to be large
enough to contain space for elements related to both BA and BB meaning that
|J1| ≥ k + m. On the other hand, we can control the number of subproblems
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Algorithm 2 Multiobjective double bundle method for DC functions (MDBDC)
Data: The stopping tolerance δ ∈ (0, 1), the proximity measure ε > 0, the en-
largement parameter θ > 0, the quality measure η ≥ 0, the decrease parame-
ters r, c1, c2, c3 ∈ (0, 1), the increase parameter R > 1, the descent parameters
m1,m2 ∈ (0, 1) and m3 ∈ (m2, 1), and the threshold τmax > 0.

Step 0. (Initialization) Select x0 ∈ X and execute Algorithm 4 for scaling.
Compute ai ∈ ∂Ai(x0,x0) for all i ∈ I , bl ∈ ∂Bl(x0) for all l ∈ L,
and h2 ∈ ∂H2(x0). Initialize B0

1 and B0
2 by setting J0

1 = J0
2 = {1}

and B0
A,i =

{
(ai, 0)

}
for all i ∈ I , B0

B,l =
{

(bl, 0)
}

for all l ∈ L, and
B0
2 =

{
(h2, 0)

}
. Set t = tmin = tmax = 0. Initialize the counters h = 0

and τ = 0.

Step 1. (Main iteration) Find a new iteration point xh+1 by executing Algorithm
3. If xh+1 = xh, then Clarke stationarity is achieved, and STOP with
x∗ = xh as the final solution.

Step 2. (Parameter update) Initialize t̃ = t.

(a) If H(xh+1,xh) −H(xh,xh) ≤ m3

(
Ĥh(xh+1) −H(xh,xh)

)
and

τ > 0, set

t̃ = 0.5t
Ĥh(xh+1)−H(xh,xh)

Ĥh(xh+1)−H(xh+1,xh)

and go to Step 2(c).

(b) If τ > 3, then set t̃ = 2t.

(c) Set t+ = max
{

min{t̃, 10t, tmax}, tmin

}
and τ = max{1, τ + 1}.

If t 6= t+, then update t = t+ and τ = 1.

Step 3. (Bundle update) Select the bundles Jh+1
1 ⊆ Jh1 and Jh+1

2 ⊆ Jh2 . Update
the linearization errors using (22) for all the elements in Bh+1

1 and Bh+1
2 .

Compute ai ∈ ∂Ai(xh+1,xh+1) for all i ∈ I , bl ∈ ∂Bl(xh+1) for all
l ∈ L, and h2 ∈ ∂H2(xh+1). Insert (ai, 0) and (bl, 0) into Bh+1

1 for all
i ∈ I , l ∈ L, and (h2, 0) into Bh+1

2 . Select an index j corresponding to
these insertions and add j into Jh+1

1 and Jh+1
2 . Set h = h + 1 and go to

Step 1.
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Algorithm 3 Main iteration for MDBDC
Data: The stopping tolerance δ ∈ (0, 1), the enlargement parameter θ > 0, the
quality measure η ≥ 0, the decrease parameters r, c1, c2, c3 ∈ (0, 1), the increase
parameter R > 1, the descent parameter m2 ∈ (0, 1), the threshold τmax > 0, and
the subgradients h1(xh) ∈ ∂H1(xh,xh) and h2(xh) ∈ ∂H2(xh).

Step 0. (Initialization) Set dt = 0. Calculate j∗ = argmaxj∈J2{‖h2,j‖} and set
h2,max = h2,j∗ ,

tmin = r · θ

2(‖h1(xh)‖+ ‖h2,max‖)
, (23)

and tmax = Rtmin. If t /∈ [tmin, tmax], then select t ∈ [tmin, tmax].

Step 1. (Criticality) If ‖h1(xh)− h2(xh)‖ < δ, then go to Step 3.

Step 2. (Search direction) Calculate the search direction dt as a solution of the
problem (16).

Step 3. (Clarke stationarity) If ‖dt‖ < δ or Ĥ(xh + dt) − H(xh,xh) > −η,
then execute Algorithm 1 for the point xh. Set xh+1 = x+ and τ = 0,
and EXIT.

Step 4. (Descent test) Set y = xh + dt. If

H(y,xh)−H(xh,xh) ≤ m2

(
Ĥ
(
y)−H(xh,xh)

)
, (24)

then set xh+1 = y and EXIT.

Step 5. (Bundle update) Compute ai ∈ ∂Ai(y,xh) and αAi (xh,y) for all i ∈ I ,
bl ∈ ∂Bl(y) and αBl (xh,y) for all l ∈ L, and h2 ∈ ∂H2(y) and
αH2 (xh,y).

(a) If y /∈ F0 and ‖dt‖ > θ, then set t = t − c1(t − tmin) and τ = 0.
Go to Step 2.

(b) If τ ≥ −τmax, then t = t − c2(t − tmin). Otherwise, t = t −
c3(t − tmin). Set τ = min{−1, τ − 1}. Insert (ai, α

A
i (xh,y)) and

(bl, α
B
l (xh,y)) into B1 for all i ∈ I , l ∈ L, and (h2, α

H
2 (xh,y))

into B2. Select a suitable index j corresponding to these insertions
and add j into J1 and J2.

Step 6. (Parameter update) If ‖h2‖ > ‖h2,max‖, then seth2,max = h2 and update
tmin using (23). Go to Step 2.
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solved in Step 2 being the most time-consuming part of Algorithm 3. The only
restriction is that (h2(xh), 0) must be included into B2, and thus |J2| ≥ 1.

Due to the DC decomposition of the improvement function, one objective may
dominate the others and hide their effect if the magnitudes of objective function
values differ a lot. To avoid this, MDBDC contains a scaling procedure presented
in Algorithm 4. With this procedure, we obtain modified objective functions main-
taining the same optima as the original objectives.

Algorithm 4 Scaling procedure

Step 1. Calculate i∗ = arg min
{
|fi(x0)|

∣∣ i ∈ I}.

Step 2. For each i ∈ I , search the value κi such that 10κi−1 ≤ |fi(x0)| ≤ 10κi .
If κi < 0, then κi = 0.

Step 3. For each i ∈ I , set νi = κi∗ − κi. If νi ≤ −2, then νi = νi + 1. Set
ωi = 10νi and fi = ωifi being the scaled objective function.

3.4 Convergence
We devote this section to prove the convergence of MDBDC. This convergence
analysis is divided into four lemmas and two theorems. Lemmas 3.7 and 3.8 are
auxiliary results and Lemmas 3.6 and 3.9 can be summarized by saying that there
does not exists any infinite cycle in Algorithm 3. Finally, in Theorem 3.10 we state
that Algorithm 2 stops after a finite number of iterations and Theorem 3.11 con-
siders the weak Pareto stationarity of the solution. Throughout the convergence
analysis, we assume that A1 and A2 are valid. Additionally, for θ > 0 we define
the set Fθ = {x ∈ Rn | d(x,F0) ≤ θ}, where d(x,F0) = inf {‖x−z‖ |z ∈ F0}.

We begin recalling Theorem 4.9 in [16] asserting a finite upper bound for the
number of iterations of Algorithm 1.

Lemma 3.6. [16] Let the assumption A1 be valid. Algorithm 1 terminates after
at most ⌈

4

(1−m1)2

(
K

δ

)4
⌉

iterations where d·e is a ceiling of the number andK > 0 is the Lipschitz constant
of H( · ,y) at the point x ∈ Rn, when y = x.

The following auxiliary result is proved in the same way as Lemma 3 in [15].

Lemma 3.7. If the condition (24) in Step 4 of Algorithm 3 is not satisfied, then

ξT1 dt − α1 > m2

(
Ĥ1(y)−H1(xh,xh)

)
+ (1−m2)

(
Ĥ2(y)−H2(xh)

)
,
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where ξ1 ∈ ∂H1(y,xh) is a subgradient calculated at the new auxiliary point
y = xh + dt and α1 = H1(xh,xh) − H1(y,xh) + ξT1 dt is the corresponding
linearization error.

Proof. If the condition (24) is not satisfied in Step 4, then

H(y,xh)−H(xh,xh) > m2(Ĥ
(
y)−H(xh,xh)

)
.

By utilizing Lemma 3.2 (i) and the DC decomposition of H( · ,xh), we get

H1(y,xh)−H1(xh,xh) >m2(Ĥ
(
y)−H(xh,xh)

)
+H2(y)−H2(xh)

≥m2(Ĥ(y)−H(xh,xh)
)

+ Ĥ2(y)−H2(xh)

We obtain the result by noticing that

H1(y,xh)−H1(xh,xh) = ξT1 dt − α1,

when ξ1 ∈ ∂H1(y,xh) and α1 = H1(xh,xh)−H1(y,xh) + ξT1 dt.

Before stating the finite convergence of Algorithm 3, we collect some crucial
observations.

Lemma 3.8. Let the assumption A2 be valid. During each execution of Algorithm 3

(i) the points xh and yj for all j ∈ J1 ∪ J2 belong to the set Fθ.

(ii) there exists C > 0 such that ‖xh − yj‖ < C for all yj ∈ B1 ∪ B2.

(iii) the subgradients ai,j and bl,j and the linearization errors αAi,j and αBl,j for
all i ∈ I , l ∈ L, and j ∈ J1 are bounded.

(iv) the subgradients h2,j and the linearization errors αH2,j for all j ∈ J2 are
bounded.

(v) tmin is bounded from below with a positive threshold and tmax is bounded
from above.

Proof. (i) The points yj on B1 and B2 are ensured to belong to the setFθ by Step 5
of Algorithm 3. In addition, the point xh is on the set Fθ, since each new iteration
point decreases the value of the objectives.
(ii) From the assumption A2, we obtain that the set Fθ is compact, and together
with (i), there exists a constant C > 0 such that ‖xh − yj‖ < C for all yj ∈
B1 ∪ B2.
(iii) Every Ai( · ,xh) and Bl for all i ∈ I and l ∈ L are convex implying their
local Lipschitz continuity. Thus, there exist a Lipschitz constant for each of these
functions on the compact set Fθ. Let K1 > 0 be the constant overestimating all
these constants. The property (i) yields ‖ai,j‖ ≤ K1 and ‖bl,j‖ ≤ K1 for all i ∈ I ,
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l ∈ L and j ∈ J1. Combining (ii) with the above observations, we deduce for all
i ∈ I and j ∈ J1 that

|αAi,j| = |Ai(xh,xh)− Ai(yj,xh)− aTi,j(xh − yj)|
≤ |Ai(xh,xh)− Ai(yj,xh)|+ ‖ai,j‖‖xh − yj‖
≤ K1‖xh − yj‖+K1C ≤ 2K1C.

Similarly, we can show that |αBl,j| ≤ 2K1C for every l ∈ L and j ∈ J1.
(iv) The function H2 is convex and thus, locally Lipschitz continuous. Therefore,
we have a Lipschitz constant K2 > 0 for H2 on the compact set Fθ. As in (iii),
we can show that ‖h2,j‖ ≤ K2 and |αH2,j| ≤ 2K2C for every j ∈ J2.
(v) From (iii) and (iv) we can derive that

tmin ≥ t̄min =
rθ

2(K1 +K2)
> 0

yielding the positive lower bound for tmin. If the condition in Step 1 of Algorithm
3 is not satisfied, then

δ ≤ ‖h1(xh)− h2(xh)‖ ≤ ‖h1(xh)‖+ ‖h2(xh)‖ ≤ ‖h1(xh)‖+ ‖h2,max‖.

The upper bound for tmax is obtained, since

tmax ≤ t̄max =
Rrθ

2δ
<∞. (25)

Next we are in a position to show the same kind of a result as Theorem 5 in
[15] guaranteeing that we do not have an infinite loop in Algorithm 3.

Lemma 3.9. Let the assumption A2 be valid. For any δ ∈ (0, 1), Algorithm 3
cannot pass infinitely through the sequence of Steps from 2 to 6.

Proof. Suppose that the assertion is false and Steps from 2 to 6 are executed in-
finitely. We index by i ∈ I the quantities related to the i-th passage. Since
Algorithm 1 cannot ever be entered, the condition ‖dit‖ ≥ δ is satisfied for each
i ∈ I.

Assume that Step 5(a) is passed infinitely. In Step 5, the proximity parameter t
decreases at each pass and converges to tmin, since tmin is monotonically decreas-
ing and by Lemma 3.8 (v), it is bounded from below. In addition, tmin is always
smaller than the threshold

ρ =
θ

2
(
‖h1(xh)‖+ ‖hi2,max‖

) ,
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and therefore, after a finite number of passes, t will be below ρ. This yields a
contradiction, since ‖dit‖ ≤ θ by Lemma 3.3 and Step 5(a) can no longer be
executed.

Due to Lemma 3.3, the parameter selection rule t ∈ [tmin, tmax], and Lemma
3.8 (iii), (iv) and (v), the sequence {dit}i∈I is bounded. Thus, there exists a con-
vergent subsequence {dit}i∈I′⊆I . Additionally, by combining Lemma 3.8 (iii)
and (iv), the sequences {Ĥ1(y

i)}i∈I′⊆I and {Ĥ2(y
i)}i∈I′⊆I are bounded. Hence,

these sequences have the convergent subsequences for i ∈ I ′′ ⊆ I ′ and their lim-
its are denoted by Ĥ∗1 and Ĥ∗2 , respectively. From Lemma 3.2 (ii) and ‖dit‖ ≥ δ,
we obtain for all i ∈ I

Ĥ1(y
i)− Ĥ2(y

i)−H(xh,xh) ≤ −
1

2ti
‖dit‖2 ≤ −

δ2

2ti
< 0. (26)

Let t∗ = limi→∞ ti. Now t∗ > 0 exists, since the sequence ti is nonincreasing and
bounded from below with a positive threshold by Lemma 3.8 (v) and the selection
t ∈ [tmin, tmax]. Finally, passing to the limit in (26) yields

Ĥ∗1 − Ĥ∗2 −H(xh,xh) ≤ −
δ2

2t∗
< 0. (27)

To obtain a contradiction, we consider two successive indices v and w in I ′′
and let α1,v = H1(xh,xh)−H1(y

v,xh)+ξTi,vd
v
t ,where ξi,v ∈ ∂H1(y

v,xh). Now
Lemma 3.7 gives

ξT1,vd
v
t − α1,v > m2

(
Ĥ1(y

v)−H1(xh,xh)
)

+ (1−m2)
(
Ĥ2(y

v)−H2(xh)
)

and utilizing the definition of Ĥ1, we get

Ĥ1

(
yw
)
−H1(xh,xh) ≥ ξT1,vdwt − αi,v.

By combining these two inequalities we conclude

ξT1,v
(
dvt − dwt

)
>m2Ĥ1

(
yv
)
− Ĥ1

(
yw
)

+ (1−m2)
(
Ĥ2

(
yv
)

+H(xh,xh)
)
.

A passage to the limit yields

(m2 − 1)
(
Ĥ∗1 − Ĥ∗2 −H(xh,xh)

)
< 0,

but since m2 ∈ (0, 1), the property (27) cannot hold.

Summarizing, we have now considered all the possibilities where the infinite
cycle may happen in Algorithm 3. We have thus led to the following theorem
stating the finite convergence of MDBDC.

Theorem 3.10. Let the assumptions A1 and A2 be valid. For any δ ∈ (0, 1) and
ε > 0, the execution of Algorithm 2 stops after a finite number of iterations at the
point x∗ satisfying the approximate Clarke stationary condition ‖ξ∗‖ ≤ δ, where
ξ∗ ∈ ∂Gε H(x∗,x∗).
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Proof. The execution of Algorithm 2 can stop only if the Clarke stationary point
x∗ is found in Step 1 meaning that the approximate Clarke stationary condition
is satisfied in Step 1 of Algorithm 1. Assume that Algorithm 2 is executed in-
finitely. By Lemmas 3.6 and 3.9, the new iteration point xh+1 is obtained after a
finite number of iterations in Step 3 or 4 of Algorithm 3. Therefore, we obtain a
sequence of solutions {xh}, where

xh = xh−1 + σdh such that σ ≥ min{1, ε} > 0. (28)

Moreover, the sequence {xh} belongs to the level set F0 being compact by A2,
and thus the sequence {xh} has an accumulation point x̄. Since {xh} → x̄ and xh
has the formulation (28), it follows that the sequence {dh} → 0. Consequently,
‖dh‖ → 0 and especially for any δ ∈ (0, 1) there exists an iteration index h′ such
that ‖dh‖ < δ for all h ≥ h′.

Due to this, during the iteration h′ we cannot obtain a new point in Step 4 of
Algorithm 3, and thus we obtain a new point in Step 3 of Algorithm 3. However,
the search direction selection in Step 2 of Algorithm 1 yields ‖dh′‖ = 1 > δ being
a contradiction, since ‖dh′‖ < δ.

Finally, we guarantee the weak Pareto stationarity of the solution with a similar
result than Theorem 7 in [25].

Theorem 3.11. Let fi and gl be DC functions for all i ∈ I and l ∈ L. Suppose
that G≤(x) ⊆ KX(x) and the assumptions A1 and A2 are valid. Then, MDBDC
stops after a finite number of iterations with the solution x∗ being a weakly Pareto
stationary point for the problem (1).

Proof. Consider a single objective unconstrained minimization problem with the
improvement function H( · ,x) as its objective. According to Theorem 3.10, after
a finite number of iterations, MDBDC finds a solution x∗ ∈ Rn such that it is
a Clarke stationary point for the improvement function H( · ,x∗) yielding 0 ∈
∂H(x∗,x∗). Thus, by Theorem 3.1 the solution x∗ is weak Pareto stationary for
the problem (1).

4 Numerical experiments
In this section, we study the behaviour of MDBDC. We have collected some aca-
demic single-objective DC problems and combined those to obtain multiobjec-
tive DC problems. The problems obtained are solved with MDBDC and MPB
[25, 28]. The aim of these numerical tests is, on the one hand, to verify the us-
ability of MDBDC in practice, and on the other hand, to justify the use of the DC
method instead of the general nonconvex method.

The implementation of MPB is done with Fortran 77 and it is described in
[23]. MDBDC is implemented with Fortran 95 and both implementations utilize
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the quadratic solver by Lukšan described in [22]. Additionally, MPB applies an
aggregation strategy [17, 18]. The tests are performed under Linux Ubuntu system
and f95 is used as a compiler. We remark that in Step 6 of Algorithm 1 we update
x̃ if the step-length β∗ < ε. However, in practice, the implementation of MDBDC
stops at this point and the final solution is x̃.

The input parameters for MDBDC are chosen as follows: the stopping tol-
erance δ = 10−5, the proximity measure ε = 10−4, the enlargement parameter
θ = 5 · 10−5, the quality measure and the decrease parameters

η =


0, if n ≤ 100

10−5, if 100 < n ≤ 300

10−4, if n > 300

, r =


0.75, if n < 10
n
n+5

, if 10 ≤ n ≤ 300

0.99, if n > 300

,

c =



0.4, if n < 25

0.25, if 25 ≤ n < 100

0.1, if 100 ≤ n < 200

0.01, if 200 ≤ n < 300

0.001, if n ≥ 300

c1 = 0.5, c2 = min{0.5, c · (k − 1)} and c3 = 0.1, the increase parameter R =
1010, the descent parameters m1 = m2 = 0.01 and m3 = 0.1, and the threshold
τmax = 50. The maximum size for the bundle B1 is min{(n+ 5) · (k+m), 1000}
and for the bundle B2 it is 3. The size of Uj in Algorithm 1 is 2(n + 5). Note
that MDBDC is quite sensitive for the parameter selection, and by specifying the
parameters for the problem, the execution times of MDBDC may improve a lot.
The parameters selected for MPB are default values [23].

The objective functions of the test problems are described in Table 1. The
constraint functions of the form g = r − s ≤ 0 are

C1 : r(x) = max{(x1 + 1.5)2 + (x1 − 1)2 + x22 + (x2 − 1)2 − 5, 0},
s(x) = (x1 − 1)2 + (x2 − 1)2 − 1

C2 : r(x) = 0,

s(x) = max{x21 + x22 + x23 + x24 − 10, x1 + x2 + x3 + x4 − 5.5}
C3 : r(x) = 0.5n,

s(x) =
n∑
i=1

(
xi + (−1)i+1 · 0.5

)2
Note that C1 is a DC constraint and both C2 and C3 are concave. Finally, the
unconstrained and the constrained multiobjective test problems are described in
Tables 2 and 3, respectively.

The results of the tests performed are reported in Table 4. The problems 1–15
are unconstrained and the problems 16–21 are constrained. In Table 4, the first

22



Table 1: Objective functions, O1−O7 from [15] and O8−O12 from [16]

Objective Function Objective Function Objective Function
O1 Problem 2. O5 Problem 7. O9 Problem 13.
O2 Problem 3. O6 Problem 9. O10 Problem 14.
O3 Problem 4. O7 Problem 10. O11 Problem 15.
O4 Problem 6. O8 Problem 12. O12 Problem 16.

Table 2: Unconstrained testproblems, i = 1, . . . , n

P f1 f2 x0 P f1 f2 x0 P f1 f2 f3 x0

1. O1 O4 (−1.2, 1) 6. O7 O9 xi
0 = 0.1i 11. O1 O4 O5 (−1.2, 1)

2. O1 O5 (−0.5, 1) 7. O8 O9 xi
0 = 2i 12. O2 O3 O6 (1, 3, 3, 1)

3. O1 O5 (−1.2, 1) 8. O3 O7 xi
0 = 0.1i 13. O3 O7 O8 xi

0 = 0.1i

4. O4 O5 (−2, 1) 9. O7 O8 xi
0 = 2i 14. O3 O7 O12 xi

0 = 0.1i

5. O2 O6 (4, 2, 4, 2) 10. O10 O11 xi
0 = (−1)i+1 15. O7 O10 O11 xi

0 = 0.1i

Table 3: Testproblems with constraints, i = 1, . . . , n

Problem f1 f2 g1 x0 Problem f1 f2 f3 g1 x0

16. O1 O5 C1 (−0.5, 1) 19. O1 O4 O5 C1 (−1.2, 1)
17. O2 O6 C2 (4, 2, 4, 2) 20. O2 O3 O6 C2 (1, 3, 3, 1)

18. O7 O8 C3 xi
0 = 2i 21. O3 O7 O12 C3 xi

0 = 0.1i

column describes the problem solved and n is the dimension of the problem. In
order to compare the methods, we have given the number of function calls nf ,
the number of subgradient evaluations nξ and the CPU time. Since for MPB
nf = nξ, only nξ is reported in addition to the CPU time. In practice, nf and nξ
tell the number of function values and subgradients evaluated for each objective
and constraint. Lastly, the column f(x∗) = (f1(x

∗), . . . , fk(x
∗)) describes the

solution obtained.
Two example executions of MDBDC are illustrated in Figure 1. In these fig-

ures, dashed gray contours correspond to O1 and the gray contours correspond
to O5. The optimum of the objective O1 is at the point x∗ = (0.50, 0.50)
marked with a gray disk, and the optimum of the objective O5 is at the point
x∗ = (1.00, 1.00) marked with a gray circle. The black curve in Figure 1b presents
the constraint C1. In Figure 1a, we obtain a solution x∗ = (0.50, 0.50) such that
f(x∗) = (0.50, 0.50) being an individual optimum of the objective O1 as well.
In Figure 1b, we have added the constraint C1 such that neither of the optima
of the individual objectives is feasible. Now we get a solution x∗ = (0.29, 0.29)
and f(x∗) = (0.71, 0.71). This solution lies on the same line than where the
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f=H51.50, 51.50L

f=H29.62, 29.62L

f=H2.16, 2.16L

f=H1.40, 1.40L

f=H1.00,1.00L

f=H0.50, 0.50L

-1.5 -1.0 -0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

1.5

2.0

(a) Test problem 2

f=H51.50, 51.50Lf=H27.25, 27.25L

f=H20.80, 20.80L

f=H1.88, 1.88L

f=H1.00,1.00L

f=H0.71, 0.71L

-1.5 -1.0 -0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

1.5

2.0

(b) Test problem 16

Figure 1: The performance of MDBDC in the decision space

individual optima are and the constraint is active.

In Table 4, test problems 2 and 3 are the same problem with different starting
points. In test problem 2, we notice that MDBDC finds a solution having better
values for both objectives than the solution obtained with MPB. However, if we
change a starting point a little, like in test problem 3, both methods find equally
good solutions. In general, we say that one solution is better than the other if it
has better values for all the objectives. Even if both MDBDC and MPB find a
weakly Pareto stationary solution, one might find a better solution. Reason for
this is a nonconvex feasible set in objective space, since both local and global op-
tima satisfy the Pareto stationarity condition (7). In the test problems performed,
MDBDC obtains a better solution in 16 cases, the solutions are equally good in 36
cases, and both methods fail in test problem 10 with n = 500. The better solutions
obtained are bolded in Table 4.

In the computational point of view, MDBDC is a good alternative for MPB
when objectives and constraints are DC functions, even though it may sometimes
require more computational efforts. For instance, in test problem 8, MDBDC
uses more function and subgradient evaluations in the cases where n = 10 and
n = 100. However, compared with MPB, the solutions obtained with MDBDC
are better in both of those cases. Another example about this kind of behaviour
is seen in Figure 1. In both test problems 2 and 16, we obtain a solution x∗ =
(0.00, 0.00) and f(x∗) = (1.00, 1.00) with MPB. As we see, in both of those
cases MDBDC visits also this point but can still continue forward. Generally
speaking about the computational efforts of MDBDC in the test problems, we
notice that MDBDC uses less function and subgradient evaluations in 26 cases,
the number of evaluations are on the same magnitude in 6 cases, and MPB uses
less evaluations in 20 cases. However, in these 20 test problems, MDBDC finds a
better solution in half of the cases.
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Table 4: Numerical results for unconstrained test problems

MDBDC MPB
P n nf nξ CPU f(x∗) nξ CPU f(x∗)
1. 2 9 9 0.00 (16.8643,−1.3156)∗ 6 0.00 (21.6036,−1.3385)
2. 2 122 94 0.01 (0.5000,0.5001) 21 0.00 (1.0000, 1.0000)
3. 2 84 58 0.01 (0.5000, 0.5000) 42 0.00 (0.4896, 0.5938)
4. 2 9 9 0.00 (−1.6851, 100.2572)∗ 6 0.00 (−1.6948, 102.6963)
5. 4 30 26 0.00 (99.0578,5.4019)∗ 5 0.00 (267.7000, 9.2000)
6. 10 241 194 0.04 (−1.6099, 0.0026)∗ 62 0.00 (−3.1776, 2.2843)
7. 10 175 165 0.06 (42.3771, 14.9875)∗ 130 0.01 (70.3498, 8.6848)
8. 10 124 107 0.03 (0.2185,−2.1928) 18 0.00 (0.4557,−0.5734)

50 158 156 0.40 (0.6131,−16.3563) 419 0.52 (3.6075,−39.7421)
100 122 105 0.86 (10.0001,−89.5000)∗ 79 0.10 (58.0000,−41.5000)
250 289 207 14.59 (28.0033,−221.5000)∗ 541 6.58 (79.0000,−170.5000)∗∗
500 192 160 14.29 (26.0017,−473.5000)∗ 474 8.93 (458.4319,−32.4898)∗∗

9. 10 77 68 0.02 (−5.4392, 39.2907)∗ 431 0.01 (−7.9504, 50.3218)
50 96 93 0.14 (−39.3532,251.2447)∗ 971 0.43 (−23.3744, 369.9386)∗∗
100 287 252 2.09 (−80.8056,322.3542)∗ 7 0.00 (−0.5000, 995.0000)
250 233 221 3.86 (−215.8172,1454.0982)∗ 3796 142.28 (−204.2314, 2145.0655)∗∗
500 203 167 4.39 (−439.1831,3404.4254)∗ 9 0.02 (−2.4998, 4992.0308)

10. 10 15541374 0.53 (0.0001, 2.3712)∗ 332 0.01 (0.0001, 22.2879)
50 249 202 0.50 (2.5772, 0.2423)∗ 151 0.13 (0.0006, 65.8711)
100 665 625 15.39 (3.5020, 1.5277)∗ 374 1.69 (0.0068, 173.4411)∗∗

250 753 710 73.44 (0.6288, 390.4155) 837 48.98 (0.0020, 422.7423)
500 fail fail

11. 2 9 9 0.00 (16.8643,−1.3156, 16.8643)∗ 6 0.00 (21.5747,−1.3383, 21.5747)
12. 4 99 81 0.02 (176.9992, 1.7910, 3.8972)∗ 24 0.00 (119.0604, 1.1995, 5.3975)
13. 10 204 173 0.07 (0.2041,−2.7203,62.5866)∗ 61 0.00 (0.5737,−2.0108, 82.5078)

50 190 186 0.76 (17.6105, 70.1618, 212.9270)∗ 664 1.80 (1.2173,−28.9312, 297.4673)
100 135 133 1.83 (25.0123,−76.1151, 855.2446)∗ 337 1.22 (41.5649,−51.8967, 746.3927)
250 34 30 0.25 (75.6912,−195.3250, 1849.8487)∗ 3703 193.07 (64.4847,−188.3828, 1291.7758)
500 56 51 1.03 (159.6711,−388.4394, 3530.6517)∗ 5747 1586.86(100.7987,−383.5040, 3360.6881)

14. 10 323 320 0.12 (1.4588,−1.1710, 1.7804 · 10−9) 40 0.00 (2.2110, 0.8130, 8.5602 · 10−6)
50 17 15 0.01 (14.9550, 6.4469, 2.8916 · 10−6) 38 0.01 (12.4717, 1.4674, 3.7110 · 10−6)

100 35 35 0.06 (48.3652,−1.3052, 8.0459 · 10−7)∗ 33 0.01 (67.7079,−11.5448, 9.2342)
250 148 146 3.01 (54.7364,−68.7425, 4.5003 · 10−6)∗ 847 25.34 (49.7191,−100.3897, 4.3898)
500 199 196 12.10 (128.3886,−173.7699, 9.2844 · 10−6)∗ 1780 411.99 (97.4854,−189.2866, 4.6295)

15. 10 22261981 0.76 (−3.2627, 6.5823 · 10−7, 3.4899)∗ 381 0.02 (−3.2981, 2.9205 · 10−5, 7.7348)
50 21682156 8.99 (−9.1827,0.0001,168.5418)∗ 406 0.20 (1.5767, 0.0015, 176.7342)
100 327 317 7.57 (−53.3365,0.0002,103.4822)∗ 723 1.85 (11.7025, 0.0083, 479.0823)
250 183 178 8.89 (−127.6345, 0.0003, 2537.3443)∗ 6764 84.86 (97.2280, 0.0115, 1764.0444)
50010771027208.49 (−157.4916, 0.0070, 118499.9671)∗ 286632021.67 (766.3614, 0.0351, 112639.2066)

16. 2 44 38 0.01 (0.7071,0.7071) 47 0.00 (1.0000, 1.0000)
17. 4 147 136 0.03 (33.7271,8.6481)∗ 10 0.00 (305.8642, 9.2000)
18. 10 24 24 0.01 (−8.4586, 82.2429)∗ 568 0.02 (−8.4606, 82.5665)

50 65 65 0.17 (−47.3604, 336.9333)∗ 1629 0.80 (−48.4003, 446.9219)
100 50 50 0.17 (−97.8782, 824.9328)∗ 3065 6.43 (−98.1723, 870.7725)
250 265 151 2.60 (−241.5555, 1915.6674)∗ 10973 259.93 (−247.1970, 2102.8978)
500 122 64 1.03 (−491.2862, 4014.5727)∗ 147441043.34 (−496.5222, 4519.2576)

19. 2 12 12 0.00 (18.6552,−1.2756, 18.6552)∗ 11 0.00 (21.8166,−1.2924, 21.8166)
20. 4 54 38 0.01 (173.2068, 1.7467, 4.0270)∗ 16 0.00 (161.6051, 1.5937, 5.5697)
21. 10 22 20 0.00 (2.9017,−0.5934, 9.1556 · 10−7) 68 0.00 (2.5174,−0.9270, 2.2638 · 10−6)

50 55 55 0.03 (3.0000,−46.5000, 93.0000) 53 0.02 (8.4209,−32.8029, 18.7489)
100 77 77 0.38 (3.8709,−96.7675,161.6056)∗ 67 0.07 (7.2561,−92.4828, 178.8300)
250 44 26 0.10 (14.8103,−235.1258, 286.1334)∗ 103 0.29 (11.3995,−238.4833, 467.8050)
500 39 31 0.28 (2.3476,−498.4372, 974.0640)∗ 187 1.51 (8.2359,−492.4426, 962.2006)

∗ Scaling procedure is utilized in MDBDC
∗∗ Locality measure is chosen to be 0.9 (default: 0.5) in MPB
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In Table 4, the columns nf and nξ for MDBDC contain also the evaluations
used in Algorithm 3 guaranteeing Clarke stationarity. For example, in test prob-
lem 15 with n = 10 we have nf = 2225 where 458 of them are obtained from
Algorithm 3 and nξ = 1980, where 186 of them are caused by Algorithm 3.
Hence, we might need a relatively high number of evaluations to be able to stop.
Nevertheless, MDBDC uses significantly less CPU time in test problems 13–15
and 18 with n ≥ 250.

To conclude, MDBDC performs well in the test problems reported. Indeed, in
the small test problems (2 ≤ n ≤ 100), the average number of function calls is
277.97 and the average number of subgradient evaluations is 255.62 for MDBDC
while the average number of evaluations for MPB is 305.43. In the larger test
problems reported (n > 100), the average number of function calls is 255.80
and the average number of subgradient evaluations is 224.33 for MDBDC while
the average number of evaluations for MPB is even 5277.87. Thus, MDBDC
uses less evaluations on average in the test problems reported. Additionally, by
utilizing some kind of aggregation in MDBDC, it might be possible to decrease
the number of evaluations needed even more.

5 Conclusions

We have proposed a new descent method for the multiobjective DC optimiza-
tion (MDBDC) producing weakly Pareto stationary solutions, and the method is
proved to be finitely convergent under mild assumptions. This method can be used
by executing it several times with different starting points to obtain an approxima-
tion of the set of local weak Pareto optima. Other possibility is to use MDBDC
as a part of some interactive method like in [27, 28, 31]. Additionally, it can be
used to solve single-objective DC problems with DC constraints to obtain a Clarke
stationary solution.

The numerical experiments have shown the good performance of the method.
The results obtained by comparing MDBDC and the multiobjective proximal bun-
dle method [25, 28] validate the use of the method specially designed for multi-
objective DC optimization instead of the method for general nonconvex multi-
objective optimization. With more accurate model capturing the convex and the
concave behaviour, we can learn more about the objectives and hence obtain better
solutions. In future, the implementation of MDBDC could be improved by adding
some sort of aggregation strategy [17, 18]. Moreover, MDBDC could be used in
some practical applications, like data classification or cluster analysis.
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Jyväskylä, 2003.
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