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Abstract

Optimality conditions are an essential part of mathematical optimization theory, affect-
ing heavily, for example to the optimization method development. Different types of
generalized convexities have proved to be the main tool whenconstructing optimality
conditions, particularly sufficient conditions for optimality. The purpose of this paper is
to present some sufficient and necessary optimality conditions for locally Lipschitz con-
tinuous multiobjective problems. In order to prove sufficient optimality conditions some
generalized convexity properties for functions are introduced. For necessary optimality
conditions we will need some constraint qualifications.
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1 Introduction

Optimality conditions are an essential part of mathematical optimization theory, af-
fecting heavily, for example to the optimization method development. When con-
structing optimality conditions convexity has been the most important concept dur-
ing the last decades. Recently there have been numerous attempts to generalize the
concept of convexity in order to weaken the assumptions of the attained results (see
e.g. [1, 4, 8, 14, 16, 25, 28, 30]).

Different kinds of generalized convexities have proved to be the main tool when
constructing optimality conditions, particularly sufficient conditions. There exist a wide
amount of papers published for smooth (continuously differentiable) single-objective
case (see [25] and references therein). For nonsmooth (not continuously differentiable)
problems there is an additional degree of freedom in choosing the way how to deal with
the nonsmoothness. There are many different generalized directional derivatives to do
this. For example, necessary and sufficient conditions for nonsmooth single-objective
optimization by using the Dini directional derivatives were developed in [8]. These
results were extended for nonsmooth multiobjective problems in [3].

Another degree of freedom is how to generalize convexity. In[21] sufficient condi-
tions for nonsmooth multiobjective programs were derived by using the (F , ρ)-convexity
defined by Preda [26] and its extension for nonsmooth case defined by Bhatia and
Jain [4]. Recently, the concept of invexity defined by Hanson [9] has become a very
popular research concept. It was used to formulate necessary and sufficient conditions
for differentiable multiobjective case in [24], for arcwise connected functions in [5] and
for nonsmooth multiobjective programming in [6, 13, 22, 23].

In this paper, we present optimality conditions for nonsmooth multiobjective prob-
lems with locally Lipschitz continuous functions. Three types of constraint sets are
considered. First, we discuss general set constraint, then, only inequality constraints
and, finally, both inequality and equality constraints. To deal with the nonsmoothness
we use the Clarke subdifferential as a generalization to gradient. For the necessary
condition we require that certain constraint qualifications holds. For sufficient condi-
tions we usef ◦-pseudo- and quasiconvexities [14] as a generalization to convexity. The
necessary conditions with inequality constraints relies mainly on [15]. In [13] a suf-
ficient condition was presented which differs from ours mainly by the formulation of
object function. Moreover,f ◦-quasiconcave inequality constraints were not considered
in [13].

Nonsmooth problems with locally Lipschitz continuous functions were considered
also in [11, 23, 29]. Our presentation differs from [23] and [11] by constraint qualifi-
cations and the formulation of KKT conditions. Also, in [23]the necessary optimality
condition relied on a theorem, which required the subdifferential of equality constraint
functions to be a singleton. For the sufficient conditions weneed generalized pseudo-
and quasiconvexities. Contrary to [23], the invexity and itsgeneralizations are not used
here. In [29] general constraint set was used in the derivation of conditions for weak
Pareto optimality. Our presentation has different, more spesific formulation for these

1



conditions.
This article is organized as follows. In Section 2 we recall some basic tools from

nonsmooth analysis. In Section 3 results concerning generalized pseudo- and quasicon-
vexity are presented. In Section 4 we present Karush-Kuhn-Tucker type necessary and
sufficient conditions of weak Pareto optimality for nonsmooth multiobjective optimiza-
tion problems with different constraint sets. Finally, some concluding remarks are given
in Section 5.

2 Nonsmooth Analysis

In this section we collect some notions and results from nonsmooth analysis. Most of
the proofs of this section are omitted, since they can be found, for example in [7, 17].
Nevertheless, we start by recalling the notion of convexityand Lipschitz continuity. The
functionf : R

n → R is convexif for all x,y ∈ R
n andλ ∈ [0, 1] we have

f
(

λx + (1 − λ)y
)

≤ λf(x) + (1 − λ)f(y).

A function islocally Lipschitz continuous at a pointx ∈ R
n if there exist scalarsK > 0

andδ > 0 such that

|f(y) − f(z)| ≤ K‖y − z‖ for all y,z ∈ B(x; δ),

whereB(x; δ) ⊂ R
n is an open ball with centerx and radiusδ. If a function is locally

Lipschitz continuous at every point then it is calledlocally Lipschitz continuous. Note
that both convex and smooth functions are always locally Lipschitz continuous (see,
e.g. [7]). In what follows the considered functions are assumed to be locally Lipschitz
continuous.

DEFINITION 2.1. [7] Letf : R
n → R be locally Lipschitz continuous atx ∈ S ⊂ R

n.
The Clarke generalized directional derivativeof f at x in the direction ofd ∈ R

n is
defined by

f ◦(x; d) = lim sup
y→x
t↓0

f(y + td) − f(y)

t

and theClarke subdifferentialof f atx by

∂f(x) = {ξ ∈ R
n | f ◦(x; d) ≥ ξT d for all d ∈ R

n}.

Each elementξ ∈ ∂f(x) is called asubgradientof f atx.

Note that the Clarke generalized directional derivativef ◦(x; d) always exists for a lo-
cally Lipschitz continuous functionf . Furthermore, iff is smooth∂f(x) reduces to
∂f(x) = {∇f(x)} and iff is convex∂f(x) coincides with the classical subdifferential
of convex function (cf. [27]), in other words the set ofξ ∈ R

n satisfying

f(y) ≥ f(x) + ξT (y − x) for all y ∈ R
n.
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The following properties derived in [7] are characteristicto the generalized directional
derivative and subdifferential.

THEOREM 2.2. If f : R
n → R is locally Lipschitz continuous atx ∈ R

n, then

(i) d 7→ f ◦(x; d) is positively homogeneous, subadditive and Lipschitz continuous
function such thatf ◦(x;−d) = (−f)◦(x; d).

(ii) ∂f(x) is a nonempty, convex and compact set.

(iii) f ◦(x; d) = max {ξT d | ξ ∈ ∂f(x)} for all d ∈ R
n.

(iv) f ◦(x; d) is upper semicontinuous as a function of(x,d).

From the last part of (i) in Theorem 2.2 we can easily deduce the following lemma.

LEMMA 2.3. Letf : R
n → R be locally Lipschitz continuous andx ∈ R

n. Then

∂(−f)(x) = −∂f(x).

PROOF. By Theorem 2.2 (i) we have

∂(−f)(x) = {ξ | (−f)◦(x; d) ≥ ξT d, for all d ∈ R
n}

= {ξ | f ◦(x;−d) ≥ (−ξ)T (−d), for all d ∈ R
n}

= {−ξ | f ◦(x;−d) ≥ ξT (−d), for all d ∈ R
n}.

Using the fact thatd ∈ R
n iff −d ∈ R

n we obtain

{−ξ | f ◦(x;−d) ≥ ξT (−d), for all d ∈ R
n}

= −{ξ | f ◦(x; d) ≥ ξT d, for all d ∈ R
n} = −∂f(x).

Hence,∂(−f)(x) = −∂f(x). �

In order to maintain equalities instead of inclusions in subderivation rules we need the
following regularity property.

DEFINITION 2.4. The functionf : R
n → R is said to besubdifferentially regular

at x ∈ R
n if it is locally Lipschitz continuous atx and for alld ∈ R

n the classical
directional derivative

f ′(x; d) = lim
t↓0

f(x + td) − f(x)

t

exists andf ′(x; d) = f ◦(x; d).

Note, that the equalityf ′(x; d) = f ◦(x; d) is not necessarily valid in general even
if f ′(x; d) exists. This is the case, for instance, with concave nonsmooth functions.
However, convexity, as well as smoothness implies subdifferential regularity [7]. Fur-
thermore, it is easy to show that a necessary and sufficient condition for convexity is
that for allx,y ∈ R

n we have

f(y) − f(x) ≥ f ◦(x; y − x)

= f ′(x; y − x). (1)
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Next we present two subderivation rules of composite functions, namely the finite max-
imum and positive linear combination of subdifferentiallyregular functions.

THEOREM 2.5. Let fi : R
n → R be locally Lipschitz continuous atx for all i =

1, . . . ,m. Then the function

f(x) = max {fi(x) | i = 1, . . . ,m}

is locally Lipschitz continuous atx and

∂f(x) ⊂ conv {∂fi(x) | fi(x) = f(x), i = 1, . . . ,m}, (2)

whereconv denotes the convex hull of a set. In addition, iffi is subdifferentially regular
at x for all i = 1, . . . ,m, thenf is also subdifferentially regular atx and equality holds
in (2).

THEOREM 2.6. Let fi : R
n → R be locally Lipschitz continuous atx andλi ∈ R for

all i = 1, . . . ,m. Then the function

f(x) =
m

∑

i=1

λifi(x)

is locally Lipschitz continuous atx and

∂f(x) ⊂
m

∑

i=1

λi∂fi(x). (3)

In addition, iffi is subdifferentially regular atx andλi ≥ 0 for all i = 1, . . . ,m, then
f is also subdifferentially regular atx and equality holds in (3).

In the following, for a given setS ⊂ R
n we denote bydS the distance functionof S,

that is,
dS(x) = inf {‖x − s‖ | s ∈ S}. (4)

If S is nonempty, thendS is locally Lipschitz continuous with the constant one [7]. The
closure of a setS is denotedcl S. By the Weierstrass Theorem we may replaceinf by
min in (4) if S 6= ∅ is closed. Note also thatdS(x) = 0 if x ∈ cl S.

A setS ⊂ R
n is aconeif λs ∈ S for all λ ≥ 0 ands ∈ S. We also denote

ray A = {λa | λ ≥ 0, a ∈ A} and cone A = ray conv A.

In other wordsray A is the smallest cone containingA andcone A is the smallest convex
cone containingA.

DEFINITION 2.7. TheClarke normal coneof the setS ⊂ R
n at x ∈ S is given by the

formula
NS(x) = cl ray ∂dS(x).
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It is easy to derive thatNS(x) is a closed convex cone (see, for example [7]). In convex
case the normal cone can be expressed by the following simpleinequality condition.

THEOREM 2.8. If S is a convex set, then

NS(x) = {z ∈ R
n | zT (y − x) ≤ 0 for all y ∈ S}.

The contingent cone, polar coneandstrict polar coneof setA ∈ R
n at pointx are

defined respectively as

TA(x) = {d ∈ R
n | there existti ↓ 0 anddi → d with x + tidi ∈ A}

A− = {d | aT d ≤ 0, for all a ∈ A}

As = {d | aT d < 0, for all a ∈ A}.

Next we will present some basic results that are useful in section 4.

LEMMA 2.9. LetSi ⊂ R
n, i = 1, 2, . . . , I be convex sets andC ⊂ R

n be a convex cone.
Assume that all the sets are nonempty. Then

(i) conv
⋃I

i=1 Si = {
∑I

i=1 λisi | si ∈ Si, λi ≥ 0,
∑I

i=1 λi = 1}

(ii) cone
⋃I

i=1 Si = {
∑I

i=1 µisi | si ∈ Si, µi ≥ 0} =
∑I

i=1 ray Si

(iii)
⋃I

i=1(Si + C) =
⋃I

i=1 Si + C

(iv) conv
⋃I

i=1(Si + C) = conv
⋃I

i=1 Si + C.

PROOF. (i): SinceSi ⊂
⋃I

i=1 Si for all i = 1, 2, . . . , I, we have
{

I
∑

i=1

λisi | si ∈ Si, λi ≥ 0, for all i = 1, 2, . . . , I,

I
∑

i=1

λi = 1

}

⊂ conv
I

⋃

i=1

Si.

Let s ∈ conv
⋃I

i=1 Si be arbitrary. Then

s =
J

∑

j=1

αjsj, αj > 0,
J

∑

j=1

αj = 1, sj ∈
I

⋃

i=1

Si, for all j = 1, 2, . . . , J.

DenoteJi the set of indices for whichsj ∈ Si, that is, Ji = {j | sj ∈ Si} and
Î ⊂ {1, 2, . . . , I} the set for whichJi 6= ∅. Denote alsoαi =

∑

j∈Ji
αj. Then

s =
∑

i∈Î

∑

j∈Ji

αjsj =
∑

i∈Î

αi

∑

j∈Ji

αj

αi

sj.

Sinceαj

αi
> 0 and

∑

j∈Ji

αj

αi
= 1 for all i ∈ Î we have

∑

j∈Ji

αj

αi
sj = ŝi ∈ Si. Noting

that
∑

i∈Î αi =
∑J

j=1 αj = 1 we obtain

s =
∑

i∈Î

αiŝi ∈

{

I
∑

i=1

λisi | si ∈ Si, λi ≥ 0,
I

∑

i=1

λi = 1

}

.
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(ii): Follows from (i) by taking ray from both sides.
(iii): The relation is clear from the following deduction

I
⋃

i=1

(Si + C) = {s + c | s ∈ Si for somei = 1, 2 . . . , I, c ∈ C}

= {s + c | s ∈
I

⋃

i=1

Si, c ∈ C} =
I

⋃

i=1

Si + C.

(iv): By relation
⋃I

i=1 Si ⊂ conv
⋃I

i=1 Si and relation (iii) we have

conv
I

⋃

i=1

(Si + C) = conv(
I

⋃

i=1

Si + C) ⊂ conv(conv
I

⋃

i=1

Si + C).

Furthermore, sinceconv
⋃I

i=1 Si + C is convex we have

conv(conv
I

⋃

i=1

Si + C) = conv
I

⋃

i=1

Si + C.

For the other part supposes ∈ conv
⋃I

i=1 Si + C. Then by (i) we haveλi ≥ 0 for all
i = 1, 2, . . . , I such that

∑I

i=1 λi = 1 and

s =
I

∑

i=1

λisi + c =
I

∑

i=1

λi(si + c) ∈ conv
I

⋃

i=1

(Si + C),

where in last relation part (i) can be applied sinceC, Si, and thus,Si +C are convex for
all i = 1, 2, . . . , I. �

LEMMA 2.10. LetA,B ⊂ R
n be convex compact sets. Then

S = {x ∈ R
n | x = λa + (1 − λ)b,a ∈ A, b ∈ B, 0 ≤ λ ≤ 1} = conv(A ∪ B)

andS is compact.

PROOF. Let A,B ⊂ R
n be convex compact sets. RelationS = conv(A ∪ B) follows

from Lemma 2.9 (i). Let(xi) ⊂ conv(A ∪ B) be an arbitrary converging subsequence
with limi→∞ xi = x̂. Then

xi = λiai + (1 − λi)bi, ai ∈ A, bi ∈ B, λi ∈ [0, 1] for all i ∈ N.

Consider the sequence(zi) = (ai, bi, λi). Suppose that there is finitely many different
points in sequence(zi). Then the sequence is converging. Suppose then that there exist
infinitely many different points. SinceA×B×[0, 1] is compact, the Bolzano-Weierstrass
Theorem implies that the sequence has an accumulation pointẑ. By the definition of
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accumulation point there exists convergent subsequence(zij) such thatij < iĵ for all

j < ĵ. Since(xi) is convergent we have

lim
i→∞

xi = lim
j→∞

xij .

Hence, without loss of generality we may assume that sequence (zi) converges.
Since setsA, B and[0, 1] are closed, we have

lim
i→∞

ai = â ∈ A, lim
i→∞

bi = b̂ ∈ B, lim
i→∞

λi = λ̂ ∈ A.

Thus,

x̂ = lim
i→∞

(λiai + (1 − λi)bi)

= lim
i→∞

λi lim
i→∞

ai + (1 − lim
i→∞

λi) lim
i→∞

bi

= λ̂â + (1 − λ̂)b̂ ∈ conv(A ∪ B)

implying conv(A ∪ B) is closed.
SinceA andB are bounded there existsrA > 0 andrB > 0 such thatA ⊂ B(000; rA)

andB ⊂ B(000; rB). Denoter = max {rA, rB}. ThenA ∪ B ⊂ B(000; r). SinceB(000; r)
is convex alsoconv(A ∪ B) ⊂ B(000; r) implying conv(A ∪ B) is bounded. Hence
conv(A ∪ B) is compact. �

COROLLARY 2.11. Let A1, A2, . . . , Ak ⊂ R
n be convex compact sets. Then the set

conv(
⋃k

i=1 Ai) is a compact set.

PROOF. The result follows from Lemma 2.10 by applying mathematical induction. �

To the end of this section we recall the classical necessary and sufficient nonsmooth
unconstrained optimality condition.

THEOREM 2.12. Let f : R
n → R be locally Lipschitz continuous atx∗. If f attains its

local minimum atx∗, then
000 ∈ ∂f(x∗).

If, in addition,f is convex, then the above condition is sufficient forx∗ to be a global
minimum.

3 Generalized Convexities

In this section we present some generalizations of convexity, namelyf ◦-pseudoconvex-
ity, quasiconvexity andf ◦-quasiconvexity, that are used later. We also definef ◦-quasi-
concavity. A famous generalization of convexity is pseudoconvexity introduced in [18].
For a pseudoconvex functionf a point x ∈ R is a global minimum if and only if
∇f(x) = 000. The classical pseudoconvexity requires the function to besmooth and, thus,
it is not suitable for our purposes. However, with some modifications pseudoconvexity
can be defined for nonsmooth functions as well. One such definition is presented in
[10]. This definition requires the function to be merely locally Lipschitz continuous.
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DEFINITION 3.1. A functionf : R
n → R is f ◦-pseudoconvex, if it is locally Lipschitz

continuous and for allx,y ∈ R
n

f(y) < f(x) implies f ◦(x; y − x) < 0.

Note that due to (1) a convex function is alwaysf ◦-pseudoconvex. Sometimes the
reasoning chain in the definition off ◦-pseudoconvexity needs to be converted.

LEMMA 3.2. A locally Lipschitz continuous functionf is f ◦-pseudoconvex, if and only
if for all x,y ∈ R

n

f ◦(x; y − x) ≥ 0 implies f(y) ≥ f(x).

PROOF. Follows directly from the definition off ◦-pseudoconvexity. �

The important sufficient extremum property of pseudoconvexity remains also forf ◦-
pseudoconvexity.

THEOREM3.3. Anf ◦-pseudoconvex functionf attains its global minimum atx∗, if and
only if

000 ∈ ∂f(x∗).

PROOF. If f attains its global minimum atx∗, then by Theorem 2.12 we have000 ∈
∂f(x∗). On the other hand, if000 ∈ ∂f(x∗) andy ∈ R

n, then by Definition 2.1 we have

f ◦(x∗; y − x∗) ≥ 000T (y − x∗) = 0

and, thus by Lemma 3.2 we have

f(y) ≥ f(x∗).

�

Note that it follows from Theorem 3.3 that pseudoconvexity impliesf ◦-pseudoconvexity.
The notion of quasiconvexity is the most widely used generalization of convexity

and, thus, there exist various equivalent definitions and characterizations. Next we recall
the most commonly used definition of quasiconvexity (see [1]).

DEFINITION 3.4. A functionf : R
n → R is quasiconvex, if for all x,y ∈ R

n and
λ ∈ [0, 1]

f(λx + (1 − λ)y) ≤ max {f(x), f(y)}.

Note that, unlike pseudoconvexity, the previous definitionof quasiconvexity does not
require differentiability nor continuity. We give also a useful result concerning a finite
maximum of quasiconvex functions.

THEOREM 3.5. Let fi : R
n → R be quasiconvex atx for all i = 1, . . . ,m. Then the

function
f(x) = max {fi(x) | i = 1, . . . ,m}

is also quasiconvex.
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PROOF. Follows directly from the definition of quasiconvexity. �

Analogously to the Definition 3.1 we can define the corresponding generalized concept,
which is a special case ofh-quasiconvexity defined by Komlósi [14] whenh is the
Clarke generalized directional derivative.

DEFINITION 3.6. A functionf : R
n → R is f ◦-quasiconvex, if it is locally Lipschitz

continuous and for allx,y ∈ R
n

f(y) ≤ f(x) implies f ◦(x; y − x) ≤ 0.

With f ◦-quasiconvexity we can definef ◦-quasiconcavity

DEFINITION 3.7. A functionf : R
n → R is f ◦-quasiconcave if−f is f ◦-quasiconvex.

THEOREM 3.8. A functionf : R
n → R is f ◦-quasiconcave if it is locally Lipschitz

continuous and for allx,y ∈ R
n

f(y) ≤ f(x) implies f ◦(y; y − x) ≤ 0.

PROOF. By Definitions 3.6 and 3.7 we have

−f(x) ≤ −f(y) implies (−f)◦(y; x − y) ≤ 0.

Using Theorem 2.2 (i) we obtain

f(y) ≤ f(x) implies f ◦(y; y − x) ≤ 0

which proves the theorem. �

Next, we give few results concerning relations between the previously presented gener-
alized convexities. The proofs for these results can be found in [16].

THEOREM 3.9. If f : R
n → R is f ◦-pseudoconvex, thenf is f ◦-quasiconvex and

quasiconvex.

THEOREM 3.10. If f : R
n → R is f ◦-quasiconvex, thenf is quasiconvex.

THEOREM 3.11. If f : R
n → R is subdifferentially regular and quasiconvex thenf is

f ◦-quasiconvex.

9



The following figure illustrates the relations between different convexities.

Figure 1: Relations between different convexity types

convex

pseudoconvex f ◦-pseudoconvex

quasiconvex f ◦-quasiconvex

1)

2)

1) demands continuous differentiability,
2) demands subdifferential regularity.

4 Optimality Conditions for Nonsmooth Multiobjective
Problem

In this section we present some necessary and sufficient optimality conditions for mul-
tiobjective optimization.

Consider first a general multiobjective optimization problem

{

minimize {f1(x), . . . , fq(x)}

subject to x ∈ S,
(5)

wherefk : R
n → R for k = 1, 2, . . . , q are locally Lipschitz continuous functions and

S ⊂ R
n is an arbitrary nonempty set. Denote

F (x) =
⋃

k∈Q

∂fk(x) and Q = {1, 2, . . . , q}.

We start the consideration by defining the notion of optimality for the multiobjective
problem (5).

DEFINITION 4.1. A vectorx∗ is said to be aglobal Pareto optimumof (5), if there does
not existx ∈ S such, thatfk(x) ≤ fk(x

∗) for all k = 1, . . . , q andfl(x) < fl(x
∗) for

somel. Vectorx∗ is said to be aglobal weak Pareto optimumof (5), if there does not
existx ∈ S such, thatfk(x) < fk(x

∗) for all k = 1, . . . , q. Vectorx∗ is a local (weak)
Pareto optimumof (5), if there existsδ > 0 such, thatx∗ is a global (weak) Pareto
optimum onB(x∗; δ) ∩ S.
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Next we will present some optimality conditions of problem (5) in terms of cones. We
also consider the unconstrained case, that is, whenS = R

n. We begin the considerations
with the following lemma which can be found in [15] (Lemma 4.2).

LEMMA 4.2. If x∗ is a local weak Pareto optimum of problem(5), then F s(x∗) ∩
TS(x∗) = ∅.

PROOF. Let x∗ be a local weak Pareto optimum. Then, there existsε > 0 such that
for everyy ∈ S ∩ B(x∗, ε) there existsk ∈ Q such that inequalityfk(y) ≥ fk(x

∗)
holds. Letd ∈ TS(x∗) be arbitrary. Then, there exist sequences(di) and(ti) such that
di → d, ti ↓ 0 andx∗ + tidi ∈ S for all i ∈ N. Also, there exists an indexI1 such that
x∗ + tidi ∈ S ∩ B(x∗, ε) for all i > I1. Then for everyi > I1 there existski such that
fki

(x∗ + tidi) ≥ fki
(x∗). Since the setQ is finite, there exists̄k ∈ Q and subsequences

(dij) ⊂ (di) and(tij) ⊂ (ti) such that

fk̄(x
∗ + tijdij) ≥ fk̄(x

∗) (6)

for all ij with j ∈ N large enough. DenoteI2 = {ij | ij > I1, j ∈ N}. The Mean-Value
Theorem (see e.g. [7]) implies that for allī ∈ I2 there exists̃t̄i ∈ (0, t̄i) such that

fk̄(x
∗ + t̄idī) − fk̄(x

∗) ∈ ∂fk̄(x
∗ + t̃̄idī)

T t̄idī. (7)

From the definition of generalized directional derivative (Definition 2.1), (6) and (7) we
obtain

f ◦
k̄ (x∗ + t̃̄idī; dī) = max

ξ∈∂fk̄(x∗+t̃̄id̄i)
ξT dī ≥

1

t̄i
(fk̄(x

∗ + t̄idī) − fk̄(x
∗)) ≥ 0.

Thus, for all̄i ∈ I2 we havef ◦
k̄
(x∗ + t̃̄idī; dī) ≥ 0. Sincedī → d andx∗ + t̃̄idī → x∗

the upper semicontinuity of functionf ◦
k̄

(Theorem 2.2, (iv)) implies

f ◦
k̄ (x∗,d) ≥ lim

ī→∞
f ◦

k̄ (x∗ + t̃̄idī; dī) ≥ 0.

Thus, there existsξ ∈ ∂fk̄(x
∗) ⊂ F (x∗) such thatξT d ≥ 0 implying d /∈ F s(x∗). �

Next, we will present a result for the unconstrained case. The result is analogous to
Theorem 2.12.

THEOREM 4.3. Letfk be locally Lipschitz continuous for allk ∈ Q andS = R
n. If x∗

is a local weak Pareto optimum of problem(5), then

000 ∈ conv F (x∗)

PROOF. SinceS = R
n we haveTS(x∗) = R

n as well. Then by Lemma 4.2 we have
F s(x∗) = ∅. Hence, for anyd ∈ R

n there existsξ ∈ F (x∗) ⊂ conv F (x∗) such that

dT ξ ≥ 0. (8)

11



Suppose that000 /∈ conv F (x∗). Since the setsconv F (x∗) and{000} are closed convex
sets, there existsd ∈ R

n anda ∈ R such that

0 = dT000 ≥ a and dT ξ < a for all ξ ∈ conv F (x∗)

according to the Separation Theorem (see e.g. [2]). From thefirst inequality we see
that a ≤ 0. Then the second inequality contradicts with inequality (8). Hence,000 ∈
conv F (x∗). �

In the following we shall present the necessary optimality condition of problem (5) in
terms of Clarke normal cone. The proof is quite similar to the proof for single objective
case in [17, p. 72–73]. Before the condition we will present a useful lemma.

LEMMA 4.4. If x∗ is a local weak Pareto optimum of problem(5), then it is local weak
Pareto optimum of unconstrained problem

min
x∈Rn

{f1(x) + KdS(x), f2(x) + KdS(x), . . . , fq(x) + KdS(x)}, (9)

whereK = max{K1, K2, . . . , Kq} andKk is the Lipschitz constant of functionfk at
pointx∗.

PROOF. From the definition ofK and local weak Pareto optimality we see that there
existsε > 0 such that the Lipschitz condition holds for allfk atB(x∗; ε) andx∗ is weak
Pareto optimum atB(x∗; ε) ∩ S. Suppose on the contrary thatx∗ is not a local weak
Pareto optimum of problem (9). Then there existsy ∈ B(x∗; ε

2
) such that

fk(y) + KdS(y) < fk(x
∗) + KdS(x∗) = fk(x

∗) for all k ∈ Q. (10)

Supposey ∈ cl S. ThenKdS(y) = 0 and by the continuity offk there existsδ > 0
such thatfk(z) < fk(x

∗) for all k ∈ Q andz ∈ B(y; δ) ⊂ B(x∗; ε
2
). Sincey ∈ cl S

we haveS ∩B(y; δ) ∩B(x∗; ε
2
) 6= ∅ and, thus,x∗ is not a weak Pareto optimum of (5)

in S ∩ B(x∗; ε) contradicting the assumption. Hence,y /∈ cl S anddS(y) > 0.
By the definition ofdS(y) there existsc ∈ cl S such thatdS(y) = ‖y − c‖. Fur-

thermore,
‖c − y‖ ≤ ‖x∗ − y‖ <

ε

2
.

Thus,
‖c − x∗‖ ≤ ‖c − y‖ + ‖y − x∗‖ <

ε

2
+

ε

2
= ε

implying c ∈ B(x∗; ε). By inequality (10) and local weak Pareto optimality ofx∗ there
existsk1 ∈ Q such that

fk1
(y) < fk1

(x∗) ≤ fk1
(c).

Hence,

|fk1
(x∗) − fk1

(y)| ≤ |fk1
(c) − fk1

(y)| ≤ K ‖y − c‖ = KdS(y)

implying fk1
(x∗) ≤ fk1

(y) + KdS(y). This contradicts with inequality (10). Thus,x∗

is a local weak Pareto optimum of problem (9). �
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Finally, we can state the necessary optimality condition ofproblem (5) with arbitrary
nonempty feasible setS ⊂ R

n.

THEOREM 4.5. If x∗ is a local weak Pareto minimum of(5), then

000 ∈ conv F (x∗) + NS(x∗). (11)

PROOF. By Lemma 4.4x∗ is a local weak Pareto optimum of unconstrained problem
(9). Considerkth objective function of the unconstrained problem. By Theorem 2.6 we
have

∂(fk(x) + KdS(x)) ⊂ ∂fk(x) + K∂dS(x).

The Definition 2.7 of normal cone impliesK∂dS(x) ⊂ NS(x). Sincex∗ is a local weak
Pareto optimum of problem (9), Lemma 4.3 implies

000 ∈ conv
⋃

k∈Q

∂(fk(x
∗) + KdS(x∗)) ⊂ conv

⋃

k∈Q

(∂fk(x
∗) + NS(x∗)).

By Lemma 2.9 (iv) we have

conv
⋃

k∈Q

(∂fk(x
∗) + NS(x∗)) = conv F (x∗) + NS(x∗),

as desired. �

Since Pareto optimality implies weak Pareto optimality we get immediately the follow-
ing consequence.

COROLLARY 4.6. Condition(11) is also necessary forx∗ to be a local Pareto optimum
of (5).

To prove a sufficient condition for global optimality we needthe assumptions thatS is
convex andfk aref ◦-pseudoconvex for allk ∈ Q.

THEOREM 4.7. Let fk bef ◦-pseudoconvex for allk ∈ Q andS convex. Thenx∗ ∈ S
is a global weak Pareto minimum of(5), if and only if

000 ∈ conv F (x∗) + NS(x∗).

PROOF. The necessity follows directly from Theorem 4.5. For sufficiency let000 ∈
conv F (x∗) + NS(x∗). Then there existξ∗ ∈ conv F (x∗) and z∗ ∈ NS(x∗) such
thatξ∗ = −z∗. Then by Theorem 2.8 we have for allx ∈ S that

0 ≤ −zT
∗ (x − x∗) = ξT

∗ (x − x∗) =

q
∑

k=1

λkξ
T
k (x − x∗),

whereλk ≥ 0, ξk ∈ ∂fk(x
∗) for all k ∈ Q and

∑q

k=1 λk = 1. Thus, there existsk1 such
thatf ◦

k1
(x∗,x − x∗) ≥ ξT

k1
(x − x∗) ≥ 0. Then by Lemma 3.2 thef ◦-pseudoconvexity

of fk1
implies fk1

(x) ≥ fk1
(x∗). Thus, there exists no feasible pointx ∈ S with

fk(x) < fk(x
∗) for all k ∈ Q implying x∗ is a global weak Pareto optimum. �
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4.1 Inequality constraints

Now we shall consider problem (5) with inequality constraints:
{

minimize {f1(x), . . . , fq(x)}

subject to gi(x) ≤ 0 for all i = 1, . . . ,m,
(12)

where alsogi : R
n → R for i = 1, . . . ,m are locally Lipschitz continuous functions.

DenoteM = {1, 2, . . . ,m} and thetotal constraint functionby

g(x) = max {gi(x) | i = 1, . . . ,m}.

Problem (12) can be seen as a special case of (5), where

S = {x ∈ R
n | g(x) ≤ 0}.

Denote also

G(x) =
⋃

i∈I(x)

∂gi(x), whereI(x) = {i | gi(x) = 0}.

For necessary conditions we need some constraint qualifications. We restrict ourselves
to constraint qualifications that give conditions in terms of feasible set or constraint
functions. This makes the constraint qualifications easilyapplicable to both single and
multiobjective problems. There are many constraint qualifications involving the objec-
tive functions too (see e.g. [15]), but they are not considered here.

In order to formulate Karush-Kuhn-Tucker (KKT) type optimality conditions we
need one of the following constraint qualifications

(CQ1) G−(x) ⊂ TS(x)

(CQ2) 000 /∈ ∂g(x)

(CQ3) Gs(x) 6= ∅

(CQ4) 000 /∈ conv G(x),

where we assumeI(x) 6= ∅ for all the constraint qualifications. Due to Theorem 2.2
(ii) the assumptionI(x) 6= ∅ guarantees thatG(x) 6= ∅. Note that the setsG−(x) and
Gs(x) can be defined also in terms of generalized directional derivatives. For example

G−(x) = {d | ξT d ≤ 0, for all ξ ∈
⋃

i∈I(x)

∂gi(x)}

= {d | g◦
i (x; d) ≤ 0, for all i ∈ I(x)}.

In [15] CQ1 and CQ3 were called nonsmooth analogs of Abadie qualification and Cot-
tle qualification respectively, while both CQ4 and CQ2 were called Cottle constraint
qualifications in [19] and [17] respectively. In [15] it was shown that CQ1 follows from
CQ3. In the appendix we will show that the following relationshold between the given
constraint qualifications.
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Figure 2: Relations between different constraint qualifications

CQ4 CQ3 CQ2 CQ1
1)

1)If all constraint functions are subdifferentially regularor f ◦-pseudoconvex.

Next, we will prove a KKT Theorem in the case where the constraint qualification is
CQ1. As seen in Figure 2, CQ1 is the weakest condition of the above qualifications.
Thus, CQ1 can be replaced by any of CQ2, CQ3 or CQ4. The proof of the KKT The-
orem is in practice the same as in [15]. The idea is quite similar to the proof in [2,
p. 165] for differentiable single objective case. The outline of the proof goes as fol-
lows. First we characterize a necessary conditon for (weak Pareto) optimality in terms
of contingent cone and objective function(s). Then, by someconstraint qualification we
replace the contingent cone by another cone, related to constraint functions and, finally,
by some alternative theorem we may express the optimality inthe form of KKT con-
ditions. The main difference between the differentiable and nondifferentiable case is
that the cones are defined with generalized directional derivatives (or subdifferentials)
instead of classical gradients.

The weak Pareto optimality was expressed in terms of contingent cone and objective
functions in Lemma 4.2. Let us then prove the theorem of alternatives needed in the
proof of the KKT Theorem.

LEMMA 4.8. Let A ⊂ R
n be a nonempty closed convex set and letC ⊂ R

n be a
nonempty closed convex cone. Then one and only one of the following relations hold

1. A ∩ C 6= ∅

2. As ∩ −C− 6= ∅.

PROOF. Assume thatA∩C 6= ∅. If As = ∅ then triviallyAs∩−C− = ∅. If d ∈ As 6= ∅,
we haveaT d < 0 for all a ∈ A ∩ C. Thus,d /∈ −C− = {x | xT c ≥ 0, ∀ c ∈ C} and
As ∩ −C− = ∅.

Assume next thatA ∩ C = ∅. SinceA andC are closed convex sets the Separation
Theorem (see e.g. [2]) implies there existd ∈ R

n andα ∈ R such that

dT a < α ∀a ∈ A (13)

dT c ≥ α ∀ c ∈ C. (14)

SinceC is a cone,000 ∈ C andC is unbounded, we can chooseα = 0. Then, equation
(13) means thatd ∈ As and equation (14) means thatd ∈ −C−. Thus,d ∈ As∩−C− 6=
∅. �

The following results are useful in the proof of necessary conditions.
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LEMMA 4.9. Letfk, k ∈ Q andgi, i ∈ M be locally Lipschitz continuous andA ⊂ R
n

an arbitrary set. Then

A− = (cl A)−, F s(x) = (conv F (x))s and G−(x) = (cone G(x))−.

PROOF. Since

A ⊂ cl A, F (x) ⊂ conv F (x) and G(x) ⊂ cone G(x)

clearly

(cl A)− ⊂ A−, (conv F (x))s ⊂ F s(x) and (cone G(x))− ⊂ G−(x).

Suppose thatd ∈ A−. If d /∈ (cl A)− thendT a > 0 for somea ∈ cl A. By the
continuity of functiondT a there existsε > 0 such thatdT b > 0 for all b ∈ B(a; ε).
This contradicts with assumptiond ∈ A− asB(a; ε) ∩ A 6= ∅.

Suppose thatd ∈ F s(x). Then for everyξ ∈
⋃

k∈Q ∂fk(x) we havedT ξ < 0. Then

dT (

q
∑

k=1

λkξk) =

q
∑

k=1

λkd
T ξk < 0,

for all ξk ∈ ∂fk(x) andλk ≥ 0,
∑q

k=1 λk = 1. Hence,d ∈ (conv F (x))s.
Suppose thatd ∈ G−(x). Likewise to the previous case we can show thatd ∈

(conv G(x))−. Then
dT ξ ≤ 0 implying dT λξ ≤ 0

for all λ ≥ 0 andξ ∈ conv G(x). Hence,d ∈ (cone G(x))−. �

Now, we are ready to formulate the necessary condition for local weak Pareto optimality.

THEOREM 4.10. If x∗ is a local weak Pareto optimum and CQ1 holds then

000 ∈ conv F (x∗) + cl cone G(x∗). (15)

PROOF. By Lemma 4.2F s(x∗) ∩ TS(x∗) = ∅. Since the CQ1 holds we have

F s(x∗) ∩ G−(x∗) ⊂ F s(x∗) ∩ TS(x∗) = ∅.

By Lemma 4.9 we have

F s(x∗) ∩ G−(x∗) = (conv F (x∗))s ∩ (cone G(x∗))−

= (conv F (x∗))s ∩ (cl cone G(x∗))− = ∅.

SinceF (x∗) andG(x∗) are nonempty(I(x∗) 6= ∅), conv F (x∗) is a closed convex set
(Corollary 2.11) andcl cone G(x∗) is a closed convex cone. Then Lemma 4.8 implies

conv F (x∗) ∩ − cl cone G(x∗) 6= ∅.

This is equivalent with000 ∈ conv F (x∗) + cl cone G(x∗). �
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Since Pareto optimality implies weak Pareto optimality we get immediately the follow-
ing consequence.

COROLLARY 4.11. Condition(15) is also necessary forx∗ to be a local Pareto optimum
of (12).

In Theorem 4.10 it was assumed thatI(x) 6= ∅. If this is not the case, then we have
g(x) < 0. By continuity of g there existsε > 0 such thatB(x; ε) belongs to the
feasible set. ThenNS(x) = {0} and with Theorem 4.5 we may deduce that condition
in Theorem 4.3 holds. From that we may deduce that assumptionI(x) 6= ∅ could be
omitted if in (15)cl cone G(x∗) is replaced by{0} ∪ cl cone G(x∗).

A condition stronger than (15) was developed for CQ3 in [15] and [19]. Next we
shall study the stronger condition. For that we need the following lemma.

LEMMA 4.12. If CQ4 (or equivalently CQ3) holds atx ∈ R
n, thencone G(x) is closed.

PROOF. Let(dj) ⊂ cone G(x) be an arbitrary converging sequence such thatlimj→∞ dj

= d̂. For everyj there existsλj ≥ 0 andξj ∈ conv G(x) such thatdj = λjξj. By
Corollary 2.11conv G(x) is a compact set. Then there exists a converging subsequence
(ξji

) such thatlimi→∞ ξji
= ξ̂. By closedness ofconv G(x) we haveξ̂ ∈ conv G(x).

Since000 /∈ conv G(x) sequence

λji
=

‖dji
‖

∥

∥ξji

∥

∥

is converging too. Denotelimi→∞ λji
= λ̂. Then

d̂ = λ̂ξ̂ ∈ cone G(x)

implying thatcone G(x) is closed. �

THEOREM 4.13. If x∗ is a local weak Pareto optimum and CQ3 holds, then

000 ∈ conv F (x∗) + cone G(x∗).

PROOF. From Lemma 4.12 it follows that if CQ3 holds thencl cone G(x∗) = cone G(x∗).
Then the result follows directly from Theorem 4.10. �

Consider then the sufficient conditions of problem (12). It iswell-known that the con-
vexity of the functionsfk, k ∈ Q, andgi, i ∈ M , guarantees the sufficiency of the
KKT optimality condition for global weak Pareto optimalityin Theorem 4.13 (see [19,
p. 51]). We will present the sufficient conditions in more detail later. Namely, they can
be obtained as a special case of sufficient conditions for problems with both inequality
and equality constraints.
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4.2 Equality constraints

Consider problem (5) with both inequality and equality constraints.










minimize {f1(x), . . . , fq(x)}

subject to gi(x) ≤ 0 for all i = 1, . . . ,m,

hj(x) = 0 for all j = 1, . . . , p,

(16)

where all functions are supposed to be locally Lipschitz continuous. DenoteH(x) =
⋃p

j=1 ∂hj(x) andJ = {1, 2, . . . , p}. By Lemma 2.3 we see that

−H(x) = −
⋃

j∈J

∂hj(x) =
⋃

j∈J

∂(−hj)(x).

A straightforward way to deal with an equality constrainthj(x) = 0 is to replace it with
two inequality constraints

hj(x) ≤ 0 and − hj(x) ≤ 0. (17)

Then, we may use the results obtained for problem (12) to derive results for problem
(16). However, some constraint qualifications are not satisfied if this kind of operation
is done as we will see soon.

Consider first the CQ1. Denote

G−
∗ (x) = {d | g◦

i (x; d) ≤ 0, i ∈ I(x), h◦
j(x; d) ≤ 0, (−hj)

◦(x; d) ≤ 0, j ∈ J}

= G−(x) ∩ H−(x) ∩ (−H)−(x).

It is good to note that we can replace(−hj)
◦(x; d) ≤ 0 by h◦

j(x;−d) ≤ 0 in the
definition ofG−

∗ (x) according to Theorem 2.2 (i). We can use a new cone instead of the
coneH−(x) ∩ (−H)−(x) as the next lemma shows.

LEMMA 4.14. Leth : R
n → R be a locally Lipschitz continuous function. Then

∂h(x)− ∩ (−∂h(x))− = {d | h◦(x; d) ≤ 0, h◦(x;−d) ≤ 0}

⊂ {d | h◦(x; d) = 0}

PROOF. Supposed ∈ ∂h(x)− ∩ (−∂h(x))−. By the subadditivity ofh◦ (Theorem 2.2
(i)) we have

0 = h◦(x; 000) ≤ h◦(x;−d) + h◦(x; d) ≤ 0, (18)

which is possible only ifh◦(x;−d) = h◦(x; d) = 0. Namely, if one would be strictly
negative the other should be strictly positive in order to satisfy inequality (18). This is
impossible asd ∈ ∂h(x)− ∩ (−∂h(x))−. �

Denote
H0(x) = {d | h◦

j(x; d) = 0 for all j ∈ J}.
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From Lemma 4.14 we can easily deduce thatH−(x)∩ (−H)−(x) ⊂ H0(x). However,
in generalH0(x) 6⊂ H−(x) ∩ (−H)−(x). To see this, consider a function

h(x) =

{

−x , if x ≤ 0

0 , otherwise.

Thenh◦(0, 1) = 0 andh◦(0,−1) = 1. Thus,1 ∈ H0(0) but1 /∈ H−(0) ∩ (−H)−(0).
Now we can present two constraint qualifications for problem(16):

(CQ5) G−(x) ∩ H−(x) ∩ (−H)−(x) ⊂ TS(x)

(CQ6) G−(x) ∩ H0(x) ⊂ TS(x),

where againI(x) 6= ∅. From Lemma 4.14 we see that CQ6 implies CQ5. Thus, we can
derive KKT conditions with CQ6 if we can do so for CQ5.

Consider next the constraint qualification CQ2. Assume our problem has an equality
constrainth1(x) = 0. Then, at the feasible points the total constraint functionwill be

g(x) = max{h1(x),−h1(x), l(x)} = max{max{h1(x),−h1(x)}, l(x)},

wherel(x) contains the other terms. It is clear that functionmax{h1(x),−h1(x)} is
non-negative. Consequently,g is non-negative too. Then,0 is minimum value forg and
it is attained at every feasible point of problem (16). Thus,for any feasiblex we have
000 ∈ ∂g(x) according to Theorem 2.12 and, thus, CQ2 does not hold. Hence,CQ2 is not
suitable for problems with equality constraints.

Next, we shall consider CQ3. Denote

Gs
∗(x) = {d | g◦

i (x; d) < 0, i ∈ I(x), h◦
j(x; d) < 0, (−hj)

◦(x; d) < 0, j ∈ J}

= Gs(x) ∩ {d | h◦
j(x; d) < 0, h◦

j(x;−d) < 0, j ∈ J}.

Let x,d ∈ R
n andj ∈ J be arbitrary. By the subadditivity ofh◦

j we have

0 = h◦
j(x,000) ≤ h◦

j(x,d) + h◦
j(x,−d). (19)

From inequality (19) it is easy to see that{d | h◦
j(x; d) < 0, h◦

j(x;−d) < 0} = ∅.
Hence, CQ3 does not hold implying that the constraint qualification CQ3 (or CQ4) is
not suitable for equality constraints.

Before the proof of the KKT Theorem of problem (16) we need the following
lemma.

LEMMA 4.15. If A andB are nonempty cones thencl(A + B) ⊂ cl A + cl B.

PROOF. SinceA ⊂ cl A andB ⊂ cl B we haveA + B ⊂ cl A + cl B. By Lemma 2 in
[20] cl A + cl B is closed. Thus,cl(A + B) ⊂ cl A + cl B. �

Finally, we can state the theorem corresponding to Theorem 4.10 with constraint quali-
fication CQ5.
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THEOREM 4.16. If x∗ is a local weak Pareto optimum of(16) and CQ5 holds atx∗,
then

000 ∈ conv F (x∗) + cl cone G(x∗) + cl cone H(x∗) − cl cone H(x∗). (20)

PROOF. From Theorem 4.10 and previous considerations we see that

000 ∈ conv F (x∗) + cl cone(G(x∗) ∪ H(x∗) ∪ −H(x∗)). (21)

By using Lemma 2.9 (ii) twice and Lemma 4.15 we obtain

cl cone(G(x∗) ∪ H(x∗) ∪ −H(x∗))

= cl





∑

i∈I(x∗)

ray ∂gi(x
∗) +

∑

j∈J

ray ∂hj(x
∗) +

∑

j∈J

ray ∂(−hj(x
∗))





= cl(cone G(x∗) + cone H(x∗) − cone H(x∗))

⊂ cl cone G(x∗) + cl cone H(x∗) − cl cone H(x∗).

Combining this with relation (21) proves the theorem. �

There are papers dealing with equality constraints in nonsmooth problems without turn-
ing them into inequality constraints (see e.g. [12]). However, the conditions are ex-
pressed in terms of generalized Jacobian of multivalued mapping h : R

m → R
n. We

shall not consider generalized Jacobians here and, thus, will not discuss these type of
conditions further.

There are also papers where closures are not needed in conditions in Theorem 4.16
(see e.g [11]). But there they used constraint qualificationsincluding objective functions
which we shall not consider either.

After the necessary conditions we shall now study sufficientconditions. For that
we do not need the constraint qualifications but we have to make some assumptions
on objective and constraint functions. More accurately, weassume that objective func-
tions aref ◦-pseudoconvex and inequality constraint functions aref ◦-quasiconvex. The
equality constraints may bef ◦-quasiconvex orf ◦-quasiconcave. Denote

H+(x) =
⋃

j∈J+

∂hj(x) and H−(x) =
⋃

j∈J−

∂hj(x),

whereJ− ∪ J+ = J andhj is f ◦-quasiconvex ifj ∈ J+ andhj is f ◦-quasiconcave if
j ∈ J−.

THEOREM4.17. Letx∗ be a feasible point of problem(16). Supposefk aref ◦-pseudo-
convex for allk ∈ Q, gi are f ◦-quasiconvex for alli ∈ M , hj are f ◦-quasiconvex for
all j ∈ J+ andf ◦-quasiconcave for allj ∈ J−. If

000 ∈ conv F (x∗) + cone G(x∗) + cone H+(x∗) − cone H−(x∗), (22)

thenx∗ is a global weak Pareto optimum of(16).
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PROOF. Note that if (22) is satisfied thenI(x∗) 6= ∅. Let x ∈ R
n be an arbitrary

feasible point. Thengi(x) ≤ gi(x
∗) if i ∈ I(x∗), hj(x) = hj(x

∗) for all j ∈ J+ ∪ J−

andf ◦-quasiconvexity implies that

g◦
i (x

∗; x − x∗) ≤ 0 for all i ∈ I(x∗) (23)

h◦
j(x

∗; x − x∗) ≤ 0 for all j ∈ J+. (24)

Thef ◦-quasiconcavity implies that

h◦
j(x

∗; x∗ − x) ≤ 0 for all j ∈ J−. (25)

According to (22) there existξk ∈ ∂fk(x
∗), ζi ∈ ∂gi(x

∗), ηj ∈ ∂hj(x
∗) and coef-

ficientsλk, µi, νj ≥ 0, for all k ∈ Q, i ∈ I(x∗) andj ∈ J such that
∑q

k=1 λk = 1
and

000 =
∑

k∈Q

λkξk +
∑

i∈I(x∗)

µiζi +
∑

j∈J+

νjηj −
∑

j∈J−

νjηj. (26)

Multiplying equation (26) byx − x∗, using Definition 2.1 and equations (23), (24) and
(25) we obtain

−
∑

k∈Q

λkξ
T
k (x − x∗)

=
∑

i∈I(x∗)

µiζ
T
i (x − x∗) +

∑

j∈J+

νjη
T
j (x − x∗) +

∑

j∈J−

νjη
T
j (x∗ − x)

≤
∑

i∈I(x∗)

µig
◦
i (x

∗; x − x∗) +
∑

j∈J+

νjh
◦
j(x

∗; x − x∗) +
∑

j∈J−

νjh
◦
j(x

∗; x∗ − x)

≤
∑

i∈I(x∗)

µi · 0 +
∑

j∈J+

ν+
j · 0 +

∑

j∈J−

νj · 0 = 0.

Thus,
0 ≤

∑

k∈Q

λkξ
T
k (x − x∗) ≤

∑

k∈Q

λkf
◦
k (x∗; x − x∗).

Sinceλk ≥ 0 for all k ∈ Q and
∑

k∈Q λk = 1 > 0 there existsk1 ∈ Q such that

0 ≤ f ◦
k1

(x∗; x − x∗).

Then,f ◦-pseudoconvexity offk1
implies thatfk1

(x∗) ≤ fk1
(x). Sincex is an arbitrary

feasible point there exists no feasible pointy ∈ R
n such thatfk(y) < fk(x

∗) for all
k ∈ Q. Thus,x∗ is a global weak Pareto optimum of problem (16). �

Note, that due to Theorems 3.9 and 3.11 the previous result isvalid also forf ◦-pseudo-
convex and subdifferentially regular quasiconvex inequality constraint functions. Also,
the implicit assumptionI(x∗) 6= ∅ could be omitted by replacingcone G(x∗) by {0} ∪
cone G(x∗).

Finally, by modifying somewhat the proof we get the sufficient KKT optimality
condition for global Pareto optimality with an extra assumption for the multipliers.
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COROLLARY 4.18. The condition of Theorem 4.17 is also sufficient forx∗ to be a global
Pareto optimum of(16), if in additionλj > 0 for all k ∈ Q.

PROOF. By the proof of Theorem 4.17 we know that inequality

0 ≤
∑

k∈Q

λkξ
T
k (x − x∗) ≤

∑

k∈Q

λkf
◦
k (x∗; x − x∗) (27)

holds for arbitrary feasiblex. Suppose there existsk1 ∈ Q such thatf ◦
k1

(x∗; x− x∗) <
0. Becauseλk > 0 for all k ∈ Q, by inequality (27) there must be alsok2 ∈ Q such that
f ◦

k2
(x∗; x − x∗) > 0. By Theorem 3.9fk2

is f ◦-quasiconvex and by Definition 3.4 we
havefk2

(x) > fk2
(x∗). Sincex were arbitrary,x∗ is Pareto optimal.

Suppose then thatf ◦
k (x∗; x − x∗) ≥ 0 for all k ∈ Q. Then thef ◦-pseudoconvexity

implies thatfk(x
∗) ≤ fk(x) and, thus,x∗ is Pareto optimal. �

As the next example shows a global minimumx∗ does not necessarily satisfy the con-
ditions in Theorem 4.17.

EXAMPLE 4.1. Consider the problem

minimize f(x) = −x1

subject to g(x) = (x1 − 2)2 + (x2 + 2)2 − 2 ≤ 0

h(x) = (x1 − 4)2 + x2
2 − 10 = 0.

All the functions are convex and, thus, the assumptions of Theorem 4.17 are satisfied.
The global minimum to this problem isx∗ = (3,−3)T . The gradients at this point

are
∇f(x∗) = (−1, 0)T , ∇g(x∗) = (2,−2)T and∇h(x∗) = (−2,−6)T .

The gradients are illustrated in Figure 3. The lengths of thegradients in figure are scaled
for clarity. The bolded curve represents the feasible set.

In Figure 4 the cone in condition (22) is illustrated by shaded region. From Figure
4 we see that000 /∈ ∇f(x∗) + cone∇g(x∗) + cone∇h(x∗). Thus we have a global
optimum but the sufficient condition is not satisfied.

Let us then apply necessary conditions (Theorem 4.16) to thegiven example. It is
easy to see that qualifications CQ5 and CQ6 are equivalent if functionshj are differen-
tiable for allj ∈ J . Clearly,

TS(x∗) = {λ(−3, 1) | λ ≥ 0},

H0(x∗) = {λ(−3, 1) | λ ∈ R} and

G−(x∗) = {(d1, d2) | d1, d2 ∈ R, d1 ≤ d2}.

Thus,G−(x∗) ∩ H0(x∗) = TS(x∗) implying that CQ6 is satisfied. According to Theo-
rem 4.16, relation (20) should hold at global minimumx∗. Indeed,

000 = ∇f(x∗) +
3

8
∇g(x∗) + 0∇h(x∗) −

1

8
∇h(x∗)

⊂ conv F (x∗) + cl cone G(x∗) + cl cone H(x∗) − cl cone H(x∗).
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Figure 3: Gradients at the global minimum.
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Figure 4: The set of sufficient KKT condition.

The relations in the necessary conditions are illustrated in Figure 5.
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Figure 5: The gradients in the necessary KKT condition.

5 Concluding Remarks

We have considered KKT type necessary and sufficient conditions for nonsmooth mul-
tiobjective optimization problems. Both inequality and equality constraints were con-
sidered. The optimality were characterized as weak Pareto optimality. In necessary
conditions CQ1–CQ6 constraint qualifications were needed. Insufficient conditions
the main tools used were the generalized pseudo- and quasiconvexities based on the
Clarke generalized directional derivative. It was assumed that the objective functions
aref ◦-pseudoconvex and the constraint functions aref ◦-quasiconvex. Due to relations
between different generalized convexities the results arevalid also forf ◦-pseudoconvex
and subdifferentially regular quasiconvex constraint functions.
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A Relations between the CQ constraint qualifications

Consider problem (12), that is, problem
{

minimize {f1(x), . . . , fq(x)}

subject to gi(x) ≤ 0 for all i ∈ M = {1, . . . ,m}.
(28)

Next, we will study some relations between the constraint qualifications. From now on,
we assume thatI(x) 6= ∅.

In [15] it was shown that CQ1 follows from CQ3. Next we will provethat CQ1
follows also from CQ2.

THEOREM A.1. Letx ∈ R
n be a feasible point of problem(28) such thatI(x) 6= ∅. If

000 /∈ ∂g(x) thenG−(x) ⊂ TS(x).

PROOF. Assume that there existsd∗ ∈ G−(x) such thatd∗ /∈ TS(x). Since a contingent
cone is a closed set there existsε > 0 such thatcl B(d∗; ε) ∩ TS(x) = ∅. Since
d /∈ TS(x), for everyd ∈ cl B(d∗; ε) there existst(d) > 0 such thatg(x+ t1d) > g(x)
when0 < t1 < t(d). Thus,

g◦(x; d) ≥ 0, for all d ∈ cl B(d∗; ε). (29)

Sinced∗ ∈ G−(x) we have

g◦(x; d∗) = max
{

ζT d∗ | ζ ∈ ∂g(x)
}

≤ max
{

ζT d∗ | ζ ∈ conv{∂gi(x) | i ∈ I(x)}
}

(30)

= max {g◦
i (x,d∗) | i ∈ I(x)} ≤ 0.

Then for allζ ∈ ∂g(x) we haveζT d∗ ≤ 0. Since we have000 /∈ ∂g(x) the Separation
Theorem (see e.g. [2]) implies that there existα ∈ R andz, ‖z‖ = 1 such that

zT000 > α and zT ζ ≤ α

for all ζ ∈ ∂g(x). SincezT000 = 0 we see thatzT ζ < 0 for all ζ ∈ ∂g(x). If
d̄ = d∗ + εz, thend̄ ∈ cl B(d∗; ε) and

ζT d̄ = ζT d∗ + εζT z < 0

for all ζ ∈ ∂g(x). Then

g◦(x; d̄) = max
{

ζT d̄ | ζ ∈ ∂g(x)
}

< 0

contradicting inequality (29). Thus,G−(x) ⊂ TS(x). �

There exist problems that satisfy the CQ1 constraint qualification, but does not satisfy
the CQ2.
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EXAMPLE A.1. Consider the problem (28) withg(x) = |x|. Then we haveG−(0) =
{0} andTS(0) = {0}. Thus,G−(0) ⊂ TS(0) and CQ1 holds atx = 0. However,
0 ∈ ∂g(0) and CQ2 does not hold.

Next we will consider the relations between CQ2 and CQ3. First we will show that CQ2
follows from CQ3.

THEOREM A.2. If I(x) 6= ∅ andGs(x) 6= ∅, then000 /∈ ∂g(x).

PROOF. It follows from the conditionGs(x) 6= ∅ that there existsd, such thatg◦
i (x; d) <

0 for all i ∈ I(x). In other words,dT ξi < 0 for all ξi ∈ ∂gi(x) andi ∈ I(x). Let
λi ≥ 0, i ∈ I(x) be scalars such that

∑

i∈I(x) λi = 1. Then

dT
∑

i∈I(x)

λiξi =
∑

i∈I(x)

λid
T ξi < 0.

Thus,dT ξ < 0 for all ξ ∈ conv
⋃

i∈I(x) ∂gi(x). Since∂g(x) ⊂ conv
⋃

i∈I(x) ∂gi(x),
we haveg◦(x; d) < 0 implying that000 /∈ ∂g(x). �

There exist problems for which CQ2 holds but CQ3 does not as the following example
shows.

EXAMPLE A.2. Consider constraint functions

g1(x) = x and g2(x) =

{

x , if x < 0

0 , if x ≥ 0.

Theng(x) = max{g1(x), g2(x)} = g1(x) and0 /∈ ∂g(0). However,0 ∈ ∂g2(0) which
impliesGs(0) = ∅.

Despite Example A.2 we can establish some conditions on constraint functions
which guarantees that CQ2 implies CQ3. Namely, if all the constraint functions are
subdifferentially regular orf ◦-pseudoconvex the CQ3 follows from CQ2.

THEOREM A.3. Let x ∈ R
n and I(x) 6= ∅. If the functionsgi are subdifferentially

regular for all i ∈ M and000 /∈ ∂g(x), thenGs(x) 6= ∅.

PROOF. If 000 /∈ ∂g(x), then there existsd, such thatg◦(x; d) < 0. Due to regularity we
have∂g(x) = conv

⋃

i∈I(x) ∂gi(x). Hence,

dT
∑

i∈I(x)

λiξi < 0, for all ξi ∈ ∂gi(x), λi ≥ 0,
∑

i∈I(x)

λi = 1,

implying dT ξi < 0 for all ξi ∈ ∂gi(x). In other wordsg◦
i (x; d) < 0 for all i ∈ I(x).

Thus, we haved ∈ Gs 6= ∅. �

THEOREM A.4. Letx ∈ R
n andI(x) 6= ∅. If the functionsgi aref ◦-pseudoconvex for

all i ∈ M and000 /∈ ∂g(x), thenGs(x) 6= ∅.
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PROOF. On contrary, assume thatGs = ∅. Then for alld ∈ R
n there existsi ∈ I(x),

for which g◦
i (x; d) ≥ 0. Due tof ◦-pseudoconvexity we havegi(x + td) ≥ gi(x) for

all t ≥ 0. Sinceg(x) ≥ gi(x) for all i ∈ M we haveg(x + td) ≥ g(x) for all
d ∈ R

n. Thus,x is a global minimum and000 ∈ g(x) by Theorem 2.12. In other words,
if 000 /∈ g(x) we will haveGs 6= ∅. �

Finally, we will show that constraint qualification CQ3 is equivalent to CQ4.

THEOREM A.5. SupposeI(x) 6= ∅. Then000 /∈ conv G(x) iff Gs(x) 6= ∅.

PROOF. The condition000 /∈ conv G(x) is equivalent to conditionconv G(x)∩ {000} = ∅.
By Corollary 2.11conv G(x) is a closed convex set and trivially{000} is a closed convex
cone. Also,{000}− = R

n = −{000}−. By Lemma 4.8conv G(x) ∩ {000} = ∅ is equivalent
to

(conv G(x))s ∩ R
n = (conv G(x))s 6= ∅.

Furthermore,(conv G(x))s = Gs(x) according to Lemma 4.9. �
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