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Abstract

Optimality conditions are an essential part of mathembtipimization theory, affect-
ing heavily, for example to the optimization method devebtemt. Different types of
generalized convexities have proved to be the main tool vdoaistructing optimality
conditions, particularly sufficient conditions for optilitya The purpose of this paper is
to present some sufficient and necessary optimality camditior locally Lipschitz con-
tinuous multiobjective problems. In order to prove sufitieptimality conditions some
generalized convexity properties for functions are intiaetl. For necessary optimality
conditions we will need some constraint qualifications.
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1 Introduction

Optimality conditions are an essential part of mathemhtigdimization theory, af-

fecting heavily, for example to the optimization method elepment. When con-
structing optimality conditions convexity has been the tmogportant concept dur-
ing the last decades. Recently there have been numerousptgteangeneralize the
concept of convexity in order to weaken the assumptions efatitained results (see
e.g.[1, 4, 8, 14, 16, 25, 28, 30]).

Different kinds of generalized convexities have proved ¢otliee main tool when
constructing optimality conditions, particularly suféait conditions. There exist a wide
amount of papers published for smooth (continuously dffidiable) single-objective
case (see [25] and references therein). For nonsmooth@ntahaously differentiable)
problems there is an additional degree of freedom in chgdsi®a way how to deal with
the nonsmoothness. There are many different generalizedtidinal derivatives to do
this. For example, necessary and sufficient conditions émsmooth single-objective
optimization by using the Dini directional derivatives weileveloped in [8]. These
results were extended for nonsmooth multiobjective proisien [3].

Another degree of freedom is how to generalize convexity21j sufficient condi-
tions for nonsmooth multiobjective programs were derivedsing the , p)-convexity
defined by Preda [26] and its extension for nonsmooth caseedety Bhatia and
Jain [4]. Recently, the concept of invexity defined by Hans@jnhas become a very
popular research concept. It was used to formulate negeasdrsufficient conditions
for differentiable multiobjective case in [24], for arcwisonnected functions in [5] and
for nonsmooth multiobjective programming in [6, 13, 22,.23]

In this paper, we present optimality conditions for nonsthauaultiobjective prob-
lems with locally Lipschitz continuous functions. Thregdg of constraint sets are
considered. First, we discuss general set constraint, thdy inequality constraints
and, finally, both inequality and equality constraints. Baldwith the nonsmoothness
we use the Clarke subdifferential as a generalization toignad For the necessary
condition we require that certain constraint qualificasidvolds. For sufficient condi-
tions we usef°-pseudo- and quasiconvexities [14] as a generalizatioorwexity. The
necessary conditions with inequality constraints reli@snty on [15]. In [13] a suf-
ficient condition was presented which differs from ours rhyalyy the formulation of
object function. Moreoverf°-quasiconcave inequality constraints were not considered
in [13].

Nonsmooth problems with locally Lipschitz continuous ftioas were considered
also in [11, 23, 29]. Our presentation differs from [23] add][by constraint qualifi-
cations and the formulation of KKT conditions. Also, in [2BE necessary optimality
condition relied on a theorem, which required the subdifféial of equality constraint
functions to be a singleton. For the sufficient conditionsneed generalized pseudo-
and quasiconvexities. Contrary to [23], the invexity andyggeralizations are not used
here. In [29] general constraint set was used in the deowvaif conditions for weak
Pareto optimality. Our presentation has different, momesg formulation for these
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conditions.

This article is organized as follows. In Section 2 we recafhe basic tools from
nonsmooth analysis. In Section 3 results concerning génedgseudo- and quasicon-
vexity are presented. In Section 4 we present Karush-Kuokdr type necessary and
sufficient conditions of weak Pareto optimality for nonsromultiobjective optimiza-
tion problems with different constraint sets. Finally, soooncluding remarks are given
in Section 5.

2 Nonsmooth Analysis

In this section we collect some notions and results from mmwth analysis. Most of
the proofs of this section are omitted, since they can bedpfor example in [7, 17].
Nevertheless, we start by recalling the notion of conveaitst Lipschitz continuity. The
function f : R" — R is convexf for all z,y € R™ andX € [0, 1] we have

fOz+ (1= Ny) <Af(z)+ (11— N f(y).

A function islocally Lipschitz continuous at a point € R” if there exist scalar& > 0
andd > 0 such that

[f(y) = f(z)| < Klly — 2| forally, z € B(;9),

whereB(z;§) C R™ is an open ball with centet and radius). If a function is locally
Lipschitz continuous at every point then it is callémtally Lipschitz continuousNote
that both convex and smooth functions are always locallystitz continuous (see,
e.g. [7]). In what follows the considered functions are assd to be locally Lipschitz
continuous.

DEFINITION 2.1. [7] Letf : R™ — R be locally Lipschitz continuous at € S C R".
The Clarke generalized directional derivativad f at « in the direction ofd € R" is

defined by
fo(a:,d) _ limsup f(y + td) — f(y>

y—x t
t10

and theClarke subdifferentiabf f atax by
Of(x) = {& € R"| f°(x;d) > &' dforalld € R"}.

Each elemenf € 0f(x) is called asubgradienof f atx.

Note that the Clarke generalized directional derivafver; d) always exists for a lo-
cally Lipschitz continuous functiorf. Furthermore, iff is smoothdf(x) reduces to
Of(x) = {Vf(x)} andif f is convexd f(x) coincides with the classical subdifferential
of convex function (cf. [27]), in other words the setE R" satisfying

fly) > f(x) + €T (y—x) forally e R"
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The following properties derived in [7] are characteristiche generalized directional
derivative and subdifferential.

THEOREM2.2. If f: R™ — R s locally Lipschitz continuous at € R", then

(i) d — f°(x;d) is positively homogeneous, subadditive and Lipschitziwootis
function such thaf°(x; —d) = (— f)°(x; d).

(i) Of(x)is a nonempty, convex and compact set.
(i) f°(x;d) = max {¢"d | € € Of(x)} forall d € R".
(iv) f°(x;d) is upper semicontinuous as a function(af d).
From the last part of (i) in Theorem 2.2 we can easily dedueddtowing lemma.
LEMMA 2.3. Let f : R™ — R be locally Lipschitz continuous and < R". Then
—=f)(x) = —0f ().
PROOF By Theorem 2.2 (i) we have
o(—f)x) = {£](=f)(z;d) > ¢"d, forall d e R"}
= {&] f°(z;—d) > (=¢)"(—d), forall d ¢ R"}
= {=¢| folx; —d) > &£ (—d), forall d € R"}.
Using the fact thatl € R” iff —d € R™ we obtain
{—¢ | f(x;—d) > £"(—d), forall d € R"}
= —{¢&| fo(x;d) > €7d, forall d € R"} = —0f(x).
Henced(—f)(x) = —0f(x). O

In order to maintain equalities instead of inclusions indrivation rules we need the
following regularity property.

DEFINITION 2.4. The functionf : R* — R is said to besubdifferentially regular
atx € R" if it is locally Lipschitz continuous at and for alld € R” the classical

directional derivative d
t10 t

exists andf’(z; d) = f°(x; d).

Note, that the equality’(x;d) = f°(x;d) is not necessarily valid in general even
if f'(x;d) exists. This is the case, for instance, with concave nongmimctions.
However, convexity, as well as smoothness implies subeéifiigal regularity [7]. Fur-
thermore, it is easy to show that a necessary and sufficienditban for convexity is
that for allz, y € R™ we have

fy)—fx) > [f(x;y—=x)
= flz;y—=). (1)



Next we present two subderivation rules of composite famstj namely the finite max-
imum and positive linear combination of subdifferentiakigular functions.

THEOREM 2.5. Let f; : R® — R be locally Lipschitz continuous at for all i =
1,...,m. Then the function

f(x) =max{fi(x) |i=1,...,m}

is locally Lipschitz continuous at and

Of(x) C conv{dfi(x) | fi(w) = f(x), i =1,...,m}, )
whereconv denotes the convex hull of a set. In additiory; iis subdifferentially regular
atxforalli =1,...,m, thenf is also subdifferentially regular at and equality holds

in (2).

THEOREM2.6. Let f; : R™ — R be locally Lipschitz continuous at and \; € R for
alli =1,...,m. Then the function

fl@)=) Nfi=)
=1
is locally Lipschitz continuous at and
of(x) C > Ndfi(). 3)
=1

In addition, if f; is subdifferentially regular ai and\; > 0 forall : = 1,...,m, then
f is also subdifferentially regular at and equality holds in (3).

In the following, for a given set C R"™ we denote byls the distance functiorof .S,
that is,
dg(x) = inf {||x — s|| | s € S}. 4)

If S'is nonempty, thedy is locally Lipschitz continuous with the constant one [7heT
closure of a seb is denoted:1 S. By the Weierstrass Theorem we may repladeby
min in (4) if S # () is closed. Note also thals(x) = 0if = € 1 S.

AsetS C R"is aconeif A\s € S forall A > 0 ands € S. We also denote

rayA={la|X>0,a€ A} and coneA = rayconv A.

In other wordsay A is the smallest cone containidgandcone A is the smallest convex
cone containingd.

DEFINITION 2.7. TheClarke normal conef the setS ¢ R™ atx € S is given by the
formula
Ng(x) = clray 0dg(x).
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It is easy to derive tha¥s(x) is a closed convex cone (see, for example [7]). In convex
case the normal cone can be expressed by the following simgdality condition.

THEOREMZ2.8. If S'is a convex set, then
Ns(x)={zcR"| 2" (y—x) <0 foral yeS}

The contingent congpolar coneand strict polar coneof setA € R™ at pointx are
defined respectively as

Ta(x) = {de€R"|thereexist; | 0 andd; — d with x + t,d;, € A}
A = {d|a'd<0, foralla c A}
A5 = {d|a"d <0, foralla € A}.
Next we will present some basic results that are useful itiaed.

LEMMA 2.9. LetS; C R",i =1,2,...,1 be convex sets and C R" be a convex cone.
Assume that all the sets are nonempty. Then

(i) conv Ule S; = {Zi[:l A\iS;i | s;i € Siy Ai >0, Zle A =1}
(i) cone Ule Si= {3 si| s €8Si, i >0} =31 rayS;
(i) U_,(S;+0)=UL, s +C
(iv) convJl_,(S; 4+ C) = conv|J_, S; + C.

PROOF. (i): Sinces; ¢ |JI_, S; foralli =1,2,...,1, we have

I 1 I
{Z)\ZSZ | s;€8;, >0, foralli=1,2,...,1, ZAZ:l} CCOHVUSi.

i=1 =1 =1

Lets € conv|J_, S; be arbitrary. Then

J J I
S:ZO(]'S]‘, O./j>0,ZOéj:1,Sj€USZ‘, forallj:1,2,...,J.

j=1 j=1 i=1

Denote J; the set of indices for whicls; € S;, thatis,J; = {j | s; € S;} and
I c{1,2,...,1} the set for which/; # (). Denote alsev; = ., ;. Then

Q;
s=) ) 5= ) s
J1<J a; J

icl J€Ji icl  J€Ji

&y

Since% > 0andy_, , & = 1foralli e I we havey,., %s; = 3; € Si. Noting

Jj€Jdi a;

thaty~, ;o = 7, a; = 1 we obtain

I I
s:ZaiéiE {Z)‘zsz | S; GSi, /\ZZO,ZAlzl}

el i=1 i=1



(if): Follows from (i) by taking ray from both sides.
(iii): The relation is clear from the following deduction

1
Usi+C) = {s+clseSiforsomei=12....1 ceC}

=1
I I
= {s+c|se USi,ceC}:USi—i-C.
=1 =1
(iv): By relationJ!_, S; ¢ conv |J/_, S; and relation (iii) we have
I I I
conv U(S’ +0C) = Conv(U S; + C') C conv(conv U Si+C).
=1 =1 i=1
Furthermore, sinceonv | J/_, S; + C'is convex we have
I I
conv(conv U S; + C) = conv U S+ C.
=1 =1

For the other part supposec conv Ule S; + C. Then by (i) we have\; > 0 for all
i=1,2,...,Isuchtha® ' )\, =1and

I I I
= Z \;S; +c¢c= Z Ai(8; + ¢€) € conv U(S’ +C),
i=1 i=1 i=1

where in last relation part (i) can be applied sidgesS;, and thusS; + C' are convex for
alli=1,2,....1. O

LEMMA 2.10. Let A, B C R™ be convex compact sets. Then
S={xeR"|z=Xa+(1-ANb,ac A,be B,0<\A<1}=conv(AUB)

and S is compact.

PROOF Let A, B C R" be convex compact sets. RelatiSn= conv(A U B) follows
from Lemma 2.9 (i). Letx;) C conv(A U B) be an arbitrary converging subsequence
with lim;_,., «; = . Then

xr; = \a; + (1 — )\Z)bz, a; € A, b, € B, A € [O, 1] forall i € N.

Consider the sequence;) = (a;, b;, \;). Suppose that there is finitely many different
points in sequencez;). Then the sequence is converging. Suppose then that thiste ex
infinitely many different points. Sincé x B x |0, 1] is compact, the Bolzano-Weierstrass
Theorem implies that the sequence has an accumulation oiBy the definition of
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accumulation point there exists convergent subsequengesuch thati; < i; for all
j < j. Since(x;) is convergent we have

lim z; = lim @;;.

1—00 j—00

Hence, without loss of generality we may assume that seguencconverges.
Since sets, B and|0, 1] are closed, we have

lima,=acA, limb=beB, lim\=A\cA.

i—00 1—00 1—00

Thus,

8
I

= lim A; lim a; + (1 — lim ;) lim b,

— Xa+(1—X\)b e conv(AUB)

implying conv(A U B) is closed.

SinceA and B are bounded there existg > 0 andrp > 0 such thatd C B(0;7,4)
andB C B(0;rp). Denoter = max {r4,rg}. ThenAU B C B(0;r). SinceB(0;r)
is convex alsaconv(A U B) C B(0;r) implying conv(A U B) is bounded. Hence
conv(A U B) is compact. O

COROLLARY 2.11. Let Ay, Ay, ..., A, C R™ be convex compact sets. Then the set
conv({J"_, A;) is a compact set.

PROOF The result follows from Lemma 2.10 by applying mathematicduction. [

To the end of this section we recall the classical necesgsatysafficient nonsmooth
unconstrained optimality condition.

THEOREM2.12. Let f : R™ — R be locally Lipschitz continuous at*. If f attains its
local minimum atc*, then

0 of(x").
If, in addition, f is convex, then the above condition is sufficientaddto be a global
minimum.

3 Generalized Convexities

In this section we present some generalizations of conyexaimely f°-pseudoconvex-
ity, quasiconvexity ang°-quasiconvexity, that are used later. We also definrguasi-
concavity. A famous generalization of convexity is psewexity introduced in [18].
For a pseudoconvex functiofi a pointz € R is a global minimum if and only if
V f(x) = 0. The classical pseudoconvexity requires the function &nbeoth and, thus,
it is not suitable for our purposes. However, with some modifons pseudoconvexity
can be defined for nonsmooth functions as well. One such defins presented in
[10]. This definition requires the function to be merely libg&ipschitz continuous.
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DEFINITION 3.1. A functionf : R® — R is f°-pseudoconvexf it is locally Lipschitz
continuous and for alk, y € R"
fly) < f(x) implies fo(x;y—x) <0.

Note that due to (1) a convex function is alwayspseudoconvex. Sometimes the
reasoning chain in the definition ¢gf-pseudoconvexity needs to be converted.

LEMMA 3.2. A locally Lipschitz continuous functiohis f°-pseudoconvex, if and only
if forall =,y € R”

fole;y—=x) >0  implies  f(y) > f(=).
PrRooOF Follows directly from the definition of °-pseudoconvexity. O

The important sufficient extremum property of pseudocoityexemains also forf°-
pseudoconvexity.

THEOREM3.3. An f°-pseudoconvex functighattains its global minimum at*, if and
only if

0€df(x").
PROOEF If f attains its global minimum at*, then by Theorem 2.12 we hatec
Jdf(x*). On the other hand, & € 0f(z*) andy € R", then by Definition 2.1 we have

folaty—a) >0"(y—a") =0
and, thus by Lemma 3.2 we have

fly) = f(z).
0

Note that it follows from Theorem 3.3 that pseudoconvexitplies f °-pseudoconvexity.

The notion of quasiconvexity is the most widely used geimeaibn of convexity
and, thus, there exist various equivalent definitions aadasterizations. Next we recall
the most commonly used definition of quasiconvexity (sep [1]

DEFINITION 3.4. A functionf : R™ — R is quasiconvexif for all z,y € R" and
A e (0,1]

fOz + (1= Ny) <max{f(z), f(y)}-
Note that, unlike pseudoconvexity, the previous definitbdrgquasiconvexity does not
require differentiability nor continuity. We give also aafigl result concerning a finite
maximum of quasiconvex functions.

THEOREM 3.5. Let f; : R* — R be quasiconvex at forall i = 1,...,m. Then the
function

f(x) =max{fi(x) |i=1,...,m}

is also quasiconvex.



PrRooOF Follows directly from the definition of quasiconvexity. O

Analogously to the Definition 3.1 we can define the correspangdeneralized concept,
which is a special case d@f-quasiconvexity defined by Komsi [14] whenh is the
Clarke generalized directional derivative.

DEFINITION 3.6. A functionf : R” — R is f°-quasiconvexif it is locally Lipschitz
continuous and for alk, y € R

fly) < f(x)  implies  f(x;y —x) <0.
With f°-quasiconvexity we can defin€-quasiconcavity
DEFINITION 3.7. Afunctionf : R — R is f°-quasiconcave it f is f°-quasiconvex.
THEOREM 3.8. A functionf : R* — R is f°-quasiconcave if it is locally Lipschitz

continuous and for alic, y € R”

fly) < f(x)  implies  f°(y;y —x) <0.

PROOF By Definitions 3.6 and 3.7 we have

—f(x) < —f(y)  implies (—f)°(y;z—1y) <0.

Using Theorem 2.2 (i) we obtain

fly) < f(w)  implies  f*(y;y—x) <0
which proves the theorem. 0J

Next, we give few results concerning relations between theipusly presented gener-
alized convexities. The proofs for these results can bedanifil6].

THEOREM 3.9. If f : R® — R is f°-pseudoconvex, thefiis f°-quasiconvex and
guasiconvex.

THEOREM3.10.If f : R" — R is f°-quasiconvex, thelfi is quasiconvex.

THEOREM3.11. If f : R™ — R is subdifferentially regular and quasiconvex théis
f°-quasiconvex.



The following figure illustrates the relations betweeneliéint convexities.

Figure 1: Relations between different convexity types

| convex |
1)
pseudoconvex f°-pseudoconvex
guasiconvex f°-quasiconvex

2)

1) demands continuous differentiability
2) demands subdifferential regularity

4 Optimality Conditions for Nonsmooth Multiobjective
Problem
In this section we present some necessary and sufficiemhalityy conditions for mul-

tiobjective optimization.
Consider first a general multiobjective optimization proble

minimize  {fi(x),..., fy(x)} 5)
subjectto x € S,
wheref, : R" — Rfork = 1,2,...,q are locally Lipschitz continuous functions and

S C R" is an arbitrary nonempty set. Denote

F(z)=|Jofc(x) and Q={1,2,....q}.

keQ

We start the consideration by defining the notion of optitgeior the multiobjective
problem (5).

DEFINITION 4.1. A vectorz* is said to be global Pareto optimunof (5), if there does
not existz € S such, thatfy(z) < fi(z*) forallk =1,...,qandfi(x) < fi(«*) for
somel. Vectorx* is said to be alobal weak Pareto optimumf (5), if there does not
existe € S such, thatf,(x) < fi(x*) forallk = 1,...,q. Vectorz* is alocal (weak)
Pareto optimunof (5), if there exists) > 0 such, thatr* is a global (weak) Pareto
optimum onB(x*; ) N S.
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Next we will present some optimality conditions of probles) in terms of cones. We
also consider the unconstrained case, that is, vshenR"™. We begin the considerations
with the following lemma which can be found in [15] (Lemma}.2

LEMMA 4.2, If =* is a local weak Pareto optimum of problefh), then F*(x*) N

PROOF Let x* be a local weak Pareto optimum. Then, there exists 0 such that
for everyy € SN B(x*,¢) there exists: € @ such that inequality,(y) > fu(x*)
holds. Letd € Ts(x*) be arbitrary. Then, there exist sequen@ég and(¢;) such that
d; — d,t; | 0andz* + t;d; € S for all i € N. Also, there exists an indel such that
x* +t;d; € SN B(x* ) foralli > ;. Then for everyi > I, there exists:; such that
fr, (@ +t:d;) > fr,(z*). Since the sef) is finite, there existg € Q and subsequences
(di;) C (d;) and(t;;) C (t;) such that

fel@™ +t;,d;;) > fr(x") (6)

for all 7; with j € N large enough. Denote = {i; | i; > I, j € N}. The Mean-Value
Theorem (see e.qg. [7]) implies that for akt I, there exists; € (0,t;) such that

fil@™ + tidy) — fr(@") € Ofp(a” +t;dy) " tid;. (7)

From the definition of generalized directional derivatiize{inition 2.1), (6) and (7) we
obtain

- 1
Rl +td;di) = max_ €'d; > —(fe(x" + tid;) — fi(z®)) > 0.
E€0fr(x*+i;dy) i

Thus, for alli € I, we havef?(z* + t;d;; d;) > 0. Sinced; — d andz* + t;d; — x*
the upper semicontinuity of functioff (Theorem 2.2, (iv)) implies

f(x*,d) > lim f7(x* + ;d;; dy) > 0.

Thus, there exist§ € df;(x*) C F(x*) such that”d > 0implyingd ¢ F*(x*). O

Next, we will present a result for the unconstrained casee fHsult is analogous to
Theorem 2.12.

THEOREM4.3. Let f; be locally Lipschitz continuous for all € Q and S = R". If *
is a local weak Pareto optimum of problg), then

0 € conv F(x")

PROOF SinceS = R™ we haveTs(x*) = R” as well. Then by Lemma 4.2 we have
Fs(x*) = (). Hence, for anyl € R" there existg € F(x*) C conv F(x*) such that

d’'¢ > 0. (8)
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Suppose thad ¢ conv F(z*). Since the setsonv F/(z*) and{0} are closed convex
sets, there exisid € R™ anda € R such that

0=d’0>a and d'¢ <a forall £ € conv F(x*)

according to the Separation Theorem (see e.g. [2]). Fronfitsteinequality we see
thata < 0. Then the second inequality contradicts with inequality (Bence,0 €
conv F'(x*). O

In the following we shall present the necessary optimalagdition of problem (5) in
terms of Clarke normal cone. The proof is quite similar to treopfor single objective
casein [17, p. 72—73]. Before the condition we will presenseful lemma.

LEMMA 4.4. If =* is a local weak Pareto optimum of problds), then it is local weak
Pareto optimum of unconstrained problem

win {f1(x) + Kds(@), (@) + Kds(@), .., () + Kds(@)},  (9)

where X' = max{K}, K», ..., K,} and K} is the Lipschitz constant of functiof at
pointx*.

PrROOFE From the definition of’ and local weak Pareto optimality we see that there
existss > 0 such that the Lipschitz condition holds for g}l at B(x*; ¢) andx* is weak
Pareto optimum aB(x*;¢) N S. Suppose on the contrary that is not a local weak
Pareto optimum of problem (9). Then there exigts B(x*; 5) such that

fe(y) + Kds(y) < fi(x") + Kds(z*) = fe(z*) forallk e Q. (10)

Supposey € clS. ThenKds(y) = 0 and by the continuity off; there exist$ > 0
such thatf,(z) < fi(z*) forallk € Q andz € B(y;d) C B(z*; 5). Sincey € clS
we haveS N B(y; ) N B(x*; 5) # 0 and, thusg* is not a weak Pareto optimum of (5)
in S N B(x*; ¢) contradicting the assumption. Henge¢ cl S andds(y) > 0.

By the definition ofds(y) there exists: € clS such thatis(y) = ||y — c||. Fur-
thermore, .

le =yl < ll" —yl < 5

Thus,
3
2
implying ¢ € B(x*; ¢). By inequality (10) and local weak Pareto optimalityatifthere
existsk;, € @ such that

* * 6
le—a | <le-yl+ly-a’l<5+5=¢

fkfl(y) < f’ﬂ(w*) < fkl(c)'

Hence,

[ (%) = [, ()] < [fri (€) = S, (W)] < K ||y — €] = Kds(y)

implying fx, (z*) < fi, (y) + Kds(y). This contradicts with inequality (10). Thus;
is a local weak Pareto optimum of problem (9). O
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Finally, we can state the necessary optimality conditioprablem (5) with arbitrary
nonempty feasible seét C R”.

THEOREMA4.5. If x* is a local weak Pareto minimum @b), then
0 € conv F'(x*) + Ng(x"). (11)

PROOF By Lemma 4.4x* is a local weak Pareto optimum of unconstrained problem
(9). Considelkth objective function of the unconstrained problem. By Tle@oR2.6 we
have

I(fr(x) + Kds(x)) C Ofp(x) + Kdds(x).

The Definition 2.7 of normal cone impligsdds(x) C Ng(x). Sincex* is a local weak
Pareto optimum of problem (9), Lemma 4.3 implies

0 € conv U I(fe(x*) + Kds(x*)) C conv U (Ofk(x*) + Ng(z")).
keqQ keQ
By Lemma 2.9 (iv) we have
conv U (Ofe(x") + Ng(x*)) = conv F(x*) + Ng(x"),
keQ
as desired. 0

Since Pareto optimality implies weak Pareto optimality veeighmediately the follow-
ing consequence.

COROLLARY 4.6. Condition(11)is also necessary fat* to be a local Pareto optimum
of (5).

To prove a sufficient condition for global optimality we neb@ assumptions that is
convex andf; are f°-pseudoconvex for alt € Q.

THEOREMA4.7. Let f;, be f°-pseudoconvex for alkt € (Q and S convex. Therx* € S
is a global weak Pareto minimum ¢5), if and only if

0 € conv F'(x*) + Ng(x").

PrRoOOF The necessity follows directly from Theorem 4.5. For sigficy let0 <
conv F'(x*) + Ng(x*). Then there exisg, € conv F(x*) andz, € Ng(x*) such
that¢, = —z.. Then by Theorem 2.8 we have for alle S that

q
0<-2(@-a) =€ (@—2) = > Mél(z—2"),
k=1

where), > 0, &, € 0fy(x*) forall k € Q and>"{_, Ay = 1. Thus, there existg; such
that f; (z*,x — x*) > ¢ (z —x*) > 0. Then by Lemma 3.2 th¢°-pseudoconvexity
of fx, implies fx,(x) > fi, (x*). Thus, there exists no feasible point<c S with
fi(x) < fr(x*) for all k € Q implying * is a global weak Pareto optimum. O
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4.1 Inequality constraints

Now we shall consider problem (5) with inequality consttsin

{minimize {f1(x),... fo()} (12)

subjectto  g;(z) <0 foralli=1,...,m,

where alsqgy; : R — R fori = 1,...,m are locally Lipschitz continuous functions.
DenoteM = {1,2,..., m} and thetotal constraint functiorby

Problem (12) can be seen as a special case of (5), where
S={xeR"|g(x) <0}

Denote also

For necessary conditions we need some constraint quabisat\We restrict ourselves
to constraint qualifications that give conditions in ternideasible set or constraint
functions. This makes the constraint qualifications eagilylicable to both single and
multiobjective problems. There are many constraint qualifons involving the objec-
tive functions too (see e.g. [15]), but they are not considérere.

In order to formulate Karush-Kuhn-Tucker (KKT) type optiliya conditions we
need one of the following constraint qualifications

(CQL) G (z) C Ts(x)
(CQ2) 0¢ Iy(x)
(CQ3) G*(z) #10
(CQ4) 0 ¢ convG(x),

where we assumé(x) # () for all the constraint qualifications. Due to Theorem 2.2
(ii) the assumptior (x) # () guarantees tha¥(x) # (). Note that the set§ (x) and
G*(x) can be defined also in terms of generalized directional dtivies. For example

G (w) = {d|¢'d<o,forallge | ] dgix)}
i€l(x)
= {d|g(xz;d) <0, foralli e I(x)}.

In [15] CQ1 and CQ3 were called nonsmooth analogs of Abadiafopzdion and Cot-

tle qualification respectively, while both CQ4 and CQ2 werdechCottle constraint
qualifications in [19] and [17] respectively. In [15] it walsavn that CQ1 follows from
CQ3. In the appendix we will show that the following relatidrddd between the given
constraint qualifications.
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Figure 2: Relations between different constraint qualiforest

c

DIf all constraint functions are subdifferentially regutar f°-pseudoconvex.

Next, we will prove a KKT Theorem in the case where the comstrgualification is
CQ1. As seen in Figure 2, CQL1 is the weakest condition of theahaowlifications.
Thus, CQ1 can be replaced by any of CQ2, CQ3 or CQ4. The proof of Kle Ke-
orem is in practice the same as in [15]. The idea is quite amtd the proof in [2,
p. 165] for differentiable single objective case. The mlobf the proof goes as fol-
lows. First we characterize a necessary conditon for (weaktB) optimality in terms
of contingent cone and objective function(s). Then, by soorestraint qualification we
replace the contingent cone by another cone, related taraeamsunctions and, finally,
by some alternative theorem we may express the optimalitg@rform of KKT con-
ditions. The main difference between the differentiabld aondifferentiable case is
that the cones are defined with generalized directionalak@res (or subdifferentials)
instead of classical gradients.

The weak Pareto optimality was expressed in terms of coatihcone and objective
functions in Lemma 4.2. Let us then prove the theorem of radieres needed in the
proof of the KKT Theorem.

LEMMA 4.8. Let A C R™ be a nonempty closed convex set and(letc R™ be a
nonempty closed convex cone. Then one and only one of tbeifudl relations hold

1. ANC #10
2. AAN—-C~ £0.

PROOF. Assume thatiNC # (. If A* = (thentrivially ASN—C~ = 0. If d € A% # (),
we havea’d < Oforalla € ANC. Thus,d ¢ —C~ = {x | xzTc > 0,Vc e C}and
Asn—C~ = 0.

Assume next thatl N C' = (). SinceA and(C are closed convex sets the Separation
Theorem (see e.g. [2]) implies there exds€ R™ anda € R such that

da<a YacA (13)
d'c>a VYeeCl. (14)

SinceC'is a conef € C' and(C is unbounded, we can choose= 0. Then, equation
(13) means thad € A® and equation (14) meansthht —C~. Thus,d € A*N—-C~ #
0. O

The following results are useful in the proof of necessarydions.
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LEMMA 4.9. Let f;, k € Q andg;, i € M be locally Lipschitz continuous andl C R”
an arbitrary set. Then

A” = (clA)", F*(x)=(convF(x))® and G (x)= (coneG(z))".
PROOF. Since
AcCclA, F(x)CconvF(x) and G(x) C coneG(x)
clearly
(clA)" Cc A7, (convF(z))* C F°(xz) and (coneG(z))” C G (x).

Suppose thatl € A~. If d ¢ (c1A)~ thend’a > 0 for somea € clA. By the
continuity of functiond” a there exists > 0 such thaid”d > 0 for all b € B(a;¢).
This contradicts with assumptiahe A~ asB(a;e) N A # 0.

Suppose thaf € F*(z). Then for eveng € |, 9fx(x) we haved” ¢ < 0. Then

q q
d"(> &) =D ad"g, <0,
k=1 k=1

forall &, € 0fi(x) and), >0, > 7_, A, = 1. Henced € (conv F(x))*.
Suppose thatl € G~ (x). Likewise to the previous case we can show tat
(convG(x))~. Then
d’¢ <0 implying d'X¢<0

forall A > 0 and¢ € conv G(x). Henced € (cone G(x)). O
Now, we are ready to formulate the necessary condition frallveak Pareto optimality.

THEOREM4.10. If * is a local weak Pareto optimum and CQ1 holds then
0 € conv F(z") + clcone G(x™). (15)
PROOF By Lemma 4.2F*(x*) N Ts(x*) = (). Since the CQ1 holds we have
F(x2")N G () C F*(x*) N Ts(x*) = 0.
By Lemma 4.9 we have

F(x*)NG (x*) = (conv F(x*))* N (coneG(x*))~
= (conv F(x*))* N (clcone G(x*))” = 0.

SinceF'(x*) andG(x*) are nonempty/(x*) # (), conv F'(*) is a closed convex set
(Corollary 2.11) andl cone G(x*) is a closed convex cone. Then Lemma 4.8 implies

conv F(x*) N — clcone G(x*) # 0.

This is equivalent witld € conv F'(x*) + cl cone G(x*). O
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Since Pareto optimality implies weak Pareto optimality veeighmediately the follow-
ing consequence.

COROLLARY 4.11. Condition(15)is also necessary fae* to be a local Pareto optimum
of (12).

In Theorem 4.10 it was assumed thatc) # 0. If this is not the case, then we have
g(x) < 0. By continuity of g there exists > 0 such thatB(x;¢) belongs to the
feasible set. Theg(x) = {0} and with Theorem 4.5 we may deduce that condition
in Theorem 4.3 holds. From that we may deduce that assumption= () could be
omitted if in (15)cl cone G(x*) is replaced by{0} U cl cone G(x*).

A condition stronger than (15) was developed for CQ3 in [15] fP]. Next we
shall study the stronger condition. For that we need thewioilg lemma.

LEMMA 4.12.1f CQ4 (or equivalently CQ3) holds at € R™, thencone G(x) is closed.

PROOF. Let(d;) C cone G(x) be an arbitrary converging sequence suchlihat ... d;

— d. For everyj there exists\; > 0 and§; € convG(x) such thald; = \;§;. By
Corollary 2.11conv G(x) is a compact set. Then there exists a converging subsequence
(€,,) such thaim, ., £, = €. By closedness ofonv G(z) we havet € conv G(z).
Sincel ¢ conv G(x) sequence

i =
" Héjz

is converging too. Denotém; ., \;, = \. Then

d = \¢ € cone G(x)

implying thatcone G(x) is closed. O

THEOREM4.13. If * is a local weak Pareto optimum and CQ3 holds, then

0 € conv F'(x") + cone G(x™).

PROOF From Lemma 4.12 it follows that if CQ3 holds thelvone G(z*) = cone G(x*).
Then the result follows directly from Theorem 4.10. O

Consider then the sufficient conditions of problem (12). lwedl-known that the con-
vexity of the functionsf, £ € @, andg;, i € M, guarantees the sufficiency of the
KKT optimality condition for global weak Pareto optimality Theorem 4.13 (see [19,
p. 51]). We will present the sufficient conditions in moreaiiater. Namely, they can
be obtained as a special case of sufficient conditions fdslenes with both inequality
and equality constraints.
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4.2 Equality constraints
Consider problem (5) with both inequality and equality comsts.

minimize  {fi(z),..., fy(x)}
subjectto  g;(x) <0 foralli=1,...,m, (16)
hij(x)=0 forallj=1,...,p,

where all functions are supposed to be locally Lipschitztiomous. Denoted (x) =
_,0hj(z)andJ = {1,2,...,p}. By Lemma 2.3 we see that

—H(z) = = oh;(@) = | o(=h)) ().

jeJ jeJ

A straightforward way to deal with an equality constraintz) = 0 is to replace it with
two inequality constraints

Then, we may use the results obtained for problem (12) toveledsults for problem
(16). However, some constraint qualifications are not fsadisf this kind of operation
is done as we will see soon.

Consider first the CQ1. Denote

G.(x) = {d|g(x;d) <0,1€I(x), hj(x;d) <0, (—h;)°(x;d) <0, j € J}
= G (x)NH ()N (—H) ().
It is good to note that we can repla¢eh;)°(x;d) < 0 by hj(x; —d) < 0in the

definition of G, () according to Theorem 2.2 (i). We can use a new cone insted of t
coneH (x) N (—H) (x) as the next lemma shows.

LEMMA 4.14. Leth : R™ — R be a locally Lipschitz continuous function. Then
Oh(x)” N (~0h(x))” = {d|h°(x;d) <0, h°(a; —d) < 0}
C {d|h(z;d) = 0}
PROOF Supposel € oh(x)~ N (—0oh(x))~. By the subadditivity of.° (Theorem 2.2

() we have
0=h°(x;0) < h°(x;—d) + h°(x;d) <0, (18)

which is possible only it°(x; —d) = h°(x; d) = 0. Namely, if one would be strictly
negative the other should be strictly positive in order tilsfainequality (18). This is
impossible asl € Oh(x)” N (—0h(x))". O

Denote
H°(x) ={d | hi(x;d) =0 forall j € J}.
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From Lemma 4.14 we can easily deduce tHat(z) N (—H) (x) C H°(x). However,
in generalH(x) ¢ H () N (—H) (x). To see this, consider a function

h(x)_{—x Cif 2 <0

0 , otherwise.

Thenh®(0,1) = 0 andh°(0,—1) = 1. Thus,1 € H°(0) but1 ¢ H(0) N (—H)~(0).
Now we can present two constraint qualifications for prob{&6):

(CQS) G (x)NH ()N (-H) () C Ts(x)
(CQ6) G (z)NH"(z) C Ts(x),

where again () # (. From Lemma 4.14 we see that CQ6 implies CQ5. Thus, we can
derive KKT conditions with CQ6 if we can do so for CQ5.

Consider next the constraint qualification CQ2. Assume ouslpro has an equality
constrainth; () = 0. Then, at the feasible points the total constraint functidhbe

g(x) = max{hi(x), —hi(x),l(x)} = max{max{hi(x), —hi(x)},(x)},

wherel(x) contains the other terms. It is clear that functiaax{h,(x), —h,(x)} is
non-negative. Consequentlyjs non-negative too. Thef,is minimum value fory and
it is attained at every feasible point of problem (16). THosany feasibler we have
0 € 0g(x) according to Theorem 2.12 and, thus, CQ2 does not hold. H&@2 js not
suitable for problems with equality constraints.

Next, we shall consider CQ3. Denote

Gi(x) = {d]gj(w;d) <0,i€l(x), hj(x;d) <0, (—h;)°(x;d) <0, j € J}
= G*(z)N{d]| hj(z;d) <0, hj(x;—d) <0, j € J}.

Letz,d € R" and;j € J be arbitrary. By the subadditivity df; we have
0= hj(x,0) < hi(z,d) + hj(x, —d). (19)

From inequality (19) it is easy to see thid | hj(x;d) < 0, hj(x; —d) < 0} = 0.
Hence, CQ3 does not hold implying that the constraint quatibn CQ3 (or CQ4) is
not suitable for equality constraints.

Before the proof of the KKT Theorem of problem (16) we need tbkoiving
lemma.

LEMMA 4.15. If A and B are nonempty cones thei{A + B) C cl A+ cl B.

PROOF SinceA C clAandB C cl Bwe haveAd + B C ¢l A+ ¢l B. By Lemma 2 in
[20] cl A + cl B is closed. Thus;l(A + B) C ¢l A+ cl B. O

Finally, we can state the theorem corresponding to Theor&étwith constraint quali-
fication CQ5.
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THEOREM4.16. If =* is a local weak Pareto optimum ¢fL6) and CQ5 holds atc*,
then
0 € conv F'(z*) + clcone G(x*) 4 clcone H(x*) — clcone H (x*). (20)

PrROOF From Theorem 4.10 and previous considerations we see that
0 € conv F'(x*) + clcone(G(x*) U H(x*) U —H(x")). (21)
By using Lemma 2.9 (ii) twice and Lemma 4.15 we obtain

clecone(G(x*) U H(x*) U —H(x"))

= d Z ray dg;(x”) + Z ray Ohj(x”) + Z ray O(—h;(x"))
iel(x*) jeJ jeJ

= cl(cone G(x*) + cone H(x*) — cone H(x"))

C clcone G(z*) + clcone H(x*) — clcone H(x").

Combining this with relation (21) proves the theorem. O

There are papers dealing with equality constraints in na@esinproblems without turn-
ing them into inequality constraints (see e.g. [12]). Hogrethe conditions are ex-
pressed in terms of generalized Jacobian of multivaluedomgg: : R™ — R". We
shall not consider generalized Jacobians here and, thlis)otidiscuss these type of
conditions further.

There are also papers where closures are not needed inioosdit Theorem 4.16
(see e.g[11]). Butthere they used constraint qualificatiocisiding objective functions
which we shall not consider either.

After the necessary conditions we shall now study sufficaamditions. For that
we do not need the constraint qualifications but we have toensakne assumptions
on objective and constraint functions. More accuratelyagsgume that objective func-
tions aref°-pseudoconvex and inequality constraint functionsfarguasiconvex. The
equality constraints may bg-quasiconvex orf°-quasiconcave. Denote

H (x)= 'U oh;(x) and H_(x)= 'U oh; (),

whereJ_ U J. = J andh; is f°-quasiconvex ifi € J, andh; is f°-quasiconcave if
jeJ .

THEOREM4.17. Letx* be a feasible point of problefd6). Supposeg, are f°-pseudo-
convex for allk € @, g; are f°-quasiconvex for all € M, h; are f°-quasiconvex for
all j € J, and f°-quasiconcave for alf € J_. If

0 € conv F(x") 4 cone G(x*) + cone H, (x*) — cone H_(x"), (22)

thenz* is a global weak Pareto optimum ¢16).
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PROOF Note that if (22) is satisfied thef(x*) # (. Letx € R" be an arbitrary
feasible point. Then;(x) < g;,(=*) if i € I(x*), h;(x) = h;(z*) forall j € J, U J_
and f°-quasiconvexity implies that

gz —ax*) <Oforalli e I(z") (23)
hi(z*;x —x*) < Oforall j € J,. (24)

The f°-quasiconcavity implies that
hi(x*; 2" —x) < Oforallj € J_. (25)

According to (22) there exis§, € df.(z*), ¢; € dgi(x*), n; € Oh;(z*) and coef-
ficients \g, pi,v; > 0, forallk € Q, 7 € I(x*) andj € J suchthaty ] A\, =1

and
0= Z)\kﬁk + Z HiG; + Z vin; — Z vin;- (26)

keQ i€l(xz*) JE€J+ JjeJ-
Multiplying equation (26) bye — x*, using Definition 2.1 and equations (23), (24) and
(25) we obtain

— Y Nl (x— )

keQ
— Z /M .’,C — " —|— Z I/J’I’]] *) —+ Z ujn]T(a:
icl(a*) jeds jeJ-
< Z wigl(x*; e — * —I-ZI/] ;T )+Zujh§(w*;w*—m)
iel(x jeJ ¢ jeJ—
Y n0r S0 S 00
el(x*) jeJv JeEJ_
Thus,

0< Z)\kﬁg(w —x") < Z)\kf,;’(:c*;zc —x").

keQ keQ
Since), > 0forallk € Q andzkeQ A = 1 > 0 there existg; € (Q such that

0 S fl;(m*’w - m*)

Then, f°-pseudoconvexity of;, implies thatfy, (x*) < fx, (). Sincex is an arbitrary
feasible point there exists no feasible paine R™ such thatf,(y) < fx(x*) for all
k € Q. Thus,x* is a global weak Pareto optimum of problem (16). O

Note, that due to Theorems 3.9 and 3.11 the previous resutigsalso for f°-pseudo-
convex and subdifferentially regular quasiconvex ineifpabnstraint functions. Also,
the implicit assumptiord (z*) # () could be omitted by replacingne G(x*) by {0} U
cone G(x*).

Finally, by modifying somewhat the proof we get the suffiti&iKT optimality
condition for global Pareto optimality with an extra asstiopfor the multipliers.
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COROLLARY 4.18. The condition of Theorem 4.17 is also sufficient#dto be a global
Pareto optimum of{16), if in addition \; > 0 for all k € Q.

PROOF By the proof of Theorem 4.17 we know that inequality

0<> Méf(m—a) <D MSfila; o —x) (27)
keQ keQ

holds for arbitrary feasible. Suppose there exists € @ such thatfy (z*;z —x*) <
0. Because\, > 0 for all k£ € @, by inequality (27) there must be alsg € ) such that
fe, (x5 — x*) > 0. By Theorem 3.9}, is f°-quasiconvex and by Definition 3.4 we
havefi,(x) > fi,(x*). Sincex were arbitraryz* is Pareto optimal.

Suppose then thgf (z*;  — «*) > 0 for all k£ € . Then thef°-pseudoconvexity
implies thatfy.(x*) < fi(x) and, thusg* is Pareto optimal. O

As the next example shows a global minimurhdoes not necessarily satisfy the con-
ditions in Theorem 4.17.

EXAMPLE 4.1. Consider the problem

minimize f(x) = —n;
subject to g(x) = (v1 — 2)* + (22 +2)* =2 <0
h(z) = (z; —4)* + 25 — 10 = 0.
All the functions are convex and, thus, the assumptions ebifém 4.17 are satisfied.
The global minimum to this problem i8* = (3, —3)”. The gradients at this point

are
Vi) = (-1,0)", Vg(z*) = (2, —2)" andVh(z*) = (-2, -6)".

The gradients are illustrated in Figure 3. The lengths oftlaelients in figure are scaled
for clarity. The bolded curve represents the feasible set.

In Figure 4 the cone in condition (22) is illustrated by stddegion. From Figure
4 we see thad ¢ V f(x*) + cone Vg(x*) + cone Vh(x*). Thus we have a global
optimum but the sufficient condition is not satisfied.

Let us then apply necessary conditions (Theorem 4.16) tgitlem example. It is
easy to see that qualifications CQ5 and CQ6 are equivalentafibns?; are differen-
tiable for all; € J. Clearly,

Ts(x®) = {A(=3,1)[A=0},
Hz*) = {\(-3,1)| X €R}and
G_(w*) = {(dl,dg) | dl,dg € R, dl S dg}

Thus,G~(x*) N HY(z*) = Ts(x*) implying that CQ6 is satisfied. According to Theo-
rem 4.16, relation (20) should hold at global minimarh Indeed,

1
0 = Vf(z")+ ng(a:*) + 0Vh(x") — §Vh(a:*)
C conv F(x*) + clcone G(x*) + clcone H(x*) — clcone H (x").
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Figure 3. Gradients at the global minimum.
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Figure 4: The set of sufficient KKT condition.

The relations in the necessary conditions are illustratdelgure 5.
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Figure 5: The gradients in the necessary KKT condition.

5 Concluding Remarks

We have considered KKT type necessary and sufficient camditior nonsmooth mul-
tiobjective optimization problems. Both inequality and alifly constraints were con-
sidered. The optimality were characterized as weak Pamgimality. In necessary
conditions CQ1-CQ6 constraint qualifications were neededsufficient conditions

the main tools used were the generalized pseudo- and quesictes based on the
Clarke generalized directional derivative. It was assunhedl the objective functions
are f°-pseudoconvex and the constraint functions f&rguasiconvex. Due to relations
between different generalized convexities the resultsalid also for f°-pseudoconvex

and subdifferentially regular quasiconvex constrainctions.
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A Relations between the CQ constraint qualifications

Consider problem (12), that is, problem

{minimize {filz), ..., fo(z)} (28)

subjectto  gi(x) <0 foralliec M ={1,...,m}.

Next, we will study some relations between the constraialijoations. From now on,
we assume that(z) # 0.

In [15] it was shown that CQ1 follows from CQ3. Next we will protleat CQ1
follows also from CQ?2.

THEOREMA.1. Letx € R" be a feasible point of problei8) such that/(x) # 0. If
0 ¢ dg(x) thenG~(x) C Ts(x).

PROOF Assume that there existS € G~ (x) such thad” ¢ Ts(x). Since a contingent
cone is a closed set there exists> 0 such thatcl B(d*;e) N Ts(x) = (. Since
d ¢ Ts(x), for everyd € cl B(d"; ) there exist$(d) > 0 such thay(x + t;d) > g(x)
when0 < ¢, < t(d). Thus,

g°(x;d) >0, foralld € cl B(d*; ¢). (29)
Sinced” € G~ (x) we have

o°(x;d") = max{¢"d" | € dg(x)}
< max{¢"d" | ¢ € conv{dg;(x) | i€ I(x)}} (30)
= max{g}(x,d*)|i€c I(x)} <O0.

Then for all¢ € dg(z) we have¢”d* < 0. Since we hav® ¢ dg(x) the Separation
Theorem (see e.qg. [2]) implies that there exist R andz, ||z|| = 1 such that

2’0>a and 2'¢<a

for all ¢ € dg(x). Sincez’0 = 0 we see thak’¢ < 0 for all { € dg(x). If
d=d" +¢z,thend € cl B(d*;¢) and

(=l 4Tz <0
for all ¢ € dg(x). Then
o°(@sd) = max {¢"d | ¢ € Dy(a)} <0

contradicting inequality (29). Thu& ™~ (x) C Ts(x). O

There exist problems that satisfy the CQ1 constraint quatiba, but does not satisfy
the CQ2.
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ExamMpPLE A.1. Consider the problem (28) with(z) = |z|. Then we haveZ—(0) =
{0} andTs(0) = {0}. Thus,G(0) C Ts(0) and CQ1 holds at = 0. However,
0 € dg(0) and CQ2 does not hold.

Next we will consider the relations between CQ2 and CQ3. Fiestwll show that CQ2
follows from CQ3.

THEOREMA.2. If I(x) # 0 andG*(x) # (), then0 ¢ dg(x).

PrROOF It follows from the conditiorG*(x) # () that there existd, such thay? (x; d) <
0 foralli € I(x). In other wordsd”¢; < 0 for all ¢; € dg;(x) andi € I(x). Let
Ai 20,1 € I(x) be scalars such that, ;) A; = 1. Then

d’ Z Né =) nd'E <.

i€l(x i€l (x)

Thus,d"¢ < 0 forall € € conv,c () 9gi(x). Sincedg(x) C conv U (g gi(e),
we haveg®(x; d) < 0 implying that0 ¢ dg(x). O
There exist problems for which CQ2 holds but CQ3 does not asotteving example
shows.

ExAMPLE A.2. Consider constraint functions

x ,ifz<0

p— d f—
gw)=w and gr) {o itz >0,

Theng(z) = max{g:i(z), g2(x)} = g1(z) and0 ¢ 9g(0). However,0 € dg»(0) which
impliesG*(0) = 0.
Despite Example A.2 we can establish some conditions onti@onis functions

which guarantees that CQ2 implies CQ3. Namely, if all the gandt functions are
subdifferentially regular oy °-pseudoconvex the CQ3 follows from CQ?2.

THEOREMA.3. Letx € R" and I(x) # 0. If the functionsy; are subdifferentially
regular for alli € M and0 ¢ dg(x), thenG*(x) # 0.

PROOEF If 0 ¢ Jg(x), then there existd, such thay°(x; d) < 0. Due to regularity we

havedg(x) = conv ;¢ 99:(x). Hence,

d" Y Mg <0, forall & € dgi(x), A > 0, Z)\

i€l (x) iel(x

implying d” ¢, < 0 for all £, € dg;(x). In other wordsy? (x; d) < 0 for all i € I(x).
Thus, we havel € G* # (. O

THEOREMA.4. Letx € R™ andI(x) # (. If the functiong); are f°-pseudoconvex for
alli € M and0 ¢ dg(x), thenG*(x) # 0.
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PROOF On contrary, assume th&t = (). Then for alld € R" there exists € I(x),
for which g7 (x;d) > 0. Due to f°-pseudoconvexity we hawg(x + td) > g;(x) for
all t > 0. Sinceg(x) > g;(x) for all i € M we haveg(xz + td) > g(x) for all
d € R". Thus,z is a global minimum an@ € g(x) by Theorem 2.12. In other words,
if 0 ¢ g(x) we will haveG*® # (. O

Finally, we will show that constraint qualification CQ3 is @eglent to CQ4.
THEOREMA.5. Supposd (x) # (). Then0 ¢ conv G(z) iff G*(x) # 0.

PROOF The conditiorD ¢ conv G(x) is equivalent to conditiononv G(x) N {0} = 0.
By Corollary 2.11conv G(x) is a closed convex set and trivia{9} is a closed convex
cone. Also,{0}~ = R" = —{0}~. By Lemma 4.8onv G(x) N {0} = () is equivalent
to

(conv G(x))* NR™ = (conv G(x))* # 0.

Furthermore(conv G(x))* = G*(x) according to Lemma 4.9. O

29



TURKU

CENTRE for

COMPUTER

SCIENCE

Lemminkaisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

m University of Turku
$\\ {’é e Department of Information Technology
I N e Department of Mathematics
K (4 "
O

Abo Akademi University
e Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Sciences

ISBN 978-952-12-2770-7
ISSN 1239-1891



