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Abstract

We present a proximal bundle method for finding weakly Pareto optimal solu-

tions to constrained nonsmooth programming problems with multiple objectives.

The method is a generalization of proximal bundle approach for single objective

optimization. The multiple objective functions are treated individually without

employing any scalarization. The method is globally convergent and capable of

handling several nonconvex locally Lipschitz continuous objective functions sub-

ject to nonlinear (possibly nondifferentiable) constraints. Under some generalized

convexity assumptions, we prove that the method finds globally weakly Pareto

optimal solutions. Concluding, some numerical examples illustrate the properties

and applicability of the method. In addition, we give a collection of multiobjective

test problems.

Keywords: Bundle Methods, multiobjective optimization, nonsmooth optimiza-

tion
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1 Introduction

Nonsmooth (nondifferentiable) optimization problems arise in very many fields

of applications, for example, in optimal shape design (see, e.g., [2, 5, 13]), eco-

nomics [21] and mechanics [19]. On the other hand, instead of one criterion the

applications typically have several, often conflicting objectives. During the last

three decades the rapid developement has been charasteristic to the areas of non-

smooth (see, e.g., [1, 4, 6, 9, 10, 12, 18, 24]) and multiobjective optimization

(see, e.g., [16, 17, 20, 25], separately. Conversely the consideration of both of

these approaches in the same framework, i.e. nonsmooth multiobjective optimiza-

tion, is much less frequent. Thus there exists an increasing demand to be able to

solve efficiently optimization problems with several, possible nonsmooth, objec-

tive functions.

In this paper we present a proximal bundle based method for constrained non-

convex nonsmooth programming problems with multiple objectives. The method

generalizes the proximal bundle approach for single objective optimization [8] by

employing the ideas presented in [7, 17, 26]. We can prove, that under some gen-

eralized convexity assumptions [15] the method can find globally weakly Pareto

optimal solutions. Unlike the most multicriteria optimization methods the multi-

ple objective functions are treated individually without employing any scalariza-

tion. The method is readily implementable and descent, i.e., the value of each

objective function is expected to get an improvement at each iteration.

The paper is organized as follows. Chapter 2 contains some preliminary con-

cepts and results of nonsmooth and multiobjective optimization theory. The algo-

rithm of the multicriteria proximal bundle (MPB) method is described in Chapter

3. Some convergence results are presented in Chapter 4. Finally, Chapter 5 is

devoted to some numerical examples illustrating the properties and applicability

of the method.

2 Preliminaries

Let us consider a nonsmooth multiobjective optimization problem of the form

{

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S,

(1)

where

S = {x ∈ R
n | gj(x) ≤ 0, j = 1, . . . , m}.

The objective functions fi : R
n → R and the constraint functions gj : R

n → R are

supposed to be locally Lipschitz continuous (not necessarily smooth nor convex).

For a locally Lipschitz continuous function f : Rn → R the Clarke generalized
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directional derivative at x in the direction d ∈ R
n is defined by

f ◦(x;d) = lim sup
y→x

t↓0

f(y + td)− f(y)

t

and the Clarke subdifferential of f at x by

∂f(x) = {ξ ∈ R
n | f ◦(x;d) ≥ ξTd for all d ∈ R

n},

which is a nonempty, convex and compact subset of Rn. Note, that if a locally

Lipschitz continuous function attains its local minimum at x∗, then

0 ∈ ∂f(x∗). (2)

For a finite maximum of locally Lipschitz continuous functions we have the

following subderivation rule.

Theorem 2.1. [13] Let fi : R
n → R be locally Lipschitz continuous at x for all

i = 1, . . . , m. Then the function

f(x) = max [fi(x) | i = 1, . . . , m]

is locally Lipschitz continuous at x and

∂f(x) ⊆ conv {∂fi(x) | fi(x) = f(x), i = 1, . . . , m}, (3)

where conv denotes the convex hull of a set.

A function f : R
n → R is weakly semismooth if the classical directional

derivative

f ′(x,d) = lim
t↓0

f(x+ td)− f(x)

t

exists for all x and d, and

f ′(x,d) = lim
t↓0

ξ(x+ td)Td,

where ξ(x+ td) ∈ ∂f(x + td).
A function f : Rn → R is f ◦-pseudoconvex, if it is locally Lipschitz continu-

ous and for all x,y ∈ R
n

f(y) < f(x) implies f ◦(x;y − x) < 0

and f ◦-quasiconvex, if

f(y) ≤ f(x) implies f ◦(x;y − x) ≤ 0.

Note, that a convex function is always f ◦-pseudoconvex, which again is f ◦-

quasiconvex [15]. Next we present two important properties of f ◦-pseudoconvex

functions.
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Theorem 2.2. [15] An f ◦-pseudoconvex function f attains its global minimum at

x∗, if and only if

0 ∈ ∂f(x∗).

Theorem 2.3. [1] Let fi : Rn → R be f ◦-pseudoconvex for all i = 1, . . . , m.

Then the function

f(x) = max [fi(x) | i = 1, . . . , m]

is also f ◦-pseudoconvex.

Note, that for an f ◦-quasiconvex function f the level set levα f := {x ∈ R
n |

f(x) ≤ α} is a convex set for all α ∈ R [15].

A vector x∗ is said to be a global Pareto optimum of (1), if there does not exist

x ∈ S such, that

fi(x) ≤ fi(x
∗) for all i = 1, . . . , k and fj(x) < fj(x

∗) for some j.

Vector x∗ is said to be a global weak Pareto optimum of (1), if there does not exist

x ∈ S such, that

fi(x) < fi(x
∗) for all i = 1, . . . , k.

Vector x∗ is a local (weak) Pareto optimum of (1), if there exists δ > 0 such, that

x∗ is a global (weak) Pareto optimum on B(x∗; δ) ∩ S. Trivially every Pareto

optimal point is weakly Pareto optimal.

The contingent cone and polar cone of set S ∈ R
n at point x are defined

respectively as

KS(x) = {d ∈ R
n | there exist ti ↓ 0 and di → d with x+ tidi ∈ S}

S≤ = {d ∈ R
n | sTd ≤ 0, for all s ∈ S}.

The closure of a set S is denoted by clS. A set C ⊂ R
n is a cone if λx ∈ C for

all λ ≥ 0 and x ∈ C. We also denote

rayS = {λx | λ ≥ 0, x ∈ S} and coneS = ray conv S.

In other words rayS is the smallest cone containing S and the conic hull coneS
the smallest convex cone containing S. Furthermore, let

F (x) =
k
⋃

i=1

∂fi(x)

and

G(x) =
⋃

j∈J(x)

∂gj(x), where J(x) = {j | gj(x) = 0}.

For the optimality condition we pose the following constraint qualification

G≤(x) ⊆ KS(x). (4)

Now we can present the following generalized KKT optimality conditions.
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Theorem 2.4. [15] If x∗ is a local weak Pareto optimum of (1) and the constraint

qualification (4) is valid, then

0 ∈ convF (x∗) + cl coneG(x∗). (5)

Moreover, if fi are f ◦-pseudoconvex for all i = 1, . . . , k and gj are f ◦-quasiconvex

for all j = 1, . . . , m, then the condition (5) is sufficient for x∗ to be a global weak

Pareto optimum of (1).

A feasible point x∗ ∈ S is called a substationary point for problem (1), if it

satisfies the necessary optimality condition (5).

3 Multiobjective Proximal Bundle Method

In this section we develop the MPB (Multiobjective Proximal Bundle) method.

The original proximal bundle method of [8] for nonsmooth convex and uncon-

strained single objective optimization was generalized to handle nonconvex and

constrained problems in [13]. The MPB method is a further extension into a mul-

tiobjective case. The strategy of handling several objective functions is based on

the ideas presented in [7, 17, 26]. The idea, in brief, is to move into a direction

where the values of all the objective functions improve simultaneously.

3.1 Direction finding

The MPB method is not directly based on employing any scalarizing function.

Some kind of scalarization is, however, needed in deriving the minimization method

for all the objective functions. Theoretically, we utilize the improvement function

H : Rn × R
n → R defined by

H(x, y) = max [fi(x)− fi(y), gj(x) | i = 1, . . . , k, j = 1, . . . , m].

Now we obtain the following connection between the improvement function and

the problem (1).

Theorem 3.1. A necessary condition for x∗ ∈ R
n to be a global weak Pareto

optimum of (1) is that

x∗ = argminx∈Rn H(x, x∗). (6)

Moreover, if fi are f ◦-pseudoconvex for all i = 1, . . . , k, gj are f ◦-quasiconvex

for all j = 1, . . . , m and the constraint qualification (4) is valid, then the condition

(6) is sufficient for x∗ to be a global weak Pareto optimum of (1).
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Proof. Suppose first, that x∗ ∈ R
n is a global weak Pareto optimum of (1). Since

x∗ ∈ S we have gj(x
∗) ≤ 0 for all j = 1, . . . , m, thus H(x∗, x∗) = 0. If x∗ would

not be a global minimizer of H(·, x∗), there would exist y∗ ∈ R
n such that

H(y∗, x∗) < H(x∗, x∗) = 0.

Then we have gj(y
∗) < 0 for all j = 1, . . . , m, in other words, y∗ ∈ S. Fur-

thermore, fi(y
∗) < fi(x

∗) for all i = 1, . . . , k, which contradicts the global weak

Pareto optimality of x∗.

Suppose next that (6) holds true. Suppose also that fi are f ◦-pseudoconvex

for all i = 1, . . . , k, gj are f ◦-quasiconvex for all j = 1, . . . , m and (4) is valid.

Since x∗ is a global minimizer of H(·, x∗) by (2), Theorem 2.3 and Lemma 2.10

of [14] we have

0 ∈ ∂H(x∗, x∗) = conv







k
⋃

i=1

∂fi(x
∗) ∪

⋃

j∈J(x∗)

∂gj(x
∗)







= conv {F (x∗) ∪G(x∗)}
⊆ conv {convF (x∗) ∪ convG(x∗)}
= λ convF (x∗) + (1− λ) convG(x∗), where λ ∈ [0, 1].

Then for λ ∈ (0, 1] we have

0 ∈ convF (x∗) +
1− λ

λ
convG(x∗)

⊆ convF (x∗) + ray convG(x∗)

= convF (x∗) + coneG(x∗)

⊆ convF (x∗) + cl coneG(x∗).

Thus, Theorem 2.4 implies that x∗ is a global weak Pareto optimum of (1).

Let xh be the current approximation to the solution of (1) at the iteration h.

Then, by Theorem 3.1, we seek for the search direction dh as a solution of

{

minimize H(xh + d, xh)

subject to d ∈ R
n.

(7)

Since (7) still is a nonsmooth problem, we must approximate it somehow. Let

us assume for a moment that the problem (1) is convex. We suppose that, at the

iteration h besides the current iteration point xh, we have some auxiliary points

yj ∈ R
n from the past iterations and subgradients ξjfi ∈ ∂fi(y

j) for j ∈ Jh =
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{1, . . . , h}, i = 1, . . . , k, and ξjgl ∈ ∂gl(y
j) for j ∈ Jh, l = 1, . . . , m. We linearize

the objective and the constraint functions at the point yj by

f̄i,j(x) = fi(y
j) + (ξjfi)

T (x− yj) for all i = 1, . . . , k, j ∈ Jh, and

ḡl,j(x) = gl(y
j) + (ξjgl)

T (x− yj) for all l = 1, . . . , m, j ∈ Jh.

Now we can define a convex piecewise linear approximation to the improvement

function by

Ĥh(x) = max [f̄i,j(x)− fi(x
h), ḡl,j(x) | i = 1, . . . , k, l = 1, . . . , m, j ∈ Jh]

and we get an approximation to (7) by

{

minimize Ĥh(xh + d) + 1
2
uh‖d‖2

subject to d ∈ R
n,

(8)

where uh > 0 is some weighting parameter. The penalty term 1
2
uh‖d‖2 is added

to guarantee the existence and uniqueness of a solution to (8) and also to keep the

approximation local enough. Notice that (8) still is a nonsmooth problem, but due

to its minmax-nature it is equivalent to the following (smooth) quadratic problem











minimize v + 1
2
uh‖d‖2

subject to −αh
fi,j

+ (ξjfi)
Td ≤ v, i = 1, . . . , k, j ∈ Jh

−αh
gl,j

+ (ξjgl)
Td ≤ v, l = 1, . . . , m, j ∈ Jh,

(9)

where

αh
fi,j

:= fi(x
h)− f̄i,j(x

h), i = 1, . . . , k, j ∈ Jh, and

αh
gl,j

:= −ḡl,j(x
h), l = 1, . . . , m, j ∈ Jh,

are so-called linearization errors.

In the nonconvex case, we replace the linearization errors by subgradient lo-

cality measures

βh
fi,j

:= max [|αh
fi,j

| , γfi‖xh − yj‖2]
βh
gl,j

:= max [|αh
gl,j

| , γgl‖xh − yj‖2],

where γfi ≥ 0 for i = 1, . . . , k and γgl ≥ 0 for l = 1, . . . , m, (γfi = 0 if fi is

convex and γgl = 0 if gl is convex).
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3.2 Line search

Let (dh, vh) be a solution of (9). We perform the following two-point line search

strategy, which will detect discontinuities in the gradients of the objective func-

tions. We assume that mL ∈ (0, 1
2
), mR ∈ (mL, 1) and t̄ ∈ (0, 1] are some fixed

line search parameters. First, we search for the largest number thL ∈ [0, 1] such

that

max [fi(x
h + thLd

h)− fi(x
h) | i = 1, . . . , k] ≤ mLt

h
Lv

h, and

max [gl(x
h + thLd

h) | l = 1, . . . , m] ≤ 0.

If thL ≥ t̄, we take a long serious step:

xh+1 = xh + thLd
h and yh+1 = xh+1,

if 0 < thL < t̄, then we take a short serious step:

xh+1 = xh + thLd
h and yh+1 = xh + thRd

h

and if thL = 0, we take a null step:

xh+1 = xh and yh+1 = xh + thRd
h,

where thR > thL is such that

−βh+1
fi,h+1 + (ξh+1

fi
)Tdh ≥ mRv

h.

The iteration is terminated when

−1
2
vh < εs,

where εs > 0 is an accuracy parameter supplied by the user.

3.3 Algorithm

Next we aggregate the previous subsections and present the algorithm of the mul-

tiobjective proximal bundle method .

Algorithm (MPB)

1. (Initialization) Select a feasible starting point x1 ∈ S, a final accuracy tol-

erance εs > 0, an initial weight u1 > 0, line search parameters mL ∈ (0, 1
2
),

mR ∈ (mL, 1) and t̄ ∈ (0, 1]. Choose the distance measure parameters

γfi ≥ 0 for i = 1, . . . , k and γgl ≥ 0 for l = 1, . . . , m, (γfi = 0 if fi is

convex and γgl = 0 if gl is convex). Set h := 1, y1 := x1 and calculate

ξ1fi ∈ ∂fi(y
1) for i = 1, . . . , k and ξ1gl ∈ ∂gl(y

1) for l = 1, . . . , m.
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2. (Direction finding) Solve the problem (9) in order to get the solution (dh, vh).

3. (Stopping criterion) If −1
2
vh < εs, then STOP.

4. (Line search) Find the step sizes thL ∈ [0, 1] and thR ∈ [thL, 1]. Set

xh+1 = xh + thLd
h and yh+1 = xh + thRd

h.

5. (Updating) Set h := h + 1, calculate ξhfi ∈ ∂fi(y
h) for i = 1, . . . , k and

ξhgl ∈ ∂gl(y
h) for l = 1, . . . , m. Choose Jh ⊆ {1, . . . , h} and update the

weight uh. Go to Step 2.

The subgradient aggregation strategy due to [6] is used to bound the storage

requirements (i.e., the size of the index set Jh). We use the line search algorithm

of [13] to produce the step-sizes thL and thR in Step 4, and a modification of the

weight updating algorithm of [8] is used to update the weight uh in Step 5.

4 Convergence Analysis

Next we give two important convergence results. First we prove, that for f ◦-

pseudoconvex functions the algorithm produces a global weak Pareto optimum of

the problem (1), while in more general case it end ups with a substationary point.

Theorem 4.1. Let fi and gj be f ◦-pseudoconvex and weakly semismooth functions

for all i = 1, . . . , k and j = 1, . . . , m, and the constraint qualification (4) be valid.

If the MPB algorithm stops with a finite number of iterations, then the solution is a

global weak Pareto optimum of (1). On the other hand, any accumulation point of

an infinite sequence of solutions generated by the MPB algorithm is global weak

Pareto optimum of (1).

Proof. Due to Theorem 2.3 the improvement function H is f ◦-pseudoconvex.

The formulation of the MPB algorithm implies, that it is equivalent to the prox-

imal bundle algorithm applied to unconstraint single objective optimization of

H . According to the convergence analysis of the standard proximal bundle al-

gorithm (see, e.g., [8, 24]) if it stops with a finite number of iterations, then the

solution xh is a substationary point of a weakly semismooth H , in other words

0 ∈ ∂H(xh, xh). Then by Theorem 2.2 function H attains its global minimum at

xh. Since every f ◦-pseudoconvex function is also f ◦-quasiconvex, the first asser-

tion follows from Theorem 3.1. The proof of the case, when MPB generates an

infinite sequence of solutions, goes similarly.

Note, that in order to guarantee the f ◦-pseudoconvexity of the improvement

function H also the constraint functions gj are supposed to be f ◦-pseudoconvex in

Theorem 4.1 although only the f ◦-quasiconvexity was required in Theorem 3.1.

Finally we show, that in more general case the algorithm produces substation-

ary points of the problem (1).
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Theorem 4.2. Let the functions of (1) be weakly semismooth. If the MPB algo-

rithm stops with a finite number of iterations, then the solution is a substationary

point (i.e. satisfies the necessary optimality condition (5)). On the other hand,

any accumulation point of an infinite sequence of solutions generated by the MPB

algorithm is a substationary point.

Proof. The proof is analogous to that of Theorem 4.1.

5 Numerical Experiments

The efficiency and the reliability of the method is shown by some numerical exper-

iments. The MPB algorithm was implemented in Fortran 77. The test runs have

been performed on an Intel R© Core
TM

2 Duo CPU E8400 (3.00GHz, 2.99GHz) PC

computer.

5.1 General tests

We wanted to test the method in different functions classes. First we formulated

several f ◦-pseudoconvex objective functions. Next we combined f ◦-pseudoconvex

functions with classical convex test examples from [1]. Finally some nonconvex

test examples [1] being not f ◦-pseudoconvex nor f ◦-quasiconvex were solved.

Furthermore, some f ◦-quasiconvex constraint functions were used in all the test

examples. Thus the used function classes were

1. f ◦-pseudoconvex objective functions

2. f ◦-pseudoconvex + convex objective functions

3. Non(generalized)convex objective functions.

In all the test cases the number of variables n varied from 2 to 4, the number

of objective functions k from 2 to 4, and the number of constraint functions m
from 0 to 2. The test problems are given in Appendix A. The numerical results

are presented in Table 1, where the first column refers to the above mentioned

test classes, the second column tells the number of the test problems in the class.

Finally, the last two columns are devoted to the average of the used iterations and

function evaluations, respectively. The last line summarizes the overall average

numbers. The parameters of MPB were tuned as follows: εs = 10−5, mL = 0.01,

mR = 0.5, t̄ = 0.01, γfi = 0.5 (0 for convex objectives) for i = 1, . . . , k and

γgl = 0.5 for l = 1, . . . , m. The initial weight was chosen by

u1 =
1

k

k
∑

i=1

‖ξ1fi‖.
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Table 1: Computational results

Test class # Problems Iterations Func. calls

1 36 5.1 6.7

2 70 10.4 15.4

3 6 8.7 13.2

All 112 8.6 12.5

In order to summarize the numerical results reported in Table 1 we can state

that MPB method seems to be reliable and efficient in all the test classes. The

reason why it needed more resources in class 2 with convex problems is the com-

plexity of some single test problems. More details about the computational results

are given in Appendix B.

5.2 Numerical example

In order to illustrate the functioning of MPB in more details we consider the fol-

lowing problem











minimize f1(x) =
√

‖x‖+ 2

f2(x) = max {−x1 − x2, −x1 − x2 + x2
1 + x2

2 − 1 }
subject to g(x) = max { x2

1 + x2
2 − 10, 3x1 + x2 + 1.5 } ≤ 0,

where f1 is clearly f ◦-pseudoconvex (see [1]) , f2 is convex and g convex and

thus f ◦-quasiconvex. We used first the starting point x1 = (−0.5,−0.5) and the

solution iteration by iteration is reported in Table 2.

Table 2: Results of the numerical example

h xh (f1(x), f2(x)) Accuracy

0 (−0.5000000,−0.5000000) (1.645329, 1.000000) 0.5181928
1 (−0.4153649,−0.3124033) (1.587367, 0.7277682) 0.9826704 · 10−2

2 (−0.4360219,−0.2067399) (1.575612, 0.6427618) 0.3053751 · 10−2

3 (−0.4641460,−0.1123331) (1.574022, 0.5764790) 0.4805499 · 10−3

4 (−0.4622420,−0.1137555) (1.573542, 0.5759975) 0.4842027 · 10−4

5 (−0.4620497,−0.1138994) (1.573493, 0.5759491) 0.4867036 · 10−5
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The numerical results are depicted in Figure 1, where red and blue colors refer

to f1 and f2, respectively. Together with the iteration points (black, final solution

violet) there can be seen also the unconstrained and constrained optima and con-

tour lines of the objectives. Note, that the Pareto optimal solutions lie on the line

segment between red and blue points.
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Figure 1: Iteration points of the numerical example

f=H1.62,0.34L

f=H1.58,0.53L

f=H1.70,0.13L

f=H1.65,0.25L

f=H1.57,0.59L
f=H1.57,0.58L

f=H1.57,0.60L

f=H1.73,0.04L

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

x1

x
2

Figure 2: Results with several starting points

In Figure 2 we illustrate the functioning of MPB by starting the optimization

from several starting points. According to the character of the method, MPB
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projects those points to the Pareto optimal set by using the Chebyshev metric.

6 Conclusions

We have derived a multiobjective version of the proximal bundle method for non-

smooth and nonconvex optimization. The objective functions are treated individu-

ally without employing any scalarization. The method is globally convergent and

descent, and under some generalized convexity assumptions it can be proved to

find globally weakly Pareto optimal solutions. This kind of method is needed in

many application areas. Especially, it can be used as a part of interactive mul-

tiobjective optimization methods producing efficiently (weakly) Pareto optimal

counterparts of nonoptimal solutions [16, 17, 20].
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[13] M. M. Mäkelä and P. Neittaanmäki. Nonsmooth Optimization: Analysis and

Algorithms with Applications to Optimal Control. World Scientific Publish-

ing Co., Singapore, 1992.
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Appendix A. Test problems for generalized convex mul-

tiobjective optimization

We introduce f ◦ -pseudoconvex objectives and f ◦ -quasiconvex constraints.

Singleobjective problems

In this section we describe singleobjective small-scale nonsmooth unconstrained

test problems which can be and have been combined to obtain multiobjective prob-

lems (see the next section). The number of variables varies from 2 to 4. The

classification used is the same as in the book [1] but here we also have notations

P=f ◦ -pseudoconvex and Q=f ◦ -quasiconvex. The used classification is described

in Table 3.

Table 3: The classification of the test problems

Description

E Exact solution known

G General objective function

M Min-max type objective function

P f ◦ -pseudoconvex objective function

Q f ◦ -quasiconvex objective function

U Unconstrained problem

X Convex problem

Z Nonconvex problem

f ◦ -Pseudoconvex objectives

1. PC1 (f ◦ -pseudoconvex 1)

Classification: G-U-P-E,

Dimension: 2,

Objective function: f(x) = min { ‖x‖,x2 },

Optimum point: x∗ = (0, 0)T ,

Optimum value: f(x∗) = 0.
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2. PC2 (f ◦ -pseudoconvex 2)

Classification: G-U-P-E,

Dimension: 2,

Objective function: f(x) = ln { ‖x‖+ 2 },

Optimum point: x∗ = (0, 0)T ,

Optimum value: f(x∗) = ln 2.

3. PC3 (f ◦ -pseudoconvex 3)

Classification: G-U-P-E,

Dimension: 2,

Objective function: f(x) =
√

‖x‖+ 2 ,

Optimum point: x∗ = (0, 0)T ,

Optimum value: f(x∗) =
√
2.

4. PC4 (Shifted PC2)

Classification: G-U-P-E,

Dimension: 2,

Objective function: f(x) = ln { ‖x+ 1‖+ 1 },

Optimum point: x∗ = (−1,−1)T ,

Optimum value: f(x∗) = 0.

5. PC5 (Shifted PC3)

Classification: G-U-P-E,

Dimension: 2,

Objective function: f(x) =
√

{ ‖x− 2‖+ 1 },

Optimum point: x∗ = (2, 2)T ,

Optimum value: f(x∗) = 1.

6. PC6 (f ◦ -pseudoconvex 4)

Classification: G-U-P-E,

Dimension: 4,

Objective function: f(x) = min { ‖x‖,x2 },

Optimum point: x∗ = (0, 0, 0, 0)T ,

Optimum value: f(x∗) = 0.
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7. PC7 (f ◦ -pseudoconvex 5)

Classification: G-U-P-E,

Dimension: 4,

Objective function: f(x) = ln { ‖x‖+ 2 },

Optimum point: x∗ = (0, 0, 0, 0)T ,

Optimum value: f(x∗) = ln 2.

Convex objectives

8. CB3 (Charalambous/Bandler) [3]

Classification: GM-U-X-E,

Dimension: 2,

Objective function: f(x) = max {x4
1 + x2

2, (2− x1)
2 + (2− x2)

2, 2ex2−x1 },

Starting point: x(1) = (2, 2)T ,

Optimum point: x∗ = (1, 1)T ,

Optimum value: f(x∗) = 2.

9. DEM [13]

Classification: QM-U-X-E,

Dimension: 2,

Objective function: f(x) = max { 5x1 + x2, −5x1 + x2, x
2
1 + x2

2 + 4x2 },

Starting point: x(1) = (1, 1)T ,

Optimum point: x∗ = (0,−3)T ,

Optimum value: f(x∗) = −3.

10. QL [13]

Classification: QM-U-X-E,

Dimension: 2,

Objective function: f(x) = max1≤i≤3 fi(x),
where f1(x) = x21 + x22,

f2(x) = f1(x) + 10(−4x1 − x2 + 4),

f3(x) = f1(x) + 10(−x1 − 2x2 + 6),

Starting point: x(1) = (−1, 5)T ,

Optimum point: x∗ = (1.2, 2.4)T ,

Optimum value: f(x∗) = 7.2.
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11. LQ [13]

Classification: QM-U-X-E,

Dimension: 2,

Objective function: f(x) = max {−x1 − x2, −x1 − x2 + x2
1 + x2

2 − 1 },

Starting point: x(1) = (−0.5,−0.5)T ,

Optimum point: x∗ = (1/
√
2, 1/

√
2)T ,

Optimum value: f(x∗) = −
√
2.

12. Mifflin 1 [13]

Classification: G-U-X-E,

Dimension: 2,

Objective function: f(x) = −x1 + 20max { x2
1 + x2

2 − 1, 0 },

Starting point: x(1) = (0.8, 0.6)T ,

Optimum point: x∗ = (1, 0)T ,

Optimum value: f(x∗) = −1.

13. Wolfe [11]

Classification: G-U-X-E,

Dimension: 2,

Objective function: f(x) = 5
√

9x2
1 + 16x2

2, when x1 ≥ |x2|,
f(x) = 9x1 + 16|x2|, when 0 < x1 ≤ |x2|,
f(x) = 9x1 + 16|x2| − x9

1, when x1 ≤ 0,

Starting point: x(1) = (3, 2)T ,

Optimum point: x∗ = (−1, 0)T ,

Optimum value: f(x∗) = −8.

14. Rosen-Suzuki [23]

Classification: QM-U-X-E,

Dimension: 4,

Objective function: f(x) = max1≤i≤4 fi(x),
where f1(x) = x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4,

f2(x) = f1(x) + 10(x21 + x22 + x23 + x24 + x1 − x2 + x3,

−x4 − 8),

f3(x) = f1(x) + 10(x21 + 2x22 + x23 + 2x24 − x1 − x4 − 10),

f4(x) = f1(x) + 10(2x21 + x22 + x23 + 2x1 − x2 − x4 − 5),

Starting point: x(1) = (0, 0, 0, 0)T ,

Optimum point: x∗ = (0, 1, 2,−1)T ,

Optimum value: f(x∗) = −44.
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Nonconvex objectives

15. Crescent [6]

Classification: QM-U-Z-E,

Dimension: 2,

Objective function: f(x) = max
{

x2
1 + (x2 − 1)2 + x2 − 1,−x2

1 − (x2 − 1)2

+ x2 + 1
}

,

Starting point: x(1) = (−1.5, 2),
Optimum point: x∗ = (0, 0)T ,

Optimum value: f(x∗) = 0.

16. Mifflin 2 [13]

Classification: G-U-Z-E,

Dimension: 2,

Objective function: f(x) = −x1 + 2(x2
1 + x2

2 − 1) + 1.75|x2
1 + x2

2 − 1|,
Starting point: x(1) = (−1,−1)T ,

Optimum point: x∗ = (1, 0)T ,

Optimum value: f(x∗) = −1.

17. WF [11]

Classification: GM-U-Z-E,

Dimension: 2,

Objective function: f(x) = max
{

1
2

(

x1 +
10x1

x1+0.1
+ 2x2

2

)

,

1
2

(

−x1 +
10x1

x1+0.1
+ 2x2

2

)

, 1
2

(

x1 − 10x1

x1+0.1
+ 2x2

2

)}

,

Starting point: x(1) = (3, 1)T ,

Optimum point: x∗ = (0, 0)T ,

Optimum value: f(x∗) = 0.

18. SPIRAL [11]

Classification: GM-U-Z-E,

Dimension: 2,

Objective function: f(x) = max { f1(x), f2(x) },

where f1(x) =
(

x1 −
√

x21 + x22 cos
√

x21 + x22

)2
+ 0.005(x21 + x22),

f2(x) =
(

x2 −
√

x21 + x22 sin
√

x21 + x22

)2
+ 0.005(x21 + x22),

Starting point: x(1) = (1.411831,−4.79462)T ,

Optimum point: x∗ = (0, 0)T ,

Optimum value: f(x∗) = 0.
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19. Polak 6 [22]

Classification: PM-U-Z-E,

Dimension: 4,

Objective function: f(x) = max1≤i≤4 fi(x),

where f1(x) = (x1 − (x4 + 1)4)2 +
(

x2 − (x1 − (x4 + 1)4)4
)2

+ 2x23
+x24 − 5(x1 − (x4 + 1)4)

− 5
(

x2 − (x1 − (x4 + 1)4)4
)

− 21x3 + 7x4,

f2(x) = f1(x) + 10
(

(x1 − (x4 + 1)4)2

+
(

x2 − (x1 − (x4 + 1)4)4
)2

+x23 + x24 + (x1 − (x4 + 1)4)

−
(

x2 − (x1 − (x4 + 1)4)4
)

+x3 − x4 − 8),

f3(x) = f1(x) + 10
(

(x1 − (x4 + 1)4)2

+2
(

x2 − (x1 − (x4 + 1)4)4
)2

+x23 + 2x24 − (x1 − (x4 + 1)4)− x4 − 10
)

,

f4(x) = f1(x) + 10
(

(x1 − (x4 + 1)4)2

+
(

x2 − (x1 − (x4 + 1)4)4
)2

+x23 + 2(x1 − (x4 + 1)4)−
(

x2 − (x1 − (x4 + 1)4)4
)

−x4 − 5),

Starting point: x(1) = (0, 0, 0, 0)T ,

Optimum point: x∗ = (0, 1, 2,−1)T ,

Optimum value: f(x∗) = −44.

f ◦ -Quasiconvex constraints

20. C1

Dimension: 2,

Constraint: g(x) = max {x1 + x2 + 3, x2 + 0.5 },

21. C2

Dimension: 2,

Constraint: g(x) = max
{

ln(
√

x2
1 + x2

2 + 1)− 1.5, x1 + x2 + 3.5
}

,

22. C3

Dimension: 2,

Constraint: g(x) = max {−x1 − x2 + 1.5,−x2 + 0.5 },
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23. C4

Dimension: 2,

Constraint: g(x) = max {x1, x2 − 6 },

24. C5

Dimension: 2,

Constraint: g(x) = max { 0.2x1 + x2, x1 + 0.2 },

25. C6

Dimension: 2,

Constraint: g(x) = max {x1 + x2 − 2, x1 − 0.9 },

26. C7

Dimension: 2,

Constraint: g(x) = max {−x1 − x2 + 0.5,−x2 + 0.5 },

27. C8

Dimension: 2,

Constraint: g(x) = max {−x1 − x2 − 2,−x2 + 0.5 },

28. C9

Dimension: 2,

Constraint: g(x) = max {x2
1 + x2

2 − 10,−3x1 + x2 + 2 },
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29. C10

Dimension: 2,

Constraint: g(x) = max {x2
1 + x2

2 − 10,−3x1 + x2 + 1 },

30. C11

Dimension: 2,

Constraint: g(x) = max {x2
1 + x2

2 − 30, x1 − 3x2 + 1 },

31. C12

Dimension: 2,

Constraint: g(x) = max {x2
1 + x2

2 − 10, 3x1 + x2 + 1.5 },

32. C13

Dimension: 2,

Constraint: g(x) = max {x2
1 + x2

2 − 10, 3x1 − x2 − 2 },

33. C14

Dimension: 2,

Constraint: g(x) = max {x2
1 + x2

2 − 30,−3x1 + x2 + 2 },

34. C15

Dimension: 2,

Constraint: g(x) = max {x2
1 + x2

2 − 30, 3x1 − x2 + 1 },

35. C16

Dimension: 2,

Constraint: g(x) = max {x2
1 + x2

2 − 10, 3x1 + x2 + 1 },
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36. C17

Dimension: 4,

Constraint: g(x) = max { x2
1 + x2

2 + x2
3 + x2

4 − 20,
x1 + x2 + x3 + x4 + 4 },

Multiobjective problems

In this section we combine the functions introduced in previous section to obtain

multiobjective problems with f ◦ -pseudoconvex objectives and f ◦ -quasiconvex

constraints (g(x) ≤ 0). Due to relations between different generalized convexities

the constraints may be also convex, pseudoconvex, f ◦ -pseudoconvex, or subdif-

ferentially regular quasiconvex functions. Moreover, also some of the objectives

may be convex or pseudoconvex.

In addition to these problems for which we can prove the optimality conditions

we introduce some generally nonconvex problems.

All objectives f ◦ -pseudoconvex

37. M1

Dimension: 2,

No. of objectives: 2,

Objective functions: (1), (4)

Starting point: x(1) = (−2,−2)T ,

Constraints: (20) and/or (21).

38. M2

Dimension: 2,

No. of objectives: 2,

Objective functions: (1), (5)

Starting point: x(1) = (−2,−2)T ,

Constraints: (20) and/or (21).

39. M3

Dimension: 2,

No. of objectives: 3,

Objective functions: (1), (4), (5)

Starting point: x(1) = (−2,−2)T ,

Constraints: (20) and/or (21).
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40. M4

Dimension: 2,

No. of objectives: 2,

Objective functions: (2), (4)

Starting point: x(1) = (−2,−2)T ,

Constraints: (20) and/or (21).

41. M5

Dimension: 2,

No. of objectives: 2,

Objective functions: (2), (5)

Starting point: x(1) = (−2,−2)T ,

Constraints: (20) and/or (21).

42. M6

Dimension: 2,

No. of objectives: 3,

Objective functions: (2), (4), (5)

Starting point: x(1) = (−2,−2)T ,

Constraints: (20) and/or (21).

43. M7

Dimension: 2,

No. of objectives: 2,

Objective functions: (3), (4)

Starting point: x(1) = (−2,−2)T ,

Constraints: (20) and/or (21).

44. M8

Dimension: 2,

No. of objectives: 2,

Objective functions: (3), (5)

Starting point: x(1) = (−2,−2)T ,

Constraints: (20) and/or (21).
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45. M9

Dimension: 2,

No. of objectives: 3,

Objective functions: (3), (4), (5)

Starting point: x(1) = (−2,−2)T ,

Constraints: (20) and/or (21).

f ◦ -pseudoconvex + convex objectives

46. M10–M15

Dimension: 2,

No. of objectives: 2,

Objective functions: (1) and one of next: (8)–(13)

Starting point: Same as that with the convex problem,

Constraints: (22) and/or (28).

Constraints: (26) and/or (29).

Constraints: (23) and/or (30).

Constraints: (24) and/or (31).

Constraints: (25) and/or (32).

Constraints: (22) and/or (33).

47. M16–M21

Dimension: 2,

No. of objectives: 2,

Objective functions: (2) and one of next: (8)–(13)

Starting point: Same as that with the convex problem,

Constraints: (22) and/or (28).

Constraints: (26) and/or (29).

Constraints: (23) and/or (33).

Constraints: (24) and/or (31).

Constraints: (27) and/or (32).

Constraints: (22) and/or (34).

25



48. M22–M27

Dimension: 2,

No. of objectives: 2,

Objective functions: (3) and one of next: (8)–(13)

Starting point: Same as that with the convex problem,

Constraints: (22) and/or (28).

Constraints: (26) and/or (29).

Constraints: (23) and/or (33).

Constraints: (24) and/or (31).

Constraints: (27) and/or (32).

Constraints: (22) and/or (33).

Remark: One can add problems (4) and (5) to above to have more objectives.

49. M28

Dimension: 4,

No. of objectives: 2,

Objective functions: (6), (14)

Starting point: (−2,−2,−2,−2)T ,

Constraints: (36).

50. M29

Dimension: 4,

No. of objectives: 2,

Objective functions: (7), (14)

Starting point: (−2,−2,−2,−2)T ,

Constraints: (36).

Nonconvex objectives

51. M30

Dimension: 2,

No. of objectives: 2,

Objective functions: (15), (16)

Starting point: x(1) = (−1,−1)T ,

Constraints: (35).

26



52. M31

Dimension: 2,

No. of objectives: 2,

Objective functions: (16), (17)

Starting point: x(1) = (3, 1)T ,

Constraints: (33).

53. M32

Dimension: 2,

No. of objectives: 2,

Objective functions: (16), (18)

Starting point: x(1) = (−1,−1)T ,

Constraints: (35).

54. M33

Dimension: 4,

No. of objectives: 2,

Objective functions: (6), (19)

Starting point: (−2,−2,−2,−2)T ,

55. M34

Dimension: 4,

No. of objectives: 2,

Objective functions: (7), (19)

Starting point: (−2,−2,−2,−2)T ,

Appendix B. Computational results

In the following we describe the results of 112 test problems. In the first two

columns the problem is described such that in the first column is listed the used

objectives and in the second column the used constraints. We give the objective

function values which we obtain with MPB. In addition, the number of needed

iterations and the function calls are given.

In Table 4 is described the test problems with f ◦-pseudoconvex objectives,

in Table 5 and in Table 6 the test problems with f ◦-pseudoconvex and convex

objectives and in Table 6 the test problems with nonconvex objectives. In the last

line of the Table 6, the average numbers of iterations and function calls are given

for all 112 tes tproblems.
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Table 4: Testproblems 1

All objectives f◦ -pseudoconvex

Problems Const. f(x∗) Iter. Func.

(1), (4) (1.38795, 2.59165 · 10−2) 4 6

(1), (4) (20) (2.12132, 0.53480) 9 10

(1), (4) (21) (2.47489, 0.72303) 7 9

(1), (4) (20), (21) (2.47489, 0.72303) 7 9

(1), (5) (1.06756, 1.66158) 3 4

(1), (5) (20) (2.12133, 2.43921) 6 7

(1), (5) (21) (−1.75003,−1.75003) 4 5

(1), (5) (20), (21) (2.47492, 2.51064) 4 5

(1), (4), (5) (1.29785, 0.11006, 2.26413) 6 7

(1), (4), (5) (20) (2.12133, 0.53480, 2.43921) 6 7

(1), (4), (5) (21) (2.47489, 0.72303, 2.51064) 6 10

(1), (4), (5) (20), (21) (2.47489, 0.72303, 2.51064) 6 10

(2), (4) (1.22032, 2.55821 · 10−2) 2 3

(2), (4) (20) (1.41618, 0.53482) 5 6

(2), (4) (21) (1.49847, 0.72303) 5 7

(2), (4) (20), (21) (1.49847, 0.72303 5 7

(2), (5) (0.82302, 1.88442) 3 7

(2), (5) (20) (1.41617, 2.43921) 5 6

(2), (5) (21) (1.49848, 2.51063) 6 7

(2), (5) (20), (21) (1.49848, 2.51063) 6 7

(2), (4), (5) (1.22434, 1.22036 · 10−2, 2.28699) 2 3

(2), (4), (5) (20) (1.41617, 0.53481, 2.43921) 5 6

(2), (4), (5) (21) (1.49848, 0.72303, 2.51063) 6 7

(2), (4), (5) (20), (21) (1.49848, 0.72303, 2.51063) 6 7

(3), (4) (1.83072, 6.07757 · 10−2) 3 7

(3), (4) (20) (2.03011, 0.53482) 5 6

(3), (4) (21) (2.11539, 0.72303) 4 6

(3), (4) (20), (21) (2.11539, 0.72303) 4 6

(3), (5) (1.45832, 1.92398) 5 10

(3), (5) (20) (2.03010, 2.43921) 5 6

(3), (5) (21) (2.11539, 2.51063) 6 7

(3), (5) (20), (21) (2.11539, 2.51063) 6 7

(3), (4), (5) (1.84543, 8.54649 · 10−3, 2.28780) 4 7

(3), (4), (5) (20) (2.03010, 0.53481, 2.43921) 5 6

(3), (4), (5) (21) (2.11539, 0.72303, 2.51063) 6 7

(3), (4), (5) (20), (21) (2.11539, 0.72303, 2.51063) 6 7
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Table 5: Testproblems 2

f◦ -pseudoconvex + convex objectives

Problems Const. f(x∗) Iter. Func.

(1), (8) (0.40072, 4.81979) 7 12

(1), (8) (22) (1.40071, 2.03835) 7 13

(1), (8) (28) (1.09037, 3.09491) 10 15

(1), (8) (22), (28) (1.27785, 2.41485) 8 9

(1),(9) (3.05848 · 10−4,−1.74885 · 10−2) 11 19

(1), (9) (26) (0.25001, 2.25008) 20 22

(1), (9) (29) (0.10649, 1.19629) 11 13

(1), (9) (26), (29) (0.50002, 3.00005) 23 24

(1), (10) (1.33724, 31.88659) 1 2

(1), (10) (23) (0.26216, 50.02199) 22 27

(1), (10) (30) (0.86445, 40.07434) 14 22

(1), (10) (23), (30) (0.26216, 50.02199) 22 27

(1), (11) (8.57864 · 10−2,−0.41421) 13 14

(1), (11) (24) (4.00134 · 10−2, 0.19776) 10 11

(1), (11) (31) (0.22502, 0.59729) 8 9

(1), (11) (24), (31) (0.22546, 0.58642) 8 9

(1), (12) (0.91355,−0.95576) 10 19

(1), (12) (25) (0.91813,−0.89998) 16 17

(1), (12) (32) (0.96521,−0.83772) 7 8

(1), (12) (25), (32) (0.96571,−0.83784) 7 9

(1),(13) (1.89739 · 10−6, 1.40885 · 10−2) 4 5

(1), (13) (22) (1.06073, 18.69192) 20 22

(1), (13) (33) (0.40003, 9.83213) 16 20

(1), (13) (22),(33) (1.07529, 18.12512) 18 21

(2), (8) (1.21084, 2.16705) 11 19

(2), (8) (22) (1.21085, 2.16705) 4 5

(2), (8) (28) (1.21838, 2.09355) 9 20

(2), (8) (22), (28) (1.15902, 2.72730) 7 9

(2),(9) (0.69317,−5.66049 · 10−5) 9 19

(2), (9) (26) (0.91629, 2.25006) 12 15

(2), (9) (29) (0.84452, 1.19089) 9 13

(2), (9) (26), (29) (0.99588, 3.00008) 11 14

(2),(10) (0.92824, 48.42818) 2 3

(2),(10) (23) (0.92697, 49.74089) 22 50

(2), (11) (0.78670,−0.27739) 6 7

(2), (11) (24) (0.78877, 0.18360) 9 10

(2), (11) (31) (0.90628, 0.58298) 5 6

(2), (11) (24), (31) (0.90608, 0.59008) 6 8
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Table 6: Testproblems 3

f◦ -pseudoconvex + convex objectives

Problems Const. f(x∗) Iter. Func.

(2), (12) (1.06085,−0.88883) 11 20

(2), (12) (27) (1.08399,−0.81534) 7 8

(2), (12) (32) (1.07900,−0.82064) 7 8

(2), (12) (27), (32) (1.08399,−0.81534) 7 8

(2), (13) (0.69314, 1.38206 · 10−5) 4 5

(2), (13) (22) (1.11872, 18.63571) 17 29

(3), (8) (1.79817, 2.54400) 10 20

(3), (8) (22) (1.79817, 2.54400) 4 5

(3), (8) (28) (1.82140, 2.28799) 8 12

(3), (8) (22), (28) (1.78165, 2.77286) 7 9

(3), (9) (1.41484,−1.79013 · 10−3) 13 35

(3), (9) (26) (1.58114, 2.25014) 11 14

(3), (9) (29) (1.54299, 0.86318) 9 13

(3), (9) (26), (29) (1.64533, 3.00011) 10 13

(3), (10) (1.73610, 38.35306) 2 3

(3), (10) (23) (1.61541, 48.18086) 20 45

(3), (11) (1.42339,−3.68438 · 10−2) 6 7

(3), (11) (24) (1.48324, 0.19938) 9 11

(3), (11) (31) (1.57349, 0.57595) 5 6

(3), (11) (24), (31) (1.57309, 0.58955) 6 8

(3), (12) (1.69740,−0.88116) 11 26

(3), (12) (27) (1.71900,−0.81362) 7 8

(3), (12) (32) (1.71400,−0.81897) 7 8

(3), (12) (27), (32) (1.71900,−0.81362) 7 8

(1), (13) (1.41769,−8.86413 · 10−2) 22 46

(1), (13) (22) (1.74986, 18.50659) 17 30

(1), (13) (33) (1.62249, 9.83447) 13 28

(1), (13) (22), (33) (1.75365, 18.12519) 11 15

(6), (14) (8.74976 · 10−3,−2.15762) 15 27

(6), (14) (36) (2.00001, 59.00077) 14 15

(7), (14) (0.69713,−0.18549) 9 10

(7), (14) (36) (1.38629, 59.00154) 9 10

Nonconvex objectives

Problems Const. f(x∗) Iter. Func.

(15), (16) (0.17156,−0.72429) 9 10

(15), (16) (35) (0.76838,−1.33175 · 10−2) 10 11

(16), (17) (−0.41712, 3.72341) 9 10

(16), (17) (33) (30.75000, 7.33870) 10 32

(16), (18) (−0.36199, 0.26112) 2 3

(16), (18) (35) (−9.29430 · 10−3, 0.48864) 12 13

Average: 8.6 12.5
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