

Turku Cent re Computer Sciencefor

TUCS Technical Report
No 1078, May 2013

Author One | Author Two | Author Three
Author Four | Author Five

Title of the Technical Report

Mats Neovius

Formal Stepwise

Development of an In-

House Temperature Control
System

TUCS Technical Report

No 1078, May 2013

Formal Stepwise Development of an In-

House Temperature Control System

Mats Neovius
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
mats.neovius@abo.fi

Abstract

With the possibility to sense and control the physical environment, restrictions and

demands on how it is controlled may be defined. The system guaranteeing the stated

conditions by analysing the sensory data and triggering a corrective action is called a

control system. Formal verification ascertains the correct mathematical functionality of

such a control system given a model of the environment. Moreover, formal specification

facilitates the engineers’ understanding of the system features. In this report, we

formally specify a temperature control system responsible for maintaining a certain in-

house temperature in the Event-B language. We verify this specification in the Rodin

Platform tool. The specification is developed independently in a stepwise manner to be

suitable for integration with other control systems.

Keywords: Formal modelling, Event-B, refinement, temperature control, control

system, adaptive house

TUCS Laboratory
Distributed Systems Laboratory

1

1. Introduction

Actuators of a control system are implemented to serve for a task. In this paper

reporting on the development of an in-house temperature control system (tcs), we

consider the actuators to be radiators and air-conditioning units that ubiquitously adjusts

the temperature of a designated space indoors. The motivation is that in residential

buildings, the in-door air temperature control system consumes a significant amount of

the total energy consumed by residential buildings. Hence, managing this control

system provides means for the topical strive for increased energy-awareness and

energy-preservation; controlling the actuators adjusting this physical phenomenon is of

central interest.

The functionality of the tcs is to switch heating and cooling units on and off for

adjusting the temperature. The aim is to be able to prove that, using the actuators, the

temperature will reside within given bounds, namely the ‘low’ and ‘high’ thresholds.

Fundamental conditions to prove include those of not having a heating unit and a

cooling unit switched on simultaneously. In addition, we develop the specification to

also model the case when the residents are on “vacation” allowing the thresholds to be

relaxed by disregarding comfortability. Altogether, the development consists of an

initial view to which we gradually add details in four (4) revision steps. To manage the

complexity and for defining the system boundaries unambiguously, this paper reports

on a formal development of a system alike that described above.

For the means to formalise there is an abundance of languages, often referred to as

formal methods. Roughly speaking, the formal methods can be divided into three

groups: one focusing on communicational matters known as event-based formalisms

[19] [22] [23] [7]; one focusing on the state of a software known as state-based

formalisms including [9], [3] [6] [21] [18] [15] [2]; and one focusing on properties

(typically temporal logics) [26] [16]. Which of all of the formal methods is selected is

typically dictated by need, the author’s familiarity with its semantics, possible tool

support and other related features.

In this paper, we use the Event-B [2] state-based formal method as the formal

method in which to specify tcs. This selection is motivated by the convenience of

modelling the states of heating and cooling units of the tcs, the author’s familiarity with

the language’s semantics, its tool support as well as by its support of refinement. The

tool support for Event-B [2] used in this paper is Rodin Platform tool [17] [5] featuring

automatic theorem provers. Event-B also supports the refinement methodology [8] [24],

a means to introduce details in a stepwise manner without compromising correctness.

This is based on the refinement calculus framework that in turn bases on lattice theory

[12] to rigorously define a relation between the “abstract” and “concrete” specification.

The Rodin Platform tool [17] [5] theorem provers also supports checking conditions of

refinement relations, i.e. the tool proves the refinement relations correct.

This paper is outlined as follows: In Section 2 we briefly introduce the Event-B

language followed by a short introduction to the Rodin Platform tool and the conditions

we aim to show. Section 3 describes the initial model followed by a refined model in

each of its subsections. These refinement steps are outlined in Figure 2. Section 4

discusses some limitations with respect to the model and Section 5 concludes the paper.

2

2. Formal Preliminaries

For something to be formal, this means that it follows or is defined in accordance to

some rule(s). When expressing something in a programming language, that is a formal

representation for defining how some task is performed; when formalising something as

in this paper, it has to do with defining the boundaries within which the execution of the

system (that is to be specified) resides. Hence, a formalisation defines what, not how;

and what from a perspective of boundaries. Within these boundaries and with the formal

notation of the language in which the specification is expressed, some features may be

proved to hold.

The closeness of the specification with the envisaged real implementation is central.

However, for mathematical-logical intentions on ability to prove correctness, we will

model this “real” environment including all its uncertainty and inconsequence in a

precise manner, i.e. we will disregard inconsequent behaviour such as actions of a

human operator. Hence, we generalise the application-specific environment by

assuming it to behave rationally, so any formal specification may regard only the

rational mathematical-logical (software) part.

With mathematical correctness of the specification, we may claim our system

specification faultless. Thus, if such a system fails, this is due to having modelled the

environment too far from the real implementation environment. This is equivalent to

having approximated the environment falsely or having disregarded some part of it.

However, analysing uncertainties of the model falls outside the consideration of this

paper. Hence, we excuse ourselves to make this necessary assumption for the sake of

correctness.

2.1. The Event-B Language and the Rodin Platform

Event-B is a language for state-based formal specification. The state space of the

specification is bound by its variables’ interval and its constants. The momentarily state

is defined by the values of these variables and constants at a given moment. These

system variables’ values may be updated by transitions, the so-called events. Each event

is a guarded atomic set of concurrent variable updates, i.e. their execution is atomic. The

event guard is a predicate on the variables that when true, enables the transitional part

of an event for execution. The transitional part of an event is typically called the event’s

action. These actions support non-deterministic assignment of variables. When several

events’ guards evaluate true (events are enabled), one is chosen non-deterministically

(demonically) for execution. On a specification level, the execution stops when no event

is enabled, in case the execution may not proceed. Whether or not this condition is

desired is task-specific, i.e. it can model a deadlock or a desired termination condition.

Properties of the specification may be declared as invariants. An invariant is a

condition that holds initially and after the execution of any event. Correctness of a

specification is then subject to showing the integrity of the invariants. The semantics of

the language is described using before-after (BA) predicates [2] [4].

Fundamentally, a specification in the Event-B language consists of two components:

a context and a machine, see Figure 1. The context defines the static part of the

3

specification by declaring constants and carrier sets whose properties are axiomised for

the specification. A context may be seen by a machine, in which case the machine may

use the constants. The machine defines the variables, invariants and the events of the

specification. Hence, the machine declares the actions whose preservation of the

invariants declares the specification consistency, i.e. its correctness. Effectively this

means that each invariant (predicate) needs to evaluate true in every reachable state.

Figure 1: A machine M and a context C

The Event-B formal method has tool support in form of the Rodin Platform tool [17]

[5]. The Rodin Platform tool employs a proof manager that automatically generates

proof obligations. Proof obligations are statements that need to be proved true for the

specification to be correct. These proof obligations are logical sequents that have to do

with the invariants and the refinement relation between specifications. Each proof

obligation may either be automatically discharged by the integrated theorem provers,

may require interaction from the developer or, simply, be non-provable, i.e. false.

2.2. System Development in Event-B

A specification in any language outlines the domain of discourse. In case of Event-B

this consists of two components context and machine that when composed in parallel,

denoted ||, constitute the specification. Criterions for parallel composition include non-

overlapping variable names. If there are overlapping variable names, this may trivially

be solved by simple renaming. Reversely to parallel composition, a feature of a

specification in Event-B is the possibility for decomposition. Hence decomposition of

M to M1 and M2 is denoted M = M1 || M2. Decomposition is implemented by either

sharing variable(s) or event(s), originally brought forth by Sere [28] in the Action

Systems framework; and later implemented in Event-B by Abrial [1] and Butler [13].

The Rodin Platform tool features a decomposition plugin [14].

In addition to parallel composition and decomposition, the components of the Event-

B language are subject to refinement. Refinement, denoted ⊑, is a relation that provides

a means for stepwise introduction of details to a component. The goal with development

alike is to reach a specification at a level of concretisation sufficient to define how

something may be implemented. Sometimes refinement is referred to as stepwise

development enabling correctness-by-construction.

Two types of refinement exists, vertical known as data refinement [10] and

horizontal known as superposition refinement [20] [11]. Coarsely, data refinement

reduces non-determinism, strengthens the guard or defines more precise variables

4

requiring a gluing invariant whilst superposition refinement introduces new variables

and events. The refinement relations are associated with conditions that need to be

proved. Moreover, refinements are monotone. This is central, i.e. assume components C

and M that make up specification C || M, then as of monotony if M ⊑ M’ then trivially C

|| M ⊑ C || M’.

3. The In-House Temperature Control

System Specification

In this section we will report on the stepwise development of an in-house temperature

control system (tcs). The tcs sole purpose is to maintain the in-house temperature within

a predefined interval. This involves a sensor sensing the temperature as well as actuators

affecting the temperature in a stigmergic manner, in this case the heating and cooling

unit(s). The stepwise development is realised by refining features to a more abstract

specification. Figure 2 depicts this refinement process on general level showing the

refinement relations by arrows from the initial machine M0 to the most concrete

machine M4. In writing, the specifications’ comments are delimited by //.

Figure 2: The tcs stepwise development process

3.1. The Initial Specification M0 and Context C0

The initial machine M0 of tcs defines the operational environment by seven events. For

the initial machine, obvious invariants of the system include those defining the types of

the variables. These include cooler_state ∈ AC_Unit → AC_State and heater_state ∈

5

Heating_Unit → Heating_State declaring that each unit is assigned a state. The units are

defined in the context C0 that machine M0 sees.

In addition to the sets, the context C0 declares scale_top and scale_bottom.

Realistically these could be considered in °C and with the assumption that no realistic

temperature in-house should be outside this interval. This assumption implies that, for

example, a sauna is not considered. Moreover, the context declares that the AC_State is

always either ac_on or ac_off; and likewise for the Heating_State on heating_on and

heating_off.

context C0
constants scale_top
 scale_bottom

 ac_on
 ac_off
 heating_on
 heating_off

sets AC_Unit
 AC_State
 Heating_Unit
 Heating_State

axioms
 @axm1 scale_top = 100
 @axm2 scale_bottom = −100
 @axm3 partition(AC_State, {ac_on}, {ac_off})
 @axm4 partition(Heating_State, {heating_on}, {heating_off})
end

For the initial machine M0, the invariants @inv1 to @inv3 merely declares the type of

the variables, here as an integer ℤ. The invariant @inv4 defines the relation on

temperatures and their thresholds. Notable for @inv4 is that it does not regard the

variable inside_temperature to be bound within the low and high thresholds. This is

obviously a feature later refined into the specification. Invariants @inv5 defines

variables cooler_state = {ac_on, ac_off} as a function on an AC_Unit to AC_State, and

similarly for heater_state in @inv6 on Heating_Unit and Heating_State.

For the events, the INITIALISATION event assigns the variables their initial values

where the most notable is that all actuator units are set to the off state. The

inside_temperature is assigned any value within scale_bottom and scale_top. For the

remaining event, Set_Threshold_M0 narrows the allowed temperature by assigning

temperature_low_threshold any value less than inside_temperature - 1 and

temperature_high_threshold any value over inside_temperature + 1. A feature of

Set_Threshold_M0 is that the thresholds may be changed dynamically.

Event Change_Temperature_M0 update the temperature non-deterministically with

1°C granularity in either direction. Notable is that at this level we have not yet specified

any restrictions on inside_temperature. The remaining four events Switch_AC_on_M0,

Switch_AC_off_M0, Switch_Heating_on_M0 and Switch_Heating_off_M0 specify

switching the state of an AC_Unit or Heating_Unit. Their respective guards ensure that a

unit may be switched off only if there is one that is on, and vice versa.

6

machine M0 sees C0
variables inside_temperature // inside temperature
 temperature_low_threshold // low threshold for acceptable temperature
 temperature_high_threshold // high threshold for acceptable temperature
 cooler_state
 heater_state

invariants

 @inv1 inside_temperature ∈ ℤ

 @inv2 temperature_low_threshold ∈ ℤ

 @inv3 temperature_high_threshold ∈ ℤ
 @inv4 scale_bottom ≤ temperature_low_threshold ∧ temperature_low_threshold ≤

 temperature_high_threshold ∧ temperature_high_threshold ≤ scale_top

 @inv5 cooler_state ∈ AC_Unit → AC_State

 @inv6 heater_state ∈ Heating_Unit → Heating_State

events
 event INITIALISATION
 then

 @act1 inside_temperature :∈ scale_bottom‥scale_top

 @act2 temperature_low_threshold ≔ scale_bottom
 @act3 temperature_high_threshold ≔ scale_top

 @act4 cooler_state ≔ AC_Unit × {ac_off} // assign all AC_units to off

 @act5 heater_state ≔ Heating_Unit × {heating_off} // assign all heating units to off
 end

 event Set_Thresholds_M0
 any low high
 where

 @grd0_1 low ∈ scale_bottom‥inside_temperature − 1 // defines granularity to 1

 @grd0_2 high ∈ inside_temperature + 1 ‥scale_top // at least 2 degrees difference

 then
 @act0_1 temperature_low_threshold ≔ low

 @act0_2 temperature_high_threshold ≔ high
 end

 event Change_Temperature_M0
 any change
 where

 @grd0_1 change = −1 ∨ change = 1
 then

 @act0_1 inside_temperature ≔ inside_temperature + change
 end

 event Switch_AC_On_M0
 any ac_cooling_unit
 where
 @grd0_1 ac_cooling_unit ∈ AC_Unit ∧ cooler_state(ac_cooling_unit) = ac_off
 then

 @act0_1 cooler_state(ac_cooling_unit) ≔ ac_on
 end

 event Switch_Heating_On_M0
 any heat_unit

7

 where

 @grd0_1 heat_unit ∈ Heating_Unit ∧ heater_state(heat_unit) = heating_off
 then

 @act0_1 heater_state(heat_unit ≔ heating_on
 end

 event Switch_AC_Off_M0
 any ac_cooling_unit
 where

 @grd0_1 ac_cooling_unit ∈ AC_Unit ∧ cooler_state(ac_cooling_unit) = ac_on
 then
 @act0_1 cooler_state(ac_cooling_unit) ≔ ac_off
 end

 event Switch_Heating_Off_M0
 any heat_unit
 where

 @grd0_1 heat_unit ∈ Heating_Unit ∧ heater_state(heat_unit) = heating_on
 then

 @act0_1 heater_state(heat_unit) ≔ heating_off
end

3.2. The First Refined Machine M1

Machine M1 refines M0, i.e. M0 ⊑ M1. More specifically, M1 specifies how the

temperature may change, i.e. that inside_temperature > temperature_low_threshold and

inside_temperature < temperature_high_threshold as by in @inv7. This is realised by

refining Change_Temperature_M0 to three events, Increment_Temperature_M1,

Decrement_Temperature_M1 and Change_Temperature_M1. The new events

assure by guards that only one of them may be enabled at any given time as well as that

if an actuator is on, then the temperature may only change accordingly without

breaching the thresholds, i.e. new guards @grd1_1, @grd1_2 and @grd1_3. Here notable

is that @grd1_1 ⇒ @grd0_1, i.e. strengthens the specific event’s guard being a

refinement.

When all AC_Unit and Heating_Unit are off, Change_Temperature_M1 guards

@grd1_2_1 and @grd1_2_2 evaluate true and the temperature may change non-

deterministically within the allowed interval, assured by @grd1_3_1 and @grd1_3_2.

This is illustrated in Figure 3 with abbreviated variable names. For execution, the

INITIALISATION may have assigned inside_temperature either scale_bottom or

scale_top in case either the inside_temperature need to be increased or decreased by first

switching an AC_Unit or Heating_Unit appropriately on. This is assured by @grd1_3 in

Increment_Temperature_M1 that is the only enabled temperature changing event

when inside_temperature = scale_bottom; and dually for Decrement_Temperature_M1

and inside_temperature = scale_top.

Figure 3: tcm temperature interval

8

In addition, if Change_Temperature_M0 is enabled, then one of

Increment_Temperature_M1, Decrement_Temperature_M1 or

Change_Temperature_M1 is enabled that covers for possible restrictions on the exit

condition. In the specification M1 below, we omit non-changed variables, invariants

and events.

machine M1 refines M0 sees C0
variables // as in M0

invariants // @inv1 through @inv6 as in M0

 @inv7 temperature_low_threshold ≤ inside_temperature ∧
 inside_temperature ≤ temperature_high_threshold

events
… // INITIALISATION, Set_Thresholds_M1, Switch_AC_On_M1, Switch_AC_Off_M1,
Switch_Heating_Off_M1 as in their namesake events of M0
 event Increment_Temperature_M1
 refines Change_Temperature_M0
 any change
 where

 @grd0_1 change = −1 ∨ change = 1
 @grd1_1 change = 1

 @grd1_2 ∃x ·x ∈ Heating_Unit ∧ heater_state(x) = heating_on // A Heating_Unit is on
 @grd1_3 inside_temperature < temperature_high_threshold
 then

 @act0_1 inside_temperature ≔ inside_temperature + change
 end

 event Decrement_Temperature_M1
 refines Change_Temperature_M0
 any change
 where

 @grd0_1 change = −1 ∨ change = 1
 @grd1_1 change = −1

 @grd1_2 ∃x · x ∈ AC_Unit ∧ cooler_state(x) = ac_on // An AC_Unit is on
 @grd1_3 inside_temperature > temperature_low_threshold
 then

 @act0_1 inside_temperature ≔ inside_temperature + change
 end

 event Change_Temperature_M1
 refines Change_Temperature_M0
 any change
 where

 @grd0_1 change = −1 ∨ change = 1

 @grd1_2_1 ∀x ·x ∈ AC_Unit ⇒ cooler_state(x) = ac_off

 @grd1_2_2 ∀x ·x ∈ Heating_Unit ⇒ heater_state(x) = heating_off
 @grd1_3_1 inside_temperature > temperature_low_threshold
 @grd1_3_2 inside_temperature < temperature_high_threshold
 then

 @act0_1 inside_temperature ≔ inside_temperature + change
 end
end

9

3.3. The Second Refined Machine M2

Machine M2 refines M1, i.e. M1 ⊑ M2 and as of monotonicity M0 ⊑ M2 as well as C0

|| M1 ⊑ C0 || M2. Machine M2 merely adds conditions for the functionality of

switching an actuator on. Hence, the events of M2 extend those of M1.

This switching is defined to happen in event Switch_AC_On_M2 for an AC_Unit

when temperature_high_threshold ≤ inside_temperature having the affect to starting cooling

when the upper temperature bound is reached. The specification for Heating_Unit when

temperature_low_threshold ≥ inside_temperature is a dual to Switch_Heating_On_M2.

For the layout below, we omit the parts that remain unchanged.

machine M2 refines M1 sees C0
variables // as in M1
invariants // as in M1

events
… // INITIALISATION, Set_Thresholds_M2, Increment_Temperature_M2,
Decrement_Temperature_M2, Change_Temperature_M2, Switch_AC_Off_M2,
Switch_Heating_Off_M2 as in their namesake events of M1

 event Switch_AC_On_M2
 extends Switch_AC_On_M1
 where
 @grd2_1 temperature_high_threshold ≤ inside_temperature
 end

 event Switch_Heating_On_M2
 extends Switch_Heating_On_M1
 where
 @grd2_1 temperature_low_threshold ≥ inside_temperature
 end
end

3.4. The Third Refined Machine M3

Machine M3 refines M2. Machine M3 is the specification introducing adaptability. On

this, M3 introduces a delay in switching the actuators off. This is realised by new

variables cool_stop_wrt_target and heat_stop_wrt_target that are relative to the new

variable target_temperature. The motivation is the realistic situation that a heating unit

emits heat for some time after switched off and dually a cooling unit cools with a delay;

possible energy-wise penalties are discarded from consideration as this is an

optimisation issue. Realistically, consider the variable target_temperature to be set by the

inhabitant of the modelled space, however, in a manner never compromising the

specification, i.e. considering the temperature changes instantaneous, then

target_temperature could be set by 1° ticks. This temperature setting is depicted in Figure

4 with abbreviated variable names.

The invariants of M3 guarantees that cooling and heating respectively must stop

within the temperature interval, guaranteed by @inv9, @inv12 and @inv13. Initialisation

event is obviously extended by the new variables. For the events providing

functionality, event Set_Thresholds_M3 extends Set_Thresholds_M2 by introducing

10

assignment of cool_stop_wrt_target and heat_stop_wrt_target as their relative difference

from target_temperature.

Figure 4: tcm with target temperature and delays

For the actuators’ non-interfering functionality only the guards are strengthened.

Hence, the events Switch_AC_On_M3 and Switch_Heating_On_M3 extend their

abstract events by guards @grd3_1 assuring that there is no actuator of the other kind

switched on. The effect of this is that no heating unit may be on simultaneously with a

cooling unit, and vice versa. This is assured by invariants @inv14 and @inv15. For

events Switch_AC_Off_M3 and Switch_Heating_Off_M3 the delay is taken into

account by guards @grd3_1 of the respective event. This assures that the actuator may

be switched off before reaching the target temperature. Again, in the outline below we

omit non-changed parts of the specification.

machine M3 refines M2 sees C0
variables … // variables as before
 target_temperature // the target temperature
 cool_stop_wrt_target // delay in cooling
 heat_stop_wrt_target // delay in heating

invariants … // invariants as before

 @inv8 target_temperature ∈ ℤ // temperature to which the thermostat is set

 @inv9 temperature_low_threshold ≤ target_temperature ∧
 target_temperature ≤ temperature_high_threshold
 @inv10 cool_stop_wrt_target ∈ ℤ

 @inv11 heat_stop_wrt_target ∈ ℤ
 @inv12 cool_stop_wrt_target + target_temperature ≥ temperature_low_threshold
 @inv13 heat_stop_wrt_target + target_temperature ≤ temperature_high_threshold
 @inv14 (∃x · x ∈ AC_Unit ∧ cooler_state(x) = ac_on) ⇒

 (∀y · y ∈ Heating_Unit ⇒ heater_state(y) = heating_off)

 @inv15 (∃x · x ∈ Heating_Unit ∧ heater_state(x) = heating_on) ⇒

 (∀y · y ∈ AC_Unit ⇒ cooler_state(y) = ac_off)

events
… // Increment_Temperature_M3, Decrement_Temperature_M3, Change_Temperature_M3 as
in their namesake events of M2

 event INITIALISATION
 extends INITIALISATION
 then

 @act3_1 cool_stop_wrt_target ≔ 0

 @act3_2 heat_stop_wrt_target ≔ 0

11

 @act3_3 target_temperature :∈ scale_bottom‥scale_top

 end

 event Set_Thresholds_M3
 extends Set_Thresholds_M2
 any target c_stop h_stop
 where

 @grd3_1 c_stop ∈ target‥high

 @grd3_2 h_stop ∈ low‥target

 @grd3_3 target ∈ low‥high

 then

 @act3_1 cool_stop_wrt_target ≔ c_stop − target

 @act3_2 heat_stop_wrt_target ≔ h_stop − target
 @act3_3 target_temperature ≔ target
 end

 event Switch_AC_On_M3
 extends Switch_AC_On_M2
 where

 @grd3_1 ∀x · x ∈ Heating_Unit ⇒ heater_state(x) = heating_off
 end

 event Switch_Heating_On_M3
 extends Switch_Heating_On_M2
 where

 @grd3_1 ∀x · x ∈ AC_Unit ⇒ cooler_state(x) = ac_off
 end

 event Switch_AC_Off_M3
 extends Switch_AC_Off_M2
 where
 @grd3_1 inside_temperature + cool_stop_wrt_target ≤ target_temperature
 end

 event Switch_Heating_Off_M3
 extends Switch_Heating_Off_M2
 where
 @grd3_1 inside_temperature + heat_stop_wrt_target ≥ target_temperature
 end
end

3.5. The Fourth Refined Machine M4

Machine M4 refines M3. It introduces the more restrictive temperature threshold

providing a sense of comfortability by defining variables vacation and new thresholds

temperature_comfortable_low_threshold and temperature_comfortable_high_threshold. The

vacation is false when the inhabitants of the controlled house are in-house and true

otherwise. Hence, when vacation is true, the less restrictive temperature interval as

specified in the more abstract machines is applied. Dually, when vacation is false, the

new thresholds providing a sense of comfortability introduced in this machine are

applied. The temperature thresholds and intervals are illustrated in Figure 5.

12

Figure 5: tcm with delay and vacation

The ordering of the new thresholds and temperature levels are declared by invariants,

in this case @inv18 through @inv22. This is realised by events Set_Thresholds_M4 that

extends Set_Thresholds_M4 by @grd4_1 with @act4_1 and @grd4_2 with @act4_2 that

assign temperature_comfortable_low_threshold a value in interval

temperature_low_threshold .. target_temperature and similarly for

temperature_comfortable_high_threshold a value in interval target_temperature ..

temperature_low_threshold. Moreover, the switching on of the actuators are extended to

include vacation, i.e. actuators are switched on at temperatures depending on the state of

vacation. This is implemented by straightforward strengthening of the guards. In

addition, an event Change_Vacation_State_M4 capturing switching the vacation state

is specified. Again we omit non-changed parts of the specification.

machine M4 refines M3 sees C0
variables … // variables as before
 temperature_comfortable_low_threshold
 temperature_comfortable_high_threshold
 vacation

invariants … // invariants as before

 @inv16 temperature_comfortable_low_threshold ∈ ℤ
 @inv17 temperature_comfortable_high_threshold ∈ ℤ
 @inv18 temperature_comfortable_low_threshold ≤
 temperature_comfortable_high_threshold

 @inv19 temperature_low_threshold ≤ temperature_comfortable_low_threshold ∧
 temperature_comfortable_low_threshold ≤
 cool_stop_wrt_target + target_temperature

 @inv20 temperature_comfortable_high_threshold ≤ temperature_high_threshold ∧
 heat_stop_wrt_target + target_temperature ≤
 temperature_comfortable_high_threshold
 @inv21 cool_stop_wrt_target + target_temperature ≥
 temperature_comfortable_low_threshold // inv 21 strengthens inv 12
 @inv22 heat_stop_wrt_target + target_temperature ≤
 temperature_comfortable_high_threshold // inv 22 strengthens inv 13

 @inv23 vacation ∈ BOOL

events
… // Increment_Temperature_M4, Decrement_Temperature_M4, Change_Temperature_M4,
Switch_AC_Off_M4, Switch_Heating_Off_M4 as in their namesake events of M3

 event INITIALISATION
 extends INITIALISATION

13

 then

 @act4_1 temperature_comfortable_low_threshold ≔ scale_bottom
 @act4_2 temperature_comfortable_high_threshold ≔ scale_top

 @act4_3 vacation :∈ BOOL
 end

 event Set_Thresholds_M4
 extends Set_Thresholds_M3
 any l_temp h_temp
 where

 @grd4_1 l_temp ∈ low‥target

 @grd4_2 h_temp ∈ target‥high

 then

 @act4_1 temperature_comfortable_low_threshold ≔ l_temp
 @act4_2 temperature_comfortable_high_threshold ≔ h_temp
 end

 event Switch_AC_On_In_House_M4
 extends Switch_AC_On_M3
 where
 @grd4_1 vacation = FALSE
 @grd4_2 temperature_comfortable_high_threshold ≤ inside_temperature
 end

 event Switch_AC_On_Vacation_M4
 extends Switch_AC_On_M3
 where
 @grd4_1 vacation = TRUE
 end

 event Switch_Heating_On_In_House_M4
 extends Switch_Heating_On_M3
 where
 @grd4_1 vacation = FALSE
 @grd4_2 temperature_comfortable_low_threshold ≥ inside_temperature
 end

 event Switch_Heating_On_Vacation_M4
 extends Switch_Heating_On_M3
 where
 @grd4_1 vacation = TRUE
 end

 event Change_Vacation_State_M4
 then

 @act4_1 vacation :∈ BOOL
 end
end

14

4. Discussion

This paper is a report on stepwise specification of an in-house tcs. The specification was

developed in a stepwise manner utilising the refinement of Event-B specification.

Within the reporting of this development, we have tried to point out how this refinement

is realised. Not surprisingly, we had a “refinement strategy” in mind when starting to

specify. The specified tcs employ a flexible temperature interval. Moreover, it adapts to

the possibly less restrictive requirements of its inhabitants, i.e. when they are on

vacation. Obviously, this indication of vacation could be used for other purposes as

well, such as for burglar alarm or proactively switching lights on and off as if the house

was inhabited.

The correctness of the specification relies on some general assumptions with respect

to the modelled environment. This is a reasonable consequence of seeking mathematical

correctness in the first place, where it is obvious that without assumptions on the

environment making the model precise, no mathematical correctness could have been

shown. Hence, as mentioned in the introduction, the specification is correct on an

environment that adheres to the model; whose distance from the “real” environment is

out of the scope of this paper and thus not considered. However, we acknowledge that

these assumptions simplify the imperfect matters that are causes of faults and failures

[25].

With this, we allow us to assume in M1 that the power of any AC_Unit and any

Heating_Unit exceeds its countering power, i.e. that if the heating is turned on, the house

will heat up. Realistically this means that we assume that if heating is on, the windows

and doors are closed, or open to an extent whose countering effect is less than that of the

actuator. Moreover, the specification assumes all the data to be correct, i.e. that the

switch of an actuator is never broken and that the sensors always work. Hence, the

machines specified in this paper outline how a control system would work in an

idealised environment lacking any kind of erroneous or inconsequent behaviour, those

captured by the model. Other assumptions characterising to the specification outlined in

this report includes the granularity of temperature that is set to 1°C in M0. On this we

wish to note that the outcome would be identical if we would have added decimals.

5. Conclusion

Means to manage complexity and assurance of behaviour are the most important

reasons for formally specifying a system. As the tcs specified in this report is rather

simple and straightforward, the motivation is in the possibility to integrate this as part of

some greater control system. Examples of interesting systems by which integration

could be interesting include that of lights control system featuring motion sensors [27].

Together, tcs with variable vacation and lights control system motion sensors could

cover for a burglar detection system. In such cases, the formally specified boundaries,

variable names and state space of a subsystem are of outmost importance. Formal

support for this is briefly introduced in Section 2.2 overviewing the capabilities related

to (de)composition of a formal specification.

15

In this paper we have reported on the stepwise development of one part of an

adaptive house’s control systems, the tcs. The development is done independently of

any other but aims for being integrated with other control systems. We claim that if an

implementation would be engineered based on this specification, it would be correct

with respect to the assumptions on the model. Moreover, we claim that the integration

would be formally provable by parallel composition. As for the proof of the

specifications and refinements presented in this paper, we note that the Rodin Platform

tool’s theorem provers did automatically discharge all proof obligations.

References

[1] J.-R. Abrial, "Event Model Decomposition," Wiki document Version 1.3

http://wiki.event-b.org/images/Event_Model_Decomposition-1.3.pdf
accessed 15 May 2013, 2009.

[2] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.:
Cambridge University Press, 2010.

[3] J.-R. Abrial, The B-Book: Assigning programs to meanings. New York,

USA: Cambridge University Press, 1996.

[4] J.-R. Abrial, M. Butler, S. Hallerstede, T. Hoang, and F. and Voisin, L.

Mehta, "Rodin: An Open Toolset for Modelling and Reasoning in Event-
B," International Journal on Software Tools for Technology Transfer

(STTT), vol. 12, no. 6, pp. 447-466, 2010.

[5] J.-R. Abrial et al., "Rodin: An Open Toolset for Modelling and Reasoning
in Event-B.," International Journal on Software Tools forTechnology

Transfer (STTT), vol. 6, pp. 447-466, 2010.

[6] J.-R. Abrial, S. Schuman, and B. Meyer, "A Specification Language," in

On the Construction of Programs.: Cambridge University Press, 1980.

[7] F. Arbab, "Reo: A Channel-based Coordination Model for Component
Composition," Mathematical Structures in Computer Science, vol. 14,

no. 3, pp. 329-366, 2004.

[8] R. Back, "On the correctness of refinement steps in program

development," Department of Computer Science, University of Helsinki,
PhD thesis Report A-1978-4 1978., 1978.

[9] R. Back and R. Kurki-Suonio, "Decentralization of Process Nets with

Centralized Control," in 2nd ACM SIGACT-SIGOPS Symp. on Principles
of Distributed Computing, 1983.

[10] R. Back and K. Sere, "Stepwise Refinement of Action Systems,"
Structured Programming, vol. 12, no. 1, pp. 17-30, 1991.

[11] R. Back and K. Sere, "Superposition Refinement of Reactive Systems,"

Formal Asp. Comput., vol. 8, no. 3, pp. 324-346, 1996.

[12] R. Back and J. von Wright, Refinement Calculus: a Systematic

Introduction.: Springer-Verlag New York, 1998.

[13] M. Butler, "Decomposition Structures for Event-B," in Integrated

16

Formal Methods iFM2009, 2009.

[14] (2013, May) Decomposition Plug-in User Guide. [Online].
http://wiki.event-b.org/index.php/Decomposition_Plug-in_User_Guide

[15] E. W. Dijkstra, "Guarded commands, nondeterminacy and formal

derivation of programs," vol. 18, 8 , no. Commun. ACM, pp. 453-457,
1975.

[16] E. Emerson and J. Halpern, "Decision procedures and expressiveness in
the temporal logic of branching time," Journal of Computer and System
Sciences , vol. 30, no. 1, pp. 1–24., 1985.

[17] (2013, May) Event-B and the Rodin Platform. [Online].
http://www.event-b.org/

[18] C. Hoare, "An axiomatic basis for computer programming,"
Communications of the ACM, vol. 12, no. 10, pp. 576 - 580, 583,

October 1969.

[19] C. Hoare, "Communicating sequential processes," Communications of
the ACM, vol. 21, no. 8, pp. 666–677, 1978.

[20] S. Katz, "A superimposition control construct for distributed systems,"
ACM Transactions on Programming Languages and Systems, vol. 15,

no. 2, pp. 337-356, 1993.

[21] K. Mani Chandy, Parallel Program Design: a Foundation.: Addison-
Wesley Longman Publishing Co., Inc., 1988.

[22] R. Milner, A Calculus of Communicating Systems.: Springer Verlag,
1980.

[23] R. Milner, J. Parrow, and D. Walker, "A calculus of mobile processes, I,"
Inf. Comput. , vol. 100, no. 1, pp. 1-40, 1992.

[24] C. Morgan, Programming from Specifications. Upper Saddle River, NJ,

USA: Prentice-Hall Inc., 1990.

[25] D. Parnas, "Really Rethinking 'Formal Methods," Computer, vol. 43, no.

1, pp. 28-34, 2010.

[26] A. Pnueli, "The temporal logic of programs," in Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, 1977, pp. 46-

57.

[27] P. Sandvik, "Formal Stepwise Development of an In-House Lighting

Control System," TUCS Technical Reports nr. 1079 2013.

[28] K. Sere, "Stepwise derivation of parallel algorithms," Åbo Akademi,
Department of computer science, PhD Thesis ISBN: 951-649-748-9,

1990.

http://wiki.event-b.org/index.php/Decomposition_Plug-in_User_Guide
http://www.event-b.org/

ISBN 978-952-12-2893-3
ISSN 1239-1891

