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Abstract 

With the possibility to sense and control the physical environment, restrictions and 

demands on how it is controlled may be defined. The system guaranteeing the stated 

conditions by analysing the sensory data and triggering a corrective action is called a 

control system. Formal verification ascertains the correct mathematical functionality of 

such a control system given a model of the environment. Moreover, formal specification 

facilitates the engineers’ understanding of the system features. In this report, we 

formally specify a temperature control system responsible for maintaining a certain in-

house temperature in the Event-B language. We verify this specification in the Rodin 

Platform tool. The specification is developed independently in a stepwise manner to be 

suitable for integration with other control systems.  
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1. Introduction 

Actuators of a control system are implemented to serve for a task. In this paper 

reporting on the development of an in-house temperature control system (tcs), we 

consider the actuators to be radiators and air-conditioning units that ubiquitously adjusts 

the temperature of a designated space indoors. The motivation is that in residential 

buildings, the in-door air temperature control system consumes a significant amount of 

the total energy consumed by residential buildings. Hence, managing this control 

system provides means for the topical strive for increased energy-awareness and 

energy-preservation; controlling the actuators adjusting this physical phenomenon is of 

central interest.  

The functionality of the tcs is to switch heating and cooling units on and off for 

adjusting the temperature. The aim is to be able to prove that, using the actuators, the 

temperature will reside within given bounds, namely the ‘low’ and ‘high’ thresholds. 

Fundamental conditions to prove include those of not having a heating unit and a 

cooling unit switched on simultaneously. In addition, we develop the specification to 

also model the case when the residents are on “vacation” allowing the thresholds to be 

relaxed by disregarding comfortability. Altogether, the development consists of an 

initial view to which we gradually add details in four (4) revision steps. To manage the 

complexity and for defining the system boundaries unambiguously, this paper reports 

on a formal development of a system alike that described above. 

For the means to formalise there is an abundance of languages, often referred to as 

formal methods. Roughly speaking, the formal methods can be divided into three 

groups: one focusing on communicational matters known as event-based formalisms 

[19] [22] [23] [7]; one focusing on the state of a software known as state-based 

formalisms including [9], [3] [6] [21] [18] [15] [2]; and one focusing on properties 

(typically temporal logics) [26] [16]. Which of all of the formal methods is selected is 

typically dictated by need, the author’s familiarity with its semantics, possible tool 

support and other related features. 

In this paper, we use the Event-B [2] state-based formal method as the formal 

method in which to specify tcs. This selection is motivated by the convenience of 

modelling the states of heating and cooling units of the tcs, the author’s familiarity with 

the language’s semantics, its tool support as well as by its support of refinement. The 

tool support for Event-B [2] used in this paper is Rodin Platform tool [17] [5] featuring 

automatic theorem provers. Event-B also supports the refinement methodology [8] [24], 

a means to introduce details in a stepwise manner without compromising correctness. 

This is based on the refinement calculus framework that in turn bases on lattice theory 

[12] to rigorously define a relation between the “abstract” and “concrete” specification. 

The Rodin Platform tool [17] [5] theorem provers also supports checking conditions of 

refinement relations, i.e. the tool proves the refinement relations correct. 

This paper is outlined as follows: In Section 2 we briefly introduce the Event-B 

language followed by a short introduction to the Rodin Platform tool and the conditions 

we aim to show. Section 3 describes the initial model followed by a refined model in 

each of its subsections. These refinement steps are outlined in Figure 2. Section 4 

discusses some limitations with respect to the model and Section 5 concludes the paper. 
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2. Formal Preliminaries 

For something to be formal, this means that it follows or is defined in accordance to 

some rule(s). When expressing something in a programming language, that is a formal 

representation for defining how some task is performed; when formalising something as 

in this paper, it has to do with defining the boundaries within which the execution of the 

system (that is to be specified) resides. Hence, a formalisation defines what, not how; 

and what from a perspective of boundaries. Within these boundaries and with the formal 

notation of the language in which the specification is expressed, some features may be 

proved to hold.  

The closeness of the specification with the envisaged real implementation is central. 

However, for mathematical-logical intentions on ability to prove correctness, we will 

model this “real” environment including all its uncertainty and inconsequence in a 

precise manner, i.e. we will disregard inconsequent behaviour such as actions of a 

human operator. Hence, we generalise the application-specific environment by 

assuming it to behave rationally, so any formal specification may regard only the 

rational mathematical-logical (software) part.  

With mathematical correctness of the specification, we may claim our system 

specification faultless. Thus, if such a system fails, this is due to having modelled the 

environment too far from the real implementation environment. This is equivalent to 

having approximated the environment falsely or having disregarded some part of it. 

However, analysing uncertainties of the model falls outside the consideration of this 

paper. Hence, we excuse ourselves to make this necessary assumption for the sake of 

correctness.  

2.1. The Event-B Language and the Rodin Platform  

 

Event-B is a language for state-based formal specification. The state space of the 

specification is bound by its variables’ interval and its constants. The momentarily state 

is defined by the values of these variables and constants at a given moment. These 

system variables’ values may be updated by transitions, the so-called events. Each event 

is a guarded atomic set of concurrent variable updates, i.e. their execution is atomic. The 

event guard is a predicate on the variables that when true, enables the transitional part 

of an event for execution. The transitional part of an event is typically called the event’s 

action. These actions support non-deterministic assignment of variables. When several 

events’ guards evaluate true (events are enabled), one is chosen non-deterministically 

(demonically) for execution. On a specification level, the execution stops when no event 

is enabled, in case the execution may not proceed. Whether or not this condition is 

desired is task-specific, i.e. it can model a deadlock or a desired termination condition.  

Properties of the specification may be declared as invariants. An invariant is a 

condition that holds initially and after the execution of any event. Correctness of a 

specification is then subject to showing the integrity of the invariants. The semantics of 

the language is described using before-after (BA) predicates [2] [4]. 

Fundamentally, a specification in the Event-B language consists of two components: 

a context and a machine, see Figure 1. The context defines the static part of the 
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specification by declaring constants and carrier sets whose properties are axiomised for 

the specification. A context may be seen by a machine, in which case the machine may 

use the constants. The machine defines the variables, invariants and the events of the 

specification. Hence, the machine declares the actions whose preservation of the 

invariants declares the specification consistency, i.e. its correctness. Effectively this 

means that each invariant (predicate) needs to evaluate true in every reachable state.  

 
Figure 1: A machine M and a context C 

The Event-B formal method has tool support in form of the Rodin Platform tool [17] 

[5]. The Rodin Platform tool employs a proof manager that automatically generates 

proof obligations. Proof obligations are statements that need to be proved true for the 

specification to be correct. These proof obligations are logical sequents that have to do 

with the invariants and the refinement relation between specifications. Each proof 

obligation may either be automatically discharged by the integrated theorem provers, 

may require interaction from the developer or, simply, be non-provable, i.e. false. 

2.2. System Development in Event-B 

A specification in any language outlines the domain of discourse. In case of Event-B 

this consists of two components context and machine that when composed in parallel, 

denoted ||, constitute the specification. Criterions for parallel composition include non-

overlapping variable names. If there are overlapping variable names, this may trivially 

be solved by simple renaming. Reversely to parallel composition, a feature of a 

specification in Event-B is the possibility for decomposition. Hence decomposition of 

M to M1 and M2 is denoted M = M1 || M2. Decomposition is implemented by either 

sharing variable(s) or event(s), originally brought forth by Sere [28] in the Action 

Systems framework; and later implemented in Event-B by Abrial [1] and Butler [13]. 

The Rodin Platform tool features a decomposition plugin [14]. 

In addition to parallel composition and decomposition, the components of the Event-

B language are subject to refinement. Refinement, denoted ⊑, is a relation that provides 

a means for stepwise introduction of details to a component. The goal with development 

alike is to reach a specification at a level of concretisation sufficient to define how 

something may be implemented. Sometimes refinement is referred to as stepwise 

development enabling correctness-by-construction.  

Two types of refinement exists, vertical known as data refinement [10] and 

horizontal known as superposition refinement [20] [11]. Coarsely, data refinement 

reduces non-determinism, strengthens the guard or defines more precise variables 
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requiring a gluing invariant whilst superposition refinement introduces new variables 

and events. The refinement relations are associated with conditions that need to be 

proved. Moreover, refinements are monotone. This is central, i.e. assume components C 

and M that make up specification C || M, then as of monotony if M ⊑ M’ then trivially C 

|| M ⊑ C || M’.  

3. The In-House Temperature Control 

System Specification 

In this section we will report on the stepwise development of an in-house temperature 

control system (tcs). The tcs sole purpose is to maintain the in-house temperature within 

a predefined interval. This involves a sensor sensing the temperature as well as actuators 

affecting the temperature in a stigmergic manner, in this case the heating and cooling 

unit(s). The stepwise development is realised by refining features to a more abstract 

specification. Figure 2 depicts this refinement process on general level showing the 

refinement relations by arrows from the initial machine M0 to the most concrete 

machine M4. In writing, the specifications’ comments are delimited by //.  

 

 
Figure 2: The tcs stepwise development process 

3.1. The Initial Specification M0 and Context C0 

The initial machine M0 of tcs defines the operational environment by seven events. For 

the initial machine, obvious invariants of the system include those defining the types of 

the variables. These include cooler_state ∈ AC_Unit → AC_State and heater_state ∈ 
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Heating_Unit → Heating_State declaring that each unit is assigned a state. The units are 

defined in the context C0 that machine M0 sees.  

In addition to the sets, the context C0 declares scale_top and scale_bottom. 

Realistically these could be considered in °C and with the assumption that no realistic 

temperature in-house should be outside this interval. This assumption implies that, for 

example, a sauna is not considered. Moreover, the context declares that the AC_State is 

always either ac_on or ac_off; and likewise for the Heating_State on heating_on and 

heating_off. 

 
context C0 
constants  scale_top  
           scale_bottom  

 ac_on  
 ac_off  
 heating_on  
 heating_off  

 
sets   AC_Unit  
 AC_State  
 Heating_Unit  
 Heating_State 
 
axioms 
 @axm1  scale_top = 100 
 @axm2  scale_bottom = −100 
 @axm3  partition(AC_State, {ac_on}, {ac_off}) 
 @axm4  partition(Heating_State, {heating_on}, {heating_off}) 
end 
 

For the initial machine M0, the invariants @inv1 to @inv3 merely declares the type of 

the variables, here as an integer ℤ. The invariant @inv4 defines the relation on 

temperatures and their thresholds. Notable for @inv4 is that it does not regard the 

variable inside_temperature to be bound within the low and high thresholds. This is 

obviously a feature later refined into the specification. Invariants @inv5 defines 

variables cooler_state = {ac_on, ac_off} as a function on an AC_Unit to AC_State, and 

similarly for heater_state in @inv6 on Heating_Unit and Heating_State.  

For the events, the INITIALISATION event assigns the variables their initial values 

where the most notable is that all actuator units are set to the off state. The 

inside_temperature is assigned any value within scale_bottom and scale_top. For the 

remaining event, Set_Threshold_M0 narrows the allowed temperature by assigning 

temperature_low_threshold any value less than inside_temperature - 1 and 

temperature_high_threshold any value over inside_temperature + 1. A feature of 

Set_Threshold_M0 is that the thresholds may be changed dynamically.  

Event Change_Temperature_M0 update the temperature non-deterministically with 

1°C granularity in either direction. Notable is that at this level we have not yet specified 

any restrictions on inside_temperature. The remaining four events Switch_AC_on_M0, 

Switch_AC_off_M0, Switch_Heating_on_M0 and Switch_Heating_off_M0 specify 

switching the state of an AC_Unit or Heating_Unit. Their respective guards ensure that a 

unit may be switched off only if there is one that is on, and vice versa. 
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machine M0 sees C0 
variables   inside_temperature // inside temperature 
  temperature_low_threshold // low threshold for acceptable temperature
 temperature_high_threshold // high threshold for acceptable temperature
 cooler_state 
  heater_state 
 
invariants 

 @inv1  inside_temperature ∈ ℤ  

 @inv2  temperature_low_threshold ∈ ℤ  

 @inv3  temperature_high_threshold ∈ ℤ  
 @inv4  scale_bottom ≤ temperature_low_threshold ∧ temperature_low_threshold ≤  

   temperature_high_threshold ∧ temperature_high_threshold ≤ scale_top 

 @inv5  cooler_state ∈ AC_Unit → AC_State  

 @inv6  heater_state ∈ Heating_Unit → Heating_State 
 
events 
  event INITIALISATION 
    then 

     @act1  inside_temperature :∈ scale_bottom‥scale_top   

 @act2  temperature_low_threshold ≔ scale_bottom  
 @act3  temperature_high_threshold ≔ scale_top   

 @act4  cooler_state ≔ AC_Unit × {ac_off}  // assign all AC_units to off 

 @act5  heater_state ≔ Heating_Unit × {heating_off} // assign all heating units to off 
  end 
 
  event Set_Thresholds_M0 
    any  low high 
    where 

      @grd0_1  low ∈ scale_bottom‥inside_temperature − 1 // defines granularity to 1 

      @grd0_2  high ∈ inside_temperature + 1 ‥scale_top // at least 2 degrees difference  

    then 
      @act0_1  temperature_low_threshold ≔ low 

      @act0_2  temperature_high_threshold ≔ high 
  end 
 
  event Change_Temperature_M0 
    any  change 
    where 

      @grd0_1  change = −1 ∨ change = 1 
    then 

      @act0_1  inside_temperature ≔ inside_temperature + change 
  end 
 
  event Switch_AC_On_M0 
    any  ac_cooling_unit 
    where 
      @grd0_1  ac_cooling_unit ∈ AC_Unit ∧ cooler_state(ac_cooling_unit) = ac_off 
    then 

      @act0_1 cooler_state(ac_cooling_unit) ≔ ac_on  
  end 
 
  event Switch_Heating_On_M0  
    any  heat_unit 
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    where 

      @grd0_1  heat_unit ∈ Heating_Unit ∧ heater_state(heat_unit) = heating_off 
    then 

      @act0_1  heater_state(heat_unit ≔ heating_on  
  end 
 
  event Switch_AC_Off_M0 
    any  ac_cooling_unit 
    where 

      @grd0_1  ac_cooling_unit ∈ AC_Unit ∧ cooler_state(ac_cooling_unit) = ac_on 
    then 
      @act0_1  cooler_state(ac_cooling_unit) ≔ ac_off  
  end 
 
  event Switch_Heating_Off_M0  
    any  heat_unit 
    where 

      @grd0_1  heat_unit ∈ Heating_Unit ∧ heater_state(heat_unit) = heating_on 
    then 

      @act0_1  heater_state(heat_unit) ≔ heating_off 
end 

3.2. The First Refined Machine M1 

Machine M1 refines M0, i.e. M0 ⊑ M1. More specifically, M1 specifies how the 

temperature may change, i.e. that inside_temperature > temperature_low_threshold and 

inside_temperature < temperature_high_threshold as by in @inv7. This is realised by 

refining Change_Temperature_M0 to three events, Increment_Temperature_M1, 

Decrement_Temperature_M1 and Change_Temperature_M1. The new events 

assure by guards that only one of them may be enabled at any given time as well as that 

if an actuator is on, then the temperature may only change accordingly without 

breaching the thresholds, i.e. new guards @grd1_1, @grd1_2 and @grd1_3. Here notable 

is that @grd1_1 ⇒ @grd0_1, i.e. strengthens the specific event’s guard being a 

refinement.  

When all AC_Unit and Heating_Unit are off, Change_Temperature_M1 guards 

@grd1_2_1 and @grd1_2_2 evaluate true and the temperature may change non-

deterministically within the allowed interval, assured by @grd1_3_1 and @grd1_3_2. 

This is illustrated in Figure 3 with abbreviated variable names. For execution, the 

INITIALISATION may have assigned inside_temperature either scale_bottom or 

scale_top in case either the inside_temperature need to be increased or decreased by first 

switching an AC_Unit or Heating_Unit appropriately on. This is assured by @grd1_3 in 

Increment_Temperature_M1 that is the only enabled temperature changing event 

when inside_temperature = scale_bottom; and dually for Decrement_Temperature_M1 

and inside_temperature = scale_top.  

 
Figure 3: tcm temperature interval 
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In addition, if Change_Temperature_M0 is enabled, then one of 

Increment_Temperature_M1, Decrement_Temperature_M1 or 

Change_Temperature_M1 is enabled that covers for possible restrictions on the exit 

condition. In the specification M1 below, we omit non-changed variables, invariants 

and events.  

 
machine M1 refines M0  sees C0 
variables    // as in M0 
 
invariants  // @inv1 through @inv6 as in M0 

 @inv7  temperature_low_threshold ≤ inside_temperature ∧  
   inside_temperature ≤ temperature_high_threshold  
 
events 
… // INITIALISATION, Set_Thresholds_M1, Switch_AC_On_M1, Switch_AC_Off_M1, 
Switch_Heating_Off_M1 as in their namesake events of M0 
  event Increment_Temperature_M1 
   refines Change_Temperature_M0 
    any   change 
    where 

      @grd0_1  change = −1 ∨ change = 1 
      @grd1_1  change = 1 

      @grd1_2  ∃x ·x ∈ Heating_Unit ∧ heater_state(x) = heating_on // A Heating_Unit is on 
      @grd1_3  inside_temperature < temperature_high_threshold 
    then 

      @act0_1  inside_temperature ≔ inside_temperature + change 
  end 
 
  event Decrement_Temperature_M1 
   refines Change_Temperature_M0 
    any  change 
    where 

      @grd0_1  change = −1 ∨ change = 1 
      @grd1_1  change = −1 

      @grd1_2  ∃x · x ∈ AC_Unit ∧ cooler_state(x) = ac_on // An AC_Unit is on 
      @grd1_3  inside_temperature > temperature_low_threshold 
    then 

      @act0_1  inside_temperature ≔ inside_temperature + change 
  end 
 
  event Change_Temperature_M1 
   refines Change_Temperature_M0 
    any  change 
    where 

      @grd0_1  change = −1 ∨ change = 1 

      @grd1_2_1 ∀x ·x ∈ AC_Unit ⇒ cooler_state(x) = ac_off 

      @grd1_2_2 ∀x ·x ∈ Heating_Unit ⇒ heater_state(x) = heating_off 
      @grd1_3_1 inside_temperature > temperature_low_threshold  
      @grd1_3_2 inside_temperature < temperature_high_threshold 
    then 

      @act0_1  inside_temperature ≔ inside_temperature + change 
  end 
end 
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3.3. The Second Refined Machine M2 

Machine M2 refines M1, i.e. M1 ⊑ M2 and as of monotonicity M0 ⊑ M2 as well as C0 

|| M1 ⊑ C0 || M2. Machine M2 merely adds conditions for the functionality of 

switching an actuator on. Hence, the events of M2 extend those of M1.  

This switching is defined to happen in event Switch_AC_On_M2 for an AC_Unit 

when temperature_high_threshold ≤ inside_temperature having the affect to starting cooling 

when the upper temperature bound is reached. The specification for Heating_Unit when 

temperature_low_threshold ≥ inside_temperature is a dual to Switch_Heating_On_M2. 

For the layout below, we omit the parts that remain unchanged.  
 
machine M2 refines M1 sees C0 
variables    // as in M1 
invariants  // as in M1 
 
events 
… // INITIALISATION, Set_Thresholds_M2, Increment_Temperature_M2, 
Decrement_Temperature_M2, Change_Temperature_M2, Switch_AC_Off_M2, 
Switch_Heating_Off_M2 as in their namesake events of M1 
 
  event Switch_AC_On_M2 
    extends Switch_AC_On_M1 
    where 
      @grd2_1 temperature_high_threshold ≤ inside_temperature 
  end 
 
  event Switch_Heating_On_M2 
    extends Switch_Heating_On_M1 
    where 
      @grd2_1 temperature_low_threshold ≥ inside_temperature 
  end 
end 

3.4. The Third Refined Machine M3 

Machine M3 refines M2. Machine M3 is the specification introducing adaptability. On 

this, M3 introduces a delay in switching the actuators off. This is realised by new 

variables cool_stop_wrt_target and heat_stop_wrt_target that are relative to the new 

variable target_temperature. The motivation is the realistic situation that a heating unit 

emits heat for some time after switched off and dually a cooling unit cools with a delay; 

possible energy-wise penalties are discarded from consideration as this is an 

optimisation issue. Realistically, consider the variable target_temperature to be set by the 

inhabitant of the modelled space, however, in a manner never compromising the 

specification, i.e. considering the temperature changes instantaneous, then 

target_temperature could be set by 1° ticks. This temperature setting is depicted in Figure 

4 with abbreviated variable names. 

The invariants of M3 guarantees that cooling and heating respectively must stop 

within the temperature interval, guaranteed by @inv9, @inv12 and @inv13. Initialisation 

event is obviously extended by the new variables. For the events providing 

functionality, event Set_Thresholds_M3 extends Set_Thresholds_M2 by introducing 
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assignment of cool_stop_wrt_target and heat_stop_wrt_target as their relative difference 

from target_temperature.  

 
Figure 4: tcm with target temperature and delays 

For the actuators’ non-interfering functionality only the guards are strengthened. 

Hence, the events Switch_AC_On_M3 and Switch_Heating_On_M3 extend their 

abstract events by guards @grd3_1 assuring that there is no actuator of the other kind 

switched on. The effect of this is that no heating unit may be on simultaneously with a 

cooling unit, and vice versa. This is assured by invariants @inv14 and @inv15. For 

events Switch_AC_Off_M3 and Switch_Heating_Off_M3 the delay is taken into 

account by guards @grd3_1 of the respective event. This assures that the actuator may 

be switched off before reaching the target temperature. Again, in the outline below we 

omit non-changed parts of the specification.  

 
machine M3 refines M2 sees C0 
variables  … // variables as before 
 target_temperature // the target temperature 
 cool_stop_wrt_target // delay in cooling 
 heat_stop_wrt_target // delay in heating 
 
invariants  … // invariants as before 

  @inv8  target_temperature ∈ ℤ // temperature to which the thermostat is set 

  @inv9  temperature_low_threshold ≤ target_temperature ∧  
 target_temperature ≤ temperature_high_threshold 
  @inv10  cool_stop_wrt_target ∈ ℤ  

  @inv11  heat_stop_wrt_target ∈ ℤ  
  @inv12  cool_stop_wrt_target + target_temperature ≥ temperature_low_threshold 
  @inv13  heat_stop_wrt_target + target_temperature ≤ temperature_high_threshold 
  @inv14  (∃x · x ∈ AC_Unit ∧ cooler_state(x) = ac_on) ⇒  

 (∀y · y ∈ Heating_Unit ⇒ heater_state(y) = heating_off) 

  @inv15  (∃x · x ∈ Heating_Unit ∧ heater_state(x) = heating_on) ⇒  

 (∀y · y ∈ AC_Unit ⇒ cooler_state(y) = ac_off) 
 
events 
… // Increment_Temperature_M3, Decrement_Temperature_M3, Change_Temperature_M3 as 
in their namesake events of M2 

 
  event INITIALISATION  
   extends INITIALISATION 
    then 

      @act3_1  cool_stop_wrt_target ≔ 0 

      @act3_2  heat_stop_wrt_target ≔ 0 
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      @act3_3  target_temperature :∈ scale_bottom‥scale_top 

  end 
 
  event Set_Thresholds_M3  
    extends Set_Thresholds_M2 
    any  target c_stop h_stop 
    where 

      @grd3_1  c_stop ∈ target‥high 

      @grd3_2  h_stop ∈ low‥target 

      @grd3_3  target ∈ low‥high 

    then 

      @act3_1  cool_stop_wrt_target ≔ c_stop − target  

      @act3_2  heat_stop_wrt_target ≔ h_stop − target  
      @act3_3  target_temperature ≔ target 
  end 
 
  event Switch_AC_On_M3  
    extends Switch_AC_On_M2 
    where 

      @grd3_1 ∀x · x ∈ Heating_Unit ⇒ heater_state(x) = heating_off 
  end 
 
  event Switch_Heating_On_M3 
    extends Switch_Heating_On_M2 
    where 

      @grd3_1 ∀x · x ∈ AC_Unit ⇒ cooler_state(x) = ac_off 
  end 
 
  event Switch_AC_Off_M3 
    extends Switch_AC_Off_M2 
    where 
      @grd3_1 inside_temperature + cool_stop_wrt_target ≤ target_temperature 
  end 
 
  event Switch_Heating_Off_M3 
    extends Switch_Heating_Off_M2 
    where 
      @grd3_1 inside_temperature + heat_stop_wrt_target ≥ target_temperature 
  end 
end 

3.5. The Fourth Refined Machine M4 

Machine M4 refines M3. It introduces the more restrictive temperature threshold 

providing a sense of comfortability by defining variables vacation and new thresholds 

temperature_comfortable_low_threshold and temperature_comfortable_high_threshold. The 

vacation is false when the inhabitants of the controlled house are in-house and true 

otherwise. Hence, when vacation is true, the less restrictive temperature interval as 

specified in the more abstract machines is applied. Dually, when vacation is false, the 

new thresholds providing a sense of comfortability introduced in this machine are 

applied. The temperature thresholds and intervals are illustrated in Figure 5. 
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Figure 5: tcm with delay and vacation  

The ordering of the new thresholds and temperature levels are declared by invariants, 

in this case @inv18 through @inv22. This is realised by events Set_Thresholds_M4 that 

extends Set_Thresholds_M4 by @grd4_1 with @act4_1 and @grd4_2 with @act4_2 that 

assign temperature_comfortable_low_threshold a value in interval 

temperature_low_threshold .. target_temperature and similarly for 

temperature_comfortable_high_threshold a value in interval target_temperature .. 

temperature_low_threshold. Moreover, the switching on of the actuators are extended to 

include vacation, i.e. actuators are switched on at temperatures depending on the state of 

vacation. This is implemented by straightforward strengthening of the guards. In 

addition, an event Change_Vacation_State_M4 capturing switching the vacation state 

is specified. Again we omit non-changed parts of the specification. 

 
machine M4 refines M3 sees C0 
variables  … // variables as before 
 temperature_comfortable_low_threshold  
 temperature_comfortable_high_threshold  
 vacation 
 
invariants  … // invariants as before 

  @inv16  temperature_comfortable_low_threshold ∈ ℤ 
  @inv17  temperature_comfortable_high_threshold ∈ ℤ 
  @inv18     temperature_comfortable_low_threshold ≤  
  temperature_comfortable_high_threshold 

  @inv19  temperature_low_threshold ≤ temperature_comfortable_low_threshold ∧  
  temperature_comfortable_low_threshold ≤  
  cool_stop_wrt_target + target_temperature 

  @inv20  temperature_comfortable_high_threshold ≤ temperature_high_threshold ∧  
  heat_stop_wrt_target + target_temperature ≤  
  temperature_comfortable_high_threshold 
  @inv21  cool_stop_wrt_target + target_temperature ≥  
  temperature_comfortable_low_threshold // inv 21 strengthens inv 12 
  @inv22  heat_stop_wrt_target + target_temperature ≤  
  temperature_comfortable_high_threshold  // inv 22 strengthens inv 13 

  @inv23  vacation ∈ BOOL 
 
events 
… // Increment_Temperature_M4, Decrement_Temperature_M4, Change_Temperature_M4, 
Switch_AC_Off_M4, Switch_Heating_Off_M4  as in their namesake events of M3 
 
  event INITIALISATION  
    extends INITIALISATION 
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    then 

      @act4_1 temperature_comfortable_low_threshold ≔ scale_bottom 
      @act4_2 temperature_comfortable_high_threshold ≔ scale_top 

      @act4_3 vacation :∈ BOOL 
  end 
 
  event Set_Thresholds_M4 
    extends Set_Thresholds_M3 
    any l_temp h_temp 
    where 

      @grd4_1 l_temp ∈ low‥target 

      @grd4_2 h_temp ∈ target‥high 

    then 

      @act4_1 temperature_comfortable_low_threshold ≔ l_temp 
      @act4_2 temperature_comfortable_high_threshold ≔ h_temp 
  end 
 
  event Switch_AC_On_In_House_M4 
    extends Switch_AC_On_M3 
    where 
      @grd4_1 vacation = FALSE 
      @grd4_2 temperature_comfortable_high_threshold ≤ inside_temperature 
  end 
 
  event Switch_AC_On_Vacation_M4 
    extends Switch_AC_On_M3 
    where 
      @grd4_1 vacation = TRUE 
  end 
 
  event Switch_Heating_On_In_House_M4 
    extends Switch_Heating_On_M3 
    where 
      @grd4_1 vacation = FALSE 
      @grd4_2 temperature_comfortable_low_threshold ≥ inside_temperature 
  end 
 
  event Switch_Heating_On_Vacation_M4 
    extends Switch_Heating_On_M3 
    where 
      @grd4_1 vacation = TRUE 
  end 
 
  event Change_Vacation_State_M4 
    then 

      @act4_1 vacation :∈ BOOL 
  end 
end 
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4. Discussion 

This paper is a report on stepwise specification of an in-house tcs. The specification was 

developed in a stepwise manner utilising the refinement of Event-B specification. 

Within the reporting of this development, we have tried to point out how this refinement 

is realised. Not surprisingly, we had a “refinement strategy” in mind when starting to 

specify. The specified tcs employ a flexible temperature interval. Moreover, it adapts to 

the possibly less restrictive requirements of its inhabitants, i.e. when they are on 

vacation. Obviously, this indication of vacation could be used for other purposes as 

well, such as for burglar alarm or proactively switching lights on and off as if the house 

was inhabited.  

The correctness of the specification relies on some general assumptions with respect 

to the modelled environment. This is a reasonable consequence of seeking mathematical 

correctness in the first place, where it is obvious that without assumptions on the 

environment making the model precise, no mathematical correctness could have been 

shown. Hence, as mentioned in the introduction, the specification is correct on an 

environment that adheres to the model; whose distance from the “real” environment is 

out of the scope of this paper and thus not considered. However, we acknowledge that 

these assumptions simplify the imperfect matters that are causes of faults and failures 

[25].  

With this, we allow us to assume in M1 that the power of any AC_Unit and any 

Heating_Unit exceeds its countering power, i.e. that if the heating is turned on, the house 

will heat up. Realistically this means that we assume that if heating is on, the windows 

and doors are closed, or open to an extent whose countering effect is less than that of the 

actuator. Moreover, the specification assumes all the data to be correct, i.e. that the 

switch of an actuator is never broken and that the sensors always work. Hence, the 

machines specified in this paper outline how a control system would work in an 

idealised environment lacking any kind of erroneous or inconsequent behaviour, those 

captured by the model. Other assumptions characterising to the specification outlined in 

this report includes the granularity of temperature that is set to 1°C in M0. On this we 

wish to note that the outcome would be identical if we would have added decimals.  

5. Conclusion  

Means to manage complexity and assurance of behaviour are the most important 

reasons for formally specifying a system. As the tcs specified in this report is rather 

simple and straightforward, the motivation is in the possibility to integrate this as part of 

some greater control system. Examples of interesting systems by which integration 

could be interesting include that of lights control system featuring motion sensors [27]. 

Together, tcs with variable vacation and lights control system motion sensors could 

cover for a burglar detection system. In such cases, the formally specified boundaries, 

variable names and state space of a subsystem are of outmost importance. Formal 

support for this is briefly introduced in Section 2.2 overviewing the capabilities related 

to (de)composition of a formal specification.  
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In this paper we have reported on the stepwise development of one part of an 

adaptive house’s control systems, the tcs. The development is done independently of 

any other but aims for being integrated with other control systems. We claim that if an 

implementation would be engineered based on this specification, it would be correct 

with respect to the assumptions on the model. Moreover, we claim that the integration 

would be formally provable by parallel composition. As for the proof of the 

specifications and refinements presented in this paper, we note that the Rodin Platform 

tool’s theorem provers did automatically discharge all proof obligations.  
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