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Abstract

A strategic game with a finite number of players where initial coefficients
(costs) of linear payoff functions are subject to perturbations is considered.
We define robust solution as a feasible solution which for a given set of
realizations of uncertain parameters guarantees the minimum value of the
worst-case relative regret among all feasible solutions. For different (either
Pareto or Nash) equilibria principles considered, appropriate definitions of
the worst-case relative regret are specified. It is shown that these definitions
are closely related to the concept of accuracy function being recently inten-
sively studied in the literature. We also present the concept of robustness
tolerances of a single cost vector associated with a strategy choice of a player.
The tolerance is defined as the maximum level of perturbation of the cost
vector which does not destroy the game solution robustness. We present for-
mulae allowing the calculation of the robustness tolerance with respect to a
chosen equilibrium obtained for some initial costs. The results are illustrated
with several numerical examples.

Keywords: Nash equilibrium, Pareto equilibrium, robust measure, worst-
case relative regret, accuracy functions.



1 Introduction

While solving practical optimization problems, it is necessary to take into
account various kinds of uncertainty due to lack of input data, inadequacy
of mathematical models to real processes, rounding off, calculating errors
etc. It is known that in many cases initial data as a link between a reality
and a model can not be defined explicitly. The initial data is defined with
a certain error, generally depend on many parameters and require to be
specified during the problem solving process. In practice any problem can
not be properly posed and solved without at least implicit use of the results
of stability analysis and related issues of parametric analysis. Therefore
widespread use of discrete optimization models in the last decades inspired
many specialists to investigate various aspects of ill-posed problems theory
and, in particular, the stability issues.

The implications of enhanced optimization methods have in some areas
been lead to the situation that optimal or near-optimal solutions have be-
come ”too good”. For example, in design of a communication network a
network configuration can now be made so good (with respect to the original
objective optimization) that there is hardly any possibility left in the network
to accommodate for potential disruptions and possible contingency in terms
of e.g. routing delays. Similar problems are faced nowadays in many other
areas where deterministic models do not properly reflect possible uncertainty
of input parameters. In practice, it usually leads to undesirable situations
where optimality (sometimes even feasibility) of solutions is very sensitive to
some possible realizations of problem parameters. Thus, chasing for solution
optimality, we lose its robustness and vice versa.

As a consequence, two lines of research within the operations research
and mathematical optimization community have been initiated:

• Post-optimal and parametric analysis investigate how an optimal so-
lution found behave in response to initial data (problem parameters)
changes. A general sensitivity and stability analysis methodology is
used based on analyzing the properties of the point-to-set mapping
which specifies the optimality principle of the problem. Such research
methods have been studied in great detail and covered e.g. in the lit-
erature on optimization problems with a continuous set of feasible so-
lutions. Numerous articles are devoted to analysis of conditions when
a problem solution possesses a certain property of invariance to the
problem parameters perturbations (see, e.g. [11, 34, 39, 40]).

• Robust Optimization – instead of producing an optimal solution for a
normal situation, which is described by deterministic models but rarely
occurs in practice, and where recovery to optimality can be compli-
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cated, the aim is to produce solutions that optimize an additionally
constructed objective. The objective must assure that the optimal so-
lution will remain feasible under worst case realization of uncertain
problem input parameters. Worst-case optimization is also known as
robust optimization, and optimal solutions of worst case optimization
are often referred to as robust solutions (see e.g. [16]).

The main drawback of all classical single objective models is that they do
not take into account the real multiple criteria nature of real-life problems. It
is well-known that under multiobjective framework a solution which is opti-
mal with respect to one single objective might be arbitrarily bad with respect
to the others and thus will be unacceptable for a decision maker. Thus, many
problems arising in optimization, management and decision making should
be ultimately considered under multicriteria framework due to existing of
several conflicting goals or interests. Therefore recent interest of applied
mathematicians and operations research scientists in multicriteria optimiza-
tion problems keeps very high. It is confirmed by the intensive publishing
activity (see e.g. monographs [9, 24, 38] and bibliography [10]).

The main difficulty while studying stability of discrete optimization prob-
lems is discrete models complexity, because even small changes of initial data
make a model behave in an unpredictable manner. There are a lot of papers
(see e.g. [5, 12, 13, 17, 35, 36, 37]) devoted to analysis of scalar and vec-
tor (multicriteria) discrete optimization problems sensitivity to parameters
perturbations.

The present work continues investigations of different aspects of sensitiv-
ity analysis for different types of discrete optimization problems with various
partial criteria and optimality principles (see e.g. [6, 7, 8, 21, 23, 28, 29]).
We consider a multiobjective Boolean linear programming problem which
is simply reformulated under game theoretic framework. The game theory
terminology is used in order to make basic concepts and definitions stated in
a clearer and intuitively more understandable form. A strategic game with
a finite number of players in which initial coefficients (costs) of linear payoff
functions are subject to perturbations is considered in the present work. We
define robust solution as a feasible solution which for a given set of realiza-
tions of uncertain parameters guarantees the minimum value of the worst-
case relative regret among all feasible solutions. For two different equilibria
principles considered, Pareto and Nash equilibria, appropriate definitions of
the worst-case relative regret are specified. We show that these definitions
are closely related to the concept of accuracy function which has been re-
cently intensively studied in the literature (see e.g. [18, 21, 29]). We also
present the concept of robustness tolerance of a single cost vector associated
with a strategy choice of a player, which is defined as the maximum level
of perturbation of the cost vector which does not destroy the game solution
robustness. In this paper we present formulae which allow calculating the
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robustness tolerances with respect to an equilibrium (in Pareto, lexicographic
or Nash senses) obtained for some initial costs. We illustrate the results with
several numerical examples.

The paper is organized as follows. In section 2 we formulate the problem
in details and define two basic optimality (equilibria) principles. In section
3 we give a short excursus into the topic of robust optimization and define
appropriate robustness measures for various optimality principles considered.
Section 4 is devoted to the concept of accuracy function as a tool of post-
optimal analysis which is used to describe the behavior of optimal solution
under uncertainty of initial problem data. We specify analytical expression
to calculating accuracy function for the chosen optimality principle. We also
show that accuracy functions can straightforward be used to analyze solution
robustness. In section 5, we focus on analyzing the case when only one vector
cost is uncertain. We present formulae which allow calculating the robustness
tolerances. The theoretical results presented in section 5 are illustrated with
numerical examples given in section 6. Some concluding remarks and open
problems are summarized in section 7.

2 Problem formulation

We consider a strategic game with m ≥ 2 players. Let Xi be a finite set
of (pure) strategies of the player i ∈ Nm := {1, 2, ..., m}. We assume that
|Xi| = 2 for all i ∈ Nm indicating each player has a choice of 2 antagonistic
strategies to play. For simplicity, we define Xi := {0, 1} for all i ∈ Nm, that
is the choice of each strategy is encoded by means of Boolean variables xi.
The set of all feasible solutions X can be generally defined as a subset of the
Cartesian product over all players of their sets of strategies

X ⊂
∏

i∈Nm

Xi = {0, 1}m.

Observe that now - formally - X is a subset of the set of all ordered m-tuples.
We also assume that there exists at least one player j who selects non-zero
strategy to play, namely, for whom xj = 1. Thus, 0(m) := (0, 0, ..., 0)T 6∈ X.

A vector of payoff functions (payoff profile)

p(C, x) := (p1(C, x), ..., pm(C, x))T

consists of individual payoff functions pi(C, x) for each player i ∈ Nm, which
are defined as linear functions on the set of solutions X:

pi(C, x) := Cix.

Here Ci is i-th row of matrix C = [cij ] ∈ Rm×m
+ , x := (x1, x2, ..., xm)T ,

xi ∈ Xi, i ∈ Nm.
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Note that for each player i ∈ Nm, the individual payoff pi(C, x) depends
on solution x, that is on the strategy chosen by player i as well as the strate-
gies chosen by all the other players. Thus, a set of payoff profiles PP (C, X)
is the following

PP (C, X) := {p(C, x) : x ∈ X}.
The game in the normal form consists in the following: the players, using

some relations of preference and trying to minimize the individual payoff
functions, select their strategies xi once from the sets Xi and as a result,
the solution x ∈ X is formed. After that, each player i obtains a payoff
pi(C, x). The game terminates at this stage. We will call any such game
a game with the matrix C. This is a non-iterative game of m players with
complete information, that is in other words all players have information
about preferences of other players before selecting strategies. In other words,
the matrix C is known to all players before the actual game starts. It is
clear that trying to minimize own payoff, each player would prefer strategy
0 to strategy 1, however playing 0 can be prohibited due to the choice of the
strategies by other players. Therefore, the choice of which strategy to play is
restricted by the strategy choice made by the other players. If the strategy
choice made by the other players does not restrict the choice of the players,
the (s)he will ultimately select strategy 0 in pursuit of payoff minimization.
Thus, each player must correlate own strategy selection with the choice of
the other players, in order to reach feasibility, as well as all players are eager
to reach some chosen equilibria solutions (either Pareto or Nash).

Below we formulate two classical definitions of equilibria situations. The
first equilibrium concept is the well-known Nash equilibrium, which was orig-
inally introduced in [30] and [31].

Define x̄i = 1 if xi = 0, and x̄i = 0 otherwise. For any given solution
x∗ ∈ X, a set of solutions accessible by changing the strategy of player i only
is defined as:

Wi(x
∗) := Xi ×

∏

j∈Nm\{i}

x∗
j = {(x∗

1, x
∗
2, ..., x

∗
i , ..., x

∗
m), (x∗

1, x
∗
2, ..., x̄

∗
i , ..., x

∗
m)}.

Thus, if (x∗
1, x

∗
2, ..., x̄

∗
i , ..., x

∗
m) is feasible, then Wi(x

∗) ∩ X, the set of feasible
solutions accessible by changing the strategy of player i, contains two solu-
tions, otherwise a single solution (x∗

1, x
∗
2, ..., x

∗
i , ..., x

∗
m) belongs to Wi(x

∗)∩X

only.
A solution x∗ ∈ X is called Nash equilibrium in the strategic game

with matrix C if for every player i ∈ Nm the following inequality holds
pi(C, x∗) ≤ pi(C, x) for all x ∈ Wi(x

∗) ∩ X. In other words, the concept
of Nash equilibrium describes a situation in the game, where no player can
improve their payoffs by changing own strategies only.

On the other hand, players could be oriented on rather a common benefit
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than own personal profit, so then the concept of Nash equilibrium transforms
into the well-know concept of the Pareto efficiency or Pareto equilibrium [33].

A solution x∗ ∈ X is called Pareto equilibrium in the strategic game
with matrix C if there exists no solution x ∈ X such that pi(C, x) ≤ pi(C, x∗)
for all i ∈ Nm, and pj(C, x) < pj(C, x∗) for some j ∈ Nm. In other words,
the concept of Pareto equilibrium describes a situation in the game, where
players can improve own payoffs only at the expense of some other players
payoffs.

These two equilibrium cases characterize two polar solutions: either all
players behave independently and orient on their own profit only in the case of
Nash equilibrium or all players concentrate on mutual interest and common
behavior as in the case of Pareto equilibrium. For the game with matrix
C, we denote P m(C) and Nm(C) the set of Pareto and Nash equilibria,
respectively.

3 Robust deviations and equilibria

One of the most interesting branches of combinatorial optimization and
mathematical programming that has emerged over the past 20 - 30 years
is robust optimization. Since the early 1970s there has been an increasing
interest in the use of robust optimization models. The theory of robust-
ness deals with uncertainty of problem parameters. The presence of such
parameters in optimization models is caused by inaccuracy of initial data,
non-adequacy of models to real processes, errors of numerical methods, errors
of rounding off and other factors. So it appears to be important to identify
classes of models and their solutions which play against the worst-case (in
some sense) realization of input parameters. It is commonly accepted fact
nowadays that any optimization problem arising in practice can hardly be
adequately formulated and solved without usage of results of the theory of
robustness.

Authors of most papers devoted to robust optimization attempt to answer
to the following closely related questions: How can one represent uncertainty?
What is a robust solution? What could be a proper robustness measure? How
to calculate robust solutions? How to interpret worst case realization under
uncertainty? and many others. Different answers to these questions lead to
different research approaches and investigation directions. Bibliographical
analysis provides us with a list of contributors who proposed several main
avenues in the theory of robustness:

Minmax Regret Optimization

e.g. Averbakh [1], Kouvelis and Yu [16];

Robust Optimization with Ellipsoidal Uncertainty

Ben-Tal, Nemirovski [2];
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Worst Case Optimization with Penalties

e.g. Mulvey et al. [27];

Flexible Robust Optimization

Bertsimas and Sim [3];

Absolute and Relative Robustness

e.g. Yaman et al. [42], Montemanni and Gambardella [25, 26], Kasper-
ski [14, 15] and Zielinski [43].

However all the robustness models listed above are primary dealing with the
definition of robustness in single objective optimization, without touching
at all the multiobjective specific. While moving from a single objective to
multiobjective case, the definition of robustness must be accurately tuned to
reflect properly the specific of chosen optimality principle.

To define uncertainty in the game theory model described in section 2, we
will assume that the set of game solutions X is fixed but the original payoff
matrix C0 can change or it is given with errors. Let S(C0) be a set of all pos-
sible realizations of the matrix C0, called the scenarios. Let us also assume
that C ∈ Rm×m

+ for any C ∈ S(C0), thus we guarantee that pi(C, x) > 0 for
all x ∈ X and i ∈ Nm. This is due to our assumption mentioned in previous
section that at least one player always chooses strategy 1 to play, so the game
solution x = 0(m) is not feasible. We will follow the approach that define ro-
bustness measure as a maximum relative error (worst-case relative regret) of
the solution considered over the set of all scenarios. Our aim is construct a
new objective that incorporates possible worst realization of uncertain pa-
rameters. In [16] one can find examples of different robustness measures and
wide discussion on related complexity issues. While dealing with multiob-
jective case, the definition of robustness measures must be adapted to reflect
the specific of the multiple objective optimality principle chosen.

For given x, x̃ ∈ X, fixed index (player) i ∈ Nm and arbitrary C ∈ Rm×m
+

denote the relative deviation

∆i(C, x̃, x) :=
pi(C, x̃) − pi(C, x)

pi(C, x)
. (1)

Definition 1 For any given solution x̃ ∈ X, the worst-case relative regret
(or robust deviation in other terminology) of this solution on the set S(C0)
is defined as follows:

in Pareto equilibrium case:

REGP (S(C0), x̃) := max
C∈S(C0)

max
x∈X

min
i∈Nm

∆i(C, x̃, x); (2)
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in Nash equilibrium case:

REGN(S(C0), x̃) := max
C∈S(C0)

max
i∈Nm

max
x∈Wi(x̃)∩X

∆i(C, x̃, x). (3)

The difference in REGN(S(C0) and REGP (S(C0) reflects the difference
in Pareto and Nash equilibria principles. While in Pareto case, the given
solution x̃ must be compared with all other feasible solutions (including the
solution x̃ itself to guarantee that REGN(S(C0), x̃) = 0 if x̃ ∈ P m(C0)), in
the Nash case it is sufficient to compare it with solutions x ∈ Wi(x̃) ∩ X

only. Both REGN(S(C0) and REGP (S(C0) give quantitative expressions to
measure the relative distance how far the solution x̃ from optimality under
the worst case scenario, i.e. the scenario which delivers maximum over the
set of all possible scenarios S(C0).

For the sake of brevity, we will use notation REGP,N(S(C0), x∗) when
saying something about robust deviations of both optimality principles at
once. In a trivial case, when only one (w.l.o.g. i-th) player could make the
game assessment and decides which strategies will be played by the other
players, all equilibrium situations transform into standard single objective
optimality case, so the single player robust deviation is expressed as

REGi(S(C0), x̃) := max
C∈S(C0)

max
x∈X

∆i(C, x̃, x) = max
C∈S(C0)

pi(C, x̃) − min
x∈X

pi(C, x)

min
x∈X

pi(C, x)
.

(4)
which is identical to the well-known single objective robustness measure (see
e.g. [21]).

Definition 2 A feasible solution x∗ ∈ X is called robust for the set of
scenarios S(C0) if and only if it has minimal (among all feasible solutions)
robust deviation. This happens if the following inequalities hold

REGP,N(S(C0), x∗) ≤ REGP,N(S(C0), x) for every x ∈ X. (5)

As we stated before, the main goal of robust optimization is to construct
a new objective function which will plays against the worst-case scenario.
The robust solution is that one which has the smallest among all solutions
robust deviation as the definition above stated. Now we would like to show
that the measures which are used to quantify the solution robustness can be
used (and was indeed mentioned in literature) also in framework of sensitivity
and post-optimal analysis. Developing in parallel for many years, those two
theories have very much in common, under the closer comparison.
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4 Relative errors and accuracy functions

In [19], [22] it was proposed to measure the quality of solutions by means of
the so-called accuracy function. In this paper we introduce similar function
by analogy with [29].

Definition 3 In case of Pareto equilibria for x∗ ∈ X and a given matrix
C ∈ Rm×m

+ , the relative error of this solution is defined as:

εP (C, x∗) := max
x∈X

min
i∈Nm

∆i(C, x∗, x). (6)

Similar in case of Nash equilibria for x∗ ∈ X and a given matrix C ∈ Rm×m
+ ,

the relative error of this solution is defined as:

εN(C, x∗) := max
i∈Nm

max
x∈Wi(x∗)∩X

∆i(C, x∗, x). (7)

The difference in definitions of εP,N(C, x∗), reflects the difference in the
corresponding definitions of equilibria situations. Notice that in single ob-
jective case (one player i only) both εP (C, x∗) and εN(C, x∗) transforms into
well-known (c.f. e.g. [20])

εi(C, x∗) := max
x∈X

∆i(C, x∗, x) =
pi(C, x∗) − min

x∈X
pi(C, x)

min
x∈X

pi(C, x)
. (8)

So, the calculating of the relative error in single objective case is as hard as
solving the original problem.

Observe that for an arbitrary C ∈ Rm×m
+ we have εP,N(C, x∗) ≥ 0. If

εP (C, x∗) > 0 (εN(C, x∗) > 0), then x∗ 6∈ P m(C) (x∗ 6∈ Nm(C)) and this
positive value of the relative error may be treated as a measure of ineffi-
ciency of the strategy profile x∗ for the game with matrix C. The equality
εN(C, x∗) = 0 automatically implies that x∗ ∈ Nm(C). So, for the solution
x∗ to belong to Nm(C) it is necessary and sufficient to have εN(C, x∗) = 0.

In the Pareto case the situation is a bit more complicated. The equal-
ity εP (C, x∗) = 0 formulates in general only necessary condition for x∗ to
be Pareto equilibrium in the game with matrix C, i.e. εP (C, x∗) = 0 does
not guarantee that x∗ ∈ P m(C). Indeed, consider the following two examples.

Example 1. Let m = 2 and C̃ =

(

1 2
2 1

)

. Assume that X = {x1, x2},

x1 = (0, 1)T , x2 = (1, 0)T . Then PP (C̃, X) = {(2, 1)T , (1, 2)T}. If we consider

the matrix C̄ =

(

1 1
2 1

)

, then PP (C̄, X) = {(1, 1)T , (1, 2)T}. Evidently,
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x2 ∈ P 2(C̃) and εP (C̃, x2) = 0, but x2 6∈ P 2(C̄) and εP (C̄, x2) = 0.

However, later (in Proposition 1) we will show, that if equality εP (C ′, x∗) =
0 is valid for every matrix C ′ in some open neighborhood of C (i.e.ṫhere is
φ > 0 such that εP (C ′, x∗) = 0 for any C ′, ‖ C ′−C ‖< φ, where ‖ · ‖ denotes
a norm in Rm×m), then this equality provides also sufficient condition for the
solution x∗ to be Pareto equilibrium in the game with matrix C.

From now we assume that some originally specified matrix C0 = {c0
ij} ∈

Rm×m
+ defines the original problem data. In the following we are interested

in the maximum value of the errors εP (C, x∗) and εN(C, x∗) when the matrix
C belongs to some specified set, the so-called set of perturbed matrices. We
are interested in relative perturbations of the elements of C0, and the quality
of a given solution x∗ is described by the so-called accuracy function. The
value of the accuracy function for a given δ ∈ [0, 1) is equal to the maximum
relative error of the solution x∗ under the assumption that the weights of
the elements are perturbed by no more than δ · 100% of their original values
specified by matrix C0. Notice that if we compare two different equilibria
for the game with matrix C from the point of view of their accuracy on
data perturbation, then the smaller values of the accuracy function are more
preferable. Thus, accuracy function may be used to evaluate the quality of
the game solutions from the accuracy point of view.

For a given δ ∈ [0, 1), consider a set of perturbed matrices

Θδ(C
0) := {C ∈ Rm×m

+ : |cij − c0
ij | ≤ δ · c0

ij , i ∈ Nm, j ∈ Nm}. (9)

Definition 4 For x∗ ∈ X and δ ∈ [0, 1), the value of the accuracy function
in Pareto case is defined as:

AP (C0, x∗, δ) := max
C∈Θδ(C0)

εP (C, x∗). (10)

For x∗ ∈ X and δ ∈ [0, 1), the value of the accuracy function in Nash case
is defined as:

AN(C0, x∗, δ) := max
C∈Θδ(C0)

εN(C, x∗). (11)

Notice that these definitions imply equivalence between accuracy func-
tions and corresponding robust deviations, respectively. However, recall, that
the robust deviation measures were used as a tool of constructing a new ro-
bust optimization counterpart problem and to find a robust solution, whereas
accuracy functions are used as a tool of post-optimal analysis to express nu-
merically the quality of the given solution under possible perturbations of
initial data. Thus, we get

AP,N(C0, x∗, δ) = REGP,N(S(C0), x∗),
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if the set of scenarios S(C0) is defined as the set of perturbed matrices Θδ(C
0)

according to (9). This means that the properties of accuracy functions can
be used in the solution robustness analysis. It is also easy to check that
AP,N(C0, x∗, δ) ≥ 0 for each δ ∈ [0, 1).

In single objective case (one player i makes a decision only), we have for
x∗ ∈ X and δ ∈ [0, 1), the value of the accuracy function is defined as follows:

Ai(C
0, x∗, δ) := max

Ci∈Θδ(C0

i )
εi(C, x∗). (12)

Moreover,
Ai(C

0, x∗, δ) = REGi(Θδ(C
0
i ), x

∗),

where
Θδ(C

0
i ) := {Ci ∈ R1×m

+ : |cij − c0
ij | ≤ δ · c0

ij , j ∈ Nm}. (13)

Denote

Θ′
δ(C

0) := {C ∈ Rm×m
+ : |cij − c0

ij| < δ · c0
ij, i ∈ Nm, j ∈ Nm}. (14)

Obviously, Θ′
δ(C

0) ⊆ Θδ(C
0). The following statement is true.

Proposition 1 For x∗ ∈ X and δ ∈ [0, 1), we have x∗ ∈ P m(C) for any
C ∈ Θ′

δ(C
0) if and only if AP (C0, x∗, δ) = 0.

Proof. Let δ ∈ [0, 1). If x∗ ∈ P m(C) for any C ∈ Θ′
δ(C

0), then -
directly from the definition of the relative error, we have εP (C, x∗) = 0 for
any C ∈ Θ′

δ(C
0). Consider now the case C ∈ Θδ(C

0)\Θ′
δ(C

0). Even if x∗

loses efficiency for such matrix C, then the relative error εP (C, x∗) is still
equal to 0, because - due to continuity of payoffs as linear functions - for
any x ∈ X there exists j ∈ Nm such that pj(C, x) = pj(C, x∗). Thus,
εP (C, x∗) = 0 which means that AP (C0, x∗, δ) = 0.

In order to prove that for δ ∈ [0, 1), AP (C0, x∗, δ) = 0 implies that x∗ ∈
P m(C) for any C ∈ Θ′

δ(C
0), suppose that AP (C0, x∗, δ) = 0, but there exists

a matrix C ′ ∈ Θ′
δ(C

0), such that x∗ 6∈ P m(C ′). We will show that such
assumption must lead to a contradiction. Indeed, x∗ 6∈ P m(C ′) means that
there exist x ∈ X such that pi(C

′, x∗) ≥ pi(C
′, x) for all i ∈ Nm and there

exists j ∈ Nm such that pj(C
′, x∗) > pj(C

′, x). Let I ⊆ Nm be a set of indices
for which pi(C

′, x∗) = pi(C
′, x). Consider matrix C̃ ′ ∈ Rm×m

+ with elements

c̃′ij =







c′ij − φ, if i ∈ I, x∗
j = 0;

c′ij + φ, if i ∈ I, x∗
j = 1;

c′ij, otherwise,
(15)

where φ > 0 is taken small enough to satisfy C̃ ′ ∈ Θ′
δ(C

0). Now it is easy to
see that pi(C̃

′, x∗) > pi(C̃
′, x) for every i ∈ Nm, i.e. εP (C̃ ′, x∗) > 0, which
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implies AP (C0, x∗, δ) > 0. Thus we have a contradiction which completes
the proof. �

The validity of Proposition 2 follows directly from the observation that
x∗ ∈ Nm(C) if and only if εN(C, x∗) = 0 for any C ∈ Rm×m

+ .

Proposition 2 For x∗ ∈ X and δ ∈ [0, 1), we have x∗ ∈ Nm(C) for any
C ∈ Θδ(C

0) if and only if AN(C0, x∗, δ) = 0.

For given x, x∗ ∈ X, fixed index i ∈ Nm and C0 ∈ Rm×m
+ denote

Ξi(C
0, x∗, x, δ) :=

C0
i (x

∗ − x) + δ
∑

j∈Nm

c0
ij |x∗

j − xj |

(1 − δ)C0
i x

. (16)

The following theorem gives a formulae for calculating value of the accu-
racy function.

Theorem 1 The following statements are true.

(i) For x∗ ∈ X and δ ∈ [0, 1), the accuracy function can be expressed by
the formula:

AP (C0, x∗, δ) = max
x∈X

min
i∈Nm

Ξi(C
0, x∗, x, δ). (17)

(ii) For x∗ ∈ X and δ ∈ [0, 1), the accuracy function can be expressed by
the formula:

AN(C0, x∗, δ) = max
i∈Nm

max
x∈Wi(x∗)∩X

Ξi(C
0, x∗, x, δ). (18)

Proof. We prove (i) first. We start with showing that AP (C0, x∗, δ) ≤
ΓP (C0, x∗, δ), where ΓP (C0, x∗, δ) is a right-hand side of (17). Using the
property of max − min and min − max operators, we consequently, yield

AP (C0, x∗, δ) = max
C∈Θδ(C0)

εP (C, x∗) = max
C∈Θδ(C0)

max
x∈X

min
i∈Nm

∆i(C, x∗, x) ≤

≤ max
x∈X

min
i∈Nm

max
C∈Θδ(C0)

∆i(C, x∗, x)

For some fixed game solution x ∈ X and player i ∈ Nm the maximum
∆i(C, x∗, x) over C ∈ Θδ(C

0) is attained at matrix C∗ with elements in the
i-th row defined as

c∗ij =

{

c0
ij − δ · c0

ij if xj = 1,

c0
ij + δ · c0

ij otherwise,
(19)

The elements of the other rows in matrix C∗ are the same as in the original
matrix C0. Then C∗ ∈ Θδ(C

0), and

max
x∈X

min
i∈Nm

max
C∈Θδ(C0)

∆i(C, x∗, x) = max
x∈X

min
i∈Nm

∆i(C
∗, x∗, x) =

11



max
x∈X

min
i∈Nm

Ξ(C0, x∗, x, δ) = ΓP (C0, x∗, δ).

Thus, we have shown that AP (C0, x∗, δ) ≤ ΓP (C0, x∗, δ) for all δ ∈ [0, 1).
Now it remains to show that AP (C0, x∗, δ) ≥ ΓP (C0, x∗, δ) for all δ ∈ [0, 1).
For any fixed x ∈ X, consider matrix C∗ with elements defined for all rows
(players) i ∈ Nm according to (19).

AP (C0, x∗, δ) = max
C∈Θδ(C0)

εP (C, x∗) ≥ max
x∈X

min
i∈Nm

∆i(C
∗, x∗, x) =

max
x∈X

min
i∈Nm

Ξ(C0, x∗, x, δ) = ΓP (C0, x∗, δ).

So, we have that AP (C0, x∗, δ) ≥ ΓP (C0, x∗, δ) for all δ ∈ [0, 1). Summariz-
ing, we have just proven that AP (C0, x∗, δ) = ΓP (C0, x∗, δ) for all δ ∈ [0, 1)

Now we prove (ii). Indeed, using the property of max operator, we deduce

AN(C0, x∗, δ) = max
C∈Θδ(C0)

εN(C, x∗) = max
i∈Nm

max
x∈Wi(x∗)∩X

max
C∈Θδ(C0)

∆i(C, x∗, x).

For any fixed x ∈ X and row (player) i ∈ Nm, max
C∈Θδ(C0)

∆i(C, x∗, x) is attained

at matrix C∗ with elements defined according to (19). So, we get directly
AN(C0, x∗, δ) = ΓN(C0, x∗, δ) for all δ ∈ [0, 1), where ΓN(C0, x∗, δ) is a right-
hand side of (18). �

From Theorem 1 we get the following result giving us an expression for
accuracy function in single objective case

Corollary 1 Let the choice of strategies be made by player i only. Then for
x∗ ∈ X and δ ∈ [0, 1), the accuracy function can be expressed by the formula:

Ai(C
0, x∗, δ) = max

x∈X
Ξi(C

0, x∗, x, δ). (20)

Notice that similar result was specified in [18] for single objective generic
combinatorial optimization problem

Notice that analytical formula (18) specified in Theorem 1 can be com-
puted relatively easy. At the same time analytical formula (17) specified in
Theorem 1 is based on enumerating all feasible solutions, so in general it
is hard to be computed. Therefore, we provide some attainable lower and
upper bounds for the Pareto accuracy function which are computationally
more attractive. Next proposition gives an upper bound for the accuracy
function of x∗ ∈ X in the case of Pareto optimality principle.

Proposition 3 For x∗ ∈ X and δ ∈ [0, 1),

AP (C0, x∗, δ) ≤ 2δ

1 − δ
+

1 + δ

1 − δ
· min

i∈Nm

Ai(C
0, x∗, 0). (21)
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Proof. Let & denote standard conjunction operator between two Boolean
vectors, which is performed componentwise, that is every component of the
resulting vector is a conjunction of corresponding Boolean components of the
two operating vectors. Using (17), we get

AP (C0, x∗, δ) = max
x∈X

min
i∈Nm

C0

i (x∗−x)+δ
∑

j∈Nm

c0ij |x
∗

j−xj |

(1−δ)C0

i x

= max
x∈X

min
i∈Nm

(1+δ)C0

i x∗−(1−δ)C0

i x−2δC0

i (x∗&x)

(1−δ)C0

i x

≤ max
x∈X

min
i∈Nm

(1+δ)C0

i x∗−(1−δ)C0

i x

(1−δ)C0

i x

= max
x∈X

min
i∈Nm

(1+δ)C0

i x∗+(1+δ)C0

i x−(1+δ)C0

i x−(1−δ)C0

i x

(1−δ)C0

i x

= 2δ
1−δ

+ 1+δ
1−δ

· max
x∈X

min
i∈Nm

∆i(C
0, x∗, x)

≤ 2δ
1−δ

+ 1+δ
1−δ

· min
i∈Nm

max
x∈X

∆i(C
0, x∗, x)

= 2δ
1−δ

+ 1+δ
1−δ

· min
i∈Nm

Ai(C
0, x∗, 0). �

Now it becomes clear that calculating the upper bound specified by
Proposition 3 is as hard as calculating m times Ai(C

0, x∗, 0), whose calculat-
ing according to Corollary 1 turns into solving the original single objective
problem.

Observe that similar upper bound were obtained in the case of single
objective combinatorial optimization problem in [20], and earlier in [32, 41]
for linear programs. The following corollary is straightforward consequence
from Propositions 1 and 3, and it specifies the upper bound for the accuracy
function of the originally Pareto equilibrium x∗ ∈ P m(C0).

Corollary 2 For x∗ ∈ P m(C0) and δ ∈ [0, 1),

AP (C0, x∗, δ) ≤ 2δ

1 − δ
. (22)

Corollary 3 For x∗ ∈ Nm(C0) and δ ∈ [0, 1), the equality AN(C0, x∗, δ) = 0
holds.

Now consider the case when x∗ is an equilibrium in the original game
with matrix C0 implying AP,N(C0, x∗, 0) = 0. It is of special interest to know
the extreme values of δ for which AP,N(C0, x∗, δ) = 0, because these values

13



determine maximum norms of perturbations which preserve the property of
the given solution to be an equilibrium. These values are close analogues
of the so-called stability radius introduced earlier for single and multiple
objective combinatorial optimization problems (see e.g. [6]). Formally, the
accuracy radii RP,N(C0, x∗) are defined in the following way:

RP,N(C0, x∗) := sup
{

δ ∈ [0, 1) : AP,N(C0, x∗, δ) = 0
}

. (23)

If these radii are equal to zero, then this means that there exist arbitrary small
perturbations of the original game matrix C0 such that the initial equilibrium
x∗ loses its property of being equilibrium under very small perturbations.
Otherwise, the solution x∗ remains equilibrium for any game with matrix
C ∈ Θδ(C

0), δ < RP,N(C0, x∗). The next theorem is a straightforward
consequence of Theorem 1

Theorem 2 The following statements are true.

(i) For x∗ ∈ P m(C0), the Pareto accuracy radius can be expressed by the
formula:

RP (C0, x∗) = min
{

1, min
x∈X\{x∗}

max
i∈Nm

C0
i (x − x∗)

∑

j∈Nm

c0
ij|xj − x∗

j |
}

. (24)

(ii) For x∗ ∈ Nm(C0), the Nash accuracy radius can be expressed by the
formula:

RN (C0, x∗) = min
{

1, min
i∈Nm

min
x∈Wi(x∗)∩X\{x∗}

C0
i (x − x∗)

∑

j∈Nm

c0
ij|xj − x∗

j |
}

= 1, (25)

i.e. x∗ ∈ Nm(C0) is accurate (i.e. RN(C0, x∗) ≥ 0).

5 Robustness Tolerances

Robustness tolerances were first mentioned in [21] for single objective lin-
ear generic combinatorial optimization problem. Our approach develops the
idea of [21] by extending it to the multiobjective case under game theoretic
formulation. In this section we consider the case when only one column
in matrix C0 is uncertain, while all the other columns are kept unchanged.
It corresponds to the situation in the game, when all players are uncertain
about their own costs associated with the strategy choice of a given player.
Assume j be the uncertain column in the original matrix C0, so we denote
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the original matrix C0[j], where notation [j] is used to indicate that column
j is uncertain. Then for a fixed δ ∈ [0, 1) we have

Θδ(C
0[j]) :=

{

C ∈ Rm×m
+ :

(

|cij−c0
ij | ≤ δ·c0

ij, i ∈ Nm

)

&
(

cik = c0
ik, k ∈ Nm\{j}, i ∈ Nm

)}

.

(26)
For x∗ ∈ X and δ ∈ [0, 1), the definition of the accuracy function in this

case transforms into the following:

AP,N(C0[j], x∗, δ) := max
C[j]∈Θδ(C0[j])

εP,N(C[j], x∗), (27)

where εP,N(C[j], x∗) are defined according to (6) and (7).

Moreover,

AP,N(C0[j], x∗, δ) = REGP,N(Θδ(C
0[j]), x∗),

It is easy to see that the analytic formulae (17) specified by Theorem 1 can
be rewritten as follows For x∗ ∈ X and δ ∈ [0, 1),

AP (C0[j], x∗, δ) = max
x∈X

min
i∈Nm

Ξi(C
0[j], x∗, x, δ) =

max
x∈X

min
i∈Nm

C0
i (x∗ − x) + δc0

ij|x∗
j − xj |

C0
i x − δc0

ijxj

=

max
{

max
x∈X:xj=0

min
i∈Nm

C0
i (x

∗ − x) + δc0
ijx

∗
j

C0
i x

, max
x∈X:xj=1

min
i∈Nm

C0
i (x∗ − x) + δc0

ij(1 − x∗
j )

C0
i x − δc0

ij

}

.

It will be convenient now to state the last formula for calculating accuracy
functions by splitting it into two cases. when x∗

j = 0 and x∗
j = 1. So, for

x∗ ∈ X and δ ∈ [0, 1), we have

AP (C0[j], x∗, δ) =











max
{

max
x∈X:xj=0

min
i∈Nm

C0

i (x∗−x)

C0

i x
, max
x∈X:xj=1

min
i∈Nm

C0

i (x∗−x)+δc0ij

C0

i x−δc0ij

}

if x∗
j = 0,

max
{

max
x∈X:xj=0

min
i∈Nm

C0

i (x∗−x)+δc0ij
C0

i
x

, max
x∈X:xj=1

min
i∈Nm

C0

i (x∗−x)

C0

i
x−δc0

ij

}

if x∗
j = 1.

(28)
Similarly, we get the expression for the accuracy function in the case of Nash
optimality

AN(C0[j], x∗, δ) =











max
i∈Nm

max
{

max
x∈Wi(x∗)∩X:xj=0

C0

i (x∗−x)

C0

i x
, max
x∈Wi(x∗)∩X:xj=1

C0

i (x∗−x)+δc0ij

C0

i x−δc0ij

}

if x∗
j = 0,

max
i∈Nm

max
{

max
x∈Wi(x∗)∩X:xj=0

C0

i (x∗−x)+δc0ij

C0

i x
, max
x∈Wi(x∗)∩X:xj=1

C0

i (x∗−x)

C0

i x−δc0ij

}

if x∗
j = 1.

(29)
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Notice also that if x∗ ∈ P m(C0), then (28) transforms into

AP (C0[j], x∗, δ) =











max
{

0, max
x∈X:xj=1

min
i∈Nm

C0

i (x∗−x)+δc0ij

C0

i x−δc0ij

}

if x∗
j = 0,

max
{

max
x∈X:xj=0

min
i∈Nm

C0

i (x∗−x)+δc0ij
C0

i x
, 0

}

if x∗
j = 1,

(30)

and if x∗ ∈ Nm(C0), then (29) transforms into

AN(C0[j], x∗, δ) =











max
i∈Nm

max
{

0, max
x∈Wi(x∗)∩X:xj=1

C0

i (x∗−x)+δc0ij

C0

i x−δc0ij

}

if x∗
j = 0,

max
i∈Nm

max
{

max
x∈Wi(x∗)∩X:xj=0

C0

i (x∗−x)+δc0ij

C0

i x
, 0

}

if x∗
j = 1.

(31)
Now we are interested in the maximal level of perturbation not violating

robustness of a given optimal solution.

Definition 5 For a given x∗ ∈ P m(C0) (x∗ ∈ Nm(C0)) the robustness tol-
erances in Pareto and Nash cases are defined as follows:

trP,N(C0[j], x∗) := sup
{

δ ∈ [0, 1) : AP,N(C0[j], x∗, δ) ≤ AP,N(C0[j], x, δ) ∀x ∈ X
}

.

(32)

Notice that the same definition can be formulated in terms of relative
regrets as follows

trP,N(C0[j], x∗) := sup
{

δ ∈ [0, 1) : REGP,N(Θδ(C
0[j]), x∗) ≤ REGP,N(Θδ(C

0[j]), x) ∀x ∈ X
}

.

The superscript r is used to emphasize that we are dealing with robust tol-
erances, which differ from usual tolerances (similar notation is also used in
[21]).

Since for all 0 ≤ δ ≤ RP,N(C0[j], x∗), we have that AP,N(C0[j], x∗, δ) = 0,
it implies that trP,N(C0[j], x∗) ≥ RP,N(C0[j], x∗). Finding analytical expres-
sions for trP,N(C0[j], x∗), which could be computationally tractable is a hard
task. To compute robustness tolerances one should exploit some good search
strategy such as branch and bound, or use some heuristic and ad-hoc strate-
gies examining more carefully problem topology. We restrict our analysis
by specifying trP,N(C0[j], x∗) in the case when the original problem con-
tains a single equilibrium only. So, let us assume that P m(C0) = {x∗}.
Then it implies that for all x ∈ X and all indices i ∈ Nm the inequalities
C0

i (x − x′) ≥ C0
i (x

∗ − x′), C0
i (x

∗ − x′) ≤ 0 hold for any x′ ∈ X. Using this
observation we deduce the following.

Consider now the case x∗
j = 1. For any fixed x ∈ X, assuming that

xj = 1, then we get

AP (C0[j], x, δ) = max
{

max
x′∈X:x′

j=0
min
i∈Nm

C0
i (x − x′) + δc0

ij

C0
i x

′
, max
x′∈X:x′

j=1
min
i∈Nm

C0
i (x − x′)

C0
i x′ − δc0

ij

}

≥
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max
{

max
x′∈X:x′

j=0
min
i∈Nm

C0
i (x∗ − x′) + δc0

ij

C0
i x′

, max
x′∈X:x′

j=1
min
i∈Nm

C0
i (x∗ − x′)

C0
i x

′ − δc0
ij

}

=

max
{

max
x′∈X:x′

j=0
min
i∈Nm

C0
i (x

∗ − x′) + δc0
ij

C0
i x′

, 0
}

= AP (C0[j], x∗, δ).

For any fixed x ∈ X, assuming that xj = 0, then we get

AP (C0[j], x, δ) = max
{

max
x′∈X:x′

j=0
min
i∈Nm

C0
i (x − x′)

C0
i x

′
, max
x′∈X:x′

j=1
min
i∈Nm

C0
i (x − x′) + δc0

ij

C0
i x′ − δc0

ij

}

≥

max
{

0, max
x′∈X:x′

j=1
min
i∈Nm

C0
i (x − x′) + δc0

ij

C0
i x

′ − δc0
ij

}

≥ max
x′∈X:x′

j=1
min
i∈Nm

C0
i (x − x′) + δc0

ij

C0
i x′ − δc0

ij

≥

max
x′∈X:x′

j=0
min
i∈Nm

C0
i (x − x′) + δc0

ij

C0
i x

′ − δc0
ij

≥ max
x′∈X:x′

j=0
min
i∈Nm

C0
i (x − x′) + δc0

ij

C0
i x′

≥ AP (C0[j], x∗, δ).

Thus, we will have AP (C0[j], x∗, δ) ≤ AP (C0[j], x, δ) for all x ∈ X and
δ ∈ [0, 1). Thus, we have just proven that if x∗

j = 1, then trP (C0[j], x∗) = 1.
Now consider the case x∗

j = 0. For any fixed x ∈ X, assuming that xj = 0,
then we get

AP (C0[j], x, δ) = max
{

max
x′∈X:x′

j=0
min
i∈Nm

C0
i (x − x′)

C0
i x

′
, max
x′∈X:x′

j=1
min
i∈Nm

C0
i (x − x′) + δc0

ij

C0
i x′ − δc0

ij

}

≥

max
{

0, max
x′∈X:x′

j=1
min
i∈Nm

C0
i (x∗ − x′) + δc0

ij

C0
i x

′ − δc0
ij

}

= AP (C0[j], x∗, δ).

For any fixed x ∈ X, assuming that xj = 1, then we get

AP (C0[j], x, δ) = max
{

max
x′∈X:x′

j=0
min
i∈Nm

C0
i (x − x′) + δc0

ij

C0
i x

′
, max
x′∈X:x′

j=1
min
i∈Nm

C0
i (x − x′)

C0
i x′ − δc0

ij

}

≥

max
{

max
x′∈X:x′

j=0
min
i∈Nm

C0
i (x∗ − x′) + δc0

ij

C0
i x′

, 0
}

≥ max
{

max
x′∈X:x′

j=1
min
i∈Nm

C0
i (x

∗ − x′) + δc0
ij

C0
i x

′
, 0

}

.

So, AP (C0[j], x∗, δ) ≤ AP (C0[j], x, δ) if and only if

max
{

0, max
x′∈X:x′

j=1
min
i∈Nm

C0
i (x∗ − x′) + δc0

ij

C0
i x

′ − δc0
ij

}

≤ max
{

max
x′∈X:x′

j=1
min
i∈Nm

C0
i (x − x′) + δc0

ij

C0
i x′

, 0
}

The last inequality holds for

δ ≤ min
{

1,

√

(C0
î
x̂)2 − (C0

î
x∗)2

c0
îj

}

,
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i.e.

trP (C0[j], x∗) = min
{

1,

√

(C0
î
x̂)2 − (C0

î
x∗)2

c0
îj

}

,

where x̂ := arg max
x′∈X:x′

j=1
min
i∈Nm

C0
i x

′, and let î = arg min
i∈Nm

C0
i x̂. Summarizing,

we can formulate the following main result in this section.

Theorem 3 Assume that P m(C0) = {x∗}. Then the robustness tolerance
can be computed according to the following expressions:

if x∗
j = 1, then

trP (C0[j], x∗) = 1;

if x∗
j = 0 then

trP (C0[j], x∗) = min
{

1,

√

(C0
î
x̂)2 − (C0

î
x∗)2

c0
îj

}

,

where x̂ := arg max
x′∈X:x′

j=1
min
i∈Nm

C0
i x′, î = arg min

i∈Nm

C0
i x̂.

Similar result can be obtained in the case of Nash optimality

Corollary 4 Assume that x∗ ∈ Nm(C0). Then

trN(C0[j], x∗) = 1.

Indeed, the robustness tolerance in this case can be computed in a similar
way: if x∗

j = 1, then trN(C0[j], x∗) = 1, and if x∗
j = 0 then

trN (C0[j], x∗) =







1, if x̃ 6∈ X;

min
{

1,

√
(C0

ĩ
x̃)2−(C0

ĩ
x∗)2

c0
ĩj

}

, otherwise,

where x̃ := (x∗
1, x

∗
2, ..., x̄

∗
j = 1, ..., x∗

n), ĩ = arg max
i∈Nm

C0
i x̃. Since when

x∗
j = 0, we have that

√

(C0
ĩ
x̃)2 − (C0

ĩ
x∗)2

c0
ĩj

≥ 1,

the result which says that the Nash equilibrium is always robustness tolerant
is true. Notice also that here we do not need assumption about optimum
uniqueness, which was crucial in the case of Pareto optimality.
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6 Numerical examples

In this section we would like to illustrate how the accuracy function calcu-
lation can be used to rank alternatives from the robustness point of view in
Pareto case. Consider the following examples.

Example 1 Let m = 4, and

C0 =









2 2 1.5 2
0.5 1 2 1
2 1 1 2
1 3 3 3









.

Assume also that X = {x1, x2, x3, x4}, x1 = (0, 1, 1, 0)T , x2 = (1, 0, 1, 0)T ,
x3 = (0, 1, 0, 1)T , x4 = (0, 0, 1, 1)T . Then C0x1 = (3.5, 3, 2, 6)T , C0x2 =
(3.5, 2.5, 3, 4)T , C0x3 = (4, 2, 3, 6)T , C0x4 = (3.5, 3, 3, 6)T and P 3(C0) =
{x1, x2, x3}. Using formula (24), we calculate R4(C0, x1) = 1

3
, R4(C0, x2) =

1
5

and R4(C0, x3) = 1
9
. The accuracy functions of all feasible solutions are

depicted in Fig. 1, and zoomed in Fig. 2. It happens that for example both x1

and x2, behaves better under small δ, since they have higher accuracy radius
values than x3. However while δ is increased, AP (C0, x2, δ) is dominated
not only by AP (C0, x1, δ) but also by AP (C0, x4, δ) despite on the fact that
x4 6∈ P 4(C0).

Example 2 Let m = 4, and original matrix C0 be the same as in the previ-
ous example. Assume also that X = {x1, x2, x3, x4}, x1 = (0, 1, 1, 0)T , x2 =
(1, 1, 1, 1)T , x3 = (0, 1, 1, 1)T , x4 = (0, 0, 1, 1)T . Then C0x1 = (3.5, 3, 2, 6)T ,
C0x2 = (7.5, 4.5, 6, 10)T , C0x3 = (5.5, 4, 4, 9)T , C0x4 = (3.5, 3, 3, 6)T and
P 3(C0) = {x1}, and R4(C0, x1) = 1

3
. The accuracy functions together with

corresponding upper bounds specified by (21) and (22) are depicted in Fig.
3 In this example, it happens that AP (C0, x1, δ) dominates all others for all
δ ∈ [0, 1), thus x1 can be considered as a very robust Pareto optimum.

7 Conclusions

The examples in previous section suggest that small changes or inaccuracies
in estimating payoff function coefficients may have significant influence on the
set of Pareto equilibria. Moreover, some situations being initially equilibria,
cannot be considered ’robust’, because very small changes of data destroy
their properties of being equilibria.

The simplest measure of the ’robustness’ of the equilibrium is its accuracy
radius. But frequently these radii are not sufficient to rank the equilibria.
Therefore, calculating accuracy radii only cannot be sufficient to make a con-
clusion about robustness, so it is necessary to calculate complementary more
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Figure 1: Accuracy functions; ρ ∈ [0, 1).
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Figure 2: Accuracy functions; ρ ∈ [0, 0.5).
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general characteristics of situations like accuracy functions whose definitions
are directly connected with given optimality principle.

The other big challenge in robust and sensitivity analysis is to construct
efficient algorithms to calculate the analytical expressions. To the best of
our knowledge there are not so many results (see e.g. [8], [17]) known in that
area, and moreover some of those results which have been already known,
put more questions than answers. It seems that calculating exact values is an
extremely difficult task in general, so one could concentrates either on finding
”easy” computable classes of problems or developing general metaheuristic
approaches.
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