Moazzam Fareed Niazi | Tiberiu Seceleanu |
Hannu Tenhunen

Towards Reuse-based Development
for the On-Chip Distributed SoC/ Archi-

tecture

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 1020, October 2011

1

Towards Reuse-based Development

for the On-Chip Distributed SoC Archi-
tecture

Moazzam Fareed Niazi _
University of Turku, Department of Information Technology

Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
nmoazzam ni azi @t u. fi

Tiberiu Seceleanu
ABB Corporate Research, and

Malardalen University
Vasteas, Sweden
ti beriu. secel eanu@e. abb. com

Hannu Tenhunen _
University of Turku, Department of Information Technology

Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
hannu. t enhunen@t u. f i

TUCS Technical Report
No 1020, October 2011

Abstract

The development of a reusable library of components for dirooie seg-
mented bus platform, th8egBusis presented. The library is based on a plug-in
that we develop and deploy within a modeling tool which euaily used by the
SegBudDSL while developing applications targeting tBegBugplatform. The
steps required in building the library and embed it into agglu are discussed
with the certain use of it within the design methodology.

Keywords: Platform-based design, reusability, computer-aidedymeSAD, on-
chip interconnection networks, modeling

TUCS Laboratory
Communication Systems

1 Introduction

Recently, the functional and structural complexities of edded systems are in-
creasing rapidly with the major developments in the fatiocetechnology, which
in return imposing new challenges to existing design meth@daditional design
methodologies are no longer adequate to meet the challefigesnplex system
design. The ability to raise the design level, and adopotasiuse techniques be-
comes a key competence to cope with the trends in embeddetsglesign. The
time to market is another key challenge which also favorgelisability mecha-
nism to minimize the design efforts.

Distributed on-chip architectures or multiprocessor aysbn-chip (MPSoC)
paradigm gains increasing support from system designePSdT is seen as one
of the foremost means through which performance gains direogbe sustained
even after Moore’s law may become decrepit [1]. The MPSo@gigm we con-
sider in this study is th&egBugplatform [4].

Moreover, thalesign productivity gapith the MPSoC paradigm remains one
of a key challenge with the existing design methodologidss Thallenge can be
addressed by developing neemputer-aided desig(CAD) tools/frameworks,
based on newer design methods together with reusable eiervehin it. This
will not only enable us to take full advantages from MPSoGfplans, but it will
further satisfy other important factors etgne to marketquality of result etc.

Design decisions, particularly at higher abstractionlevare known to bear
the most impact on the quality of the eventual system impiegat®n. Opti-
mality of design is strictly connected to platform param&t@nd employed de-
vices/components. Hence, the right selection of companeith further consid-
eration of platform parameters at high abstraction levélsswpport an optimum
solution answering several design requirements e.g. powgumption, speed,
area, etc.

The approach we deliver in this report is our continual effdowards estab-
lishing a design methodology for MPSoC, in the context of SegBugplatform.
In our earlier work [5][6][7], we have already introducedamain Specific Lan-
guage(DSL) and an emulator program for modeling, emulating anaegating
execution schedule for the applications targetingSegBugplatform. Until now,
our methodology lacks a certain way of IP component seleatibile modeling
at higher levels of abstraction, and whose (selected IPsawber could be ob-
served during emulation of a modeled system. Similarly, veeeancompelled to
manually select and map specific IPs during implementatiase. We address
here issues for evolving our design methodology furthearols reusability and
versatility. We introduce a library compose of a list of ftinnal components to
be used within the design methodology. The components tee mdferred during
different stages of the system modeling - from high-levedeimg to low level
code generation.

To achieve our goal, we thus build a plug-in and introduceitiivy the mod-

1

eling tool [8] to get the intended library in graphical forogether with DSL. The
tool runs the plug-in every time it runs for modeling applioas for our platform
to provide ease and choice for component selection. Theatiah of SegBus
component library is necessary because it enables us tol modemulate sys-
tem more accurately due to provided additional informatibims certainly makes
the code generation process more straight forward andatecur

Thompson et. al. proposed a highly automated framewosdtdlsDaedalus
for system-level architectural exploration, system-lesymthesis, programming
and prototyping of heterogeneous MPSoC platforms [2][3]eil framework al-
lows to construct MPSoCs platforms from a library of pre-dediand pre-verified
IP components, similar in a aspect to our approach of bigldomponent library,
but dissimilar in another aspect where we already have toplat theSegBus

1.1 Overview of the report

In the rest of the report, we proceed as follows. In sectiome2provide a short de-
scription of theSegBuglatform, its associatedomain Specific Languagd®SL)
and emulator. Next, in section 3, we describe our design odelbgy which we
use to design and implement applications on the platformthEtmore, in sec-
tion 4 we present, in detail, the steps required to build soppsed library and
its deployment in the modeling tool. Finally, in section 5 Wastrate briefly the
significance of the library with an example, followed by clusion of the report
in section 6.

2 Background

2.1 Segmented Bus Architecture

A segmented bus is a “collection” of individual buses (segtsg interconnected
with the use of FIFO like structures. Each segment acts asmakdus between
modules that are connected to it and operates in parallél ether segments.
Neighboring segments can be dynamically connected to éheh establish a
connection between modules located in different segmédie to the segmen-
tation of the bus lines, and their relative isolation, plataransactions can take
place, thus increasing the performance. A high level blaelg@dm of the seg-
mented bus system which we consider in the following sestisnllustrated in
Fig. 1.

The SegBusommunication platform is built of components that provide
necessary separation of segmerB®rder units(BU), arbitration units - th&€en-
tral Arbiter (CA) and local,Segment ArbiteréSA). The application then is real-
ized with the support of (library availabl&unctional Units(FU).

2

P
= S fs S
i System

Figure 1: Segmented bus structure.

The SegBugplatform has a singl€A unit and severabAs, one for each seg-
ment. TheSA of each bus segment decides which devied), within the seg-
ment, will get access to the bus in the following transfeshur
Platform communication. Within a segment, data transfers follow a “traditional”
package based bus protocol, wiBAs arbitrating the access to local resources.
The inter-segment communication, is also a package basedit switched ap-
proach, with theCA having the central role. The interface components between
adjacent segments, tii&Js, are basically FIFO elements with some additional
logic, controlled by theCA and the neighborin@As.

2.2 DSL for the SegBus Platform

TheDomain Specific Languad®SL) for theSegBugplatform is the specification
language that is used to model thegBuglatform at higher-level of abstraction,
based on stereotypes stored in SegBudJML profile [5]. The DSL provides
ability to model partitioned application components aratform elements in the
form of high-level graphical constructs and provide methtwlmap application
components on particular segment in a fast and correct manne

The DSL comprises of a number of structural constraintdedl¢o the plat-
form, written inObject Constraint Languag®CL) [15], to implement the correct
component approach to platform design. These constramtssad to validate our
models. Upon breach of any constraint requirement durieglésign process, the
tool provides appropriate error message, so that the destgm take proper ac-
tion to make the model correct according to platform requests.

Once we model the application components as PSDF, modeldtierm and
map the application components on to the platform corrgsttyapply validation
process to get the correPlatform Specific ModglPSM) of the application. If
there exists some errors in the model, we get error mes9agedsassociated

3

model element become highlighted.

Finally, the PSDF and PSM model can be transformed into XMiegstes for
further analysis of the desired platform configuration. \Weploy the generated
XML schemes for emulating the performance aspects of thégured system,
as described in the next section.

2.3 SegBus Emulator

TheSegBus Emulatagnables us to evaluate the performance aspects of any given
application running on a specific platform configuratiorfjrtesd during modeling
[6]. The emulator supports the analysis of vari&&egBusnstances that may
answer, better or worse, to specific application requirémdhnhelps to decide at
early stages of design process which platform configuratidrbe most suitable
for any given application before moving towards lower addion levels. The
code generation engine, supplied by tagicDraw UML [8] tool transforms
PSDF and PSM of the system into XML schemes. The generated ¥dVilemes
are then employed by the emulator program to estimate theatiton of platform
elements with respect to data transfers and total exectitian After the analysis
of the returned results, the designer is able to make decadithis stage whether
the emulated configuration will be best/optimal or not, fog target application,
and can change it before moving towards lower levels of tlsggdeprocess. After
getting the desired platform configuration for a given aggdion, the next step is
to generate the execution schedule in the form of VHDL sre be later used
by the arbiters.

3 Design Methodology

Figure 2 illustrates a general overview of thegBuslesign process. We consider
as the start an application model (AM) which is transformein ia partitioned
application model (PAM) with the help of available librargroponents (described
in section 4).

Taking from the designer parameters such as the number wfesgg, the (in-
dependentPlaceToolprovides support for an initial allocation of the appliceti
functional elements onto the platform. The allocation infation, stored as a text
file, serves as input into the modeling environment. Her#) Wie SegBusUML
profile support, the information is processed to obtain ggngented application
model (SAM). A DSL based approach provides the (structwai)ectness of the
SAM.

The SAM further offers data for an emulator to simulate, ghHevels of ab-
straction, the design. The emulator provides two kinds tdrmation. Firstly,
with visual representation, the performance of the SAM carevrluated. Sec-
ondly, control code from theontrol code generatofCCG) is obtained as VHDL

4

Application Model
(AM) *

Partitioned /S;gla?|
-—F unctionality: Component

Application Model

-Communication Matrix

i \J
Model-based Framework (PAM) Noxury " a—
PlaceTool

Visual / Numbers / etc: >4_Tex1 file

Emulator v
XML Segmented
SCHEMES ™| Application Model UML Profile
(SAM)

CCG s

$

VHDL code
\/HDL cod (arbiter
templates)
A J
Complete
Platform Model
(cew) (behsvicra)
|
VHDL code
Synthesizable
Platform Model ;l Synth

(SPM)

Figure 2:SegBuslesign process using the proposed framework.

snippets for the local and central arbiters. If the resulisnfthe simulation are
not optimal, the designer is able to change the initial allim of modules to seg-
ments again using the DSL. Subsequently, after a new simonledund, the new
results are available.

The VHDL code for arbiters, the information from the chosgmary com-
ponents and the final allocation contained by the SAM are egad into the
complete platform model (CPM). At this stage, we get the pplledbenefit of the
proposed library which provides pointers to employ speciimponents which
are listed in the library and stored at a particular locatiénom here, with the
addition of the VHDL code for platform elements: functionalits, specific plat-
form units (border FIFOs, templates for arbiters, syncloens, etc) we obtain the
synthesizable platform model (SPM).

In the following sections we briefly pinpoint the focus of ttievelopments of
the SegBusomponent library.

Select & Assign
Component / N I-O MainMenuConfigurator

Name: Select and assign a component | === ——————== 1= :)3 I.O LibraryWindow
Flow: | : ?

|

|

|

|

1. The user opens the library. - - - - - -—--- !
- —; Q IPRecord
. The system displays available components in the library window - i

2. The system displays the library window.— - - -

3 i

4. The user selects the targeted FU (functional unit) in the model. - -+ - s>))

5 | | DiagramPresentationElement
6 |

7

. The user selects a components in the library. - - - -—----—-——--- -+
. The user assigns the selected component to the pre-selected FU. -}- - -
. The user closes the library. - - - - - - - - - ------—-———————— !

Boundary object

Legend
|_O anformation container/entity object

Figure 3: An analysis model of a “Select and assign compdnesetcase.

4 The SegBus Component Library

Reusability refers to a phenomenon where an object can benugedlithan once
with or without minor modification. It reduces the developrhand implemen-
tation time and additionally enables us to handle the timagarket challenge.
Here, we build a library of often used components to make theusable for
further developments on the platform.

The development of the library starts by thse case analysisvhich is the
most common technique used to identify the system requimesrtbat will ulti-
mately helps us to design classes to satisfy the use casestedhirements are
the foundation on which the system is built. The ambiguousianomplete re-
quirements lead us to an incompetent system and the desaytsefre suffered.
We identify following important functional requirementsat must be included in
the library for a better use of it.

e The library can be opened in the tool.

A new component can be added in the library.

An existing component can be removed from the library.

A component in the library can be selected and assigned teess@dected)
model element.

The library can be closed.

The requirements accumulate to different cases which gulestly gear us
towards ause-case driven developmanyproach. Ascenariois a sequence of
steps describing an interaction between a user (systergrdgyiand a system
(the SegBuDSL in our case) [9]. Each requirement, then, evaluates tonaber

6

SegBus Component
Library

Open Library

Select & Assign
Component

Add Component

Remove Component
System Designer

Close Library

0000

Figure 4: Use case model of tiegBusomponent library.

of scenarios. Further, @ase caseés a set of scenarios tied together by a common
user goal. By examining the requirements, we come up with tiseacase model,
as illustrated in figure 4.

Next, we build ananalysis modebased on the developed use-case model,
which figures out the possible stereotypical classes (arsabpjects) responsible
for certain roles in the system. These roles are: the bowgslénterface with
the outside world i.e. screens/forms), the entities (im@tion container) and the
control objects (coordinators of the use case executidj) With analysis model,
we are able to analyze a use case’s flow with respect to asapgects, which
further makes it possible towards a robust system. Figullesrates a use case
flow with analysis objects. The analysis models of other ases build in similar
fashion.

4.1 Implementation approach

A class diagranmdescribes and represents the structure of the system. TFhe de

scription contains the types of objects a system is compo§ednd the static

relationships exist among them. Here, we develop a clagsatiaof the library

on the basis of the developed use case analysis model, asskscpreviously.

Later, we implement the library based on the static strecas described in the

class diagram. Figure 5 shows the class diagram dsdgBusomponent library.
Each class, in the shown figure, is responsible for a paatiaale within li-

brary’s functionality. Below, we discuss individual classend their role briefly:

¢ IPRecord. This class is gava bean a class which allows access to its proper-

ties using dedicatesgetterandgettermethods. An object of this class is used to

7

‘ com.nomagic.magicdraw.actions.MDAction ’
AN

java.swing.JFrame

’ com.nomagic.magicdraw.plugins.Plugin |

ILibraryInitiator ‘

1 0..1

1

*‘(LibraryPlugin| IAddComponent’ ‘LibraryWindow ’
1

1 0.*

1 1 (0.1
1
MainWindow Configurator 0.*
IPRecord
0..*

Figure 5: The class diagram of tisegBusomponent library.

hold important properties of a library component: nameuiessize (technology),
power consumption, storage location, etc.

e JFrame. The class is part of the “Swing” package of the Java languabjegnd
it is used to produce a top-level window with a title and a leord

e LibraryWindow. This class is directly extended frodfrrameclass of the Java
standard API [11]. The class is a centrahdowwhich holds important graphical
components of the library. The window is the starting poihieve the available
library components can be seen in a graphical form. Addilignthe class pro-
vides capability to add, remove and assign the library carepts to model’s
element(s).

e AddComponent. This class is also directly extended fralfirameclass of the
Java standard API like the previous one. The class providaphgal window
which holds other graphical components (text fields, etsgduo add new com-
ponents in th&egBusomponent library.

¢ Plugin. Theopen APlof the MagicDraw tool [8] is a collection of classes which
allows us to write our own plug-ins, create actions in the useand toolbars,
change UML model elements, etc. TRRiginclass also from the open APl and is
the base abstract class for any plug-in of the tool. The plugider development
must be extended from this class. Every plug-in has it owerjasr (discussed
in section 4.2).

e LibraryPlugin. The class is directly extended from “com.nomagic.magiwdra
plugins.Plugin” class of the open API. The class containsridden methods:
init(), isSupported(and close() The initialization method (init) initializes the
plug-in and registers the action it intends to perform. &y, the “isSupported”
method is used to provide information about compliance efalng-in with other
versions of the tool. Lastly, the close method is used to imoer#pecific actions
we intend to perform while closing the plug-in.

8

e MainWindowConfigurator. Theaction managenf the tool is responsible for
managing the actions and categories. It has a list of caesgathere it registers
different actions by shortcuts and ids. ThEinWindowConfiguratoclass im-
plementsAMConfiguratorinterface from the open API, which in turn, is used to
configure the action manager. The class overrides a methddasconfigure()
which provides information to action manager about our ptug\e create, with
the help of this class, a separate menu for the library indbkstmain menu bar.

e MDAction. The class belongs to the “com.nomagic.magicdraw.actipask-
age of the open API. It provides methods which can be ovezridd offer func-
tionality whenever a related action is occurred within thel.t

e Librarylnitiator. This class extends from the “MDAction” class. The class
overrides a “actionPerformed” method to instantiate thibréryWindow” object
whenever a designer chooses the library to run in the menu bar

4.2 Plug-in setup

Plug-ins are the only way to add or change functionality ® KMeagicDraw tool
[12]. We shape up thBegBusomponent library in a plug-in form such that it can
be effectively utilized as a pool of reusable IP componewthb tool.

A plug-in must contain: a directory, compiled Java files @ags intojar
files, a plug-in descriptor file and optional files to be usedhsy plug-in. We
use Apache Ant [13] to compile the source code of the libragether with the
provided class library of the tool, and further packagetib iajar file (described
below). Following, we show the script, which we use to compihd package the
source code into gr file.

<proj ect name="SBLi brary" basedir="." defaul t="main">
<property name="lib.dir" value="../../1ib"/>
<path id="cl asspath">
<fileset dir="${lib.dir}" includes="*x/x_jar"/>
</ pat h>
<target nane="cl ean">
<delete dir="build"/>
</target>
<target nanme="conpile">
<nmkdi r dir="build/classes"/>
<javac srcdir="src" destdir="build/classes"
cl asspat href ="cl asspath"/>
</target>
<target nane="jar">
<nkdir dir="build/jar"/>
<jar destfile="build/jar/SBLibrary.jar"
basedi r="bui | d/ cl asses" >
<mani f est >
<attribute name="Min-d ass"
val ue="SBLi brary. Li braryPl ugi n"/ >
</ mani f est >
</jar>
</target>
</ project>

The tool, on every startup, scans plug-ins directory andé foo further sub-
directories. If a sub-directory contains a plug-in dedorigile (hamed asplu-
gin.xml’), then theplug-in managerof the tool reads it. Next, if requirements
specified in the descriptor file are satisfied, then the ptugrdnager execute the
specified class by calling iteit() method. Therefore, the specified clalstb(ary-
Pluginin our case) must be derived from “com.nomagic.magicdragips.Plugin”
class in order to successfully get triggered by the plug-amager.

We thus perform all the necessary steps to make up the appeacd the
library as an executable plug-in. To achieve this, we craad@ectory f(Mag-
icDraw)\plugins\SBLibrary\), compile and build a packaggdr file (%SBLi-
brary)\build\jar\SBLibrary.ja) based on its general principles and write a de-
scriptor file. The content of the descriptor file are showrnowel
<?xm version="1.0" encodi ng="UTF-8"?>

<pl ugi n i d="SegBus. Li brary. Pl ugi n"
nane="SegBus | P Library Plugin"

version="1.0" provider-nane="Mazzan{
cl ass="SBLi brary. Li braryPl ugi n">

<requires>
<api version="1.0"/>
</requires>

<runti me>

<library nane="build/jar/SBLibrary.jar"/>
</runti me>
</ pl ugi n>

Interested readers can find out the detailed semantics &bnatis elements
and related attributes used in the above descriptor fil®jpeh APluser guide”
[12].

5 Example use of the component library

In this section, we demonstrate the effective use of theepteslSegBusompo-
nent library at a specific phase of the design process. Asiledan section 3, we
initially partition a given target application on the basfsavailable components
in the proposed library, and later after building a SAM moalethe application
employing theSegBu®SL and before moving towards building the CPM model,
we again use th8egBusomponent library and assign particular library elements
to respective model elements of the SAM in a graphical marffigure 7 shows
the main library window after it has been invoked from a datéd menu in the
tool.

New components can also be added into the library with eage. library
plug-in provides a separate window where we get facilitydd aew components.
The window can be invoked from the main library window by gieg “Add”
button. Figure 8 depicts this window where we provide infation about the
new library component to be added.

10

®

«SegBusPlatform»

sBP
l -bu23, -ca

10 b2y -segmentt Borderthib | «Segment» «CentralArbiter»

«Segment» _buRight “B°’:Ue1"z"“"” _buLeft CElgizi -buRight | BU23 CA
-segment -segment -segment
-segn_\:g! -p5 ‘ -arbiter -arbiter 4
«FunctionalUnit» -arbiter, ’ D D D «FunctionalUnit»
PO biter» . ES SA1 SA2 P4

-p1 SA0

Functi Jnit
«FunctionalUnit» ity
P1 P6
-p2 R : ‘
«FunctionalUnit» «FunctionalUnit»
P2 P7

11

-p3
«FunctionalUnit» «FunctionalUnit»
P3 P11
08 12
«FunctionalUnit» «FunctionalUnit»
P8 P12

P9 ’ 5 7
«FunctionalUnit» «FunctionalUnit»
P9 P13
-p10 -g14 : :
«FunctionalUnit» “FUHC::TIU'\I(»
P10

=

EY

<Y

Y

14

]

|

Figure 6: The SAM model of the example application in 3 segselnear topol-
ogy configuration.

Area Technology Power Location

Frame decoder v1.1 55um2 [30nm 16U |C:\H264Cod...
Frame decoder v1.2 70um2 |S0nm 18uW |C:\Work\MP...
Frame decoder v1.3 37um2 [90nm 15, 2uW |CH\Work\MP. ..
Frame decoder v 1.4 40,3um2 |65nm 23, 7uW |C\Work\MP. ..
Dequantizer v1.1 1000 |73.3um2 [90nm 40, 2uW |CH\Work\MP. ..
Dequantizer v1.2 1000 |53.7um2 |[65nm 473U |CH\Work\MP. ..

[Add H Remove][Close][Assign]

Figure 7: The main window of th8egBusomponent library.

Next, we show the main role of the library during modeling gplecation
which targets th&egBusplatform. Figure 6 shows the SAM model of the (sim-
plified) MP3 decoder (layer I1) [14] as per the describedmoels in [5]. We select
a model element in the SAM model, for instance process P9.haf dpen the
library of components, select a particular component froenlist of library com-
ponents and assign it to the pre-selected model elemeniesgipg the “Assign”
button in the library’s main window. This will transfer theformation about the
library component to the model element (process P9 in tles)cdigure 9 shows
the process P9 after post-selection process from theyibrar

The component selection from the library and their assignrtee model el-
ements shifts important design information to CPM whichnodtiely allows us
to build the intended right system according to suppliedgteparameters and
constraints.

11

S —

s ———y =
1,1 S new corpponedts E=TE L=l
Juame |

[Clock ticks/packet

Jrea

fTechnalogy

Power

Location | i

[Add ” Clear || Close |

Figure 8: A window for adding components into the library.

09 |
«FunctionalUnit»
P9

-Name = Dequantizer v1.2

-CT =1000

-Area = 53.7um2

-Technology = 65nm

-Pow er = 47.3uW

-Location = C:\Work\MP3_LA ST\MP3_LA ST\Bfifo2\DQuant_v1.2.vhd

Figure 9: A functional unit after being assigned a compoffremh the library.

6 Conclusions

We have presented a technique for designing applicatiogsttag theSegBus
platform with the help of a collection of reusable hardwsoéfvare components
stored in centralized library. The technique enables usdklé evolving chal-
lenges with the current trends in embedded system develamgeémplementing
the phenomenon of reusability within the design process.

References

[1] International Technology Roadmap for Semiconduct2@87 Edition.

[2] M. Thompson, T. Stefanov, H. Nikolov, A. D. Pimentel, C.b&s, S. Pol-
stra, and E. F. DeprettereA framework for rapid system-level exploration,
synthesis, and programming of multimedia MP-So®sproceedings of 3
IEEE/ACM/IFIP International Conference on Hardware/Sofev&odesign
and System Synthesis (CODES+ISSS), 2007, pp. 9-14.

[3] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. o, R. Bose,
C. Zissulescu, E. DepretterBaedalus: Toward composable multimedia MP-
SoC designin proceedings of 45 ACM/IEEE Design Automation Confer-
ence (DAC), 2008, pp. 574-579.

12

[4] T.SeceleanuThe SegBus Platform - Architecture and Communication Mech-
anisms. Journal of Systems Architecture, Vol. 53, Issue 4, April 200p.
151-169.

[5] M. F. Niazi, K. Latif, T. Seceleanu, H. TenhunerA DSL for the SegBus
Platform.The 22¢ |IEEE International System-on-Chip Conference (SOCC),
2009, pp. 393-398.

[6] M. F. Niazi, T. Seceleanu, H. Tenhunef Performance Estimation Technique
for the SegBus Distributed Architectur@he 39" International Conference
on Parallel Processing Workshops (ICPPW), 2010, pp. 89-98.

[7] M. F. Niazi, T. Seceleanu, H. Tenhunefn Automated Control Code Genera-
tion Approach for the SegBus Platforifhe 23¢ IEEE International System-
on-Chip Conference (SOCC), 2010, pp. 199-204.

[8] MagicDraw UML. http://www.magicdraw.com

[9] M. Fowler and K. Scott. UML Distilled. Second EditionAddison-Wesley,
ISBN: 020165783X, 2002.

[10] I. Jacobson, G. Booch, J. Rumbaughhe Unified Software Development
ProcessAddison-Wesley Professional, 1999.

[11] Java Platform. http://www.oracle.com/technetwiaka/index.html
[12] MagicDraw Open API user guide, version 17.0. http:/fwmagicdraw.com
[13] Apache AntM. http://ant.apache.org/

[14] C. Park, J. Jang and S. H&xtended Synchronous Dataflow for Efficient
DSP System PrototypingJournal Design Automation for Embedded Sys-
tems, Springer Netherlands, vol. 6, no. 3, 2002, pp. 295-322

[15] OMG. Object Constraint Language (OCL) 2.0 Revised Submissionjorers
1.6. Jan. 2003.

13

TURKU

CENTRE for

COMPUTER

SCIENCE

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

m University of Turku
$\\ {’é e Department of Information Technology
I N e Department of Mathematics
K (4 "
O

Abo Akademi University
e Department of Information Technologies

Turku School of Economics
e Institute of Information Systems Sciences

ISBN 978-952-12-2644-1
ISSN 1239-1891

