
Moazzam Fareed Niazi | Tiberiu Seceleanu |
Hannu Tenhunen

Towards Reuse-based Development
for the On-Chip Distributed SoC Archi-
tecture

TUCS Technical Report
No 1020, October 2011

Towards Reuse-based Development
for the On-Chip Distributed SoC Archi-
tecture

Moazzam Fareed Niazi
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
moazzam.niazi@utu.fi

Tiberiu Seceleanu
ABB Corporate Research, and
Mälardalen University
Väster̊as, Sweden
tiberiu.seceleanu@se.abb.com

Hannu Tenhunen
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
hannu.tenhunen@utu.fi

TUCS Technical Report

No 1020, October 2011

Abstract

The development of a reusable library of components for a multi-core seg-
mented bus platform, theSegBus, is presented. The library is based on a plug-in
that we develop and deploy within a modeling tool which eventually used by the
SegBusDSL while developing applications targeting theSegBusplatform. The
steps required in building the library and embed it into a plug-in are discussed
with the certain use of it within the design methodology.

Keywords: Platform-based design, reusability, computer-aided design, CAD, on-
chip interconnection networks, modeling

TUCS Laboratory
Communication Systems

1 Introduction

Recently, the functional and structural complexities of embedded systems are in-
creasing rapidly with the major developments in the fabrication technology, which
in return imposing new challenges to existing design methods. Traditional design
methodologies are no longer adequate to meet the challengesof complex system
design. The ability to raise the design level, and adopt design reuse techniques be-
comes a key competence to cope with the trends in embedded system design. The
time to market is another key challenge which also favors thereusability mecha-
nism to minimize the design efforts.

Distributed on-chip architectures or multiprocessor system-on-chip (MPSoC)
paradigm gains increasing support from system designers. MPSoC is seen as one
of the foremost means through which performance gains are still to be sustained
even after Moore’s law may become decrepit [1]. The MPSoC paradigm we con-
sider in this study is theSegBusplatform [4].

Moreover, thedesign productivity gapwith the MPSoC paradigm remains one
of a key challenge with the existing design methodologies. This challenge can be
addressed by developing newcomputer-aided design(CAD) tools/frameworks,
based on newer design methods together with reusable elements within it. This
will not only enable us to take full advantages from MPSoC platforms, but it will
further satisfy other important factors e.g.time to market, quality of result, etc.

Design decisions, particularly at higher abstraction levels, are known to bear
the most impact on the quality of the eventual system implementation. Opti-
mality of design is strictly connected to platform parameters and employed de-
vices/components. Hence, the right selection of components with further consid-
eration of platform parameters at high abstraction levels will support an optimum
solution answering several design requirements e.g. powerconsumption, speed,
area, etc.

The approach we deliver in this report is our continual efforts towards estab-
lishing a design methodology for MPSoC, in the context of theSegBusplatform.
In our earlier work [5][6][7], we have already introduced aDomain Specific Lan-
guage(DSL) and an emulator program for modeling, emulating and generating
execution schedule for the applications targeting theSegBusplatform. Until now,
our methodology lacks a certain way of IP component selection while modeling
at higher levels of abstraction, and whose (selected IPs) behavior could be ob-
served during emulation of a modeled system. Similarly, we were compelled to
manually select and map specific IPs during implementation phase. We address
here issues for evolving our design methodology further towards reusability and
versatility. We introduce a library compose of a list of functional components to
be used within the design methodology. The components are often referred during
different stages of the system modeling - from high-level modeling to low level
code generation.

To achieve our goal, we thus build a plug-in and introduce it within the mod-

1

eling tool [8] to get the intended library in graphical form together with DSL. The
tool runs the plug-in every time it runs for modeling applications for our platform
to provide ease and choice for component selection. The realization of SegBus
component library is necessary because it enables us to model and emulate sys-
tem more accurately due to provided additional information. This certainly makes
the code generation process more straight forward and accurate.

Thompson et. al. proposed a highly automated framework titled asDaedalus
for system-level architectural exploration, system-level synthesis, programming
and prototyping of heterogeneous MPSoC platforms [2][3]. Their framework al-
lows to construct MPSoCs platforms from a library of pre-defined and pre-verified
IP components, similar in a aspect to our approach of building component library,
but dissimilar in another aspect where we already have a platform - theSegBus.

1.1 Overview of the report

In the rest of the report, we proceed as follows. In section 2,we provide a short de-
scription of theSegBusplatform, its associatedDomain Specific Language(DSL)
and emulator. Next, in section 3, we describe our design methodology which we
use to design and implement applications on the platform. Furthermore, in sec-
tion 4 we present, in detail, the steps required to build our proposed library and
its deployment in the modeling tool. Finally, in section 5 weillustrate briefly the
significance of the library with an example, followed by conclusion of the report
in section 6.

2 Background

2.1 Segmented Bus Architecture

A segmented bus is a “collection” of individual buses (segments), interconnected
with the use of FIFO like structures. Each segment acts as a normal bus between
modules that are connected to it and operates in parallel with other segments.
Neighboring segments can be dynamically connected to each other to establish a
connection between modules located in different segments.Due to the segmen-
tation of the bus lines, and their relative isolation, parallel transactions can take
place, thus increasing the performance. A high level block diagram of the seg-
mented bus system which we consider in the following sections is illustrated in
Fig. 1.

TheSegBuscommunication platform is built of components that providethe
necessary separation of segments -Border units(BU), arbitration units - theCen-
tral Arbiter (CA) and local,Segment Arbiters(SA). The application then is real-
ized with the support of (library available)Functional Units(FU).

2

Figure 1: Segmented bus structure.

TheSegBusplatform has a singleCA unit and severalSAs, one for each seg-
ment. TheSA of each bus segment decides which device (FU), within the seg-
ment, will get access to the bus in the following transfer burst.
Platform communication. Within a segment, data transfers follow a “traditional”
package based bus protocol, withSAs arbitrating the access to local resources.
The inter-segment communication, is also a package based, circuit switched ap-
proach, with theCA having the central role. The interface components between
adjacent segments, theBUs, are basically FIFO elements with some additional
logic, controlled by theCA and the neighboringSAs.

2.2 DSL for the SegBus Platform

TheDomain Specific Language(DSL) for theSegBusplatform is the specification
language that is used to model theSegBusplatform at higher-level of abstraction,
based on stereotypes stored in theSegBusUML profile [5]. The DSL provides
ability to model partitioned application components and platform elements in the
form of high-level graphical constructs and provide methods to map application
components on particular segment in a fast and correct manner.

The DSL comprises of a number of structural constraints related to the plat-
form, written inObject Constraint Language(OCL) [15], to implement the correct
component approach to platform design. These constraints are used to validate our
models. Upon breach of any constraint requirement during the design process, the
tool provides appropriate error message, so that the designer can take proper ac-
tion to make the model correct according to platform requirements.

Once we model the application components as PSDF, model the platform and
map the application components on to the platform correctly, we apply validation
process to get the correctPlatform Specific Model(PSM) of the application. If
there exists some errors in the model, we get error message(s) and associated

3

model element become highlighted.
Finally, the PSDF and PSM model can be transformed into XML schemes for

further analysis of the desired platform configuration. We employ the generated
XML schemes for emulating the performance aspects of the configured system,
as described in the next section.

2.3 SegBus Emulator

TheSegBus Emulatorenables us to evaluate the performance aspects of any given
application running on a specific platform configuration, defined during modeling
[6]. The emulator supports the analysis of variousSegBusinstances that may
answer, better or worse, to specific application requirements. It helps to decide at
early stages of design process which platform configurationwill be most suitable
for any given application before moving towards lower abstraction levels. The
code generation engine, supplied by theMagicDraw UML [8] tool transforms
PSDF and PSM of the system into XML schemes. The generated XMLschemes
are then employed by the emulator program to estimate the utilization of platform
elements with respect to data transfers and total executiontime. After the analysis
of the returned results, the designer is able to make decision at this stage whether
the emulated configuration will be best/optimal or not, for the target application,
and can change it before moving towards lower levels of the design process. After
getting the desired platform configuration for a given application, the next step is
to generate the execution schedule in the form of VHDL snippets, to be later used
by the arbiters.

3 Design Methodology

Figure 2 illustrates a general overview of theSegBusdesign process. We consider
as the start an application model (AM) which is transformed into a partitioned
application model (PAM) with the help of available library components (described
in section 4).

Taking from the designer parameters such as the number of segments, the (in-
dependent)PlaceToolprovides support for an initial allocation of the application
functional elements onto the platform. The allocation information, stored as a text
file, serves as input into the modeling environment. Here, with theSegBus-UML
profile support, the information is processed to obtain the segmented application
model (SAM). A DSL based approach provides the (structural)correctness of the
SAM.

The SAM further offers data for an emulator to simulate, at high levels of ab-
straction, the design. The emulator provides two kinds of information. Firstly,
with visual representation, the performance of the SAM can be evaluated. Sec-
ondly, control code from thecontrol code generator(CCG) is obtained as VHDL

4

Figure 2:SegBusdesign process using the proposed framework.

snippets for the local and central arbiters. If the results from the simulation are
not optimal, the designer is able to change the initial allocation of modules to seg-
ments again using the DSL. Subsequently, after a new simulation round, the new
results are available.

The VHDL code for arbiters, the information from the chosen library com-
ponents and the final allocation contained by the SAM are converged into the
complete platform model (CPM). At this stage, we get the principle benefit of the
proposed library which provides pointers to employ specificcomponents which
are listed in the library and stored at a particular location. From here, with the
addition of the VHDL code for platform elements: functionalunits, specific plat-
form units (border FIFOs, templates for arbiters, synchronizers, etc) we obtain the
synthesizable platform model (SPM).

In the following sections we briefly pinpoint the focus of thedevelopments of
theSegBuscomponent library.

5

Figure 3: An analysis model of a “Select and assign component” use-case.

4 The SegBus Component Library

Reusability refers to a phenomenon where an object can be usedmore than once
with or without minor modification. It reduces the development and implemen-
tation time and additionally enables us to handle the time-to-market challenge.
Here, we build a library of often used components to make themreusable for
further developments on the platform.

The development of the library starts by theuse case analysis, which is the
most common technique used to identify the system requirements that will ulti-
mately helps us to design classes to satisfy the use cases. The requirements are
the foundation on which the system is built. The ambiguous and incomplete re-
quirements lead us to an incompetent system and the design efforts are suffered.
We identify following important functional requirements that must be included in
the library for a better use of it.

• The library can be opened in the tool.

• A new component can be added in the library.

• An existing component can be removed from the library.

• A component in the library can be selected and assigned to a (pre-selected)
model element.

• The library can be closed.

The requirements accumulate to different cases which subsequently gear us
towards ause-case driven developmentapproach. Ascenariois a sequence of
steps describing an interaction between a user (system designer) and a system
(theSegBusDSL in our case) [9]. Each requirement, then, evaluates to a number

6

Figure 4: Use case model of theSegBuscomponent library.

of scenarios. Further, ause caseis a set of scenarios tied together by a common
user goal. By examining the requirements, we come up with the ause-case model,
as illustrated in figure 4.

Next, we build ananalysis modelbased on the developed use-case model,
which figures out the possible stereotypical classes (analysis objects) responsible
for certain roles in the system. These roles are: the boundaries (interface with
the outside world i.e. screens/forms), the entities (information container) and the
control objects (coordinators of the use case execution) [10]. With analysis model,
we are able to analyze a use case’s flow with respect to analysis objects, which
further makes it possible towards a robust system. Figure 3 illustrates a use case
flow with analysis objects. The analysis models of other use cases build in similar
fashion.

4.1 Implementation approach

A class diagramdescribes and represents the structure of the system. The de-
scription contains the types of objects a system is composedof, and the static
relationships exist among them. Here, we develop a class diagram of the library
on the basis of the developed use case analysis model, as discussed previously.
Later, we implement the library based on the static structure as described in the
class diagram. Figure 5 shows the class diagram of theSegBuscomponent library.

Each class, in the shown figure, is responsible for a particular role within li-
brary’s functionality. Below, we discuss individual classes and their role briefly:
• IPRecord. This class is ajava bean- a class which allows access to its proper-
ties using dedicatedsetterandgettermethods. An object of this class is used to

7

Figure 5: The class diagram of theSegBuscomponent library.

hold important properties of a library component: name, feature size (technology),
power consumption, storage location, etc.
• JFrame. The class is part of the “Swing” package of the Java language [11] and
it is used to produce a top-level window with a title and a border.
• LibraryWindow. This class is directly extended fromJFrameclass of the Java
standard API [11]. The class is a centralwindowwhich holds important graphical
components of the library. The window is the starting point where the available
library components can be seen in a graphical form. Additionally, the class pro-
vides capability to add, remove and assign the library components to model’s
element(s).
• AddComponent. This class is also directly extended fromJFrameclass of the
Java standard API like the previous one. The class provide a graphical window
which holds other graphical components (text fields, etc.) used to add new com-
ponents in theSegBuscomponent library.
• Plugin. Theopen APIof the MagicDraw tool [8] is a collection of classes which
allows us to write our own plug-ins, create actions in the menus and toolbars,
change UML model elements, etc. ThePluginclass also from the open API and is
the base abstract class for any plug-in of the tool. The plug-in under development
must be extended from this class. Every plug-in has it own descriptor (discussed
in section 4.2).
• LibraryPlugin. The class is directly extended from “com.nomagic.magicdraw.-
plugins.Plugin” class of the open API. The class contains overridden methods:
init(), isSupported()and close(). The initialization method (init) initializes the
plug-in and registers the action it intends to perform. Similarly, the “isSupported”
method is used to provide information about compliance of the plug-in with other
versions of the tool. Lastly, the close method is used to mention specific actions
we intend to perform while closing the plug-in.

8

• MainWindowConfigurator. Theaction managerof the tool is responsible for
managing the actions and categories. It has a list of categories where it registers
different actions by shortcuts and ids. TheMainWindowConfiguratorclass im-
plementsAMConfiguratorinterface from the open API, which in turn, is used to
configure the action manager. The class overrides a method named asconfigure()
which provides information to action manager about our plug-in. We create, with
the help of this class, a separate menu for the library in the tool’s main menu bar.
• MDAction. The class belongs to the “com.nomagic.magicdraw.actions”pack-
age of the open API. It provides methods which can be overridden to offer func-
tionality whenever a related action is occurred within the tool.
• LibraryInitiator. This class extends from the “MDAction” class. The class
overrides a “actionPerformed” method to instantiate the “LibraryWindow” object
whenever a designer chooses the library to run in the menu bar.

4.2 Plug-in setup

Plug-ins are the only way to add or change functionality to the MagicDraw tool
[12]. We shape up theSegBuscomponent library in a plug-in form such that it can
be effectively utilized as a pool of reusable IP components by the tool.

A plug-in must contain: a directory, compiled Java files packages intojar
files, a plug-in descriptor file and optional files to be used bythe plug-in. We
use Apache Ant [13] to compile the source code of the library together with the
provided class library of the tool, and further package it into a jar file (described
below). Following, we show the script, which we use to compile and package the
source code into ajar file.

<project name="SBLibrary" basedir="." default="main">
<property name="lib.dir" value="../../lib"/>
<path id="classpath">

<fileset dir="${lib.dir}" includes="**/*.jar"/>
</path>
<target name="clean">

<delete dir="build"/>
</target>
<target name="compile">

<mkdir dir="build/classes"/>
<javac srcdir="src" destdir="build/classes"

classpathref="classpath"/>
</target>
<target name="jar">

<mkdir dir="build/jar"/>
<jar destfile="build/jar/SBLibrary.jar"

basedir="build/classes">
<manifest>

<attribute name="Main-Class"
value="SBLibrary.LibraryPlugin"/>

</manifest>
</jar>

</target>
</project>

9

The tool, on every startup, scans plug-ins directory and look for further sub-
directories. If a sub-directory contains a plug-in descriptor file (named as “plu-
gin.xml”), then theplug-in managerof the tool reads it. Next, if requirements
specified in the descriptor file are satisfied, then the plug-in manager execute the
specified class by calling itsinit() method. Therefore, the specified class (Library-
Plugin in our case) must be derived from “com.nomagic.magicdraw.plugins.Plugin”
class in order to successfully get triggered by the plug-in manager.

We thus perform all the necessary steps to make up the appearance of the
library as an executable plug-in. To achieve this, we createa directory ($(Mag-
icDraw)\plugins\SBLibrary\), compile and build a packagedjar file ($(SBLi-
brary)\build\jar\SBLibrary.jar) based on its general principles and write a de-
scriptor file. The content of the descriptor file are shown below.

<?xml version="1.0" encoding="UTF-8"?>
<plugin id="SegBus.Library.Plugin"

name="SegBus IP Library Plugin"
version="1.0" provider-name="Moazzam"
class="SBLibrary.LibraryPlugin">

<requires>
<api version="1.0"/>

</requires>

<runtime>
<library name="build/jar/SBLibrary.jar"/>

</runtime>
</plugin>

Interested readers can find out the detailed semantics aboutvarious elements
and related attributes used in the above descriptor file in “Open APIuser guide”
[12].

5 Example use of the component library

In this section, we demonstrate the effective use of the presentedSegBuscompo-
nent library at a specific phase of the design process. As described in section 3, we
initially partition a given target application on the basisof available components
in the proposed library, and later after building a SAM modelof the application
employing theSegBusDSL and before moving towards building the CPM model,
we again use theSegBuscomponent library and assign particular library elements
to respective model elements of the SAM in a graphical manner. Figure 7 shows
the main library window after it has been invoked from a dedicated menu in the
tool.

New components can also be added into the library with ease. The library
plug-in provides a separate window where we get facility to add new components.
The window can be invoked from the main library window by pressing “Add”
button. Figure 8 depicts this window where we provide information about the
new library component to be added.

10

Figure 6: The SAM model of the example application in 3 segments - linear topol-
ogy configuration.

Figure 7: The main window of theSegBuscomponent library.

Next, we show the main role of the library during modeling an application
which targets theSegBusplatform. Figure 6 shows the SAM model of the (sim-
plified) MP3 decoder (layer III) [14] as per the described methods in [5]. We select
a model element in the SAM model, for instance process P9. We then open the
library of components, select a particular component from the list of library com-
ponents and assign it to the pre-selected model element by pressing the “Assign”
button in the library’s main window. This will transfer the information about the
library component to the model element (process P9 in this case). Figure 9 shows
the process P9 after post-selection process from the library.

The component selection from the library and their assignment to model el-
ements shifts important design information to CPM which ultimately allows us
to build the intended right system according to supplied design parameters and
constraints.

11

Figure 8: A window for adding components into the library.

Figure 9: A functional unit after being assigned a componentfrom the library.

6 Conclusions

We have presented a technique for designing applications targeting theSegBus
platform with the help of a collection of reusable hardware/software components
stored in centralized library. The technique enables us to tackle evolving chal-
lenges with the current trends in embedded system development by implementing
the phenomenon of reusability within the design process.

References

[1] International Technology Roadmap for Semiconductors.2007 Edition.

[2] M. Thompson, T. Stefanov, H. Nikolov, A. D. Pimentel, C. Erbas, S. Pol-
stra, and E. F. Deprettere.A framework for rapid system-level exploration,
synthesis, and programming of multimedia MP-SoCs.In proceedings of 5th

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS), 2007, pp. 9-14.

[3] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose,
C. Zissulescu, E. Deprettere.Daedalus: Toward composable multimedia MP-
SoC design.In proceedings of 45th ACM/IEEE Design Automation Confer-
ence (DAC), 2008, pp. 574-579.

12

[4] T. Seceleanu.The SegBus Platform - Architecture and Communication Mech-
anisms. Journal of Systems Architecture, Vol. 53, Issue 4, April 2007, pp.
151-169.

[5] M. F. Niazi, K. Latif, T. Seceleanu, H. Tenhunen.A DSL for the SegBus
Platform.The 22nd IEEE International System-on-Chip Conference (SOCC),
2009, pp. 393-398.

[6] M. F. Niazi, T. Seceleanu, H. Tenhunen.A Performance Estimation Technique
for the SegBus Distributed Architecture.The 39th International Conference
on Parallel Processing Workshops (ICPPW), 2010, pp. 89-98.

[7] M. F. Niazi, T. Seceleanu, H. Tenhunen.An Automated Control Code Genera-
tion Approach for the SegBus Platform.The 23rd IEEE International System-
on-Chip Conference (SOCC), 2010, pp. 199-204.

[8] MagicDraw UML. http://www.magicdraw.com

[9] M. Fowler and K. Scott.UML Distilled. Second EditionAddison-Wesley,
ISBN: 020165783X, 2002.

[10] I. Jacobson, G. Booch, J. Rumbaugh.The Unified Software Development
ProcessAddison-Wesley Professional, 1999.

[11] Java Platform. http://www.oracle.com/technetwork/java/index.html

[12] MagicDraw Open API user guide, version 17.0. http://www.magicdraw.com

[13] Apache AntTM. http://ant.apache.org/

[14] C. Park, J. Jang and S. Ha.Extended Synchronous Dataflow for Efficient
DSP System Prototyping.Journal Design Automation for Embedded Sys-
tems, Springer Netherlands, vol. 6, no. 3, 2002, pp. 295-322.

[15] OMG. Object Constraint Language (OCL) 2.0 Revised Submission, version
1.6. Jan. 2003.

13

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Information Technologies

Turku School of Economics
• Institute of Information Systems Sciences

ISBN 978-952-12-2644-1
ISSN 1239-1891

