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Abstract

Conjunctive grammars (Okhotin, 2001) are an extension of the standard
context-free grammars with a conjunction operation, which maintains most
of their practical properties, including many parsing algorithms. This paper
introduces a further extension to the model, which is equipped with quan-
tifiers for referring to the left context, in which the substring being defined
does occur. For example, a rule A → a & ¢B defines a string a, as long as it
is preceded by any string defined by B. The paper gives two equivalent defi-
nitions of the model—by logical deduction and by language equations—and
establishes its basic properties, including a transformation to a normal form,
a cubic-time parsing algorithm, and another recognition algorithm working
in linear space.
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1 Introduction

Context-free grammars are a logic for defining the syntax of languages. In
this logic, the definitions are inductive, so that the properties of a string are
determined by the properties of its substrings. This is how a rule S → aSb
asserts, that if a string an−1bn−1 has the property S, then the string anbn has
the property S as well. Besides the concatenation, the formalism of this logic
has an implicit disjunction operation, represented by having multiple rules
for a single symbol. This logic can be further augmented with conjunction
and negation operations, which was done by the second author [11, 13] in
conjunctive grammars and Boolean grammars, respectively. These grammars
preserve the main idea of the context-free grammars—that of defining syntax
inductively, as described above—maintain most of their practically important
features, such as efficient parsing algorithms [13, 15, 16, 18], and have been a
subject of diverse research [1, 4, 8, 9, 10, 19, 20]. As the applicability of a rule
of a Boolean grammar to a substring is independent of the context, in which
the substring occurs, Boolean grammars constitute a natural general case of
context-free grammars. Standard context-free grammars can be viewed as
their disjunctive fragment.

When Chomsky [2] introduced the term “context-free grammar” for an
intuitively obvious model of syntax, he had a further idea of a more powerful
model, in which one could define rules applicable only in some particular
contexts. However, Chomsky’s attempt to formalize his idea using the tools
available at the time (namely, string-rewriting systems) led to nothing but
space-bounded nondeterministic Turing machines. Even though the resulting
devices are still known under the name of “context-sensitive grammars”, they
have nothing to do with the syntax of languages, and, in particular, fail to
implement Chomsky’s original idea of a phrase-structure rule applicable in a
context.

This paper undertakes to reconsider Chomsky’s [2] idea of contexts in
grammars, this time using the appropriate tools of deduction systems and
language equations, and drawing from the experience of developing the con-
junctive grammars. The model proposed in this paper are grammars with
one-sided contexts, which introduce two special quantifiers for representing
left contexts of a string. The first quantifier refers to the “past” of the current
substring: an expression ¢α defines any substring that is directly preceded
by a prefix of the form α. This quantifier is meant to be used along with
usual, unquantified specifications of the structure of the current substring,
using conjunction to combine several specifications. For example, consider
the rule A → BC & ¢D, which represents any substring of the form BC
preceded by a substring of the form D. If the grammar contains additional
rules B → b, C → c and D → d, then the above rule for A specifies that a
substring bc of a string w = dbc . . . has the property A; however, this rule
will not produce the same substring occurring in the strings w′ = abc or
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w′′ = adbc. The other quantifier, Pα, represents the form of the current sub-
string together with its left context, so that the rules A → B &PE, B → b,
E → ab define that the substring b occurring in the string w = ab has the
property A. One can symmetrically define right contexts, denoted by the
quantifiers ¤α and Qα.

In the literature, related ideas have occasionally arisen in connection with
parsing, where right contexts—QαΣ∗, in the terminology of this paper—
are considered as “lookahead strings” and are used to guide a deterministic
parser. If α represents a regular language, these simple forms of contexts
occur in LR-regular [3], LL-regular [7] and LL(*) [21] parsers. Some software
tools for engineering parsers, such as those developed by Parr and Fischer [21]
and by Ford [5], allow specifying contexts QαΣ∗, with α defined within the
grammar, and such specifications can be used by a programmer for ad hoc
adjustment of the behaviour of a deterministic recursive descent parser.

In this paper, the above intuitive definition of grammars with one-
sided contexts is formalized in two equivalent ways. The first possibil-
ity, pursued in Section 2, is to consider deduction of elementary proposi-
tions of the form [A, u〈v〉], where u〈v〉 denotes a substring v in left con-
text u (that is, occurring in a string uvw) and A is a syntactic prop-
erty defined by the grammar (“nonterminal symbol” in Chomsky’s termi-
nology); this proposition asserts that v has the property A in the con-
text u. Then, each rule of the grammar, which is of the general form
A → α1 & . . . & αk & ¢β1 & . . . & ¢βm &Pγ1 & . . . &Pγn, becomes a de-
duction scheme for inferring elementary propositions of this form from each
other, and the language generated by the grammar is ultimately defined as
the set of all such strings w, that [S, ε〈w〉] can be deduced. A standard proof
tree of such a deduction constitutes a parse tree of the string w. This def-
inition generalizes the representation of standard context-free grammars by
deduction—assumed, for instance, in a monograph by Sikkel [22]—as well as
the extension of this representation to conjunctive grammars [14].

An alternative, equivalent definition given in Section 3 uses a general-
ization of language equations, in which the unknowns are sets of pairs of a
string and its left contexts. All connectives and quantifiers in the rules of a
grammar—that is, concatenation, disjunction, conjunction and both context
quantifiers—are then interpreted as operations on such sets, and the result-
ing system of equations is proved to have a least fixpoint, as in the known
cases of standard context-free grammars [6] and conjunctive grammars [12].
This least solution defines the language generated by the grammar.

These definitions ensure that the proposed grammars with one-sided con-
texts define the properties of strings inductively from the properties of their
substrings and the contexts, in which these substrings occur. There is no
uncontrollable rewriting of “sentential forms” involved, and hence the pro-
posed model avoids falling into the same pit as Chomsky’s “context-sensitive
grammars”, that of being able to simulate computations of space-bounded
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Turing machines.
This paper settles the basic properties of grammars with one-sided con-

texts. First, a transformation to a normal form generalizing the Chomsky
normal form is devised in Section 4; the construction proceeds in the usual
way, first by eliminating empty strings, and then by removing cyclic depen-
dencies. This normal form is then used to extend the basic Cocke–Kasami–
Younger parsing algorithm to grammars with one-sided contexts; the algo-
rithm, described in Section 5, works in time O(n3), where n is the length
of the input string. Finally, in Section 6, it is demonstrated that every lan-
guage defined by a grammar with one-sided contexts can be recognized in
deterministic linear space.

2 Definition by deduction

A grammar with one-sided contexts uses concatenation, conjunction and dis-
junction, as well as quantifiers, either only for left contexts (¢, P), or only
for right contexts (¤, Q). Though left contexts are assumed throughout this
paper, all results symmetrically hold for grammars with right contexts.

Definition 1. A grammar with left contexts is a quadruple G = (Σ, N, P, S),
where

• Σ is the alphabet of the language being defined;

• N is a finite set of auxiliary symbols (“nonterminal symbols” in Chom-
sky’s terminology), disjoint with Σ, which denote the properties of
strings defined in the grammar;

• P is a finite set of grammar rules, each of the form

A → α1 & . . . & αk & ¢β1 & . . . & ¢βm &Pγ1 & . . . &Pγn, (1)

with A ∈ N , k,m, n > 0, αi, βi, γi ∈ (Σ ∪N)∗;

• S ∈ N is a symbol representing correct sentences (in the common jar-
gon, “the start symbol”).

For each grammar rule (1), each term αi, ¢βi and Pγi is called a con-
junct. Each unquantified conjunct αi gives a representation of the string
being defined. A conjunct ¢βi similarly describes the form of the left context
or the past, relative to the string being defined. Conjuncts of the form Pγi

refer to the form of the left context and the current string, concatenated into
a single string.

A grammar with left contexts degenerates to a conjunctive grammar, if
the context quantifiers are never used, that is, if m = n = 0 for every rule (1);
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and further to a standard context-free grammar, if conjunction is never used,
that is, if k = 1 in every rule.

Intuitively, a rule (1) can be read as follows: a substring v occurring in a
left context u has the property A, if

• for each i ∈ {1, . . . , k}, the string v is representable as a concatenation
αi = X1 . . . X`, with X1, . . . , X` ∈ Σ ∪ N , where each symbol Xi ∈ N
represents any substring with the property si, and

• for each i ∈ {1, . . . , m}, the left context u is representable as a con-
catenation βi, and

• for each i ∈ {1, . . . , n}, the string uv is representable as a concatenation
γi.

Thus, the conjunction sign in (1) indeed represents logical conjunction. As
in a standard context-free grammar, multiple rules A → A1, . . . , A → A` for
a single nonterminal A represent logical disjunction of conditions, and are
denoted by

A → A1 | . . . | A`.

Formally, the semantics of grammars with contexts are defined by a
deduction system of elementary propositions (items) of the form “a string
v ∈ Σ∗ written in left context u ∈ Σ∗ has the property X ∈ Σ∪N”, denoted
by [X, u〈v〉].
Definition 2. Let G = (Σ, N, P, S) be a grammar with contexts, and define
the following deduction system of items of the form [X, u〈v〉], with X ∈ Σ∪N
and u, v ∈ Σ∗. There is a single axiom scheme:

`G [a, x〈a〉] (for all a ∈ Σ and x ∈ Σ∗).

Each rule A → α1 & . . . & αk & ¢β1 & . . . & ¢βm &Pγ1 & . . . &Pγn in the
grammar defines the following scheme for deduction rules:

I `G [A, u〈v〉],
for all u, v ∈ Σ∗ and for every set of items I satisfying the below properties:

• For every unquantified conjunct αi = X1 . . . X` with ` > 0 and
Xj ∈ Σ ∪ N , there should exist a partition v = v1 . . . v` with
[Xj, uv1 . . . vj−1〈vj〉] ∈ I for all j ∈ {1, . . . , `}.

• For every conjunct ¢βi = ¢X1 . . . X` with ` > 0 and Xj ∈ Σ∪N , there
should be such a partition u = u1 . . . u`, that [Xj, u1 . . . uj−1〈uj〉] ∈ I
for all j ∈ {1, . . . , `}.

• Every conjunct Pγi = PX1 . . . X` with ` > 0 and Xj ∈ Σ ∪
N should have a corresponding partition uv = w1 . . . w` with
[Xj, w1 . . . wj−1〈wj〉] ∈ I for all j.
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Then the language generated by a nonterminal symbol A is defined as

LG(A) = {u〈v〉 | u, v ∈ Σ∗, `G [A, u〈v〉] }.
The language generated by the grammar G is the set of all strings with left
context ε generated by S:

L(G) = {w | w ∈ Σ∗, `G [S, ε〈w〉] }.
Note that if αi = ε in the first case, then the given condition implies

v = ε, and similarly, βi = ε implies u = ε, and γi = ε implies u = v = ε.
Using both kinds of past quantifiers (¢ and P) is actually redundant,

since each of them can be expressed through the other as follows:

• ¢D is equivalent to D′Σ∗, for a new nonterminal symbol D′ with the
sole rule D′ → ε &PD;

• PE can be replaced by Σ∗E ′′, where the new nonterminal E ′′ has the
unique rule E ′′ → ε & ¢E.

Using both types of contexts shall be essential later in Section 4, when trans-
forming the grammar to a normal form, in which the empty string is prohib-
ited.

Ambiguity in grammars with contexts can be defined in exactly the same
way as in the case of conjunctive grammars [17].

Definition 3. A grammar with contexts G = (Σ, N, P, S) is said to be un-
ambiguous, if

I. for every item `G [A, u〈v〉] with A ∈ N and u, v ∈ Σ∗, there exists
a unique rule, by which this item is deduced (in other words, different
rules generate disjoint languages), and

II. for every conjunct X1 . . . X`, ¢X1 . . . X` or PX1 . . . X` that occurs in
any rule, and for all u, v ∈ Σ∗, there exists at most one partition v =
v1 . . . v` with uv1 . . . vi−1〈vi〉 ∈ LG(Xi) for all i.

The following sample grammar with contexts defines a rather simple lan-
guage, which is an intersection of two standard context-free languages, and
hence could be defined by a conjunctive grammar without contexts. The
value of this example is in demonstrating the machinery of contexts in ac-
tion.

Example 1. The following grammar generates the language { anbncndn |
n > 0 }:

S → aSd | bSc | ε & ¢A

A → aAb | ε

The grammar is unambiguous.
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Figure 1: A parse tree of the string abcd according to the grammar in Ex-
ample 1.

The symbol A generates all strings anbn with n > 0 in any context.
Without the context specification ¢A, the symbol S would define all strings
of the form wh(wR), where w ∈ {a, b}∗ and the homomorphism h maps a
to d and b to c. However, the rule S → ε & ¢A ensures that the first half
of the string is of the form anbn for some n > 0, and therefore S generates
only strings of the form anbncndn with n > 0. Consider the following logical
derivation of the fact that the string abcd with left context ε is defined by S.

` [a, ε〈a〉] (axiom)

` [b, a〈b〉] (axiom)

` [c, ab〈c〉] (axiom)

` [d, abc〈d〉] (axiom)

` [A, a〈ε〉] (A → ε)

[a, ε〈a〉], [A, a〈ε〉], [b, a〈b〉] ` [A, ε〈ab〉] (A → aAb)

[A, ε〈ab〉] ` [S, ab〈ε〉] (S → ε & ¢A)

[b, a〈b〉], [S, ab〈ε〉], [c, ab〈c〉] ` [S, a〈bc〉] (S → bSc)

[a, ε〈a〉], [S, a〈bc〉], [d, abc〈d〉] ` [S, ε〈abcd〉] (S → aSd)

The tree corresponding to this deduction is given in Figure 1, where the
dependence upon a context is marked by a dotted arrow.

To see that the grammar is unambiguous, consider that each string in
LG(S) either begins with a and is generated by the rule S → aSd, or begins
with b and is generated by S → bSc, or is empty and is generated by the
last rule S → ε & ¢A; hence, the rules for S generate disjoint languages.
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Similarly, one of the two rules for A generates non-empty strings that begin
with a, and the other generates the empty string.

The next grammar defines a language, for which no Boolean grammar is
known.

Example 2. The following grammar with contexts generates the language
{u1 . . . un | for every i, ui ∈ a∗c, or there exist j, k with ui = bkc and
uj = akc}:

S → AcS | CcS | BcS & DcE | ε

A → aA | ε

B → bB | ε

C → B &PEF

D → bDa | cE

E → AcE | BcE | ε

F → aFb | cE

This is an abstract language representing declaration of identifiers before
or after their use. Substrings of the form akc represent declarations, while
every substring of the form bkc is a reference to a declaration of the form akc.

The idea of the grammar is that S should generate a string
u1 . . . u`〈u`+1 . . . un〉 with ui ∈ a∗c ∪ b∗c if every reference in the suffix
u`+1 . . . un has a corresponding declaration in the whole string u1 . . . un. This
condition is defined inductively on `. The rule S → ε is the basis of induction:
the string u1 . . . un〈ε〉 has the desired property. The rule S → CcS appends
a reference of the form (b∗ &PEF )c, where the context specification ensures
that this reference has a matching earlier declaration. The possibility of a
later declaration is checked by another rule S → BcS & DcE.

3 Definition by language equations

The representation of standard context-free grammars by language equations,
introduced by Ginsburg and Rice [6], is one of the several ways of defining
their semantics. For example, a grammar S → aSb | ε is regarded as an
equation S =

({a} ·S · {b})∪{ε}, which has the unique solution S = { anbn |
n > 0 }. Conjunctive grammars inherit the same definition by equations [12],
with the conjunction represented by the intersection operation.

This important representation can be extended to grammars with con-
texts. However, in order to include the contexts in the equations, the whole
model has to be extended from ordinary formal languages to sets of pairs of
the form u〈v〉, that is, to languages of pairs L ⊆ Σ∗ × Σ∗.

All usual operations on languages used in equations will have to be ex-
tended to languages of pairs. For all K, L ⊆ Σ∗ × Σ∗, consider their
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• union K ∪ L = {u〈v〉 | u〈v〉 ∈ K or u〈v〉 ∈ L };
• intersection K ∩ L = {u〈v〉 | u〈v〉 ∈ K, u〈v〉 ∈ L };
• concatenation K · L = {u〈vw〉 | u〈v〉 ∈ K, uv〈w〉 ∈ L };
• ¢-context ¢L = {u〈v〉 | ε〈u〉 ∈ L, v ∈ Σ∗ };
• P-context PL = {u〈v〉 | ε〈uv〉 ∈ L }.

Definition 4. For every grammar with contexts G = (Σ, N, P, S), the asso-
ciated system of language equations is a system of equations in variables N ,
in which each variable assumes a value of a language of pairs L ⊆ Σ∗ × Σ∗,
and which contains the following equations for every variable A:

A =
⋃

A→α1&...&αk&
&¢β1&...&¢βm&
&Pγ1&...&Pγn∈P

[ k⋂
i=1

αi ∩
m⋂

i=1

¢βi ∩
n⋂

i=1

Pγi

]
. (2)

Each instance of a symbol a ∈ Σ in such a system defines the language
{ x〈a〉 | x ∈ Σ∗ }, and each empty string denotes the language { x〈ε〉 | x ∈
Σ∗ }. A solution of such a system is a vector of languages (. . . , LA, . . .)A∈N ,
such that the substitution of LA for A, for all A ∈ N , turns each equation (2)
into an equality.

This system always has solutions, and among them the least solution
with respect to the partial order v of componentwise inclusion on the set
(2Σ∗×Σ∗)n. For any two n-tuples of languages of pairs, let (K1, . . . , Kn) v
(L1, . . . , Ln) if and only if Ki ⊆ Li. Its least element is ⊥= (∅, . . . ,∅).

Consider a system of language equations of the form

Xi = ϕi(X1, . . . , Xn) (1 6 i 6 n),

where ϕi : (2Σ∗×Σ∗)n → 2Σ∗×Σ∗ are functions of X1, . . . , Xn, defined using the
operations of concatenation, union, intersection, and the ¢- and P-contexts.

The right-hand sides of such a system can be represented as a vector
function ϕ = (ϕ1, . . . , ϕn), which has the following properties:

Lemma 1. Vector function ϕ = (ϕ1, . . . , ϕn) is monotone, in the sense that
for any two vectors K and L, the inequality K v L implies ϕ(K) v ϕ(L).

Lemma 2. Vector function ϕ = (ϕ1, . . . , ϕn) is continuous, in the sense that
for every sequence of vectors of languages of pairs {L(i)}∞i=1, it holds that

∞⊔
i=1

ϕ(L(i)) = ϕ
( ∞⊔

i=1

L(i)
)
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The next result follows by the standard method of least fixed points.

Lemma 3. If ϕ is monotone and continuous, then the least solution of a
system X = ϕ(X) is the vector

∞⊔

k=0

ϕk(⊥).

Therefore, every system of equations corresponding to a grammar with
contexts has a least solution, which shall be used to give an equivalent defi-
nition of the language generated by a grammar.

Definition 5. Let G = (Σ, N, P, S) be a grammar with contexts, let X =
ϕ(X) be the associated system of language equations, and let (LA1 , . . . , LAn)
with LAi

⊆ Σ∗ × Σ∗, Ai ∈ N be its least solution. Define the language
generated by each nonterminal symbol A ∈ N as the corresponding component
of this solution: LG(A) = LA. Let L(G) = {w | ε〈w〉 ∈ LS }.
Example 3. The following system of equations represents the grammar in
Example 1:

S = (Σ∗〈a〉 · S · Σ∗〈d〉) ∪ (Σ∗〈b〉 · S · Σ∗〈c〉) ∪ (
Σ∗〈ε〉 ∩ ¢A

)

A = (Σ∗〈a〉 · A · Σ∗〈b〉) ∪ Σ∗〈ε〉

Consider the sequence of iterations leading to the least solution of the
system.

ϕ0(⊥)=

(
∅
∅

)
;

ϕ1(⊥)=

(
∅

Σ∗〈ε〉
)

;

ϕ2(⊥)=

(
ε〈ε〉

Σ∗〈ε〉 ∪ Σ∗〈ab〉
)

;

ϕ3(⊥)=

(
ε〈ε〉 ∪ ab〈ε〉

Σ∗〈ε〉 ∪ Σ∗〈ab〉 ∪ Σ∗〈aabb〉
)

;

ϕ4(⊥)=

(
ε〈ε〉 ∪ ab〈ε〉 ∪ a〈bc〉 ∪ aabb〈ε〉

Σ∗〈ε〉 ∪ Σ∗〈ab〉 ∪ Σ∗〈a2b2〉 ∪ Σ∗〈a3b3〉
)

;

ϕ5(⊥)=

(
ε〈ε〉 ∪ ab〈ε〉 ∪ a2b2〈ε〉 ∪ a3b3〈ε〉 ∪ a〈bc〉 ∪ aab〈bc〉 ∪ ε〈abcd〉

Σ∗〈ε〉 ∪ Σ∗〈ab〉 ∪ Σ∗〈a2b2〉 ∪ Σ∗〈a3b3〉 ∪ Σ∗〈a4b4〉
)

.

Thus, the unique solution of the system is S = { ai〈an−ibncndn〉 | n > i >
0 } ∪ { anbi〈bn−icndn〉 | n > i > 0 }, and A = { x〈anbn〉 | x ∈ Σ∗ }.
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Definitions 2 and 5 are proved equivalent as follows. Let ϕ = (ϕ1, . . . , ϕn)
be a vector function. Denote by [ϕ]i the i-th component of the vector ϕ.

Theorem 1. Let G = (Σ, N, P, S) be a grammar with contexts and let X =
ϕ(X) be the associated system of language equations. Let u〈v〉 ∈ Σ∗ × Σ∗ be
a string with a context. Then, for every A ∈ N ,

u〈v〉 ∈
[ ⊔

t>0

ϕt(∅, . . . ,∅)
]

A
if and only if `G [A, u〈v〉].

The following obvious property of concatenation of languages with con-
texts shall be referenced in the proof of the theorem.

Lemma 4. Let L1, . . . , Lk ⊆ Σ∗×Σ∗ and let u〈v〉 be a string with a context.
Then u〈v〉 ∈ L1 · . . . ·Lk if and only if there exists a factorization v = v1 . . . vk

such that uv1 . . . vi−1〈vi〉 ∈ Li for all i ∈ {1, . . . , k}.

Proof. ⇒© Let u〈v〉 ∈ L1·. . .·Lk be a string with a context. It can be factorized
as u〈v〉 = u1〈v1〉 · . . . · uk〈vk〉, with ui〈vi〉 ∈ Li for all i ∈ {1, . . . , `}.

For a pair of strings ui〈vi〉 and uj〈vj〉, according to the definition of
concatenation of strings with a context, ui〈vi〉 · uj〈vj〉 = ui〈vivj〉 with uj =
uivi. Concatenation of the form u1〈v1〉 · . . . · uk〈vk〉 = u〈v〉 can only be
obtained if u1 = u and v = v1 . . . vk.
⇐© Let u ∈ Σ∗ and v = v1 . . . vk (with vi ∈ Σ) be strings with a context, such
that uv1 . . . vi−1〈vi〉 ∈ Li for a given set of languages L1, . . . , Lk.

According to the definition of concatenation of two strings with contexts,

u〈v1〉 · uv1〈v2〉 · uv1v2〈v3〉 · . . . · uv1 . . . vk−1〈vk〉 =

= u〈v1v2〉 · uv1v2〈v3〉 · . . . · uv1 . . . vk−1〈vk〉 =

= u〈v1v2v3〉 · . . . · uv1 . . . vk−1〈vk〉 =

= u〈v1 . . . vk〉 = u〈v〉 ∈ L1 · . . . · Lk.

Proof of Theorem 1. ⇒© The proof is by induction on t, the number of itera-

tions made until u〈v〉 ∈
[
ϕt(∅, . . . ,∅)

]
A
.

Basis. Let t = 0, then there are no A ∈ N satisfying the assumptions.
Induction step. Let the string u〈v〉 be obtained in t iterations, that is,

u〈v〉 ∈ ϕA(ϕt−1(⊥)), where ⊥= (∅, . . . ,∅) is the least element. Then, sub-
stituting ϕt−1(⊥) into the equation for A yields

u〈v〉 ∈
⋃

A→α1&...&αk&
&¢β1&...&¢βm&
&Pγ1&...&Pγn∈P

[ k⋂
i=1

αi(ϕ
t−1(⊥))∩

m⋂
i=1

¢βi(ϕ
t−1(⊥))∩

n⋂
i=1

Pγi(ϕ
t−1(⊥))

]
.
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Hence, there should exist a rule

A → α1 & . . . & αk & ¢β1 & . . . ¢βm &Pγ1 & . . . &Pγn, (3)

such that

• for each αi = X1 . . . X` with i ∈ {1, . . . , k}, uv1 . . . vj−1〈vj〉 ∈
Xj(ϕ

t−1(⊥)), for all j ∈ {1, . . . , `};
• for each ¢βi = ¢Y1 . . . Y` with i ∈ {1, . . . , m}, u1 . . . uj−1〈uj〉 ∈

Xj(ϕ
t−1(⊥)), for all j ∈ {1, . . . , `};

• for each Pγi = PZ1 . . . Z` with i ∈ {1, . . . , n}, w1 . . . wj−1〈wj〉 ∈
Xj(ϕ

t−1(⊥)), with uv = w1 . . . w`, for all j ∈ {1, . . . , `}.
Consider first the conjuncts of the form αi, for i ∈ {1, . . . , k}. Let αi =

X1 . . . X` with Xj ∈ Σ∪N and j ∈ {1, . . . , `}. Substituting ϕt−1(⊥) into each
Xj gives αi(ϕ

t−1(⊥)) = X1(ϕ
t−1(⊥)) · . . . ·X`(ϕ

t−1(⊥)). If Xj = a ∈ Σ, then
the substitution forms a constant language: Xj(ϕ

t−1(⊥)) = { x〈a〉 | x ∈ Σ∗ }.
If Xj is a nonterminal B ∈ N , then Xj(ϕ

t−1(⊥)) =
[
ϕt−1(⊥)

]
B
.

By Lemma 4, if a string u〈v〉 belongs to the concatenation X1 · . . . ·X`,
then it is of the form u〈v〉 = u〈v1〉 · uv1〈v2〉 · . . . · uv1 . . . v`−1〈v`〉, with

uv1 . . . vj−1〈vj〉 ∈ Xj(ϕ
t−1(⊥)). (4)

Then, for each nonterminal symbol Xj = B ∈ N , the string with a context
uv1 . . . vj−1〈vj〉 should be in

[
ϕt−1(⊥)

]
B
, and hence, by the induction hypoth-

esis, `G [Xj, uv1 . . . vj−1〈vj〉]. For each Xj = a ∈ Σ, the above condition (4)
implies that vj = a, and hence `G [Xj, uv1 . . . vj−1〈vj〉] as an axiom.

The cases of conjuncts ¢βi and Pγi are analogous: one can show that
`G [Yj, u1 . . . uj−1〈uj〉] and `G [Zj, w1 . . . wj−1〈wj〉], using the induction hy-
pothesis for nonterminal symbols and the axiom for terminal symbols.

Thus all the premises for deducing the item [A, u〈v〉] according to the
rule (3) have been obtained, and one can make the desired step of deduction:
`G [A, u〈v〉].

⇐© Assume that `G [A, u〈v〉], and that it is deduced in p steps. It is

claimed that u〈v〉 ∈
[
ϕt(⊥)

]
A

for some t = t(p). The proof is by induction
on p.

Basis. Let p = 1, that is, the item [A, u〈v〉] is deduced in a single step,
without any premises. Then it is obtained by a rule comprised of one or more
conjuncts of the form v, ¢u and Puv (such as A → v or A → v&¢u&Puv).
Then u〈v〉 ∈ ϕ1(∅, . . . ,∅).

Induction step. Assume that an item [A, u〈v〉] is deduced in p steps.
The pth step of deduction is applying some rule

A → α1 & . . . & αk & ¢β1 & . . . & ¢βm &Pγ1 & . . . &Pγn,

such that
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• `G [Xj, uv1 . . . vj−1〈vj〉], with j ∈ {1, . . . , `}, for each conjunct αi =
X1 . . . X` in the rule;

• `G [Yj, u1 . . . uj−1〈uj〉], j ∈ {1, . . . , `}, for each conjunct ¢βi =
¢Y1 . . . Y` in the rule;

• `G [Zj, w1 . . . wj−1〈wj〉], j ∈ {1, . . . , `}, uv = w1 . . . w`, for each con-
junct Pγi = PZ1 . . . Z` in the rule.

Consider any unquantified conjunct αi = X1 . . . X` with Xj ∈ Σ ∪ N ,
and fix any j-th symbol Xj. It is known that `G [Xj, uv1 . . . vj−1〈vj〉]. If
Xj = B ∈ N , then the deduction of the item [Xj, uv1 . . . vj−1〈vj〉] takes
less than p steps, and therefore, by the induction hypothesis, there exist
a number ti,j, such that uv1 . . . vj−1〈vj〉 ∈ B(ϕti,j(⊥)). If Xj = a ∈ Σ,
then uv1 . . . vj−1〈vj〉 = uv1 . . . vj−1〈a〉 ∈ Σ∗〈a〉. As the concatenation of these
strings with contexts is u〈v1〉·uv1〈v2〉·. . .·uv1 . . . vj−1〈vj〉 = u〈v〉 by Lemma 4,
altogether, u〈v〉 ∈ αi(ϕ

ti(⊥)), where ti = maxj ti,j.
Applying the same procedure to each conjunct αi, ¢βi or Pγi similarly

yields u〈v〉 ∈ αi(ϕ
ti(⊥)), u〈v〉 ∈ ¢βi(ϕ

ti(⊥)) or u〈v〉 ∈ Pγi(ϕ
ti(⊥)), for some

appropriate number ti. Let t be the maximum of all these numbers. Then,

u〈v〉 ∈
k⋂

i=1

αi(ϕ
t(⊥)) ∩

m⋂
i=1

¢βi(ϕ
t(⊥)) ∩

n⋂
i=1

Pγi(ϕ
t(⊥)) ⊆

[
ϕt+1(⊥)

]
A
,

as desired.

4 Normal form

The origin of the normal form for grammars with one-sided contexts devel-
oped in this section is the Chomsky normal form for standard context-free
grammars, in which all rules are of the form A → BC and A → a. Its exten-
sion to conjunctive grammars allows rules of the form A → B1C1& . . . &BkCk.
The transformation to this normal form is done by first eliminating ε-
conjuncts, that is, rules of the form A → ε& . . ., and then removing unit
conjuncts, or rules of the form A → B& . . .. This transformation shall now
be further extended to grammars with contexts.

The task of eliminating ε-conjuncts is formulated in the same way: for
any given grammar with contexts, the goal is to construct an equivalent (with
exception of the membership of ε) grammar without epsilon conjuncts. A
similar construction for context-free grammars (as well as for conjunctive
grammars) begins with determining the set of nonterminals that generate
the empty string, which is obtained as a least upper bound of an ascending
sequence of sets of nonterminals. For grammars with contexts, it is necessary
to consider pairs of the form (A,R), with A ∈ N and R ⊆ N , representing
the intuitive idea that A generates ε in the context of the form described by
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all nonterminals in R. The set of all such pairs is obtained as a limit of a
sequence of sets as follows.

Definition 6. Let G = (Σ, N, P, S) be a grammar with contexts. Assume,
without loss of generality, that in each rule of the grammar, the context quan-
tifiers are applied only to single nonterminal symbols rather than concatena-
tions. Construct the sequence of sets Nullablei(G) ⊆ N × 2N , with i > 0,
by setting

Nullable0(G) = ∅,

Nullablei+1(G) =
{

(A, {D1, . . . , Dm} ∪ {E1, . . . , En} ∪R1 ∪ . . . ∪Rk)
∣∣

A → α1 & . . . & αk & ¢D1 & . . . & ¢Dm &PE1 & . . . &PEn ∈ P,

∃R1, . . . , Rk ⊆ N : (α1, R1), . . . , (αk, Rk) ∈ Nullable∗i (G)
}
,

where S∗, for any set S ⊆ N×2N , denotes the set of all pairs (A1 . . . A`, R1∪
. . . ∪R`) with ` > 0 and (Ai, Ri) ∈ S.

Finally, let

Nullable(G) =
⋃
i>0

Nullablei(G).

In the definition of S∗, note that ∅∗ = {(ε,∅)}. This value of
Nullable∗i (G) is used in the construction of Nullable1(G).

The next lemma explains how the set Nullable(G) represents the gen-
eration of ε by different nonterminals in different contexts.

Lemma 5. Let G = (Σ, N, P, S) be a grammar with contexts, let A ∈ N
and u ∈ Σ∗. Then, u〈ε〉 ∈ LG(A) if and only if there exist K1, . . . , Kt ∈
N , such that (A, {K1, . . . , Kt}) ∈ Nullable(G) and ε〈u〉 ∈ LG(K1), . . . ,
ε〈u〉 ∈ LG(Kt).

Let us now state an extended lemma, which shall clearly imply Lemma 5.

Lemma 5′. Let G = (Σ, N, P, S) be a grammar with contexts, let A ∈ N
and u ∈ Σ∗. Then the following statements are equivalent:

1. there exist K1, . . . , Kt ∈ N , such that (A, {K1, . . . , Kt}) ∈
Nullable(G) and ε〈u〉 ∈ LG(K1), . . . , ε〈u〉 ∈ LG(Kt);

2. u〈ε〉 ∈ LG(A);

3. there exists a rule

A → α1 & . . . & αk & ¢D1 & . . . & ¢Dm &PE1 & . . . &PEn, (5)

such that there exist R1, . . . , Rk ⊆ N with (α1, R1), . . . , (αk, Rk) ∈
Nullable∗(G) and ε〈u〉 ∈ LG(K) for all K ∈
{D1, . . . , Dm, E1, . . . , En} ∪R1 ∪ . . . ∪Rk.
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Proof. 1 =⇒ 2 Let R = {K1, . . . , Kt} and (A,R) ∈ Nullable(G). Ac-
cording to Definition 6, (A,R) ∈ Nullablen(G) for some n > 0. The proof
is by induction on n.

Basis. Let n = 0, then Nullable0(G) = ∅ and there is no A ∈ N
satisfying the assumptions.

Induction step. Let (A,R) ∈ Nullablen(G) and ε〈u〉 ∈ LG(K) for all
K ∈ R.

According to Definition 6, the set P contains a rule of the form

A → α1 & . . . & αk & ¢K ′
1 & . . . & ¢K ′

q &PK ′
q+1 & . . . &PK ′

t′ ,

where R′ = {K ′
1, . . . , K

′
t′} ⊆ R.

For each unquantified conjunct αi in this rule, let Ri ⊆ R be any set with
(αi, Ri) ∈ Nullable∗n−1(G); such a set exists according to Definition 6. Let
αi = Xi,1 . . . Xi,` with ` > 0 and Xi,1, . . . , Xi,` ∈ Σ ∪ N . Then, by the
definition of a “star” of Nullable∗n−1(G), there exist sets Ri,1, . . . , Ri,` ⊆ N
with Ri,1 ∪ . . . ∪ Ri,` = Ri and (Xi,j, Ri,j) ∈ Nullablen−1(G) for each j.
Therefore, by the induction hypothesis ` times, u〈ε〉 ∈ LG(Xi,j) for each j,
that is, `G [Xi,1, u〈ε〉], . . . , [Xi,`, u〈ε〉].

The same procedure is repeated for every pair (αi, Ri) ∈
Nullable∗n−1(G), where αi = Xi,1 . . . Xi,`i

, which gives all the premises for
deducing the membership of u〈ε〉 in LG(A):

[X1,1, u〈ε〉], . . . , [Xk,`, u〈ε〉], [K ′
1, ε〈u〉], . . . , [K ′

t′ , ε〈u〉] `G [A, u〈ε〉].
2 =⇒ 3 The proof is by induction on p, the number of steps used in

deduction of an item [A, u〈ε〉].
Basis. Let p = 1. Consider an item [A, u〈v〉] which is obtained by some

rule A → ε ∈ P . Then (A,∅) ∈ Nullable(G).
Induction step. Consider an item [A, u〈ε〉] which is obtained by some rule

A → α1 & . . . & αk & ¢K ′
1 & . . . & ¢K ′

q &PK ′
q+1 & . . . &PK ′

t′ ∈ P, (6)

such that u〈ε〉 ∈ LG(Xi,j) (for each unquantified conjunct αi = Xi,1 . . . Xi,`i
)

and ε〈u〉 ∈ LG(K ′
i) (for each quantified conjunct K ′

i of the rule, with i ∈
{1, . . . , t′}).

Consider some conjunct αi = Xi,1 . . . Xi,`i
of the rule (6). By definition

of a “star” of Nullable(G), there exist sets Ri,1, . . . , Ri,`i
with Ri,1 ∪

. . . ∪ Ri,`i
= Ri such that (Xi,j, Ri,j) ∈ Nullable∗(G), for j ∈ {1, . . . , `i}.

According to Definition 6, (αi, Ri) ∈ Nullable∗(G).
The same procedure is repeated for each unquantified conjunct of the

rule (6).
Thus, (αi, Ri) ∈ Nullable∗(G), for all i ∈ {1, . . . , k}.
3 =⇒ 1 . Let the rule of the form (5) be in P . By Definition 6,

(A, {D1, . . . , Dm, E1, . . . , En} ∪ R1 ∪ . . . ∪ Rk) ∈ Nullablen(G) for some
n > 0, where R1, . . . , Rk ⊆ N and (αi, Ri) ∈ Nullable∗n−1(G) for each
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i ∈ {1, . . . , k}. Then {K1, . . . , Kt} = {D1, . . . , Dm, E1, . . . , En}∪R1∪. . .∪Rk,
and the string ε〈u〉 is in LG(K) for all K ∈ {K1, . . . , Kt}.

It is convenient to begin the elimination of ε-conjuncts with the following
pre-processing stage.

Lemma 6. For every grammar with contexts, there exists and can be effec-
tively constructed another grammar with contexts generating the same lan-
guage, in which all rules are of the form

A → BC (7a)

A → a (7b)

A → B1 & . . . & Bk & ¢D1 & . . . & ¢Dm &PE1 & . . . &PEn (7c)

A → ε, (7d)

where a ∈ Σ and A, B, C, Di, Ei ∈ N .

Proof. Each conjunct in the given grammar G = (Σ, N, P, S) is of one of the
following forms:

• α, with A ∈ N , α ∈ (Σ ∪N)∗, |α| > 1;

• a, with A ∈ N , a ∈ Σ;

• ε, with A ∈ N .

All unquantified conjuncts α of A (α ∈ (Σ ∪N)∗) which have more than
two symbols, should be split into two nonterminals by introducing new ones.
The resulting conjunct should be of the form BC with B,C ∈ N . Every
appearance of a terminal a ∈ Σ in a conjunct αi is replaced with a new
nonterminal Xa which has the unique rule Xa → a.

All quantified conjuncts ¢β (with |β| > 1, β ∈ (Σ ∪ N)∗) and Pγ (with
|γ| > 1, γ ∈ (Σ ∪ N)∗) should be moved into a separate rule with a new
nonterminal in its left-hand side. Each such new nonterminal should have
one rule only.

All quantified conjuncts ¢a or Pa (with a ∈ Σ) should be replaced with
a conjunct of the form ¢Xa or PXa, respectively, and a new rule Xa → a
should be added to the grammar.

All conjuncts of the form ε in a rule for nonterminal A are included in P ′

without any alteration.

Lemma 7. Let G = (Σ, N, P, S) be a grammar with contexts, let A ∈ N
and u ∈ Σ∗, and assume that there exist two distinct sets R,R′ ⊆ N with
(A,R), (A,R′) ∈ Nullable(G) and ε〈u〉 ∈ LG(K) for each K ∈ R ∪ R′.
Then the grammar is ambiguous.
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Proof. According to Definition 6, (A,R), (A,R′) ∈ Nullablen(G) for some
n > 0. Let n be the least such number.

Prove by induction on n, that the grammar G has an ambiguity of choice
of rule for some nonterminal and for the string u〈ε〉.

Basis. Let n = 0, then Nullablen(G) = ∅ and there is no A ∈ N
satisfying the assumptions.

Induction step. Consider a pair (A,R) ∈ Nullablen(G). Applying
Lemma 5′ gives that u〈ε〉 ∈ LG(A) and the last step of its deduction uses a
rule

A → α1 & . . . & αk & ¢D1 & . . . & ¢Dm &PE1 & . . . &PEn, (8)

where R = {D1, . . . , Dm, E1, . . . , En}∪R1∪ . . .∪Rk for some R1, . . . , Rk ⊆ N
with (αi, Ri) ∈ Nullable∗(G) for each i ∈ {1, . . . , k}.

On the other hand, consider a pair (A,R′) ∈ Nullablen(G). Applying
Lemma 5′ gives that u〈ε〉 ∈ LG(A), where the last step of its deduction uses
a rule

A → α′1 & . . . & α′k′ & ¢D′
1 & . . . & ¢D′

m′ &PE ′
1 & . . . &PE ′

n′ , (9)

with R′ = {D′
1, . . . , D

′
m′ , E ′

1, . . . , E
′
n′}∪R′

1∪. . .∪R′
k′ for some R′

1, . . . , R
′
k′ ⊆ N

with (α′i, R
′
i) ∈ Nullable∗(G) for each i ∈ {1, . . . , k′}.

If the rules (8) and (9) are distinct, then the grammar G has ambiguity
of choice of rule, which proves the lemma.

Assume that (8) and (9) are the same rule. Then the processing of rule (8)
in the construction of the set Nullable(G) has yielded two distinct pairs
(A,R), (A,R′) ∈ Nullablen(G) with different sets of contexts: R 6= R′.

Thus, there exist (possibly empty) sets R1, . . . , Rk, R
′
1, . . . , R

′
k such that

(A, {D1, . . . , Dm, E1, . . . , En} ∪R1 ∪ . . . ∪Rk) ∈ Nullablen(G)

and

(A, {D1, . . . , Dm, E1, . . . , En} ∪R′
1 ∪ . . . ∪R′

k) ∈ Nullablen(G),

such that R1 ∪ . . . ∪ Rk 6= R′
1 ∪ . . . ∪ R′

k, and at least for one j ∈ {1, . . . , k}
it holds that (αj, Rj) 6= (αj, R

′
j).

Let αj = X1 . . . X` with X1, . . . , X` ∈ N . Then for some nonterminal

B = Xi it holds that (B, R̃), (B, R̃′) ∈ Nullable∗n−1(G) with R̃, R̃′ ⊆ N and

R̃ 6= R̃′. By induction hypothesis, there exist two rules for the nonterminal
B such that x〈ε〉 ∈ LG(B) (for some x ∈ Σ∗).

The following transformation eliminates all epsilon conjuncts from a given
grammar with contexts.

Construction 1. Let G = (Σ, N, P, S) be a grammar with contexts, and
assume, without loss of generality, that G is of the form obtained in Lemma 6.
Consider the set Nullable(G) and construct the following grammar with
contexts G′ = (Σ, N, P ′, S).
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1. Add to P ′ all rules of the form A → a ∈ P .

2. Add to P ′ all rules of the form

A → B1 & . . . & Bk & ¢D1 & . . . & ¢Dm &PE1 & . . . &PEn ∈ P.

Additionally, if ε〈ε〉 ∈ LG(D1) ∩ . . . ∩ LG(Dm), then add a rule A →
B1 & . . . & Bk & E1 & . . . & En & ¢ε to P ′.

3. For every rule of the form A → BC, add it to P ′ together with the
following ones:

(a) A → B &PK1 & . . . &PKt, for all (C, {K1, . . . , Kt}) ∈
Nullable(G);

(b) A → C & ¢K1 & . . . & ¢Kt, for all (B, {K1, . . . , Kt}) ∈
Nullable(G);

(c) A → C & ¢ε, if there exists a nonempty set {K1, . . . , Kt} ⊆ N ,
such that (B, {K1, . . . , Kt}) ∈ Nullable(G) and ε〈ε〉 ∈ LG(K1)∩
. . . ∩ LG(Kt).

Theorem 2. Let G = (Σ, N, P, S) be a grammar with contexts. Then the
grammar G′ = (Σ, N ′, P ′, S) obtained by Construction 1, generates the lan-
guage L(G′) = L(G) \ {ε}.
Proof. ⊆© Show by induction on p, the number of steps used in deduction
of an item [A, u〈v〉], that `G [A, u〈v〉], A ∈ N , u ∈ Σ∗, v ∈ Σ+ implies
`G′ [A, u〈v〉].

Basis. Let p = 1. Consider an item [A, u〈v〉] with v = a ∈ Σ, which is
obtained by some rule A → a ∈ P . According to Construction 1, the rule
A → a is also in P ′, and hence `G′ [A, u〈v〉].

Induction step. Consider an item [A, u〈v〉] which is deduced in p
steos either by some rule A → BC ∈ P or by some rule A →
B1 & . . . & Bk & ¢D1 & . . . & ¢Dm &PE1 & . . . &PDn ∈ P .

Consider the both possible cases.
Case 1. The item [A, u〈v〉] is deduced by applying the inference rule to

the items [B, u〈v1〉], [C, uv1〈v2〉] (with u, v1, v2 ∈ Σ∗, v1v2 = v), each of which
is deduced in less than p steps. The following three possibilities have to be
considered in this case:

1. Let v1 6= ε and v2 6= ε. By induction hypothesis, `G′ [B, u〈v1〉] and
`G′ [C, uv1〈v2〉]. By the rule A → BC ∈ P (which is added to P ′ by
Construction 1), [B, u〈v1〉], [C, uv1〈v2〉] `G′ [A, u〈v〉].

2. Let v1 6= ε and v2 = ε. That is, `G [B, u〈v1〉] and `G [C, uv1〈ε〉]. By
induction hypothesis, `G′ [B, u〈v1〉]. According to Lemma 5′, there
exist K1, . . . , Kt ∈ N , such that (C, {K1, . . . , Kt}) ∈ Nullable(G)
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and ε〈uv1〉 ∈ LG(Ki) for all i ∈ {1, . . . , t}. Obviously, `G [K1, ε〈uv1〉],
. . . , [Kt, ε〈uv1〉]. By induction hypothesis, each of these items can be
deduced in the grammar G′.

According to Construction 1, the processung of some rule A → BC ∈
P with (C, {K1, . . . , Kt}) ∈ Nullable(G) adds to P ′ a rule of the
form A → B &PK1 & . . . &PKt, such that [B, u〈v1〉], [K1, ε〈uv1〉],
. . . , [Kt, ε〈uv1〉] `G′ [A, u〈v1〉]. That is, `G′ [A, u〈v〉], since v1 = v.

3. Let v1 = ε and v2 6= ε. Similarly to the previous case, `G′ [K1, ε〈u〉],
. . . , [Kt, ε〈u〉], (with K1, . . . , Kt ∈ N such that (B, {K1, . . . , Kt}) ∈
Nullable(G)), `G′ [C, u〈v2〉], and a rule A → C & ¢K1 & . . . & ¢Kt

is added to P ′, by which [C, u〈v2〉], [K1, ε〈u〉], . . . , [Kt, ε〈u〉] `G [A, u〈v〉]
(since v2 = v).

Case 2. The item [A, u〈v〉] is deduced by appyling the inference rule to
the items [B1, u〈v〉], . . . , [Bk, u〈v〉], [D1, ε〈u〉], . . . , [Dm, ε〈u〉], [E1, ε〈uv〉],
. . . , [En, ε〈uv〉] (with u, v ∈ Σ∗), each of which is deduced in less than p
steps.

By induction hypothesis, each of these items can be deduced in the gram-
mar G′.

By the rule A → B1 & . . . & Bk & ¢D1 & . . . & ¢Dm

&PE1 & . . . &PEn ∈ P ′ (which is added to P ′ by Construction 1),
[B1, u〈v〉], . . . , [Bk, u〈v〉], [D1, ε〈u〉], . . . , [Dm, ε〈u〉], [E1, ε〈uv〉], . . . ,
[En, ε〈uv〉] `G′ [A, u〈v〉].

⊇© Show by induction on p, the number of steps used in deduction of an
item [A, u〈v〉], that `G′ [A, u〈v〉] implies `G [A, u〈v〉] and v 6= ε.

Basis. Let p = 1. Consider an item [A, u〈v〉] with v = a ∈ Σ, which
is deduced in the grammar G′ by some rule A → a ∈ P ′. According to
Construction 1, A → a ∈ P and `G [A, u〈v〉].

Induction step. Consider an item [A, u〈v〉] which is deduced in the gram-
mar G′ by some rule p ∈ P ′.

1. Let p = B1 & . . . & Bk & ¢D1 & . . . & ¢Dm &PE1 & . . . &PEn ∈
P ′. Then `G′ [B1, u〈v〉], . . . , [Bk, u〈v〉], [D1, ε〈u〉], . . . , [Dm, ε〈u〉],
[E1, ε〈uv〉], . . . , [En, ε〈uv〉]. By induction hypothesis, each of these
items is deducible in the grammar G.

According to Construction 1, the rule p is in P .

Thus, [B1, u〈v〉], . . . , [Bk, u〈v〉], [D1, ε〈u〉], . . . , [Dm, ε〈u〉], [E1, ε〈uv〉],
. . . , [En, ε〈uv〉] `G [A, u〈v〉].

2. Let p = B1 & . . . & Bk & E1 & . . . & En & ¢ε ∈ P ′. Similarly to the
previous case, `G [B1, u〈v〉], . . . , [Bk, u〈v〉], [E1, u〈v〉], . . . , [Ek, u〈v〉].
Hence, `G [A, u〈v〉] by the rule p (which is P by Construction 1).
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3. Let p = A → BC ∈ P , implying that `G [B, u〈v1〉], [C, uv1〈v2〉], with
v1v2 = v. By induction hypothesis, both of these items can be deduced
in G.

According to Construction 1, p is also contained in the grammar G, and
the item [A, u〈v〉] can be inferred: [B, u〈v1〉], [C, uv1〈v2〉] `G [A, u〈v〉].

4. Let p = B &PK1 & . . . &PKt ∈ P ′. That is, the items [B, u〈v〉],
[K1, ε〈uv〉], . . . , [Kt, ε〈uv〉] can be deduced in both the grammar G
and G′ (the latter holds by induction hypothesis).

According to Construction 1, the grammar G should have a rule of the
form A → BC, such that (C, {K1, . . . , Kt}) ∈ Nullable(G). Then,
according to Lemma 5′, `G [C, uv〈ε〉].
By the rule A → BC ∈ P , [B, u〈v〉], [C, uv〈ε〉] `G [A, u〈v〉].

5. Let p = B & ¢K1 & . . . & ¢Kt ∈ P ′. Similarly to the previous case,
one can conclude that `G′ [C, u〈v〉], [K1, ε〈u〉], . . . , [Kt, ε〈u〉] (with
K1, . . . , Kt ∈ N such that (B, {K1, . . . , Kt}) ∈ Nullable(G)) and
`G [B, u〈ε〉].
By the rule A → BC ∈ P , [B, u〈ε〉], [C, u〈v〉] `G [A, u〈v〉].

6. Let p = C & ¢ε ∈ P ′. That is, the item [C, ε〈v〉] is deducible in both
grammars G′ and G (by induction hypothesis).

Similarly to the previous cases, [B, u〈ε〉], [C, u〈v〉] `G [A, u〈v〉], by the
rule A → BC (which is in P by Construction 1).

Lemma 8. Construction 1 preserves unambiguity of the grammar.

Proof. Let G = (Σ, N, P, S) be a grammar with contexts to be transformed
by Construction 1 to an equivalent epsilon-free grammar G′ = (Σ, N, P ′, S).
Assume, without loss of generality, that G is of the form obtained in Lemma 6.

Since the steps 1 and 2 of Construction 1 do not add to the set P ′ any
rules which are not already in P , the ambiguity of the grammar is preserved.

Consider a rule of the form A → BC ∈ P . Suppose that some string
u〈v〉 is generated by more than one rule of the forms (3a)–(3c), which can
be added to P ′ according to step 3 of Construction 1.

Then the following cases are possible.

1. The string u〈v〉 is generated by two rules of the form (3a). That is,
(C, R), (C, R′) ∈ Nullable(G) with R,R′ ⊆ N and R 6= R′. By
Lemma 5, ε〈u〉 ∈ LG(K) for all K ∈ R ∪ R′. Applying Lemma 7 to
(C, R), (C, R′) ∈ Nullable(G) gives that the grammar G is ambigu-
ous, which is a contradiction to the assumptions.
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2. The string u〈v〉 is generated by two rules of the form (3b). That is,
(B, R), (B,R′) ∈ Nullable(G) with R, R′ ⊆ N and R 6= R′. By
Lemma 5, ε〈u〉 ∈ LG(K) for all K ∈ R ∪ R′. Applying Lemma 7 to
(B, R), (B,R′) ∈ Nullable(G) gives that the grammar G is ambigu-
ous, which is a contradiction to the assumptions.

3. The string u〈v〉 is generated by two rules, one of the form (3a) and
the other of the form (3b). This directly implies u〈v〉 ∈ LG(B) and
u〈v〉 ∈ LG(C). By the construction of these two rules, (C,R), (B, R′) ∈
Nullable(G) with R, R′ ⊆ N . The two following cases are possible.

• Let C = B and R 6= R′. Then applying Lemma 7 to
(C,R), (C, R′) ∈ Nullable(G) gives that the grammar G is am-
biguous, which is a contradiction to the assumptions.

• Let C 6= B. Since (C,R) ∈ Nullable(G) and ε〈uv〉 ∈ LG(K)
for all K ∈ R, then uv〈ε〉 ∈ LG(C) by Lemma 5. Similarly, by
Lemma 5, (B, R′) ∈ Nullable(G), and ε〈u〉 ∈ LG(K) for all
K ∈ R′ imply that u〈ε〉 ∈ LG(B).

Therefore, the grammar G has an ambiguity of concatenation for
the string u〈v〉 = u〈ε〉·u〈v〉 = u〈v〉·uv〈ε〉, with u〈ε〉, u〈v〉 ∈ LG(B)
and u〈v〉, uv〈ε〉 ∈ LG(C).

4. The string u〈v〉 is generated by two rules, one of the form (3b) and
the other of the form (3c). The latter rule requires u = ε. Fur-
thermore, the rule of the form (3b) may not have any contexts, since
ε〈ε〉 /∈ LG′(K) for all K ∈ R. That is, (B,∅), (B, R) ∈ Nullable(G)
with R ⊆ N and ε〈ε〉 ∈ LG(K) for all K ∈ R. Applying Lemma 7
to (B,∅), (B, R) ∈ Nullable(G) and the string ε〈ε〉 gives that the
grammar G is ambiguous, which is a contradiction to the assumptions.

5. The string u〈v〉 is generated by two rules, one of the form (3a) and the
other of the form (3c). This implies that u〈v〉 ∈ LG(B) and u〈v〉 ∈
LG(C), since the latter rule requires u = ε. By the construction of the
two rules, (C, R), (B,R′) ∈ Nullable(G) and ε〈ε〉 ∈ LG(K) for all
K ∈ R′.

Since (C,R) ∈ Nullable(G) and ε〈v〉 ∈ LG(K) for all K ∈ R,
by Lemma 5, v〈ε〉 ∈ LG(C). Similarly, by Lemma 5, (B, R′) ∈
Nullable(G) and ε〈ε〉 ∈ LG(K) for all K ∈ R′. This implies that the
string ε〈ε〉 is in LG(B).

Thus, there is an ambiguity of concatenation in the grammar G: ε〈v〉 =
ε〈v〉·v〈ε〉 = ε〈ε〉·ε〈v〉, with ε〈v〉, ε〈ε〉 ∈ LG(B) and v〈ε〉, ε〈v〉 ∈ LG(C).
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The second stage of the transformation to the normal form is removing
the unit conjuncts in rules of the form A → B& . . .. Already for conjunctive
grammars, the only known transformation involves substituting all rules for
B into all rules for A, and results in a worst-case exponential blowup. The
same construction applies verbatim for grammars with contexts.

Lemma 9. Let G = (Σ, N, P, S) be a grammar with contexts without epsilon
conjuncts. Let

A → B & β2 & . . . & βk & ¢D1 & . . . & ¢Dm &PE1 & . . . &PEn (10)

be any rule with a unit conjunct B.
If A 6= B, let B → αi1 & . . . & αiki

& ¢Di1 & . . . & ¢Dimi
&

&PEi1 & . . . &PEini
, with 1 6 i 6 r, be all rules for nonterminal B. Then

the rule (10) can be replaced with a collection of rules of the form

A → αi1 & . . . & αiki
& ¢Di1 & . . . & ¢Dimi

&PEi1 & . . . &PEini
&

& β2 & . . . & βk & ¢D1 & . . . & ¢Dm &PE1 & . . . &PEn (for 1 6 i 6 r)

without altering the language generated by the grammar.
If A = B, then the rule (10) can be removed.
In both cases, if G is unambiguous, then so is the resulting grammar.

Altogether, the transformations defined in this section lead to the fol-
lowing normal form, which extends the binary normal form of conjunctive
grammars [11].

Definition 7. A grammar with contexts G = (Σ, N, P, S) is said to be in the
binary normal form if each rule in P is in one of the forms

A → B1C1 & . . . & BkCk & ¢D1 & . . . & ¢Dm &PE1 & . . . &PEn (11a)

A → a & ¢D1 & . . . & ¢Dm &PE1 & . . . &PEn (11b)

A → B1C1 & . . . & BkCk & ¢ε (11c)

A → a & ¢ε (11d)

Theorem 3. For each grammar with contexts G = (Σ, N, P, S) there exists
and can be effectively constructed a grammar with contexts G′ = (Σ, N ′, P ′, S)
in the binary normal form, such that L(G) = L(G′). The construction pre-
serves unambiguity of the grammar.

Proof. First, the grammar is transformed using Lemma 6. Then epsilon
conjuncts are eliminated according to Theorem 2, and unit conjuncts are
removed by applying the transformation in Lemma 9 multiple times, as in
the case of conjunctive grammars [11, Lem. 2]. Finally, if ε ∈ L(G), then
a new start symbol S ′ is introduced, and a rule S ′ → ε is added to P ′.
For each rule S → α1 & . . . & αk & ¢D1 & . . . & ¢Dm &PE1 & . . . &PEn ∈
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P ′, a rule S ′ → α1 & . . . & αk & ¢D1 & . . . & ¢Dm &PE1 & . . . &PEn is be
added to P ′, as well.

If the grammar G is unambiguous, then so is the grammar G′, since each
step of the transformation preserves unambiguity (by virtue of Lemmata 8
and 9).

5 Parsing algorithm

5.1 General parsing algorithm

For each grammar with one-sided contexts in the binary normal form, there
exists a parsing algorithm that determines the membership of all substrings
of the input string in the languages generated by all nonterminals of the
grammar, storing the results in a table. This algorithm elaborates a simi-
lar procedure for conjunctive grammars [11], which in turn generalizes the
Cocke–Kasami–Younger algorithm for standard context-free grammars.

Let G = (Σ, N, P, S) be a grammar with contexts in the binary normal
form, and let w = a1 . . . an ∈ Σ+ with n > 1 and ak ∈ Σ be some string. For
every two positions i, j, with 0 6 i < j 6 n, define

Ti,j = {A | A ∈ N, `G [A, a1 . . . ai〈ai+1 . . . aj〉] }

The string w ∈ L(G) if and only if S ∈ T0,n.

Theorem 4. For every grammar with one-sided contexts G in the binary
normal form, Algorithm 1 correctly determines the membership of a given
string w = a1 . . . an in L(G), and does so in time O(|G|2 · n3), using space
O(|G| · n2).

From the loops in lines 3, 4, 8 and 10, it is evident that the innermost
statement in line 11 is executed O(|G| · n3) times. In order to do the calcu-
lations in line 11 in time proportional to |G|, one can replace the Cartesian
product by considering only the conjuncts occurring somewhere in the gram-
mar. The memory requirements of the algorithm are given by the size of the
sets Ti,j.

Example 4. Consider the grammar from Example 1 generating the language
{ anbncndn | n > 0 }. It can be transformed to the following grammar in the
binary normal form:
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Algorithm 1. Let G = (Σ, N, P, S) be a grammar with contexts in the
binary normal form. Let w = a1 . . . an ∈ Σ+ (with n > 1 and ai ∈ Σ) be the
input string. For all i, j with 0 6 i < j 6 n, compute Ti,j as follows.

1: if A → a1 & ¢ε ∈ P or A → a1 ∈ P then
2: T0,1 = T0,1 ∪ {A}
3: for j = 1, . . . , n do
4: while T0,j changes do
5: for all A → a & ¢D1 & . . . & ¢Dm′ &PE1 & . . . &PEm′′ ∈ P

do
6: if aj = a and D1, . . . , Dm′ ∈ T0,j−1 and E1, . . . , Em′′ ∈ T0,j

then
7: Tj−1,j = Tj−1,j ∪ {A}
8: for i = j − 2 to 0 do
9: let R = ∅ (R ⊆ N ×N)

10: for k = i + 1 to j − 1 do
11: R = R ∪ (Ti,k × Tk,j)
12: for all A → B1C1 & . . . & BmCm & ¢D1 & . . . & ¢Dm′ &

&PE1 & . . . &PEm′′ do
13: if (B1, C1), . . . , (Bm, Cm) ∈ R, D1, . . . , Dm′ ∈ T0,i, and

E1, . . . , Em′′ ∈ T0,j then
14: Ti,j = Ti,j ∪ {A}
15: for all A → B1C1 & . . . & BmCm & ¢ε do
16: if (B1, C1), . . . , (Bm, Cm) ∈ R and i = 0 then
17: Ti,j = Ti,j ∪ {A}
18: accept if and only if S ∈ T0,n
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S → SaD0 | SbC0

A → AaB0

Sa → A0S | a &PA

Sb → B0S | b &PA

Aa → A0A | a

A0 → a

B0 → b

C0 → c

D0 → d

The parsing table constructed by Algorithm 1 on the input w = aabbccdd
is given in Figure 2. The arrows in the figure indicate the logical dependen-
cies, and the dotted arrow refers to the dependence defined by the conjunct
PA.

Figure 2: Parsing table of string w = aabbccdd.
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5.2 Parsing unambiguous grammars

The parsing algorithm for unambiguous grammars with contexts uses dy-
namic programming technique to construct a two-dimensional table T in-
dexed by positions in the input and nonterminal symbols. Each entry of
the table assumes the value of a set of positions in the input string, which
are stored as a list in an ascending order. The element corresponding to a
position k (with 1 6 k 6 n) and a nonterminal A ∈ N is denoted by Tk[A].

By definition, a position i should be in Tk[A] if and only if 0 6 i < k and
a1 . . . ai〈ai+1 . . . ak〉 ∈ LG(A), where a = a1 . . . an is the input string. In the
end of the computation, each list Tk[A] will contain exactly these numbers.
The input string a1 . . . an ∈ L(G) if and only if the position 0 is in Tn[S].

The first loop (line 2) handles the substring a1 of the input string, since
that is the only possible substring whose context is empty.

Each jth iteration of the outer loop (line 5) determines the membership
of substrings ending at jth position in LG(A), for all A ∈ N .

The first nested loop (line 7) handles substrings of length 1 (that is,
a1, . . . , an) and stores in Tj[A] the value 0 if aj ∈ LG(A).

Substrings of greater lengths ending at jth position are processed in the
second nested loop by k (line 14). This loop constructs an auxiliary data
structure R: for each i ∈ {0, . . . , j − 2}, the element Ri contains all pairs
(B, C) ∈ U , for which the substring a1 . . . ai〈ai+1 . . . aj〉 is in LG(BC).

The kth iteration of this loop is denoted by (j, k); it handles the substrings
a1 . . . ai〈ai+1 . . . aj〉 of various lengths, with i + 1 ∈ {1, . . . , k}. The goal is
to determine all such substrings u〈vw〉, which belong to LG(BC) for some
(B, C) ∈ U , and in which the middle point in their factorization into u〈v〉 ∈
LG(B) and uv〈w〉 ∈ LG(C) is exactly k + 1, that is, the first part—u〈v〉—
ends at the position k and the second part—uv〈w〉—starts at the position
k+1. The substrings u〈vw〉 are identified by first considering the appropriate
conjunct, then checking the membership of the second substring in LG(C),
and finally by enumerating all appropriate first parts using the data stored
in Tk[B]. This is used to fill the elements of R, namely Rk−1, Rk−2, . . . , R0,
with appropriate conjuncts. An element Rk−1 gets completely filled after of
iteration (j, k).

The proof of correctness of the algorithm has to establish the following
three claims:

1. The implementation of Tj[A] by lists faithfully represents the high-level
set operations.

2. The algorithm is a correct recognizer, that is, it accepts a string w if
and only if w ∈ L(G).

3. The algorithm runs in time O(n2) for unambiguous grammars with
contexts, and in time O(n3) for arbitrary ones.

25



Algorithm 2. Let G = (Σ, N, P, S) be a grammar with one-sided contexts
in the binary normal form. Let w = a1 . . . an ∈ Σ+ (n > 1) be an input
string. Let U = { (B,C) | A → BC & . . . ∈ P }. For each j ∈ {1, . . . , n}, let
Tj[A] be a variable ranging over the subsets of {0, . . . , j − 1}. Let Rk range
over the subsets of U , for each k ∈ {0, . . . , n− 1}.
1: let Tj[A] = ∅ for all j = 1, . . . , n, A ∈ N
2: for all A → a & ¢ε do
3: if a1 = a then
4: T1[A] = {0}
5: for j = 1 to n do
6: while T changes do
7: for all A ∈ N do
8: if A → a & ¢D1 & . . . & ¢Dm′ &PE1 & . . . &PEm′′ ∈ P

then
9: if 0 ∈ Tj−1[D1]∩ . . .∩ Tj−1[Dm′ ] and 0 ∈ Tj[E1]∩ . . .∩

Tj[Em′′ ] then
10: Tj[A] = j − 1
11: else
12: Tj[A] = ∅
13: let Rk = ∅ for all k = 0, . . . , j − 1
14: for k = j − 1 to 1 do
15: for all (B, C) ∈ U do
16: if k ∈ Tj[C] then
17: for all i ∈ Tk[B] do
18: Ri = Ri ∪ {(B,C)}
19: for all A ∈ N do
20: for all A → B1C1 & . . . BmCm & ¢D1 & . . . & ¢Dm′ &

&PE1 & . . . &PEm′′ ∈ P do
21: if (B1, C1), . . . , (Bm, Cm) ∈ Rk−1 and 0 ∈ Tk−2[D]

(for all D ∈ {D1, . . . , Dm′}) and 0 ∈ Tj[E] (for all
E ∈ {E1, . . . , Em′′}) then

22: Tj[A] = Tj[A] ∪ {k − 1}
23: for all A → B1C1 & . . . BmCm & ¢ε do
24: if (B1, C1), . . . , (Bm, Cm) ∈ R0 then
25: Tj[A] = Tj[A] ∪ {0}
26: accept if and only if 0 ∈ Tn[S]
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This can be done similarly to the paper of Okhotin [17].
The following lemma [17] claims the truth of the first condition.

Lemma 10 ([17]). Each list Tj[A] always remains sorted. Each time the
algorithm checks the condition in line 16, every set Tj[A] does not contain
elements less than k. Each time the algorithm is about to execute the line 22
or 25, the set Tj[A] does not contain elements less than k.

The correctness of the algorithm is verbatim to the case of conjunctive
grammars [17].

Lemma 11 ([17]). For every grammar with contexts in the binary normal
form, in the computation of the algorithm 2 on an input string w ∈ Σ+,

1. after iteration j, for each A ∈ N and for each ` ∈ {1, . . . , j},

T`[A] = { i | 0 6 i < `, a1 . . . ai〈ai+1 . . . a`〉 ∈ LG(A) };

2. after iteration (j, k), for each A ∈ N ,

Tj[A] = { i | k − 1 6 i < j, a1 . . . ai〈ai+1 . . . a`〉 ∈ LG(A) };

3. after iteration (j, k), for each i with 0 6 i < j,

Ri =
{
(B,C) ∈ U

∣∣ ∃` : k 6 ` < j, a1 . . . ai〈ai+1 . . . a`〉 ∈ LG(B),

a1 . . . a`〈a`+1 . . . aj〉 ∈ LG(C)
}
.

The following lemma [17] states the time complexity of the algorithm 2
on unambiguous grammars with contexts.

Lemma 12 ([17]). Let G = (Σ, N, P, S) be grammar with contexts in the
binary normal form, and let w = a1 . . . an be the input string. Assume that
G satisfies Condition II in the definition 3 of an unambiguous grammar.
Then Algorithm 2, implemented on a random access machine, runs in time
O(n2). If the grammar G is ambiguous, the algorithm runs in time O(n3).

Since for every grammar with contexts one can construct an equivalent
grammar in the binary normal form, the following result can be stated.

Theorem 5. For every unambiguous grammar with contexts G =
(Σ, N, P, S) there exists an algorithm to test the membership of given strings
in L(G) in time O(n2).

Example 5. Consider the grammar with contexts from Example 1 and the
equivalent grammar in the binary normal form presented in Example 4. The
grammar is clearly unambiguous.

The parsing table constructed by Algorithm 2 is given in Figure 3.
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S A Sa Sb Aa A0 B0 C0 D0

a1 = a ∅ ∅ ∅ ∅ {0} {0} ∅ ∅ ∅
a2 = a ∅ ∅ ∅ ∅ {1} {1} ∅ ∅ ∅
a3 = b ∅ {1} ∅ ∅ {0} ∅ {2} ∅ ∅
a4 = b ∅ {0} ∅ {3} ∅ ∅ {3} ∅ ∅
a5 = c {3} ∅ ∅ {2} ∅ ∅ ∅ {4} ∅
a6 = c {2} ∅ {1} ∅ ∅ ∅ ∅ {5} ∅
a7 = d {1} ∅ {0} ∅ ∅ ∅ ∅ ∅ {6}
a8 = d {0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ {7}

Figure 3: Parsing table of string w = aabbccdd constructed by Algorithm 2.

Elements located at the intersection of the columns A0, B0, C0, and D0

and rows a1, . . . , a8 of the parsing table represent the substrings a, b, c, and
d of the input string, respectively. Thus, for example, the set {2} located in
the position (B0, a3) of the table corresponds to the fact that the substring
starting from position i = 2+1 and ending at position j = 3 has the property
B0.

Similarly, a set {2} located in the position (Sb, a4) states that the string
a1 . . . a3〈a3+1 . . . a4〉 = a1 . . . a3〈a4〉 = aab〈b〉 has the property Sb (by the rule
Sb → b &PA). The context PA in that rule is satisfied, since {0} is in the
position (A, a4) of the parsing table, meaning that ε〈aabb〉 ∈ LG(A).

The set {1} located in the position (Sa, a6) means that the string
a1〈a1+1 . . . a6〉 = a1〈a2 . . . a6〉 = a〈abbcc〉 has the property Sa (by the rule
Sa → A0S).

Finally, {0}, located in the position (S, a8) of the table, means that the
string a0〈a0+1 . . . a8〉 = ε〈a1 . . . a8〉 = ε〈w〉 has the desired property S. There-
fore, the string w = aabbccdd is in the language L(G).

6 Recognition in linear space

The cubic-time algorithm in Section 5 uses quadratic space, as do its context-
free and conjunctive prototypes. For conjunctive grammars, the membership
of a string can be recognized in linear space and exponential time [13] by
using deterministic rewriting of terms of a linearly bounded size. In this
section, this method is extended to handle the case of grammars with one-
sided contexts.

Let G = (Σ, N, P, S) be a grammar with one-sided contexts and let w =
a1 . . . an be an input string. The linear-space parsing algorithm presented
below constructs the sets T0,1, T0,2, . . . , T0,n, as in the top row of the table
in Algorithm 1, with

T0,i = {A ∈ N | ε〈a1 . . . ai〉 ∈ LG(A) }.
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The membership of symbols in each set T0,` is computed using term rewriting
similar to the one used for conjunctive grammars [13], which refers to the
previously computed sets T0,1, . . . , T0,`−1, as well as to the partially computed
set T0,`.

Consider every prefix a1 . . . a` of the input string. For ev-
ery symbol A ∈ N , define its height h`(A) as follows. Con-
sider the shortest deduction of [A, ε〈a1 . . . a`〉], and let A →
B1C1 & . . . & BmCm & ¢D1 & . . . & ¢Dm′ &PE1 & . . . &PEm′′ be the rule
used at the last step of this deduction. If m′′ = 0, then h`(A) is defined as
0; otherwise, h`(A) = max

(
h`(E1), . . . , h`(Em′′)

)
+ 1.

Lemma 13. There exists a deterministic term-rewriting procedure, which,
given a string a1 . . . a` with ai ∈ Σ, a nonterminal A ∈ N , the sets T0,i =
{D ∈ N | ε〈a1 . . . ai〉 ∈ LG(D) } with i ∈ {1, . . . , ` − 1} and the partially
constructed set T0,`, given as X = {E ∈ N | ε〈a1 . . . a`〉 ∈ LG(E), h`(E) <
h0 } for some h0 > 0, determines whether ε〈a1 . . . a`〉 ∈ LG(A) and h`(A) 6
h0, and does so using linearly bounded space.

The procedure tests the conjunction of these two conditions. If
ε〈a1 . . . a`〉 /∈ LG(A) or h`(A) > h0, in both cases it will give a negative
answer.

The rewriting system claimed by Lemma 13 is constructed as follows.
Let G = (Σ, N, P, S) be a grammar with contexts. Assume, without loss of
generality, that it is in the binary normal form and that the set of rules P is
linearly ordered.

Let P ′ be the set of rules of G with marked conjuncts, that is P ′ = { pi |
p is of the form (11a) or (11c), 1 6 i 6 k }. Let N+ = {A+ | A ∈ N } and
N− = {A− | A ∈ N }.

For every p = A → ϕ ∈ P , denote L(p) = L(ϕ); if the k-th conjunct of p
is an unquantified conjunct BC, denote L(pk) = LG(BC).

Terms are represented as strings over the alphabet Σ ∪N ∪N+ ∪N− ∪
P ′ ∪ {“(”, “)”} as follows:

• for every u ∈ Σ+ and A ∈ N , the following are terms for A: A(u),
A+(u), A−(u).

• if pi is a conjunct of the form BC and t1, t2 are terms for B and C
respectively, then pi(t1t2) is a term for A.

The string value of a term t is defined as follows:

• σ(A(u)) = σ(A+(u)) = σ(A−(u)) = u for all u ∈ Σ+;

• σ(pi(t1t2)) = σ(t1) · σ(t2).

Consider any term t̂(t), where t is a distinguished subterm. The left
context of this subterm within its parent term is defined by replacing t with
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a special marker #, and then obtaining the string value of all symbols to
the left of this marker. This value is given by λ(t̂(#)), which is inductively
defined as follows:

λ(pi(t1t2(#))) = σ(t1)λ(t2(#))

λ(pi(t1(#)t2)) = λ(t1(#))

λ(#) = ε

The notion of a true term with a distinguished subterm (understood as a
pair) is defined inductively on the size of the subterm:

• a term t̂(t) with a subterm t = A(u) is always true;

• a term t̂(t) with a subterm t = A+(u) is true if and only if λ(t̂(#)〈u〉 ∈
L(A);

• a term t̂(t) with a subterm A−(u) is true if and only if λ(t̂(#)〈u〉 /∈
L(A);

• a term t̂(t) with a subterm t = pi(t1t2) is true if and only if all of the
following conditions hold:

I. both subterms t1 and t2 of the term t̂(pi(t1t2)) are true;

II. for every rule r for A that precedes p it holds that λ(t̂(#))〈σ(t)〉 /∈
L(r);

III. for every conjunct pj of the rule p that precedes pi, it holds that
λ(t̂(#))〈σ(t)〉 ∈ L(pj);

IV. for every factorization σ(t1)σ(t2) = uv, with 0 < |u| < |σ(t1)| it
holds that λ(t̂(#))

〈
u
〉

/∈ L(B) or λ(t̂(#))u
〈
v
〉

/∈ L(C), where the
conjunct pi is of the form BC.

Now the set of rewriting rules can be defined.

1. In a term t̂(A(a)), its subterm A(a) with a ∈ Σ is rewritten as follows.

If there exists a rule of the form A →
a & ¢D1 & . . . & ¢Dm &PE1 & . . . &PEn in P , for which
D1, . . . , Dm ∈ T0,d (with d = |λ(t̂(#))|) and E1, . . . , En ∈ T0,e

(with e = |λ(t̂(#))σ(A(a))|), then the subterm A(a) is rewritten with
A+(a).

If the grammar contains the rule A → a & ¢ε and λ(t̂(#)) = ε, then
A(a) is also rewritten with A+(a).

If there are no rules satisfying the above conditions, then the subterm
A(a) is rewritten with A−(a).
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2. Consider a term t̂(A(u)) with a subterm A(u) with u = ajaj+1 . . . a`.
If there are no rules of the form (11a) or (11c) for A, this subterm is
rewritten with A−(u). Otherwise, let p be the first such rule and let
p1 = BC be its first conjunct. Then the subterm A(u) is rewritten
with p1(B(aj)C(aj+1 . . . a`)).

3. In a term t̂(pi(B
+(u)C+(v))), its subterm pi(B

+(u)C+(v)) is rewritten
as follows.

• If the ith conjunct of pi is the last unquantified conjunct in this
rule, then do as follows. If there exists a rule of the form A →
B1C1 & . . . & BkCk & ¢D1 & . . . & ¢Dm &PE1 & . . . &PEn ∈
P , for which D1, . . . , Dm ∈ T0,d (where d = |λ(t̂(#))|) and
E1, . . . , En ∈ T0,e, (where e = |λ(t̂(#))σ(pi(B

+(u)C+(v)))|), and
i = k, then the subterm pi(B

+(u)C+(v)) is rewritten with A+(uv).

In case the grammar contains a rule of the form A →
B1C1 & . . . & BkCk & ¢ε ∈ P , such that λ(t̂(#)) = ε, then the
subterm pi(B

+(u)C+(v)) is rewritten with A+(uv).

If no suitable rules are contained in the grammar, the subterm
pi(B

+(u)C+(v)) is rewritten with A−(uv).

• If there are more conjuncts in the rule, the subterm
pi(B

+(u)C+(v)) is rewritten with pi+1(F (aj)G(aj+1 . . . a`)), where
uv = ajaj+1 . . . a` and the (i + 1)th conjunct in rule p is FG.

4. Any of the subterms t of the form pi(B
+(u)C−(v)), pi(B

−(u)C+(v)) or
pi(B

−(u)C−(v)) of the term t̂(t) is rewritten as follows:

• if |v| > 1, let v = ax (with a ∈ Σ, x ∈ Σ+) then t is rewritten
with pi(B(ua)C(x));

• if |v| = 1 and p is the last rule for A, t is rewritten with A−(uv);

• if |v| = 1 and r is the next rule for A, t is rewritten with
r1(F (aj)G(aj+1 . . . a`)), where uv = ajaj+1 . . . a` and the first con-
junct of r is FG.

Claim 1. The rewriting preserves truth, that is, a true term is rewritten with
a true term.

Proof. There are numerous cases of rewriting to consider. This proof handles
two representative cases, and the rest are omitted for brevity.

• Consider the rewriting of a term with a distinguished subterm

t̂(pi(B
−(ak . . . a`−1)C

+(a`))) (12a)

with

t̂(r1(F (ak)G(ak+1 . . . a`))), (12b)
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where BC is a conjunct of a rule for nonterminal A and r is the next
rule for this nonterminal.

To show that the term (12b) is true, the conditions (I)–(IV) need to
be proven held:

– Condition I. By definition of a true term, the subterms F (aj) and
G(aj+1 . . . a`) are always true.

– Condition III for the term (12b) is trivially satisfied, since the
conjunct r1 of the rule r is the first one.

– Condition IV for the term (12b) is trivially satisfied, since the
factorization aj · aj+1 . . . a` is the first factorization of the string
ajaj+1 . . . a`.

– Condition II. Since the term (12a) is true by assumption, the con-
dition (IV) implies that u1〈v1〉 /∈ L(B) or u2〈v2〉 /∈ L(C) for all fac-
torizations u1〈v1〉 · u2〈v2〉 = a1 . . . aj−1〈aj . . . a`〉, with u1, v1, v2 ∈
Σ+, u2 = u1v1 and |v2| < `− 1. The condition (I) for (12a) gives
that a1 . . . aj−1〈aj . . . a`−1〉 /∈ L(B). The combination of these
two statements gives that u1〈v1〉 /∈ L(B) or u2〈v2〉 /∈ L(C) for
every factorization u1〈v1〉 · u2〈v2〉 = a1 . . . aj−1〈aj . . . a`〉. Thus,
a1 . . . aj−1〈aj . . . a`〉 /∈ L(BC), and a1 . . . aj−1〈aj . . . a`〉 /∈ L(pi).
That is, a1 . . . aj−1〈aj . . . a`〉 /∈ L(p). The condition (II) for the
true term (12a) implies that a1 . . . aj−1〈aj . . . a`〉 /∈ L(q) for all
rules q that precede p. Then, a1 . . . aj−1〈aj . . . a`〉 /∈ L(r), since
a1 . . . aj−1〈aj . . . a`〉 /∈ L(p) and p precedes r.

• Consider the rewriting of

t̂(pk(B
+(aj . . . a`−1)C

+(a`))) (13a)

with

t̂(A+(aj . . . a`)), (13b)

where pk = BC is the last conjunct of a rule p for nonterminal A.
According to the definition of a true subterm, the subterm (13b) is
true if a1 . . . aj−1〈aj . . . a`〉 ∈ L(A).

Let the rule p be A → B1C1 & . . . & BkCk & ¢D1 & . . . & ¢Dm &
&PE1 & . . . &PEn ∈ P , where BkCk = BC (the case of p of the form
A → B1C1 & . . . & BkCk & ¢ε is handled similarly and is omitted).

Since the subterm (13a) is true by assumption, its sub-
terms B+(aj . . . a`−1) and C+(a`) are true as well. Hence,
a1 . . . aj−1〈aj . . . a`−1〉 ∈ L(B) and a1 . . . a`−1〈a`〉 ∈ L(C).

Let d be the length of the left context of the true term (13a): d =
|λ(t̂(#))| = |a1 . . . aj−1|, and let e be the length of concatenation of
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(13a) and its left context: e = |λ(t̂(#))σ(pk(B
+(aj . . . a`−1)C

+(a`)))|.
For the rewriting (13) to proceed, D1, . . . , Dm must be in T0,d and E1,
. . . , En must be in T0,e.

Then, by the assumption of Lemma 13, ε〈a1 . . . aj−1〉 ∈ ¢L(D1)∩ . . .∩
¢L(Dm), and ε〈a1 . . . a`〉 ∈ PL(E1) ∩ . . . ∩ PL(En), with h`(Ei) < h0

(i ∈ {1, . . . , n}) for some h0 > 0.

Therefore, the string a1 . . . aj−1〈aj . . . a`〉 is in L(A), and the term
t̂(A+(aj . . . a`)) is thus true by definition.

Furthermore, it can be proved [13, Claims 1–6] that

• all terms t obtained during the rewriting maintain the string value
σ(t) = w;

• the size of a term with a string value w is bounded by O(|w|);
• there exists a linear ordering on the set of terms, so that each rewriting

step increases the term.

Thus, any rewriting that begins with a true term, proceeds over true terms
of linearly bounded size, and each term A(w) is eventually converted either
to A+(w) or to A−(w).

The space complexity of grammars with contexts is now stated in the
following theorem.

Theorem 6. Every language generated by a grammar with one-sided contexts
is in DSPACE(n).

Proof. Let G = (Σ, N, P, S) be an arbitrary grammar with one-sided contexts
and assume without loss of generality that it is in the binary normal form.

The following algorithm constructs the sets T0,`:

Algorithm 3.

1: for ` = 1, . . . , n do
2: let T0,` = ∅
3: while T0,` changes do
4: for all A /∈ T0,` do
5: if rewrite(A, a1 . . . a`, T0,1, . . . , T0,`−1, T0,`) then
6: T0,` = T0,` ∪ {A}

Each `th iteration of the outer loop in line 1 constructs the set T0,` of all
nonterminals that generate a prefix of length ` of the input string.

Each kth iteration of the loop in line 3 begins with T0,` containing all
elements A ∈ N with ε〈a1 . . . a`〉 ∈ LG(A) and h`(A) < k − 1. Then, by
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Lemma 13, lines 4–6 add all elements with h`(A) = k − 1 to T0,`. The set
T0,` is completely constructed if no more iterations of the while-loop in line 3
can be done.

Finally, as in the cubic-time parsing algorithm in Section 5, the input
string is accepted if the start symbol S of the grammar is contained in the
set T0,n, which represents the whole input string.

7 Future work

The new model leaves many theoretical questions to ponder. For instance,
is there a parsing algorithm for grammars with one-sided contexts working
in less than cubic time? For standard context-free grammars, Valiant [23]
discovered an algorithm that offloads the most intensive computations into
calls to a Boolean matrix multiplication procedure, and thus can work in
time O(nω), with ω < 3; according to the current knowledge on matrix mul-
tiplication, ω can be reduced to 2.373. The main idea of Valiant’s algorithm
equally applies to Boolean grammars, which can be parsed in time O(nω)
as well [18]. However, extending it to grammars with contexts, as defined
in this paper, seems to be inherently impossible, because the logical depen-
dencies between the properties of substrings (that is, between the entries
of the table Ti,j) now have a more complicated structure, and the order of
calculating these entries apparently rules out grouping multiple operations
into Boolean matrix multiplication. However, there might exist a different
o(n3)-time parsing strategy for these grammars, which would be interesting
to discover.

Another direction is to develop practical parsing algorithms for grammars
with one-sided contexts. An obvious technique to try is the recursive descent
parsing, where ad hoc restrictions resembling contexts of the form QDΣ∗

have long been used to guide deterministic computation. The Lang–Tomita
Generalized LR parsing is worth being investigated as well.

A more general direction for further research is to consider gram-
mars with two-sided contexts, which would allow rules of the form A →
BC&¢D&PE&QF&¤G. Such grammars would implement Chomsky’s [2]
idea of defining phrase-structure rules applicable in a context in full—which
is something that was for the first time properly approached in this paper.
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