
Michal Kunc | Alexander Okhotin

Reversible two-way finite automata
over a unary alphabet

TUCS Technical Report
No 1024, December 2011

Reversible two-way finite automata
over a unary alphabet

Michal Kunc
Department of Mathematics, Masaryk University,
Brno, Czech Republic
kunc@math.muni.cz

Alexander Okhotin
Department of Mathematics, University of Turku, and
Turku Centre for Computer Science
Turku FI–20014, Finland
alexander.okhotin@utu.fi

TUCS Technical Report

No 1024, December 2011

Abstract

It is established that transforming an n-state two-way deterministic finite
automaton over a one-letter alphabet to an equivalent two-way reversible
automaton requires between 2n− 2 and 2n + 3 states.

Keywords: Finite automata, two-way automata, reversible automata, unary
languages, descriptional complexity, reversible computation.

TUCS Laboratory
Discrete Mathematics for Information Technology

1 Introduction

Consider a special case of two-way deterministic finite automata (2DFA),
called reversible 2DFAs, in which every step of computation is logically re-
versible, that is, every configuration has a uniquely determined predecessor.
Reversibility is an important property of computational devices in general,
which is particularly relevant to the physics of computation [2, 7]. It has a
long history of complexity-theoretic studies [3, 5, 11], leading to a notable
result of Lange et al. [11] on the equivalence of reversible space and deter-
ministic space. In the domain of finite automata, reversible 1DFAs define
a proper subfamily of regular languages [13]; on the other hand, every reg-
ular language is accepted by a reversible 2DFA: as shown by Kondacs and
Watrous [8], every n-state 1DFA can be simulated by a 2n-state reversible
2DFA.

This paper presents a transformation of an n-state 2DFA over a one-letter
alphabet to an equivalent reversible 2DFA with 2n + 3 states, which is done
by generalizing the method of Kondacs and Watrous [8] to any sweeping
2DFA rather than just a 1DFA. In conjunction with the transformation of
an arbitrary one-letter 2DFA to a sweeping 2DFA [9], this yields the desired
construction. This transformation is accompanied by a proof that transform-
ing an n-state unary 2DFA to an equivalent reversible 2DFA requires at least
2n− 2 states in the worst case.

2 Two-way automata

Given an input string w, a 2DFA operates on a tape containing the string
`wa, where ` and a are special symbols known as the left-end marker and
the right-end marker, respectively. According to the standard definition, a
2DFA begins its computation at the left-end marker and accepts at the right-
end marker. In this paper, as well as in the authors’ previous work [9, 10],
the definition is extended to allow acceptance on both sides: this leads to
symmetric constructions and allows avoiding some awkward exceptions in the
results. Changing the mode of acceptance affects the size of an automaton
at most by one state.

A 2DFA is defined as a sextuple A = (Σ, Q, q0, δ, F`, Fa), in which Σ is a
finite alphabet with `,a /∈ Σ, Q is a finite set of states, q0 ∈ Q is the initial
state, δ : Q × (Σ ∪ {`,a}) → Q × {−1, +1} is a partially defined transition
function, and F`, Fa ⊆ Q are sets of states accepting on the left-end marker
` and on the right-end marker a, respectively. When A is in a state q and
observes a square of the tape with a symbol a ∈ Σ∪ {`,a}, the value δ(q, a)
indicates the next state and the direction of motion. It is assumed that
every transition defined at any of the end-markers must move the head in
the appropriate direction (that is, inside the string). Additionally, for a state

1

q ∈ F` or q ∈ Fa the value of δ(q,`), δ(q,a) respectively, is not defined.
The computation of A on an input string w = a1 . . . a`, with ` > 0

and a1, . . . , a` ∈ Σ, takes place on the tape containing the symbols `wa =
`a1 . . . a`a, and begins in the state q0, with the head observing the left-end
marker `. If it eventually reaches an accepting state in F` or in Fa while
on the corresponding end-marker, the string is accepted; otherwise, it either
encounters an undefined transition or gets into an infinite loop.

Formally, let a0 = ` and a`+1 = a. Then a computation of A on w, begin-
ning with a configuration (p0, i0), is the longest sequence (p0, i0), (p1, i1), . . .,
finite or infinite, in which

• pt ∈ Q and 0 6 it 6 ` + 1 for each t-th step;

• every next element (pt, it), if it is defined, satisfies δ(pt−1, ait−1) =
(pt, dt) and it = it−1 + dt.

The computation beginning with a given configuration (p0, i0) is always
uniquely defined. It is accepting if it is finite and its last configuration (pf , if)
satisfies either if = 0 and pf ∈ F`, or if = ` + 1 and pf ∈ Fa. The language
recognized by the 2DFA A, denoted by L(A), is the set of strings accepted
from the configuration (q0, 0).

A 2DFA is called sweeping [14], if in every computation its head changes
the direction of motion only on the end markers. It is an open problem,
whether every n-state 2DFA has an equivalent sweeping 2DFA with polyno-
mially many states.

Theorem 1 (Kunc, Okhotin [9]). Let n > 1. Then for every 2DFA A over a
unary alphabet, with n states, there exists an equivalent sweeping 2DFA with
n + 1 states. For n > 2, this bound is the best possible.

3 Reversible automata

Let a 2DFA be called direction-determinate, if for every state q ∈ Q, all tran-
sitions leading to q move the head in the same direction d(q) ∈ {−1, +1}, and
d(q0) = +1 for the initial state. A direction-determinate 2DFA is reversible,
if the transitions from two different states by the same symbol cannot lead to
a single state, that is, whenever δ(p, a) = δ(p′, a) = (q, d(q)), the states p and
p′ must be the same. A reversible 2DFA is strongly reversible, if, furthermore,
its transitions in all states and on all symbols are defined, with the following
two exceptions: first, the transitions from those states on the end-markers
that cannot be reached from the correct direction are not defined (that is,
δ(q,`) is undefined for q 6= q0 with d(q) = +1, and δ(q,a) is undefined for
q with d(q) = −1); secondly, one of the end-markers is designated as the
ending point of all computations, and there exist two special states, qacc and
qrej, which have undefined transitions on this end-marker, of which qacc is
accepting.

2

Lemma 1. A reversible 2DFA halts on every input.
In a strongly reversible 2DFA, all computations end on the same desig-

nated end-marker, in one of the states qacc, qrej.

Proof. Let A be a reversible 2DFA, and suppose that it does not halt on an
input string w ∈ Σ∗. Let (q, i) be the first repeating configuration; it cannot
be the initial configuration, because d(q0) = +1 implies that (q0, 0) cannot
be entered for the second time.

Let (p, i − d) and (p′, i − d′) be the configurations, from which (q, i) is
entered at the first time and at the second time, respectively. These config-
urations must be different, because otherwise (q, i) would not be the first re-
peating configuration. If d 6= d′, then the state q is enterable from both sides,
and hence the 2DFA is not direction-determinate. Assume d = d′ and p 6= p′,
and let a be the symbol in the position i−d. Then, δ(p, a) = δ(p′, a) = (q, d),
and therefore the automaton is not reversible. The contradiction obtained
proves the first statement of the lemma.

Now consider a strongly reversible 2DFA. Since, by the above arguments,
it halts on every input, every computation leads either to an undefined tran-
sition, or to an accepting state (which also has the transition undefined). All
undefined transitions are on the end-markers, and all of them, except those in
the states qacc and qrej on the designated end-marker, take place on unreach-
able configurations; hence, no computation can end by reaching them. Thus,
rejection is only possible in the state qrej, on the designated marker, and ac-
ceptance can take place only on the same marker, in the state qacc. Therefore,
every computation must end in one of these two configurations.

4 Transformation to reversible automata

It was proved by Kondacs and Watrous [8] that every n-state 1DFA can be
simulated by a 2n-state reversible 2DFA. Their construction shall now be
generalized to apply to any sweeping 2DFA, rather than a 1DFA.

Lemma 2. Let A be a direction-determinate 2DFA with n states over any
alphabet. Then there exists and can be effectively constructed a strongly re-
versible 2DFA with 2n+1 states recognizing the language L(A)R. If A accepts
only on the left-end marker `, then L(A) is recognized by a strongly reversible
2DFA with 2n states.

Proof. Consider the case of acceptance only on the left-end marker `. As
the direction is always known, the notation for the transition function can
be simplified as follows: for each a ∈ Σ ∪ {`,a}, let δa : Q → Q be a partial
function defined by δa(p) = q if δ(p, a) = (q, d(q)). Consider also its inverse,
δ−1
a : Q → 2Q with δ−1

a (q) = { p | δa(p) = q }. Note that a reversible 2DFA
has all functions δa injective, and hence |δ−1

a (q)| 6 1 for all a and q; but in
an arbitrary direction-determinate 2DFA considered in this proof, each set

3

δ−1
a (q) may contain any number of elements between 0 and |Q|. Assume,

without loss of generality, that whenever a state has any transitions defined
at one of the end-markers, or is accepting there, this state must be reachable
from the corresponding direction: that is, whenever, for any q ∈ Q, the
transition δa(q) is defined or q ∈ Fa, the direction d(q) must be +1, and
if δ`(q) is defined or q ∈ F` for any state q 6= q0, then d(q) = −1 (if any
transitions or accepting states violate this condition, they will never be used
and can be safely removed). Assume any linear ordering on Q and let min S
and max S denote the least and the greatest element of a nonempty set S ⊆ Q
with respect to this ordering. Let nextS(q) with q ∈ S ⊆ Q denote the least
element of S strictly greater than q, provided that it exists.

The new automaton begins its computation in the final configurations,
and goes through the tree of computations leading to these configurations,
searching for the initial configuration. This involves both backward simula-
tion of the original automaton, when exploring each branch of this tree, as
well as forward simulation, which is used when the backward search results
in a configuration unreachable by the original automaton. For that purpose,
the new automaton has the set of states Q ∪ { [q] | q ∈ Q }, with a new copy
[q] for each state from Q. The states of the form [q] simulate the compu-
tation backwards. Whenever the new automaton is in a state [q] with the
head scanning a ∈ Σ∪ {`,a}, this means that there exists a computation of
the original automaton, beginning with the head in the next position in the
string (determined by d(q)), while in the state q, and eventually leading to
acceptance. In this way the backward computation traces the state and the
position of the head of a forward computation, but the state and the position
are always out of synchronization by one step. The general arrangement of
the simulation is illustrated in Figure 1.

The initial state of the new automaton is [min F`], with the following
transition by the left-end marker `:

δ′([min F`],`) = ([min F`], +1). (1)

The automaton accepts in the state [δ`(q0)] on the left-end marker `.
The backward transitions from [q] by a ∈ Σ∪{`,a} are defined as follows.

If the state q is reachable from some other states by the symbol a, then the
automaton continues with the backward simulation by choosing the least of
those predecessor states, p = min δ−1

a (q), and moving to the state [p] in the
direction −d(p). That is,

δ′([q], a) =
(
[min δ−1

a (q)],−d(min δ−1
a (q))

)
, if δ−1

a (q) 6= ∅. (2)

An example of this case is given in Figure 1, in the state [q] and at the symbol
a. When the constructed automaton reaches this configuration, it selects the
minimal element of the set δ−1

a (q) = {p, p′}, which is p, and continues the
backward simulation by moving the head to the left (as −d(p) = −1) and
entering the state [p].

4

Figure 1: How a given 2DFA (thick grey lines) is simulated by a reversible
2DFA (thin black lines).

The other principal case in the backward simulation is when a branch of
the tree of computations is traced back to a configuration without predeces-
sors. Therefore, these computations cannot take place when starting from
the initial configuration, and the constructed automaton switches to forward
simulation, until it finds the next suitable branch of the tree. This is done
by the following transition:

δ′([q], a) = (q, d(q)), if δ−1
a (q) = ∅, (3)

defined unless a = ` and d(q) = −1, and unless a = a and d(q) = +1. This
case is illustrated in the figure by the configuration in state r over the symbol
d, which has no predecessors.

Forward transitions are defined by the rule that if multiple braches of the
tree of computations converge at the present point, and the current branch
is not the last of them, then the simulation switches to backtracking the next
branch by the following transition:

δ′(p, a) = ([p′],−d(p′)), if δa(p) is defined and p′ = nextδ−1
a (δa(p))(p). (4)

An example of this can be found in Figure 1, in the state p over the symbol
a, where δa(p) = q is the state where the branching occurs, the predecessors
of this state are δ−1

a (q) = {p, p′}, and the current state p is not the last of
them. Then the automaton takes the next branch by going to the left in the
state [p′].

If there was no branching at the present point, or if there was a branching,
but the current branch is already the last of them (this is a single case), then

5

the original automaton is simulated forward:

δ′(p, a) =
(
δa(p), d(δa(p))

)
, if δa(p) is defined and p = max δ−1

a (δa(p)),
(5)

or, in other words, δ′(p, a) = δ(p, a). In the figure, this case occurs in the
state p′ over the symbol a, where δ−1

a (δa(p
′)) = {p, p′} and p′ is the last of

these states.
It remains to define the transitions in the case of undefined δa(p):

δ′(p, a) = ([p],−d(p)), if δa(p) is undefined, and (p, a) /∈ F` × {`}. (6)

These transitions shall never be used, but they are necessary to comply with
the definition of strong reversibility.

Finally, if the left-end marker ` is reached in one of the accepting states,
this means that the backward computation tree leading to this state has been
completely searched, and one should switch to the next accepting state, if it
exists:

δ′(p,`) =
(
[nextF`(p)], +1

)
, if p ∈ F` and it is not the greatest element of F`.

(7)
And if this was the last accepting state, the constructed automaton rejects,
that is, qrej = max F` and δ′(max F`,`) is not defined.

Fix an input string w ∈ Σ∗. For every configuration (p, i), from which the
original automaton accepts w, let π(p, i) denote the (uniquely determined)
finite path from (p, i) to the corresponding accepting configuration. The
above ordering of states induces the following strict partial ordering on ac-
cepting computations of the original automaton: a computation π(p`, i`) =
(p`, i`) . . . (p1, i1)(p0, i0) is less than π(p′`′ , i

′
`′) = (p′`′ , i

′
`′) . . . (p′1, i

′
1)(p

′
0, i

′
0) if

there exists such an ˆ̀ 6 `, `′ that (pj, ij) = (p′j, i
′
j) for all j ∈ {0, . . . , ˆ̀− 1}

and pˆ̀ < p′ˆ̀. Then two computations are incomparable if and only if one of
them is a suffix of the other.

The correctness statement of the construction reads as follows:

Claim 1. If the new automaton reaches a configuration ([q], i) in one or
more steps, then the original automaton accepts from (q, i + d(q)) and, if the
original automaton accepts from (q0, 0), the computation π(q0, 0) is not less
than π(q, i + d(q)).

If the new automaton reaches (q, i), then the original automaton accepts
from (q, i) and if the computation π(q0, 0) is accepting, then it is greater than
π(q, i).

The claim is proved by induction on the length of the computation of the
new automaton.

Basis. At the first step of the computation, the new automaton goes from
its initial configuration ([min F`], 0) to the configuration ([min F`], 1). Since
the state min F` is enterable on the left-end marker ` by the assumption,

6

Figure 2: Example of a transformation to a reversible 2DFA.

d(min F`) = −1, and (min F`, 1 + d(min F`)) = (min F`, 0) is an accepting
configuration of the original automaton. Because min F` is the least ac-
cepting state, there is no accepting computation less than π(min F`, 0) =
(min F`, 0).

Induction step I. Assume that the constructed automaton reaches a
configuration ([q], i) and the statement of the lemma holds true, that is, the
original automaton accepts from (q, i + d(q)) and π(q0, 0) is not less than
π(q, i + d(q)) (provided that the original automaton accepts from (q0, 0)).
If the constructed automaton accepts in this configuration, then ([q], i) =
([δ`(q0)], 0), and the acceptance is justified by the fact that the original au-
tomaton has an accepting computation starting from (δ`(q0), 0+d(δ`(q0))) =
(δ`(q0), 1).

If the constructed automaton does not accept here, consider the next step
of its computation. Let a ∈ Σ ∪ {`,a} be the symbol in the position i and
first assume that δ−1

a (q) 6= ∅. Let p = min δ−1
a (q). Then the new automaton

makes a transition from ([q], i) to ([p], i−d(p)), while the original automaton
goes from

(
p, (i−d(p))+d(p)

)
= (p, i) to (q, i+d(q)), from whence it accepts

by the induction assumption. Suppose, for the sake of contradiction, that
the original automaton accepts from (q0, 0) and π(q0, 0) < π(p, i). Since

7

π(p, i) = (p, i) ·π(q, i+d(q)) and π(q0, 0) is not less than π(q, i+d(q)) by the
assumption, it follows that π(q0, 0) and π(p, i) must be different in the first
step of π(p, i), that is, π(q0, 0) = (q0, 0) . . . (p′, i) · π(q, i + d(q)) and p′ < p.
Then δa(p

′) = q and p′ ∈ δ−1
a (q), which contradicts the assumption that p is

the least element of δ−1
a (q).

The other possible next step of the new automaton from the configu-
ration ([q], i) occurs for δ−1

a (q) = ∅: then it proceeds to the configuration
(q, i+d(q)), and it has to be established that the original automaton accepts
starting from (q, i+d(q)). That is directly given by the induction hypothesis
for ([q], i), which furthermore states that if the original automaton accepts
starting from (q0, 0), then π(q0, 0) cannot be less than π(q, i + d(q)). It re-
mains to argue that π(q, i+ d(q)) is not a suffix of π(q0, 0). Indeed, if it were
a proper suffix, then there would have been a previous configuration (p, i),
from which the original automaton would go to (q, i + d(q)); but this would
imply that p ∈ δ−1

a (q) and thus contradict the assumption. If π(q, i + d(q))
and π(q0, 0) are actually the same computation, then i+d(q) = i+d(q0) = 0,
which is impossible, because d(q0) = +1.

Induction step II. Let the statement of the lemma hold for a configu-
ration (p, i) of the constructed automaton, that is, π(p, i) is assumed to be
an accepting computation, and in case the original automaton accepts from
(q0, 0), the computation π(q0, 0) is neither less than π(p, i), nor has π(p, i)
as a suffix. The statement of the lemma is to be established for the con-
figuration of the constructed automaton at the next step after (p, i). Since
the computation π(p, i) is accepting, there are two possibilities: either it
consists of a unique accepting configuration, or begins with a transition to(
δa(p), i + d(δa(p)

)
, where a is the symbol at the position i.

In the former case, i = 0 and π(p, i) = (p, 0), and it is known that if
the computation π(q0, 0) is accepting, then its last configuration may not be
(p, 0) (as π(p, 0) = (p, 0) would then be a suffix of π(q0, 0)), and its last con-
figuration also cannot be (q, 0) with q < p (because then π(q0, 0) < π(p, 0)).
Thus this branch of the tree of accepting computations was found not to
come from the initial state. If p is not the greatest of the accepting
states, the simulation continues backtracking from the next accepting state
p′ = nextF`(p). Since p′ is enterable from the right by assumption, d(p′) must
be −1. In this case the constructed automaton proceeds to the configuration
([p′], 1) = ([p′],−d(p′)), while the original automaton accepts from the con-
figuration (p′, 1 + d(p′)) = (p′, 0), because it is an accepting configuration.
Furthermore, if the original automaton accepts from (q0, 0), and π(q0, 0) were
supposed to be less than π(p′, 0), then π(q0, 0) and π(p′, 0) would differ at the
last step, that is, π(q0, 0) would accept in a state p or less, which is known to
be untrue. Turning to the other possibility, if p is the greatest state in F`,
this implies that the original automaton does not accept this string, because
if it did, then its accepting computation must have ended with one of the
accepting configurations. This is the case when the constructed automaton

8

rightfully rejects.
Finally, assume that the computation π(p, i) of the original automaton

begins with a transition from (p, i) to
(
δa(p), i + d(δa(p))

)
. Let q = δa(p). If

p is the greatest state in δ−1
a (q), then the constructed automaton similarly

goes from (p, i) to
(
q, i+d(q)

)
. The computation π(q, i+d(q)) of the original

automaton is accepting as a suffix of the accepting computation π(p, i). If
the original automaton accepts from (q0, 0) and π(q0, 0) is less than π(q, i +
d(q)), then π(q0, 0) is also less than the longer computation π(p, i), which
contradicts the induction hypothesis. Suppose π(q, i + d(q)) is a suffix of
π(q0, 0). These two computations cannot coincide, because i+d(q0) = i+1 6=
0, and so π(q, i + d(q)) must be a proper suffix of π(q0, 0). Then, since
π(p, i) is not a suffix of π(q0, 0) by the induction hypothesis, the computations
π(p, i) = (p, i) ·π(q, i+d(q)) and π(q0, 0) differ on the first step of π(p, i), and
π(q0, 0) = . . . (p′, i) ·π(q, i+d(q)) for some state p′ 6= p with δa(p

′) = q. Then
p′ < p, because p is known to be the greatest of such states, and therefore
π(q0, 0) < π(p, i), a contradiction.

Otherwise, if there is a greater state p′ > p with δa(p
′) = q, the con-

structed automaton proceeds from (p, i) to ([p′], i − d(p′)), where p′ is the
least of such states, that is, p′ = nextδ−1

a (q)(p). Then the original automaton
in the configuration (p′, i − d(p′) + d(p′)) = (p′, i) will apply the transition
δ(p′, a) = (q, d(q)) and arrive to the configuration (q, i+d(q)); this is the next
configuration after (p, i), and hence the original automaton accepts from it.
Now assume that the original automaton accepts from (q0, 0), and suppose
its accepting computation π(q0, 0) is less than π(p′, i) = (p′, i) · π(q, i + d(q)).
Since π(q0, 0) is not less than π(q, i + d(q)) by the assumption, the com-
putation π(q0, 0) must be different from π(p′, i) in the first configuration of
π(p′, i), that is, π(q0, 0) has a suffix (p′′, i) · π(q, i + d(q)) with δa(p

′′) = q and
p′′ < p′. Now, if p′′ = p, then π(p, i) is a suffix of π(q0, 0), and if p′′ < p,
then π(p, i) is less than π(q0, 0); either possibility contradicts the assumption.
This completes the proof of Claim 1.

Claim 2. The constructed automaton is reversible.

The new automaton is direction-determinate, with d′(q) = d(q) and
d′([q]) = −d(q), and so it remains to check that every state is reached from
every symbol in a unique way. Fix a symbol a ∈ Σ∪{`,a} and consider how
each state in Q ∪ { [q] | q ∈ Q } can be reached by a transition reading a.

Consider any state q ∈ Q that is reachable from some state by a, that
is, with δ−1

a (q) 6= ∅. Then, q can only be reached by a transition (5) from
the state max δ−1

a (q). An unreachable state q ∈ Q with δ−1
a (q) = ∅ can be

reached only from by a transition (3) from the state [q].
States from { [p] | p ∈ Q } can be reached by five different types of tran-

sitions: (1) (2), (4), (6), (7). First consider a state [p] with p ∈ Q, for which
δa(p) is defined. Then, if p is the least state in δ−1

a (δa(p)), it is reached by a
transition (2) from [δa(p)], and if p is not the least among the pre-images of

9

δa(p), then it is reached by a transition (4) from the state p′, defined as the
greatest element of δ−1

a (δa(p)) strictly less than p.
Consider transitions leading to a state [p], with undefined δa(p), and first

assume that the state p is accepting on a, that is, (p, a) ∈ F` × {`}: then
δa(p) is undefined by the assumption. If p is the least state in F`, then it
is reached by the starting transition (1) of the constructed automaton. If p
not the least among the states in F`, let p′ be the greatest state in F` that
is less than p; then p is reached by a transition (7) from p′.

Finally, a state [p], with δa(p) undefined and with (p, a) /∈ F` × {`}, is
reached only by a transition (6) from the state p.

Thus, it has been determined that all seven types of transitions by a lead
to seven disjoint groups of states, proving Claim 1.

Thus, the constructed automaton is reversible. It is strongly reversible,
because all transitions on symbols from Σ, as well as all transitions in reach-
able states on the markers, are defined, and the only undefined transitions
are those in the accepting state [δ`(q0)] and the rejecting state max F` on
the left-end marker `. Now Lemma 1 asserts that every computation of the
constructed automaton ends in one of these two configurations, and Claim 1
implies that the new automaton recognizes the same language as the original
one.

Assume that the new automaton accepts a string w ∈ Σ∗. Then it does so
in the configuration ([δ`(q0)], 0). Then, by Claim 1, the original automaton
accepts from (δ`(q0), 1) on the same input w. Since that is the second con-
figuration in its computation of the original automaton, it therefore accepts
w.

If the new automaton rejects, it does so in the configuration (max F`, 0).
According to Claim 1, if the original automaton accepts, then its accepting
computation π(q0, 0) must be greater than π(max F`, 0) = (max F`, 0). How-
ever, no computation may be greater (max F`, 0), and therefore the original
automaton either rejects or goes to an infinite loop.

Consider the modifications of the construction needed to support au-
tomata with acceptance on both sides of the string. The constructed au-
tomaton begins its computation on the right-end marker a, and first pro-
ceeds as the mirror image of the above construction, searching through the
accepting computations of the original automaton ending on the right-end
marker a, in each state from Fa. This is done exactly as in the above proof,
until the state max Fa is reached on the right-end marker a. At this point,
the new automaton uses a new extra state q← to move from the state max Fa
on the right-end marker a to the configuration ([min F`], 1), from whence it
proceeds with searching the tree of accepting computations ending on the
left-end marker `. If the state [max F`] is reached on the left-end marker
`, the automaton rejects. As before, the acceptance takes place in the state
[δ`(q0)] on the left-end marker.

10

5 Lower bound on the size of reversible au-

tomata

The next lemma shows that the number of states in the construction in
Lemma 2 is optimal up to an additive constant.

Lemma 3. For every n > 2, every reversible 2DFA for any co-finite language
L ⊆ a∗, such that the longest string not in L is an−2, must have at least 2n−2
states.

Proof. Suppose there exists a reversible 2DFA recognizing L with at most
2n − 3 states. Consider the string u = an−2, which is the longest string not
belonging to L, and let v = an−2+(2n−3)! ∈ L. It will be verified by induction
that the computations of the automaton on both strings reach the markers
in the same states. This, in particular, implies that u is accepted by the
automaton if and only if v is accepted, which is in contradiction with u /∈ L
and v ∈ L.

Consider a computation of the automaton on the string v, which begins in
some state q at one of the markers (say `). First assume that the computation
returns back to the left-end marker ` before reaching the right-end marker
a. This means that the computation is of the form (q, 0), (q1, i1), (q2, i2), . . . ,
(qk−1, ik−1), (qk, 0), with 1 6 ij 6 |v| for 1 < j < k − 1 and i1 = ik−1 = 1.
The first claim is that all the states q1, q2, . . . , qk−1, qk are different. If qs = qt

for s < t 6 k, then qs−1 = qt−1 due to the reversibility of the automaton,
and applying this property s − 1 times leads to q1 = qt−s+1. Accordingly,
it is left to show that q1 6= qj for 1 < j 6 k. First, note that q1 cannot be
equal to qk, since they are reached from different directions. And if q1 = qj

for 1 < j < k, then (qj, ij) is reached from the left, which implies ij > 1,
because ij−1 > 0. Hence, the computation keeps revisiting the state q1 while
moving to the right, and therefore it cannot return to the left-end marker `
before visiting the right-end marker a.

Thus, the states q1, . . . , qk must be pairwise distinct, that is, k 6 2n− 3.
This shows that this computation cannot visit the (n− 1)th letter of v, and
therefore the computation on u starting in the configuration (q, 0) proceeds
to (qk, 0) in the same way as the computation on v.

Now assume that the computation on v starting in q on the left-end
marker ` reaches the right-end marker a before visiting the left-end marker `
again, so that the computation is of the form (q, 0), (q1, i1), (q2, i2), . . . , (qk−1,
ik−1), (qk, |v|+1), where 1 6 ij 6 |v| for 1 < j < k−1, i1 = 1 and ik−1 = |v|.
Since the string v is of length at least 2n−3, the length k of this computation
must be at least 2n− 2. Because the automaton has at most 2n− 3 states,
two of the states q1, q2, . . . , q2n−2 must be equal. Due to the reversibility of
the automaton, this means that q1 = qj for some 1 < j 6 2n− 2. Therefore,
the whole computation between (q1, i1) and (qk, |v|+1) proceeds by repeating
the sequence of states q1, . . . , qj, in each iteration moving to the right by ij−1

11

symbols, with ij − 1 6 j − 1 6 2n − 3. Let m be the rightmost position
reached during the computation from (q1, 1) to (qj, ij), that is, the maximum
of the numbers i1, . . . , ij. Since the automaton is direction-determinate, the
configuration (qj, ij) = (q1, ij) must be reached from the left, so the previous
configuration is (qj−1, ij− 1). The number of steps needed to get from (q1, 1)
to the position m and then return back to the configuration (qj−1, ij − 1) is
at least 2(m− 1)− (ij − 2) = 2m− ij. Because the actual number of these

steps is j − 2 6 2n− 4, the number m is at most n− 2 +
ij
2
.

Note that for the computation on u, the right-end marker is in the position
n−1 and the difference between the lengths of u and v is a multiple of ij−1.
Therefore, in order to verify that the computations on u and v reach the right-
end marker in the same state, it is sufficient to prove that the computation
on v reaches all positions of the form n−1+t ·(ij−1), with t > 0, for the first
time in the same state. Since every iteration of the cycle q1, . . . , qj is shifted
by exactly ij − 1 positions to the right from the previous iteration, this task
can be achieved by showing that if the position n−1+t ·(ij−1) is reached for
the first time during the kth iteration of the cycle, then the following position
n−1+(t+1)·(ij−1) is reached for the first time during the (k+1)th iteration
of the cycle. Clearly, it is reached at latest during the (k + 1)th iteration, so
it remains to prove that this cannot happen already during the kth iteration.
Assume that the position n − 1 + (t + 1) · (ij − 1) is indeed reached during
the kth iteration. As the rightmost position reached during this iteration is
m+(k−1)·(ij−1), this means that n−1+(t+1)·(ij−1) 6 m+(k−1)·(ij−1),
which implies n − 1 + t · (ij − 1) 6 m + (k − 2) · (ij − 1). If k > 2, then
this shows that the position n− 1 + t · (ij − 1) is reached already during the
(k − 1)th iteration, which is a contradiction. If k = 1, then

n− 2 + ij 6 n− 1 + (t + 1) · (ij − 1) 6 m 6 n− 2 +
ij
2

,

which is a contradiction as well.

Theorem 2. For every n-state unary 2DFA there exists and can be effectively
constructed an equivalent reversible 2DFA with 2n + 3 states that halts on
every input. At least 2n− 2 states are necessary in the worst case.

Sketch of a proof. A given n-state unary 2DFA is first converted to a sweep-
ing 2DFA with n + 1 states, according to Theorem 1. Then, by Lemma 2,
there is a reversible 2DFA with 2(n + 1) + 1 states recognizing the reversal
of the original language, which is the same as the original language due to
the unary alphabet.

For the lower bound, consider the co-finite language Ln = { a` | ` > n− 2 },
which is recognized by a 1DFA with n states. By Lemma 3, every reversible
2DFA for this language needs to have at least 2n− 2 states.

12

6 Application to multiple-letter alphabets

Since Lemma 2 is applicable to any alphabet, it can be used to make an
arbitrary 2DFA reversible. In order to meet its conditions, the following
pre-processing step is required:

Lemma 4. For every 2DFA over any alphabet and with n states, there exists
and can be effectively constructed an equivalent direction-determinate 2DFA
with at most 2n states.

Sketch of a proof. Each state enterable from both directions is split into two
states: the one entered from the left and the one entered from the right.
These two states have the same outgoing transitions (exception: on each
marker, only one of these states has a transition)

Stacking these two constructions together leads to a new, more manage-
able construction and an actual proof of the result of Geffert et al. [6] on
making a 2DFA halt on every input:

Theorem 3 (Geffert et al. [6]). For every n-state 2DFA over any alphabet
there exists and can be effectively constructed an equivalent strongly reversible
2DFA with 4n + 2 states.

Proof. The given n-state 2DFA is first transformed to an equivalent 2n-state
direction-determinate 2DFA according to Lemma 4. Then, Lemma 2 is ap-
plied to produce a (4n + 1)-state strongly reversible 2DFA recognizing the
reversal of the original language. Finally, the latter 2DFA can be reversed
again by adding an extra state, leading to the desired (4n+2)-state strongly
reversible 2DFA.

References

[1] C. H. Bennett, “Logical reversibility of computation”, IBM Journal of
Research and Development, 17:6 (1973).

[2] C. H. Bennett, “The thermodynamics of computation—a review”, In-
ternational Journal of Theoretical Physics, 21:12 (1982), 905–940.

[3] C. H. Bennett, “Time/space trade-offs for reversible computation”,
SIAM Journal on Computing, 81 (1989), 766–776.

[4] M. Chrobak, “Finite automata and unary languages”, Theoretical Com-
puter Science, 47 (1986), 149–158. Errata: 302 (2003), 497–498.

[5] P. Crescenzi, C. H. Papadimitriou, “Reversible simulation of space-
bounded computations”, Theoretical Computer Science, 143:1 (1995),
159–165.

13

http://dx.doi.org/10.1007/BF02084158
http://dx.doi.org/10.1137/0218053
http://dx.doi.org/10.1016/0304-3975(86)90142-8
http://dx.doi.org/10.1016/S0304-3975(03)00136-1
http://dx.doi.org/10.1016/0304-3975(95)80031-4
http://dx.doi.org/10.1016/0304-3975(95)80031-4

[6] V. Geffert, C. Mereghetti, G. Pighizzini, “Complementing two-way finite
automata”, Information and Computation, 205:8 (2007), 1173–1187.

[7] J. Kari, “Reversible cellular automata”, Developments in Language The-
ory (DLT 2005, Palermo, Italy, 4–8 July 2005), LNCS 3572, 57–68.

[8] A. Kondacs, J. Watrous, “On the power of quantum finite state au-
tomata”, 38th Annual Symposium on Foundations of Computer Science
(FOCS 1997, Miami Beach, Florida, USA, 19–22 October 1997), IEEE,
66–75.

[9] M. Kunc, A. Okhotin, “Describing periodicity in two-way determinis-
tic finite automata using transformation semigroups”, Developments in
Language Theory (DLT 2011, Milan, Italy, 19–22 July 2011), LNCS
6795, 324–336.

[10] M. Kunc, A. Okhotin, “State complexity of operations on two-way de-
terministic finite automata over a unary alphabet”, Descriptional Com-
plexity of Formal Systems (DCFS 2011, Limburg, Germany, 25–27 July
2011), LNCS 6808, 222–234.

[11] K.-J. Lange, P. McKenzie, A. Tapp, “Reversible space equals determin-
istic space”, Journal of Computer and System Sciences, 60:2 (2000),
354–367.

[12] S. Lombardy, “On the construction of reversible automata for reversible
languages”, Automata, Languages and Programming (ICALP 2002,
Málaga, Spain, 8–13 July 2002), LNCS 2380, 170–182.

[13] J.-E. Pin, “On the languages accepted by finite reversible automata”,
Automata, Languages and Programming (ICALP 1987, Karlsruhe, Ger-
many, 13–17 July 1987), LNCS 267, 237–249.

[14] M. Sipser, “Lower bounds on the size of sweeping automata”, STOC
1979, 360–364.

14

http://dx.doi.org/10.1016/j.ic.2007.01.008
http://dx.doi.org/10.1016/j.ic.2007.01.008
http://dx.doi.org/10.1007/11505877_5
http:dx.doi.org/10.1109/SFCS.1997.646094
http:dx.doi.org/10.1109/SFCS.1997.646094
http://dx.doi.org/10.1007/978-3-642-22321-1_28
http://dx.doi.org/10.1007/978-3-642-22321-1_28
http://dx.doi.org/10.1007/978-3-642-22600-7_18
http://dx.doi.org/10.1007/978-3-642-22600-7_18
http://dx.doi.org/10.1006/jcss.1999.1672
http://dx.doi.org/10.1006/jcss.1999.1672
http://dx.doi.org/10.1007/3-540-45465-9_16
http://dx.doi.org/10.1007/3-540-45465-9_16
http://dx.doi.org/10.1007/3-540-18088-5_19
http://dx.doi.org/10.1145/800135.804429

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematical Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978-952-12-2661-8
ISSN 1239-1891

	Introduction
	Two-way automata
	Reversible automata
	Transformation to reversible automata
	Lower bound on the size of reversible automata
	Application to multiple-letter alphabets

