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Abstract

Systems of equations of the form X; = ¢;(Xy,...,X,,), for 1 < i < n, in
which the unknowns X; are formal languages, and the right-hand sides ¢;
may contain concatenation and union, are known for representing context-
free grammars. If, instead of union only, another set of Boolean operations is
used, the expressive power of such equations may change: for example, using
both union and intersection leads to conjunctive grammars (Okhotin, 2001),
whereas using all Boolean operations allows all recursive sets to be expressed
by unique solutions (Okhotin, 2003). This paper investigates the expressive
power of such equations with any possible set of Boolean operations. It
is determined that different sets of Boolean operations give rise to exactly
seven families of formal languages: the recursive languages, the conjunctive
languages, the context-free languages, a certain family incomparable with
the context-free languages, as well as three subregular families.

This paper is an extended version of an invited talk given at the Au-
toMathA 2007 conference held in Palermo, Italy on June 18-22, 2007.
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1 Introduction

Equations with formal languages as unknowns are among the natural ob-
jects of study in formal language theory. The most frequently used class of
equations are systems of the following form.

X1 = gOl(Xl,...,Xn)
: (*)
Xn = gDn(X177Xn)

Here the unknowns X, ..., X, are formal languages over a certain alphabet
Y}, and the right-hand sides ¢; may use singleton constant languages, the
concatenation operation, as well as some Boolean operations on languages.
If the only allowed Boolean operation is union, then, as shown by Gins-
burg and Rice [B], these systems represent the basic mathematical model of
syntax, known in the literature as a context-free grammar. To be precise,
every grammar can be transcribed as such a system of equations, with non-
terminal symbols becoming variables, so that the least solution of that system
(with respect to inclusion) is exactly the vector of languages generated by
those nonterminal symbols. For example, consider the following grammar
over the alphabet ¥ = {a, b}, and the corresponding one-variable equation.

X —»aXb|e X ={a} - X-{b})U{e}

In this equation, X is an unknown language, while {a}, {b} and {c} are
singleton constant languages, and the least solution of the equation is the
language {a™0™ | n > 0}. In this particular case, the solution is actually
unique; in general, any grammar can be tranformed to the Greibach normal
form, in which the solution is always unique. Therefore, the class of languages
defined by unique solutions of equations () is exactly the class of the context-
free languages.

The idea behind these equations—and behind formal grammars in
general—is inductive definition of strings possessing certain properties. Each
variable (nonterminal symbol) represents a property that each string may
have or not have, and the equations (rules of a grammar) describe the struc-
ture of strings with a certain property as a combination of shorter strings
with known properties. In ordinary (Chomsky’s “context-free”) grammars,
longer strings are obtained by concatenating shorter ones, and each property
is defined as a disjunction of such concatenations, This disjunction is rep-
resented in language equations as the union operation, and using other sets
of Boolean operations could lead (and occasionally leads) to new classes of
formal grammars.

The most obvious choice is to allow a conjunction operation alongside the
disjunction. The resulting family of conjunctive grammars [26] is notable for



inheriting most of the parsing algorithms from ordinary grammars [34], in
particular, the subcubic parsing through matrix multiplication [35]. At the
same time, conjunctive grammars can represent a few syntactic constructs
beyond the scope of ordinary grammars [34]. Conjunctive grammars are
characterized by language equations (M) with concatenation, union and in-
tersection [27].

The next obvious step is to add the negation operation. In terms of lan-
guage equations, these will be systems (H) with concatenation and all Boolean
operations. Having seen the conjunctive grammars, one could expect these
systems to be another slightly more powerful variant of formal grammars,
with expressive power well within polynomial time. However, it turned out
that these equations can represent logical dependence of shorter strings upon
longer ones, thus violating the principle of inductive definition of strings, and
allowing every recursive set to be described by a unique solution of some sys-
tem (F). Conversely, every representable set is recursive [28, 37].

The purpose of this paper is to consider systems (F) with concatenation,
singleton constants and any possible sets of Boolean operations. For each set
of Boolean operations, there is a corresponding family of formal languages
defined by unique solutions of these systems. How many distinct language
families could be obtained in that way?

The main result of this paper is that there exist exactly seven such classes
(six for a unary alphabet). An essential tool for this study is the fundamental
work by Post [27] on the classes of Boolean functions closed under composi-
tion, reviewed in Section B and adapted to language equations in Section B.
Even though Post’s lattice of closed classes of Boolean functions contains
countably many clases, this lattice is split into seven regions, giving rise to
distinct families of formal languages defined by language equations. This par-
tition is carried out in Section H, where each of the seven regions is painted
over Post’s lattice, and the corresponding family of languages is character-
ized. These families are denoted by O, I, K, D, M, N and P, more or
less after their respective generating classes of Boolean functions, and their
hierarchy is established in Section B.

The last Section B reviews the previous research on language equations
of the form other than (H), and elaborates on possible applications of Post’s
lattice to that research.

2 Post’s lattice

Denote the set of Boolean constants by B = {0,1}, and consider Boolean
functions f: B¥ — B, where k£ > 0 is the number of arguments. The basic
examples of Boolean functions are the standard propositional connectives,
such as conjunction fi(z,y) = x Ay, disjunction fy(x,y) = xVy, implication



f3(z,y) = x — y and sum modulo two fy(z,y) = By (with two arguments
each), negation f5(z) = —z and the identity function fs(z) = = (with one
argument each), as well as constants 0 and 1 (with no arguments). The set of
all Boolean functions is denoted by P, where the number 2 indicates binary
logic.

Definition 1. Let f: B¥ — B, with k > 1, be a Boolean function, and
consider a substitution of Boolean functions g;: B% — B, with ¢; > 1, for all
i € {1,...,k}, into the arguments of f. The resulting composition is any
function h: B" — B representable in the form

h(xy,...,x,) = f(g1(l‘m1,1, . ,xmul), o G T s ,xmkygk)),

where the subscripts m; ; € {1,...,n} are numbers of any arguments of f.
A set of functions F C Py is said to be closed (under composition), if
fr01,- .., 9xr € F implies h € F.

Post referred to sets of functions closed under composition as “closed sys-
tems”, whereas some of the subsequent literature adopted the term “clone”.
For every set of functions F C Py, its closure (under composition), denoted
by [F], is the smallest set of functions containing every function from F and
closed under composition.

Consider the following five closed classes of Boolean functions.

To: functions preserving zero, that is, with f(0,...,0) = 0.

T:: functions preserving one, that is, with f(1,...,1) = 1.

e S: self-dual functions, that 1is, those that satisfy the identity
—f(mxy, ..., ) = f(oy,...,2,) for all z4,..., 2, € B.

e M: monotone functions, for which f(by,...,b,) < f(c1,...,c,) when-
ever b; < ¢; for all 7.

e L: linear functions, representable in the form f(xq,...,2,) = x; ®

@, e, forsomem >0,1<4 <... <4, <nandceDB.

These classes are collectively known as the five pre-complete classes, be-
cause of the following noteworthy result.

Post’s Little Theorem ([d1]). Let F C P, be a set of Boolean functions.
Then [F] = Py if and only if F is not contained in any of the classes Ty, Ti,
S, M, L.

For instance, the well-known result that every Boolean function is rep-
resentable as a formula over the single base function, the Sheffer stroke,
f(z,y) = =(x A y), follows from this theorem, because f belongs to none of
the five pre-complete classes.

Post’s research on Boolean functions eventually led to a complete descrip-
tion of all classes of Boolean functions closed under composition.



Post’s Theorem ([42]). The (countably many) classes listed in Table @ are
all closed classes of Boolean functions. Fach class has a finite basis. Their
lattice of containment is of the form given in Figure .

The names of the classes are given in the notation of Yablonski et al. [45],
who gave a simplified proof and explanation of Post’s results. In total, there
are 8 infinite (countable) hierarchies and 44 individual classes. For a proof
of Post’s theorem, the reader is directed to the cited book by Yablonski et
al. [45], as well as to a more recent text by Lau [20].

The class P, at the top of Figure 0 is the class of all Boolean functions,
which is generated, for instance, as [z V y, —z]. Each of the rest of the
families has its own basis, such as Dy, = [z V y|. Each line specifies a proper
containment of a class located lower in the figure within a higher-located
class.

In part of the literature, such as in the monograph by Lau [20], Post’s
classes are defined slightly differently, so that projections are implicitly in-
cluded in every basis, thus collapsing a few bottom classes in the hierarchy.
However, the application of Post’s theory to language equations developed
in this paper is not affected by these fine details.

3 Language equations with Boolean opera-
tions

Let ¥ be a finite alphabet and let 7 C P, be any set of Boolean functions.
Consider systems of language equations of the resolved form.

X1 = gOl(Xh...,Xn)
: (*)
Xn = ou(Xy,..., X0)

Here the unknowns X; are formal languages over ¥, and the expressions ¢;
may contain these variables, singleton constant languages, the operation of
concatenation, as well as any Boolean operations from F defined on sets. In
particular, Boolean constant 0 defines the empty set, constant 1 defines the
set X* disjunction represents union, sum modulo two represents symmetric
difference, etc.

Formally, the set of expressions admissible on the right-hand sides of
equations is defined as follows:

e every variable X; is an expression;
e a constant language {a}, with a € ¥, is an expression;

e a concatenation of two expressions is an expression;
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Figure 1: Post’s lattice, presented in the notation of Yablonski et al. [A5].



e if f: N¥ — N is a Boolean function from F and 7y, ..., 1 are expres-

sions, then f(ny,...,m) is an expression.
The value of an expression on a substitution Xy = Ly, ..., X,, = L,, is defined
inductively on its structure. In particular, if 7, ..., n are expressions with

values My, ..., M, C ¥* then the value of f(n,...,m) is the language
{w]| f(z1,...,2x) =1, where z; = 1ifw € M;, and x; = 0if w ¢ M;}. A

vector of languages (L1, ..., L,) is a solution of the system (&) if the value of
each expression ¢; under the substitution X; = Ly, ..., X,, = L, is exactly
L;.

Let Ly 7 C 2¥" be the family of languages representable by unique solu-
tions of such systems; that is, L € Ly 7 if and only if there exists a system ()
with a unique solution X; = L, Xy = Lo, ..., X,, = L, for some languages
Lo, ..., L, C ¥*. The question studied in this paper is, how many distinct
language families can be obtained by using different sets F, and what are
these families?

First of all, note that the syntax of language equations allows any function
composition to be expressed in the right-hand side of any equation. There-
fore, one can always implement any Boolean operation from the closure [F|
by combining operations from F. Accordingly, one can assume that F is one
of Post’s classes.

Furthermore, in some cases, one can construct a system of equations
using Boolean operations from JF that implements a Boolean function not
in the closure [F]. For instance, Boolean constant 0 can be expressed by
the equation X = aX with a unique solution X = &, which is effectively
constant 0. This is something that, according to Post’s theorem, cannot be
achieved by function composition.

In this paper, Boolean functions shall often be expressed in this way, in
order to prove that some Boolean operations (such as constant 0) may be
eliminated in a given system of language equations. The necessary notion of
expressibility is formally defined as follows.

Definition 2. A Boolean function f(xi,...,xy) is said to be expressible by
language equations with Boolean operations F over an alphabet X, if there ex-
ists a system of language equations (&) in variables Xy, ..., Xy, Y, Z1, ..., Zy,
for some n = 0, using functions from F, and some functions on languages
01,0t (25)F — 287 and that system is equivalent to the following sys-
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tem of equations (in the sense of having the same set of solution).

Zn = (pn(le Ce ,Xk)

In other words, the system imposes no restrictions on the values of
Xi,..., X}, and ensures that Y is their desired Boolean combination. The
remaining auxiliary variables Z1,..., Z, functionally depend on Xy, ..., X},
so that solution uniqueness is preserved in all constructions involving Defi-
nition B. The basic construction is the one given below.

Proposition 1. Let F be a class of Boolean functions, let f be a function
not in F, which is expressible by language equations with operations F over
an alphabet . Then, for every system using concatenation and operations
from FUA{f} that has a unique solution, with a language L C ¥* as one of
its components, there is another system using concatenation and operations
from F, which also has a unique solution with L among its components.

Indeed, every occurrence of f can be substituted with the construction
in Definition B, which produces a system with the desired properties.

4 The seven families

This study proceeds by splitting Post’s lattice into seven fragments, centered
around the following classes: Dg; (disjunction only), Mpy; (disjunction and
conjunction), P, (all Boolean operations), U (complementation only), & (no
Boolean operations), C (only constant 1) and K; (conjunction and constant
1). For each of these base classes, it is shown that several neighbouring classes
in Post’s lattice, when used in language equations, define the same family of
languages. This is presented in Lemmata IH2 below, which, together, cover
Post’s lattice completely, as shown in Figure B.

D: Disjunction only

If the only allowed Boolean operation is disjunction, one obtains the well-
known equations of Ginsburg and Rice [§]. These equations constitute one of
the definitions of the context-free grammars that is equivalent to Chomsky’s
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definition by string rewriting®”. In the framework of language equations,
this is the family of languages generated by the disjunction. Following the
modern logical understanding of grammars developed by Rounds [44], this
is a fragment of the FO(LFP) logic, whereas the definition of the entire
FO(LFP) logic can be regarded as a far-going generalization of language
equations.

A grammar is a quadruple G = (X, N, R, S), where N is the set of nonter-
minal symbols or variables, S € N is the initial symbol, and every rule in R
gives a possible representation of a nonterminal symbol as a concatenation.

X =« (XeN,ae (XUN)")

Multiple rules for the same symbol on the left-hand side implicitly describe
disjunction of syntactic conditions. The system of language equations cor-
responding to a grammar (8] has the following equation for each variable
X eN.

X = U Y. Y,

X—-Y1..Y,€R

Here each Y; may be either a variable or a symbol from 2; in the latter case,
it is represented in the equation as a singleton constant language.

These equations use the basis comprised of single Boolean function, the
disjunction, which generates Post’s class Dy;. Adding constants 0 and 1 to
this basis does not increase the expressive power of language equations.

Lemma 1. Let F be a class of Boolean functions, with its closure contained
within the following bounds.

[xVyl C[F]ClzVy0,1]

Then, for every alphabet X, the family of languages definable by unique so-
lutions of systems (@), with Boolean operations from F, concatenation and
singleton constants, is exactly the family described by ordinary (context-free)
grammars over XJ.

The four Post’s classes satisfying these conditions are D, Dy, D;, and
Dy;. They are marked in Figure 2 by the letter D.

Proof. Assume that the disjunction can be expressed in the basis F. For
every language described by some grammar, consider a grammar G =

L Actually, Chomsky’s term “context-free” has no meaning outside of the definition by
string rewriting, and does not characterize these grammars in relation to other currently
used grammar models. To a modern reader, these grammars would rather be called
ordinary grammars, because of their central position in the theory.
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(3, N,R,S) in the Greibach normal form describing that language—that
is, with all rules of the following form.

X = aY;...Y, (@€, 00, X,Y;,...,Y, € N)

Accordingly, every concatenation in the corresponding system of language
equations involves a singleton constant language {a}.

Xx= U {agn-..v

X—aY1...Y)ER

Autebert et al. [I] called such systems strict, and showed that every such
system has a unique solution. This system can be rewritten in the basis F
by replacing each union operation with the expression for disjunction in F.
Thus, the language generated by the grammar is representable by a unique
solution of a system over the basis F.

Conversely, if a language L is defined by a unique solution of a system
over the basis F = [z Vy, 0, 1], then let the system first be transformed to use
only the basis functions = V y, 0 and 1. Then, every occurrence of constant
0 can be expressed by the equation X = {a}X, for any symbol a € ¥, which
has a unique solution X = &. Expressing constant 1 means describing the
language of all strings by an equation: if ¥ = {ay,...,ax}, this is done by
the following equation with a unique solution X = >*.

X ={a1}XU...U{ax} X U{e}

By Proposition 0, the resulting system still has a unique solution, with L
among its components, and it uses only union and concatenation. It remains
to decompose complex right-hand sides to obtain a system with equations
of the foom X =Y U Z, X = YZ and X = {w}, which can be directly
translated to a grammar generating L. O]

M: Disjunction and conjunction

Equations with disjunction and conjunction correspond to another family of
formal grammars: the conjunctive grammars |26, 34).

A conjunctive grammar is a quadruple G = (X, N, R, S), where N is the
set of nonterminal symbols (as in ordinary grammars), S € N is the initial
symbol, and each rule in R defines a representation of a nonterminal symbol
as a conjunction of concatenations.

X—=>a&...&anm, (XeEN m=20, ay,...,a, € (ZUN))

These grammars can define such an important syntactic construct as dec-
laration before use [34, Ex. 3], as well as quite a few interesting abstract
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languages, including {a"b"c* | n > 0}, {wew | w € {a,b}*} [26, B4],
{(we)™'| w € {a,b}*} and {a®" |n =0} [9].

The semantics of conjunctive grammars can be equivalently defined by a
certain kind of term rewriting [26, B4] and by language equations [27], where
the equation for each variable X € N is of the following form.

X = U (Yir--. - Yig,

X—>Y171...Y1’gl &... &Ym’l...ym’ngR =1

Note that some Y;; may be symbols from >, in which case they represent
the corresponding singleton constant languages.

Post’s class corresponding to these equations My, = [zVy, 2Ay]. However,
some other classes generate the very same language family.

Lemma 2. Let F be a class of Boolean functions, with its closure contained
within the following bounds.

[V yA2)] C[F]C[zVy, xAy, 0, 1]

Then, for every alphabet 33, the family of languages definable by unique so-
lutions of systems (@), with Boolean operations from F, concatenation and
singleton constants, is exactly the family described by conjunctive grammars
over X.

The upper bound is given by Post’s class M = [z V y,z A y,0, 1], which
contains all monotone Boolean functions. The lower bound is MO = [z V
(yAz)]. Two of the eight Post’s infinite hierarchies are located between these
classes, and, with respect to language equations, they collapse as shown in
Figure B, marked with the letter M.

Proof. Assume that the ternary function f(z,y,z) = =V (y A z) can be
expressed in F. Let a language L be described by a conjunctive grammar.
Then, as shown by Okhotin and ReitwieBner [36], it can be defined by a
conjunctive grammar G = (X, N, R,S) in the so-called odd normal form,
with all rules of the following form.

X —=YaZi&...&YmanZmn (m>1, X|Y;,Z; €N, a; € ¥)

X —a (a €X)
S — aX (ae X, X €N)
S —e

(the latter two types of rules are allowed only if S never occurs in the right-
hand sides of any rules) Like in Lemma [, the corresponding system of lan-
guage equations is strict, in the sense that every concatenation involves a
singleton constant language, and therefore the solution is unique.
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This is a system over conjunction and disjunction, and it remains to
express these operations through the function f(z,y,2) = x V (y A z). The
disjunction can be expressed on the level of Boolean functions by identifying
y and z. Zero can be expressed as usual, using the equation X = {a}X.
Then, substituting this zero as x in f expresses the conjunction. The system
is then converted to the desired basis by substituting each occurrence of f
with its expressions in F. The resulting system over F represents L by its
unique solution.

In the other direction, let a language L be defined by a unique solution of
a system using Boolean functions in F = [z Vy, x Ay, 0, 1]. First, the system
is transformed to use only the basis functions z Vy, x Ay, 0 and 1. Every
occurrence of constants 0 and 1 is then expressed as in the proof of Lemma [,
using disjunction in the equation for constant 1. Finally, complex right-hand
sides are decomposed, so that only equations X =Y UZ, X =Y NZ, X =
YZ and X = {w} are left. Then, the corresponding conjunctive grammar
generating L uses the rules X - Y, X - 7, X - Y &Z, X — YZ and
X —w. [

A survey of conjunctive grammars, their known properties and their open
problems has recently appeared [34].

P: All Boolean operations

Language equations with all Boolean operations, that is, over the basis
Py =[xV y, —x], were first investigated by the author [28], with the original
intention to use them in the definition of formal grammars with a negation
operator: Boolean grammars. However, it turned out that these equations
can represent logical dependence of a shorter string upon a longer one, such
as in the following system of two equations.

X = X n{aYy
Y =Y

The system has a unique solution X =Y = &, because if any string w is
in Y, then the first equation expresses a contradiction of the form “aw € X
if and only if aw ¢ X”. However, in order to determine that contradiction
for w, one has to consider a longer string aw, contrary to the intuition be-
hind grammars. For that reason, the definition of Boolean grammars, given
by Okhotin [29] and improved by Kountouriotis et al. [I7], has to use spe-
cially modified language equations, which are beyond the scope of the present
paper.

What is theoretically important about this dependence of shorter strings
on longer strings, is that such dependencies can be used to express every
recursive set—that is, a set recognized by a Turing machine that halts on

13



every input—by a unique solution of a system of language equations ()
with concatenation and all Boolean operations [28, 81, B2]. What is actu-
ally important about these equations is the possibility of using intersection
and complementation to express containment of one arbitrary expression in
another. For example, an inequality XY C UV can be expressed by the fol-
lowing equation for an auxiliary variable Z, which turns into a contradiction
if one concatenation is not a subset of the other.

Z=NXYynuvVv

An inclusion of this kind can be used to extract the language recognized by a
Turing machine from the language of its computation histories by a language
equation [28, B0, B2], and if the Turing machine indeed halts on every input,
that equation will have a unique solution. A converse result, that unique
solutions of language equations are always vectors of recursive sets, has also
been established [28, B2]. For details, an interested reader is directed to the
cited papers.

As long as the alphabet Y contains at least two symbols, this computa-
tional universality construction can use the same alphabet to represent both
a Turing machine’s input string and its computation history, and concatenate
them in the way that they could be separated from each other [28, B0, B2].
Later, Jez and Okhotin [I5] re-implemented this construction over a one-
symbol alphabet ¥ = {a}, that is, without using any auxiliary symbols to
encode computation histories. This was done by representing both the in-
put string and the computation history as sequences of digits in some base-k
positional notation, and by manipulating unary representations of these num-
bers, using the tools developed for conjunctive grammars by Jez [d] and by
Jez and Okhotin |1, T3]

As a small addendum to these results, the construction, both in its unary
and non-unary cases, was adapted to use resolved systems (A) with the op-
eration of symmetric difference of sets [33], which corresponds to Boolean
exclusive OR, also known as sum modulo two, x & y.

The following theorem presents all classes of Boolean operations, for
which resolved language equations are already known to be computation-
ally universal.

Theorem A (Okhotin [2R, B2]; Jez and Okhotin [T5]; Okhotin [33]). For
every finite alphabet ¥ and for every language L C Y over that alphabet, there
exists a system of language equations (¥) over the same alphabet 3, using the
operations of union, intersection, complementation and concatenation, which
has a unique solution with L as one of its components.

The result still holds true if the only allowed Boolean operation is sym-
metric difference.

Now the task is to determine the minimal classes of Boolean functions
necessary and sufficient to implement this construction.
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Lemma 3. Let F be such a class of Boolean functions, that one of the three
Junctions xV (y A—z), e A(yV —z), or x @y d z is in its closure [F|. Then,
for every alphabet X2, the family of languages definable by unique solutions
of systems () over X, with Boolean operations from F, concatenation and
singleton constants, is exactly the family of recursive sets over .

These three functions generate Post’s classes OF°, I7° and Ly, respec-
tively. Their upward closure is shown in Figure B, in the area marked with
P, and it covers four infinite hierarchies and a number of individual classes.

Proof. 1t is known that equations with any Boolean operations can define
only recursive sets by their unique solutions [28, B2]. The rest of the proof
shows that either of the bases Og° and I7° is sufficient to express all Boolean
operations in language equations, whereas the base Lj; can express sum
modulo 2 of two arguments. Thus the representations of any recursive set
given in Theorem A shall be adapted for the available bases.

Assume that the function f(x,y,2) =z V (y A —z) is representable
in the basis F. Consider a system as in Theorem [ that defines a recursive
set L C 3* using disjunction and negation (conjunction could be eliminated
through de Morgan laws). First, one can express the disjunction through f
by identifying x and z, that is, as f(z,y,x) = x V y. Next, the negation is
expressed as f(0,1,2) =0V (1 A—z), where constants 0 and 1 are defined by
the usual language equations, employing the disjunction to describe constant
1.

X ={a}X
Y={a}YU.. . U{aq}Y U{e} (X ={ay,...,ax})

Finally, f is expressed in the given basis F. According to Proposition [, the
resulting system has a unique solution, with L as one of its components.

This time, let g(x,y,2) = A (y V —z) be representable in F, and
consider a system with conjunction, disjunction and negation defining a re-
cursive set L. C ¥* by its unique solution. The first step is to obtain the
zero by a language equation for a new variable V', and to substitute it into
f as g(x,0,2) = x A —z. Using the latter function, constant 1 is expressed
through a specially constructed system of language equations. If the alpha-
bet is ¥ = {aj,...,ax}, the system is comprised of the following 2n + 3
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equations.

X=X
Y;:XﬂX{ai} (léiék‘)
—_———
9(X,V.X{a;})
T,=Y,nT, (1<i<k)
N——
g(Y3,V\T3)
Z=enX
——
g9(&,V,X)
U=7nN
g(Z,V,U)

It is claimed that the unique solution of this system is X =>* Y, =T, = &,
Z = U = @. The task is to show that every string w € ¥* must be in X,
which is proved by induction on the length of w.

Base case, w = ¢. Assume that ¢ is not in X. Then, it belongs to Z, which
turns the equation for U into a contradiction of the form “the empty
string is in U if and only if it not in U”.

Induction step: w to wa;. Let a string w € ¥* be in X, and let a; € X be
the next symbol. To see that wa; must be in X as well, suppose it is
not. Then, wa; belongs to the intersection X N X{a;}, and therefore to
Y;. Like in the base case, the equation for T; becomes a contradiction
on the string wa;.

If X =X, then all remaining variables must be equal to the empty set.

With both zero and one defined, the negation can be expressed as
g(1,0,z) = =z, and the conjunction as g(z,y,1) = = A y. Finally, ¢ is
expressed in the given basis F. Thus, the original system is transformed into
a new one using g as the only Boolean operation, which describes the desired
set L.

Let h(z,y,z) = x ® y @ 2z be expressible in the basis F. Then one
can obtain the zero by an equation Z = aZ, and substitute it into h to
obtain h(x,y,0) = z @y, that is, the symmetric difference of two languages.
This allows a system provided by Theorem [l to be transformed to the given
basis. O]

N: Negation only

Language equations (M) using concatenation and complementation, but no
other Boolean operations, have first been considered by Leiss [24], who con-
structed an example of an equation over a unary alphabet with a non-regular
unique solution.
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Example 1 (Leiss [24]). Let ©? abbreviate a concatenation o - p. Then the
following equation has a unique solution {a™ |3k > 0: 23% < n < 23FF2},

—2
X =A{a}-X

Later, such equations over arbitrary alphabets were studied by Okhotin
and Yakimova [39, 40], who determined that, even though negation is not
monotone, these equations share the important property of equations with
monotone Boolean operations, that the membership of longer strings in a
solution cannot influence the membership of shorter strings [39, Lemma 3.4].
This property restores these equations back to the world of formal grammars
as a special case of Boolean grammars [34].

Although these equations can describe such a non-trivial language as
the one in Example [, their limitations are substantial, and some simple
languages cannot be defined. It was shown that the regular language a>*bU
b¥*aU{e} cannot be represented by such equations [A0, Ex. 6.3]. Even if all
regular languages are allowed in equations as constants, the language (aX*bU
bX*aU{e})\ {a"b™ | n > 1} is still not representable [40, Ex. 7.2]. For unary
languages, a language defined as a symmetric difference Ly A Ly A L, where
Li={a" |3k >0: 2" <n < 2%} [, = a(a®)* and Ly = {a",a"" | n =
23k+1 " for some k > 0}, cannot be defined by these equations [40, Ex. 7.2],
even though it can be described by a conjunctive grammar [40, Prop. 7.4].

The complementation operation is a basis for Post’s class SU of all self-
dual unary functions. The following lemma states that the class of all unary
functions U = [0, —x], when used in language equations, induces the same
family of languages. These two classes are marked in Figure & with the letter
N, which stands for “negation”.

Lemma 4. Let F be such a class of Boolean functions, that [F| = [—z] or
[F] =10, =z]. Then unique solutions of systems () with Boolean operations
from F, concatenation and singleton constants define the same single class
of languages.

The proof is by the same constructions as in the previous results, based
on the obvious representation of the zero by an equation X = aX.

O: No Boolean operations

The remaining Post’s classes induce three families of language equations that
can be regarded as trivial, as they define small subclasses of regular lan-
guages. Nevertheless, they need to be investigated—first of all, to make sure
that there is nothing of interest there.

The first trivial family O corresponds to equations in which no Boolean
operations are allowed. It is easy to see that their unique solutions contain
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only singleton languages and empty sets. As in the previous cases, nothing
more can be generated using operations from a certain larger Post’s class.

Lemma 5. Let F be a class of Boolean functions contained within Post’s
class M1I?.
FCo, vy AlyVz)A(zVz)

N J

di(z,y,2)

Then, unique solutions of systems () over an alphabet 33, with Boolean op-
erations from F, concatenation and singleton constants define only singleton
languages and the empty set.

As indicated by Post’s lattice, MI? is the largest class of monotone
Boolean functions in which neither disjunction nor constant 1 are express-
ible. This class properly contains two of the infinite hierarchies in the lattice,
which are marked in Figure 2 by the letter O.

In order to prove that no other languages can be defined, consider the
standard representation of the least solution of a system of equations ()
with only monotone operations in its right-hand sides [0, 27]. Least solutions
are defined with respect to the partial order by componentwise inclusion:
(Ki,...,K,) € (Ly,...,Ly,) if K; C L; for all 7. Then the least solution is
obtained by a so-called fizpoint iteration, that is, by taking a vector of empty
sets and iteratively transforming it by applying the right-hand sides of the
system as a vector function. The least upper bound of the resulting sequence
is the least solution.

Let ¢ be the right-hand sides of the system, regarded as a function map-
ping vectors of n languages to vectors of n languages. Then the least solution
has the following form.

| |¢*(2,...,2) (1)

k>0

Proof of Lemma H. Consider a resolved system with concatenation and op-
erations from MI? that defines a language L by its unique solution. First,
all Boolean operations are expressed through d3, and, for simplicity, all equa-
tions are decomposed to individual operations, so that each equation is of
one of the following forms.

U=XY
U=(XuY)nYuZ)n(Xn2z)
U ={w} (we X"

The resulting system has a unique solution with L among its components.
Note that a unique solution is also the least. The following analysis of fixpoint
iteration shows that all components of the least solution, including L, may
contain at most one element.
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Claim 5.1. Consider a system of equations (f), where the equation for each
vartable U is of one of the above forms. Then, for every k > 0, each compo-
nent of the vector ©*(3, ..., @) has cardinality at most one.

The claim is proved by induction on k. In the base case, k = 0, the claim
holds for the vector of empty sets. For the induction step, assume that at
the k-th step, each U-component, denoted by U®) satisfies [U®| < 1, and
consider the cardinality of each U at the next step.

If the equation is U = {w}, the claim holds true.

In the case of an equation U = XY, the value of U at the (k+ 1)-th step
is obtained by concatenating the values of X and Y at the previous step.

’U(k+1)’ _ |X(k)y(k)| — \X(’“)l . |y(k>| <1-1=1

Let the equation be U = (X UY)N (Y UZ)N (X NZ), so that UKD =
(XBUYE)N(Y®UuZE)N(XH®UZF). Since, by the induction hypothesis,
each of the sets X*) Y*) and Z®*) contains at most one element, assume
that X® = {u}, Y® = {v} and Z®) = {w}, for some strings u,v,w € 2*.
If these strings are not pairwise distinct, then at least one of the unions
X®uy® yE gy ZzE and X® U Z®* must be a singleton, in which case
their intersection cannot contain more than one element. Otherwise, if u, v
and w are pairwise distinct, then each of the three unions is of cardinality 2,
but their intersection is empty. If any of X®) Y®) or Z*) are empty sets
rather than singletons, the value of the entire expression can only be reduced,
and therefore is at most a singleton.

This completes the proof of Claim BT, as well as of Lemma B. O

I: Constant 1 only

The second trivial case of language equations is given by a basis containing
constant 1 and no other Boolean functions: the corresponding Post’s class
is 7. Constant 1 can be used to express the language »*, which results
in a somewhat larger family of languages than O. The new family has the
following characterization.

Lemma 6. Let F be a class of Boolean functions contained within the fol-

lowing bounds.
[1] € FC0,1,7]

Then, unique solutions of systems (@) over the alphabet 3, using Boolean
operations from JF, concatenation and singleton constants, define languages
of the form @ and weX*w1X* ... Wy 12X W,y,, with m > 0 and w; € X*.

These bounds cover Post’s classes C4, C, Uy and MU, as shown in Fig-
ure B. The resulting family of languages is denoted by I, as to resemble the
digit “17.
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The proof of this lemma is again by analyzing the sequence converging
to the least solution. Consider any resolved system of language equations in
variables X1, ..., X,, with monotone operations in the right-hand sides. The
infinite sequence ©*(J, ..., @) may be regarded as a computation, which uses
n language variables: in the beginning, all variables are initialized to empty
sets, and at every k-th step, as ¢ is applied, the value of each variable may
change to any superset of its current value. If the Boolean operations used in
the system are limited to constant 1 and intersection (Post’s class K), then
this process is known to have the unique assignment property: whenever a
variable X gets assigned some non-empty value, it must maintain the same
value at all subsequent steps?.

Lemma B ([30, Lemma 9]). Let ¥ be an alphabet, and consider any resolved
system of language equations (&), where the right-hand sides ¢ = (@1, ..., ¢n)
may use arbitrary constant languages and the operations of intersection and
concatenation. Denote by X% the value of a wariable X in the vector
©*(D,...,2) obtained at the k-th iteration. Then, whenever X®) £ @, all
subsequent values X O, with ¢ > k, coincide with X®).

Accordingly, every such system of language equations degenerates to a
formula, in which the values of the variables can be evaluated in the or-
der implied by Lemma B. Using this property, the limitations of language
equations stated in Lemma B are easy to establish.

Proof of Lemma @. Given a system of language equations with concatena-
tions and Boolean constants 0 and 1 as the only operations, the system is
first transformed by replacing Boolean constants with language constants &
and X*. For the resulting system, Lemma B implies that every component
of its unique solution can be evaluated as a formula over constant languages
@, 3* and {w}, with w € ¥*. Such formulae can express only languages of
the form weX*wX* ... wy,_1 X w,,, as well as the empty set. O

Note that the family I is not closed under intersection, because the lan-
guage >*ad* N X*bY* is not representable in the form given in Lemma B.
The last family of language equations adds the conjunction operation to al-
low such languages to be represented.

K: Conjunction and constant 1

As is evident from Lemma B, conjunction alone is not enough to define any-
thing more than singletons. However, once ¥* can be expressed, the inter-
section operation slightly increases the expressive power.

2Note that systems with Boolean operations from MI?, described in Lemma B, also
have the unique assignment property. Indeed, due to the monotonicity of the sequence,
the first assigned non-empty value {w} can only be reassigned to a set containing at least
two elements, which was proved to be impossible.

20



Lemma 7. Let F be a class of Boolean functions contained within the fol-
lowing bounds.
[z Ay, 1] CF ClzAy, 0, 1]

Then, unique solutions of systems () with Boolean operations from F, con-
catenation and singleton constants define exactly the languages from the in-
tersection and concatenation closure of 1.

These are two Post’s classes, K and K;, marked in Figure B by the let-
ter K. The proof of Lemma [@ uses Lemma B analogously to the proof of
Lemma B.

5 Summary

As evident from Figure B, the above Lemmata IHA cover the entire Post’s
lattice. Hence, no families besides these seven families can be generated by
language equations of the given kind, which leads to the following final result.

Theorem 1. Let 3 be any finite alphabet, let F C Py be a class of Boolean
functions, and consider the family of languages representable as unique solu-
tions of systems of language equations of the following form, with operations
from F, concatenation and singleton constant languages.

X1 = gOl(Xl,...,Xn)
: (*)
Xn = on(Xy, .., X))

Then, depending on the basis F, these equations define one of the following
families of formal languages:

P. the recursive sets [28, 32, 14, 33], if O5° C [F]|, or I{® C [F], or
LOI g ['F];

M. the languages described by conjunctive grammars [26], if MOg C [F] C
M .

)

D. the languages described by ordinary (“context-free”) grammars [8, 1],
if Doy C [F] C D;

N. a certain special subclass of Boolean grammars using negation only (24,

39, 40/, if SU C [F] C U;

K. the intersection and concatenation closure of the class of languages of
the form woX w1 X% .. W1 X% Wy, if Ky C [F] C K;

L all languages woX u X5 . . w1 X Wy, if C1 C [F] € MU;
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O. all singletons and the empty set, if F C M1I>.

From Post’s lattice, one can infer the following equivalent conditions on F
that delimit the seven classes of language equations. First, equations () de-
scribe all recursive sets (P) if and only if the basis F contains a non-monotone
function and a non-unary function (which may be the same function). Oth-
erwise, there are two possibilities: either all functions in F are monotone, or
all of them are unary.

If F contains only monotone functions, and as long as it generates the
disjunction, these are formal grammars; they are separated into conjunctive
grammars (M) and ordinary grammars (D) by the condition of whether
the function = V (y A z) is expressible in F. If there are only monotone
functions in F and the disjunction cannot be expressed, this is one of the
three subregular cases (O, I, K): their form given in the theorem depends
on using only singleton constant languages®.

In the remaining case, when F contains only unary functions and the
negation is among them, the resulting language equations can be simulated
by Boolean grammars [39]. Allowing all regular constants leads to a slightly
larger family with similar properties [40].

Thus, of the seven classes of languages, six (M, D, N, K, I, O) are de-
fined by special cases of Boolean grammars, and therefore can be recognized
in polynomial time by the corresponding parsing algorithms [34]. More pre-
cisely, all these languages can be recognized in time O(n*) [B5], with w < 2.4,
that is, the complexity of multiplying a pair of n x n Boolean matrices.

The hierarchy formed by these seven families is illustrated in Figure B,
and formally established in the following theorem.

Theorem 2. For every alphabet 3 containing at least two symbols, the seven
classes of languages described in Theorem [ are pairwise distinct, and are
organized into the following two chains of proper inclusions; the regular lan-
guages (Regs ) are inserted for reference.

02CI§;CK2CR6QECD2CMECPE
IECNECPE

Furthermore, Dy, is incomparable with Ny, and My is not contained in Niy,.

Proof. Let a and b be two distinct symbols in ». The strictness of these
inclusions is witnessed by the following languages.

Yre Is \ Os,
St O SE € Ky \ Iy

3For example, if all regular constant languages are allowed, then everything up to Post’s
class K will generate exactly the regular languages, according to Lemma B. The upper
part of the O-area in Figure B will then collapse up to the conjunctive grammars.
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Figure 3: Hierarchy of language families defined by language equations over
an alphabet X: (left) seven families for |X| > 2; (right) six families for
X =1.

The next separation uses the fact that Ky is contained in a special subclass
of regular languages called star-free languages, which does not include the
set of all strings of even length.

(22)* € R@gz \ KE

Separations between regular languages, ordinary grammars and conjunctive
grammars are well-known.

{a"V" |n > 0} € Dy \ Regs,
{a"v"c" |n >0} € My \ Ds,

Even though no methods for proving languages to be non-representable by
conjunctive grammars are currently known [34], they can be separated from
all recursive sets by using the time hierarchy theorem from the complexity
theory. Let Ls be any set that can be recognized in time O(n?), but not in
time O(n??). Then, this set has no conjunctive grammar, and no Boolean
grammar either [35], and therefore it separates both My and Ny from the
recursive sets.

Lgepg\Mg
Ls € Py \ Ny

To show that Ny is a proper subset of Iy, it is sufficient to generate any
non-regular language, such as the following one [0, Ex. 4.3].

{a"wb" |w =¢or we {b,c}X*} € Ny \ Regs

23



Finally, turning to the incomparability of Dy and Ny, the latter class is
known not to contain the following regular language [0, Ex. 6.3].

aX'buUbX*aU{e} € Reg\ Ny

A language in Ny, that is not in Dy, can be obtained by taking Example 0 as
a system of equations over the alphabet X: the resulting language will have
a non-regular intersection with a*, and therefore is not in Dsy.. O

Note that Theorem B does not completely describe the structure of inclu-
sions between these seven classes. For instance, K could be a subset of N,
whereas N could be a subset of M.

A similar hierarchy can be established for a one-symbol alphabet.

Theorem 3. Let X = {a} be a unary alphabet. Then, Dy is the class of all
reqular languages, whereas Iy coincides with K,y and contains all languages
@, {a"} and a"a*, with n = 0. These families are pairwise distinct and form
the following proper inclusions.

O{a} C Itay = K{a} C Regiay = Dyay C Mia} C Ppay
Doy C Nya} C Py

In addition, My, is not a subset of Ni,).

Proof. The characterization of Iy, is given by Lemma B, with ¥ = {a}.
This class of languages is closed under intersection and concatenation, and
therefore, by Lemma [, it is the same as Ky, . The equality of Dy, to the
regular languages is a classical result by Ginsburg and Rice [R]. As proved by
Okhotin and Yakimova [&0, Thm. 5.2], all regular languages are in Ny,y; this
inclusion is proper, because Ny,; contains the non-regular language given in
Example .

{a" |3k > 0: 2% <n < 2%} € Ny \ Dy
The separation of M,y from Dy, is a result by Jez [9].
{a® [n >0} € Moy \ Dy

The sets My,) and Ny, are separated from Py, (the recursive sets) by any
unary language with a sufficiently high computational complexity.

A language in M, but not in Ny, was given by Okhotin and Yaki-
mova [40, Example 7.2, Prop. 7.4]. ]

It remains unknown whether Ny, a subset of M,y. Given the formidable
expressive power of conjunctive grammars over a one-symbol alphabet [9, [T,
[3], this does not look impossible.
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6 Further work

The general form of equations studied in this paper was defined by several
fixed parameters: the unknowns are formal languages, the equations are in
resolved form X; = ¢;(X1,...,X,), languages are defined by unique solu-
tions, strings are combined using concatenation, and constant languages are
singletons. On top of these, there can be an arbitrary set of Boolean op-
erations, and this paper has investigated all possibilities here. Although,
to a critical eye, the results might look as if “nothing of interest besides
the previously studied cases has been found”, in fact, early sketches of this
paper (with the earliest one dating back to 2002) actually motivated the in-
vestigation of equations with complementation [39, 40] and with symmetric
difference [33]. Applying the same method of study based upon Post’s lattice
to other types of language equations could similarly allow their interesting
cases to be identified.

First, one could consider some special cases of the equations studied in
this paper, such as those with concatenation restricted to be linear, so that
one of its arguments is always a constant language. With union only, these
equations correspond to the well-known linear grammars, and with disjunc-
tion and conjunction, they define linear conjunctive grammars, which are
notable, in particular, for being equivalent to one-way real-time cellular au-
tomata [34, Sect. 4]. Using all Boolean operations, every recursive set can
be represented if the alphabet contains at least two symbols [82]. For the
symmetric difference operation, a computational universality construction
in known only for regular constant languages, whereas nothing is known if
all constant languages are singletons [33]; this might be a non-trivial and
non-universal class. For complementation only, there are some unsystematic
results on the expressive power [39, 40]. It remains to apply Post’s lattice to
systematize these cases and to obtain a hierarchy similar to the one presented
in this paper.

A further restriction is to limit concatenation to one-sided, in which case
unique solutions (as well as least and greatest solutions) are always regu-
lar, even if equations of the general (“unresolved”) form ¢(Xi,...X,) =
¥(Xy,...X,) are allowed. This follows from Rabin’s [43] regularity result for
MSO logic. Since everything is regular, there is not much to study in terms
of expressive power (besides determining which Post’s classes are necessary
to describe all regular sets). However, there are interesting computational
complexity questions, such as what is the complexity of testing whether a
given system has any solution, has a unique, least or greatest solution, etc.
For several types of language equations with fixed sets of Boolean operations,
such problems were researched by Baader and his colleagues [2, B, @, b], and
their results could be refined using Post’s lattice.

Concerning least and greatest solutions, one can investigate their power in
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the equations of the form studied in this paper. Equations with all Boolean
operations are known to define exactly the recursively enumerable sets by
least solutions, and their complements by greatest solutions [28, B2, 5, B3].
It remains to check the rest of the hierarchy, which will mostly be like the
one in this paper, although there could be some variations.

Turning to more general models, language equations of the general form
¢ = 1 have received much attention in the literature. Such equations are
known to be computationally complete even without any Boolean operations,
which was first shown by Kunc [19] for the equation LX = XL, where
L is a finite constant language over a two-symbol alphabet. For a unary
alphabet, Jez and Okhotin [IH, I0] established computational completeness
of unresolved equations with only concatenation; this result was improved by
Lehtinen and Okhotin [22, 23] using systems of two equations, X XK = X XL
and X M = N, with regular constant languages K, L, M, N C a*. There were
also some computational completeness results for inequalities ¢ C v [I8] and
for inequations ¢ # v [31]. Overall, for equations of this kind, a study of
Boolean operations does not appear worthwhile.

On the other hand, language equations of the form p(Xy,...,X,) = C,
the prospects of applying Post’s lattice look more promising. The compu-
tational complexity of some decision problems for such equations was deter-
mined by Bala [6] for the case of concatenation and union, and by Martens et
al. [25] for equations with concatenation only. On the other hand, if the sym-
metric difference is allowed, then one can already express arbitrary equalities,
and thus attain computational completeness. An analysis of Post’s lattice is
needed to enumerate all possibilities.

Another type of equations are those using other operations on strings
instead of the concatenation. Equations of this kind were studied, in partic-
ular, by Kari [16] and by Domaratzki and Salomaa [[]. One possible subject
for future work is to consider resolved systems exactly like in this paper, but
with the concatenation replaced with the shuffle operation. Then, all com-
putational completeness results for the unary case are directly inherited from
the case of concatenation (because shuffle and concatenation are the same in
the unary case), whereas for multiple-symbol alphabets, these equations will
likely define some entirely different families of languages.

Using erasing operations on strings, such as quotients and homomor-
phisms, completely changes the expressive power of language equations. Jez
and Okhotin [17] investigated resolved equations with concatenation and quo-
tient over a unary alphabet, characterizing their least and greatest solutions,
showing that least solutions are computationally universal, whereas greatest
solutions can represent complete sets for the bottom level of the analytical
hierarchy. Unresolved equations characterize the hyper-arithmetical sets by
their unique solutions [I4, Z1]. The effect of different Boolean operations in
these equations, especially in the resolved ones, remains to be analyzed.
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