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Abstract

A well-known theorem by Greibach (“The hardest context-free language”,
SIAM J. Comp., 1973) states that there exists such a “hardest” context-free
language L0, that every context-free language over any alphabet is repre-
sentable as an inverse homomorphic image h−1(L0), for a suitable homo-
morphism h. This paper establishes similar characterizations for conjunctive
grammars and for Boolean grammars, that is, for context-free grammars ex-
tended with conjunction and negation operators.
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1 Introduction

In 1973, Greibach [4] constructed a context-free language L0 over an alphabet
Σ0, with the following property: for every context-free language L over any
alphabet Σ there exists such a homomorphism h : Σ → Σ∗

0, that a string
w ∈ Σ∗ is in L if and only if its image h(w) belongs to L0. In other words, L
is represented as an inverse homomorphic image h−1(L0). This language L0

is known as the hardest context-free language, for the reason that a decision
procedure for L0 can be used to recognize every context-free language using
the same amount of resources, up to a constant factor.

The purpose of this paper is to establish a similar result for the fami-
lies of conjunctive grammars [12] and Boolean grammars [15, 10]. These are
variants of ordinary context-free grammars, which allow expressing conjunc-
tion and negation of syntactic conditions in the rules. Consider that a rule
A → BC in an ordinary grammar states that if a string w is representable
as BC—that is, as w = uv, where u has the property B and v has the
property C—then w has the property A. In a conjunctive grammar, one can
define a rule of the form A → BC &DE, which asserts that every string
w representable both as BC (with w = uv) and at the same time as DE
(with w = xy) therefore has the property A. A Boolean grammar further al-
lows such rules as A→ BC &¬DE, which expresses all strings representable
as BC, but not representable as DE. The importance of conjunctive and
Boolean grammars is justified by two facts: on the one hand, they allow
specifying a useful logical operation within natural inductive definitions of
syntax, and on the other hand, they can be parsed by generally the same
parsing algorithms as for ordinary context-free grammars [18, 17, 19]. Other
results on these grammars include automaton characterizations [1, 14], nor-
mal form theorems [21], closure properties [11], an extensive study of the case
of a one-symbol alphabet [5, 6, 8, 9, 23], several results on the parsing com-
plexity [7, 20, 22], and the first developments on the stochastic case [2, 24].

Turning to the prospects of proving an analogue of Greibach’s theorem
for conjunctive grammars, the first thing to note is that Greibach’s proof of
her theorem for ordinary context-free grammars relies on using a grammar
in the Greibach normal form [3], in which every rule is of the form

A→ aα,

where a is a symbol of the alphabet. The construction transcribes all such
rules in the image h(a) of the symbol a, and the grammar for the language
L0 matches those transcriptions to the encodings of the symbols listed in α.

Unfortunately, no analogue of Greibach’s normal form is known for con-
junctive grammars. To be precise, the form itself can be generalized, so that
all rules in a grammar are

A→ aα1 & . . .& aαm,
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but it is not known whether every grammar can be transformed to this form.
As a work-around, this paper assumes a weaker form, upon which all the
subsequent constructions are based. This is the odd normal form for con-
junctive grammars, defined by Okhotin and Reitwießner [21], in which all
rules are either of the form

A→ B1a1C1& . . .&BmamCm,

or of the form A→ a (not counting special rules of the form S → aA allowed
for the initial symbol of the grammar).

Using this normal form instead of the Greibach normal form requires
developing a new construction, which is quite different from the construction
used by Greibach [3] for ordinary grammars. For a conjunctive grammar G,
Section 3 defines a homomorphism h, in which the image h(a) of a symbol a
lists all conjuncts of the form BaC used in the grammar, along with all rules
for B and C, all appropriately encoded. The base language L0, defined by a
conjunctive grammar, matches these encodings to each other, simulating the
logic contained in the original grammar G.

In the last Section 4, the construction is adapted to prove the same kind
of result for Boolean grammars.

The appendix reports on machine calculations, which were carried out in
order to test the constructions. The method was found to work correctly on
three different grammars.

2 Conjunctive grammars

Definition 1. A conjunctive grammar is a quadruple G = (Σ, N,R, S), in
which:

• Σ is the alphabet of the language being defined;

• N is a finite set of symbols for the syntactic categories defined in the
grammar, each representing a property that a string in Σ∗ may have or
not have;

• R is a finite set of rules, each of the form

A→ α1& . . .&αm, (1)

where A ∈ N , m > 1 and α1, . . . , αm ∈ (Σ ∪N)∗;

• S ∈ N is a symbol representing the property of being a syntactically
well-formed sentence of the language.
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Each concatenation αi in every rule (1) is called a conjunct. If a grammar
has a unique conjunct in every rule, it is an ordinary context-free grammar.

Each rule (1) means that any string representable as each concatenation
αi therefore has the property A. This understanding can be formalized in
several equivalent ways: by term rewriting [12], by parse trees [12], by logical
deduction [16] and by language equations [13].

Consider one of these definitions, which extends Chomsky’s definition of
ordinary context-free grammars by string rewriting, using terms instead of
strings.

Definition 2 ([12]). Let G = (Σ, N,R, S) be a conjunctive grammar, and
consider terms over concatenation and conjunction, with symbols from Σ ∪
N and the empty string ε as atomic terms. The relation =⇒ of one-step
rewriting on such is defined as follows:

• Using a rule A → α1& . . .&αm ∈ R, any atomic subterm A of any
term can be rewritten by the subterm (α1 & . . .&αm):

. . . A . . . =⇒ . . . (α1& . . .&αm) . . .

• A conjunction of several identical strings in Σ∗ can be rewritten by one
such string: for every w ∈ Σ∗,

. . . (w& . . .&w) . . . =⇒ . . . w . . .

The language generated by a term φ is is the set of all strings over Σ obtained
from it in a finite number of rewriting steps:

LG(φ) = {w | w ∈ Σ∗, φ =⇒∗ w }.

The language generated by the grammar is the language generated by its initial
symbol:

L(G) = LG(S) = {w | w ∈ Σ∗, S =⇒∗ w }.

The following normal form for conjunctive grammars is known as the odd
normal form, because all strings generated by all symbols (except maybe the
initial symbol), are of odd length.

Theorem A (Okhotin, Reitwießner [21]). For every conjunctive gram-
mar there exists and can be effectively constructed a conjunctive grammar
G = (Σ, N,R, S) generating the same language, which is in the odd normal
form, that is, with all rules of the form

A→ B1a1C1& . . .&BmamCm (m > 1, Bi, Ci ∈ N, ai ∈ Σ)

A→ a (a ∈ Σ)
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If S is never used in the right-hand sides of any rules, then the following two
types of rules are also allowed:

S → aA (a ∈ Σ, A ∈ N)

S → ε

3 Representation for conjunctive grammars

Theorem 1. There exists such a conjunctive language L0 over the alphabet
Σ0 = {a, b, c, d,#}, that for every conjunctive language L over any alphabet
Σ there is such a homomorphism h : Σ→ Σ∗

0, that L = h−1(L0) if ε /∈ L and
L = h−1(L0 ∪ {ε}) if ε ∈ L.

Let G = (Σ, N,R,X) be any conjunctive grammar, in which every con-
junct is of the form Y sZ, Y s, sZ or s, where Y, Z ∈ N and s ∈ Σ; in
particular, every grammar in the odd normal form satisfies this condition.
Let C = {α1, α2, . . . , α|C|}, with αi ∈ NΣN ∪ ΣN ∪NΣ ∪ Σ be the set of all
conjuncts used in the grammar, so that each rule is of the form

A→ αi1 & . . .&αim (m > 1, i1, . . . , im ∈ {1, . . . , |C|}). (2)

The symbols in the alphabet Σ0 = {a, b, c, d,#} have the following mean-
ing.

• The symbol a is used to represent the reference to each conjunct αi as
ai.

• The symbol b is used to mark the definition of a conjunct αi = XsY
by bi.

• The symbol c represents conjunction in the right-hand side of any rule.
Each rule (2) has the following symmetric left and right representations:

λ(A→ αi1 & . . .&αim) = caim . . . cai1 ,

ρ(A→ αi1 & . . .&αim) = ai1c . . . aimc,

• The symbol d is used to separate the definitions of any conjuncts with
the same symbol s in the middle, so that each conjunct αk ∈ C is
represented as follows:

σ(αk) =


∏

r is a rule for X

∏
r′ is a rule for Y λ(r)bkρ(r′)d, if αk = XsY,∏

r is a rule for X λ(r)bkd, if αk = Xs,∏
r′ is a rule for Y bkρ(r′)d, if αk = sY,

bkd, if αk = s.
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• The image h(s) of any symbol s ∈ Σ is concluded with the separator
symbol # ∈ Σ0.

Define the image of s ∈ Σ under h as

hG(s) =

( ∏
r is a rule for S

ρ(r)d

)
· d ·

( ∏
XsY ∈C

σ(XsY )

)
·#.

Example 1. Let Σ = {s, t} and consider a grammar G =
(Σ, {X,Y, Z}, R,X) with the rules

X → tY

Y → Y sZ &ZsZ | t
Z → t

Let its conjuncts be numbered as α1 = tY , α2 = Y sZ, α3 = ZsZ and α4 = t.
Then

hG(s) = acddca2ca3b2a4cdca4b2a4cdca4b3a4cd# and

hG(t) = acddba4cdba2ca3cdb4d#,

and accordingly the string ttst ∈ L has the following image:

hG(ttst) = acddba4cdba2ca3cdb4d# acddba4cdba2ca3cdb4d#

acddca2ca3b2a4cdca4b2a4cdca4b3a4cd# acddba4cdba2ca3cdb4d#.

Figure 1 illustrates, how the parse tree of the string ttst according to the
grammar G can be reconstructed by following the pointers inside this image.

Given the image hG(ttst), consider the task of recognizing whether its
pre-image ttst is in L(G). The recognition begins by looking at the image
hG(t) of the first symbol and choosing any of the encoded rules for the initial
symbol X, which are listed in the beginning of the image. There is only
one such rule, X → α1, where α1 = tY , and this rule is represented by the
first symbols acd of the image. Here a is a reference to the conjunct α1, the
next symbol c marks the end of the conjunct’s description, and the final d
indicates that there are no further conjuncts in this rule.

The code a requests the conjunct α1 = tY , and should accordingly be
matched to any code b representing its definition. Two such definitions are
located in the image of every symbol t: one assuming further expansion of
Y by the rule Y → t, and the other assuming that Y is expanded by the
rule Y → Y sZ &ZsZ. Following the parse tree in Figure 1, in this case, the
symbol t in tY should be the first symbol of the string ttst, and one should
use the expansion of Y by the rule Y → Y sZ &ZsZ. Hence, the recognition
proceeds by matching this code a to the substring ba2ca3c located within the
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image hG(t) of the first symbol t, as demonstrated at the bottom of Figure 1
by the leftmost arrow.

The substring ba2ca3c points to two conjuncts, α2 = Y sZ and α3 = ZsZ,
which are to be checked independently. Consider the conjunct α2 = Y sZ, for
which the image hG(s) of some symbol s should contain the corresponding
code b2, surrounded by encodings of a rule for Y and a rule for Z. The
pre-image of the input string in question contains a unique symbol s, and
one should use the expansions of Y and Z by the rules Y → α4 and Z → α4,
where α4 = t. This definition is encoded in a substring ca4b2a4c, which
points to a conjunct α4 located to the left of the current symbol s (ca4), and
to another conjunct α4 located to the right (a4c). Finally, the encoding ca4

of the conjunct on the left is matched to the string b4 in the image hG(t) to
the left, while a4c is matched to the similar b4 in the other image hG(t) to
the right. These connections, along with the similar parse for the conjunct
α3, are illustrated in Figure 1.

The below conjunctive grammar implements this recognition.

S → BdS |
−→
F0
−→
E &Ac

−→
E0

A→ aA | a
B → aB | cB | a | c
C → aC | bC | cC | dC | ε
D → C#D | ε
−→
E →

−→
F
−→
E &Ac

−→
E+ | dC#

−→
E+ →

−→
F
−→
E &Ac

−→
E+ | dC#D

−→
F → a

−→
F b | acC#

←−
Eb

←−
E →

←−
E
←−
F &
←−
E+cA | Cd

←−
E+ →

←−
E
←−
F &
←−
E+cA | DCd

←−
F → b

←−
F a | b

−→
ECca

−→
E0 →

−→
F0

−→
E &Ac

−→
E0 | dC#D

−→
F0 → a

−→
F0b | acCdb | ac

←−
Eb

The main idea of this grammar is conveyed in the rules for the symbol
−→
E .

This symbol defines all strings of the form x#hG(w), where x# is a suffix of
the image hG(t) of some symbol t, while the rest of the string is the image of
some string w. The suffix x begins with a list of conjuncts, and the purpose

of
−→
E is to ensure that each of these conjuncts generates the string w.

ai1c . . . aimcdx#︸ ︷︷ ︸
suffix of hG(t)

. . .︸︷︷︸
hG(w)

, where w ∈ LG(αi1) ∩ . . . ∩ LG(αim).
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The symbol
−→
E defines all such strings with m > 1, and if the sequence of

conjuncts is empty (m = 0), then it ensures that w = ε. Its variant
−→
E+ does

the same for all m > 1, but interprets an empty sequence of conjuncts as a
sign that there is nothing to check. Either symbol invokes another symbol−→
F to process the first conjunct, and at the same time refers to the symbol−→
E+ in order to match the rest of the conjuncts by the same rules.

The symbol
−→
F first compares the conjunct code ai1 to the corresponding

code bi1 for this conjunct’s definition. This code is contained in the image
of one of the symbols of w; accordingly, let w = usv, where s is the symbol
in question. Then the conjunct αi1 is of the form Y sZ, and the code bi1 is
surrounded by the encoding of a rule for Y to the left, and the encoding of
a rule for Z to the right.

ai1cx′#︸ ︷︷ ︸
suffix of hG(t)

. . .︸︷︷︸
hG(u)

, . . . ybi1z . . .#︸ ︷︷ ︸
h(s)

. . .︸︷︷︸
hG(v)

,

The second rule for the symbol
−→
F refers to the symbol

←−
E (symmetric to

−→
E ) to

specify the form of the string hG(u) . . . y, and thus ensure that the substring

u is generated by Y in the original grammar. At the same time, when
−→
F was

originally invoked in a rule for
−→
E , this rule defined a concatenation

−→
F
−→
E ,

and now the latter symbol
−→
E specifies the form of z . . .#h(v), ensuring that

Z generates v.
The rules for the initial symbol S choose one of the rules for the initial

symbol of G, and use a variant of
−→
E , denoted by

−→
E0, to check that this rule

generates the pre-image of the entire string.
Let L0 be the language defined by the above grammar.

Lemma 1. Let G = (Σ, N,R,X) be a conjunctive grammar with all con-
juncts of the form Y sZ, Y s, sZ or s, where Y, Z ∈ N and s ∈ Σ. Then, a
string w ∈ Σ+ is in L(G) if and only if hG(w) ∈ L0.

This preliminary version does not yet include a proper proof of this result,
only a demagogic explanation of how it is supposed to work. To be sure that
the grammar actually works as intended, the appendix reports on several
tests.

4 Adapting to Boolean grammars

Boolean grammars further extend conjunctive grammars with a negation
operator.

Definition 3. A Boolean grammar is a quadruple G = (Σ, N,R, S), where

• Σ is the alphabet;
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• N is the set of symbols representing syntactic categories;

• R is a finite set of rules of the form

A→ α1 & . . .&αm&¬β1& . . .&¬βn (3)

with A ∈ N , m,n > 0, m+ n > 1 and αi, βj ∈ (Σ ∪N)∗;

• S ∈ N is the initial symbol.

A rule (3) is meant to state that every string is representable in the form
α1, . . . , αm, but not representable in the form β1, . . . , βn, therefore has
the property A. This intuitive definition is formalized by using language
equations, that is, by representing a grammar as a system of equations with
formal languages as unknowns, and using a solution of this system as the
language defined by the grammar.

Definition 4 (Okhotin [15]). Let G = (Σ, N,R, S) be a Boolean grammar,
and consider the following system of equations in which every symbol A ∈ N
is an unknown language over Σ.

A =
∪

A→α1 &...&αm &
&¬β1 &...&¬βn∈R

[ m∩
i=1

αi ∩
n∩

j=1

βj

]
(4)

Each symbol B ∈ N used in the right-hand side of any equation is a reference
to a variable, and each symbol a ∈ Σ represents a constant language {a}.

Assume that for every integer ℓ > 0 there exists a unique vector of lan-
guages (. . . , LA, . . .)A∈N with LA ⊆ Σ6ℓ, such that a substitution of LA for A,
for each A ∈ N , turns every equation (4) into an equality modulo intersection
with Σ6ℓ. Then the system is said to have a strongly unique solution, and, for
every A ∈ N , the language LG(A) is defined as LA from the unique solution
of this system. The language generated by the grammar is L(G) = LG(S).

The odd normal form can be extended to Boolean grammars.

Theorem 2. For every Boolean grammar there exists and can be effectively
constructed a Boolean grammar generating the same language, which is in
the odd normal form, that is, with all rules of the form

A→ B1a1C1 & . . .&BmamCm&¬E1d1F1 & . . .&¬EndnFn

(m > 1, n > 0, Bi, Ci, Ej, Fj ∈ N, ai, dj ∈ Σ)

A→ a (a ∈ Σ)

If S is never used in the right-hand sides of any rules, then the following two
types of rules are also allowed:

S → aA (a ∈ Σ, A ∈ N)

S → ε
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Sketch of a proof. The transformation is carried out by the same method as
in the case of conjunctive grammars [21].

Assume that the original Boolean grammar G = (Σ, N,R, S) is in the
binary normal form [15], that is, all rules in it are of the form

A→ B1C1& . . .&BmCm&¬D1E1& . . .&¬DnEn&¬ε
(m > 1, n > 0, Bi, Ci, Dj, Ej ∈ N),

(5a)

A→ a (a ∈ Σ). (5b)

Construct another Boolean grammar G′ = (Σ, N ′ ∪ {S ′}, R′, S ′), in which
N ′ = { xAy | A ∈ N, x, y ∈ Σ ∪ {ε} }, and the rules in R′ are defined as
follows.

For every pair (B,C) ∈ N ×N , define

µx,y(BC) = {xBa · a · εCy | a ∈ Σ} ∪ {xBε · a · aCy | a ∈ Σ}∪
∪ {xBε | y ∈ LG(C)} ∪ {εCy | x ∈ LG(B)}.

For every rule (5a) and for all x, y ∈ Σ ∪ {ε}, let µx,y(BiCi) =
{αi,1, . . . αi,ki} for each i-th positive conjunct, and let µx,y(DjEj) =
{βj,1, . . . βj,ℓj} for each j-th negative conjunct. Then, for any choice
(i1, . . . , im) of numbers of positive conjuncts, the new grammar contains the
rule

xAy → α1,i1 & . . .&αm,im &¬β1,1& . . .&¬β1,ℓ1 . . .&¬βn,1 & . . .&¬βn,ℓn ,

which contains the chosen positive conjuncts and all negative conjuncts.
Secondly, for all A ∈ N , x, y ∈ Σ61 and a ∈ Σ satisfying xay ∈ LG(A),

the new grammar contains the rule

xAy → a

Then, each symbol xAy generates the language

LG′(xAy) = x−1LG(A)y
−1 ∩ Σ(Σ2)∗,

Finally, define the rules for the initial symbol as follows:

S ′ → φ (for all εSε → φ ∈ R′),

S ′ → a aSε (for all a ∈ Σ).

Then L(G′) = L(G), as desired.

This normal form allows replicating the construction in Theorem 1.
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Theorem 3. There exists such a Boolean language L0 over the alphabet
Σ0 = {a, b, c, d, e,#}, that for every Boolean language L over any alphabet Σ
there is such a homomorphism h : Σ → Σ∗

0, that L = h−1(L0) if ε /∈ L and
L = h−1(L0 ∪ {ε}) if ε ∈ L.

The transformation is very similar to the one in Theorem 1. The extra
symbol e is used to mark negative conjuncts.

For a Boolean grammar G = (Σ, N,R, S) in the odd normal form, let
C = {γ1, γ2, . . . , γ|C|}, where γi ∈ NΣN ∪ ΣN ∪ NΣ ∪ Σ be the set of all
positive and negative conjuncts used in the grammar, so that each rule can
be written in the form

A→ γi1 & . . .& γim &¬γim+1 & . . .&¬γin (6)

for some m >1, n > 0, and i1, . . . , in ∈ {1, . . . , |C|}.
Every such rule (6) is represented as follows:

λ(A→ γi1 & . . .& γim &¬γim+1 & . . .&¬γin) = cane . . . caim+1ecaim . . . cai1 ,

ρ(A→ γi1 & . . .& γim &¬γim+1 & . . .&¬γin) = ai1c . . . aimceaim+1c . . . eanc.

The rest of the transformation is the same.
The “hardest” language L0 is then defined by the following Boolean gram-

mar, which extends the grammar given in Section 3 by adding several rules

for handling the symbol e. These are the rules for the symbols
−→
E+,
←−
E+ and−→

E0 (one for each) that actually implement the negation, as well as extra rules
for B and C that take into account the extension of the alphabet.

S → BdS |
−→
F0
−→
E &Ac

−→
E0

A→ aA | a
B → aB | cB | eB | a | c
C → aC | bC | cC | dC | eC | ε
D → C#D | ε
−→
E →

−→
F
−→
E &Ac

−→
E+ | dC#

−→
E+ →

−→
F
−→
E &Ac

−→
E+ | ¬e

−→
F
−→
E & eAc

−→
E+ | dC#D

−→
F → a

−→
F b | acC#

←−
Eb

←−
E →

←−
E
←−
F &
←−
E+cA | Cd

←−
E+ →

←−
E
←−
F &
←−
E+cA | ¬

←−
E
←−
F e&

←−
E+cAe | DCd

←−
F → b

←−
F a | b

−→
ECca

−→
E0 →

−→
F0

−→
E &Ac

−→
E0 | ¬e

−→
F0

−→
E & eAc

−→
E0 | dC#D

−→
F0 → a

−→
F0b | acCdb | ac

←−
Eb
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5 Any further characterizations?

Every family of languages closed under inverse homomorphisms can poten-
tially have an analogue of Greibach’s inverse homomorphic characterization.
The question is, which families have it? Could it exist for linear, determin-
istic or unambiguous variants of ordinary (context-free) grammars? Could
there be such a characterization for linear conjunctive grammars, unambigu-
ous conjunctive grammars, etc.?
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Appendix

In this preliminary report, the construction has been given without a
proof. Until a proof is presented, some other evidence of the construction’s
correctness is required. This appendix gives such evidence in the form of
calculations on several non-trivial grammars.

A The Dyck language

Consider the usual grammar for the Dyck language:

X → XX | sXt | ε

Abandoning the empty string, this grammar can be transformed to following
form:

X → sY

Y → Y sY | Xt | t

Under the enumeration of conjuncts as α1 = sY , α2 = Y sY , α3 = Xt,
α4 = t, the images of the symbols are:

h(s) = acddbaacdbaaacdbaaaacdcaabbaacdcaabbaaacdcaabbaaaacd

caaabbaacdcaaabbaaacdcaaabbaaaacd

caaaabbaacdcaaaabbaaacdcaaaabbaaaacd#

h(t) = acddcabbbdbbbbd#

Each string in {s, t}∗ of length at most 12 was transformed by h and
parsed according to the grammar in Section 3 using the Generalized LR
parser. The images of all 196 non-empty strings belonging to the Dyck lan-
guage were accepted, while the images of all remaining strings were rejected.

B A conjunctive grammar

Consider the language

L = { t s2t s4t s6t . . . s2nt | n > 0 } = {t, tsst, tsstsssst, . . .},

and a conjunctive grammar defining this language:

X → XY &Zt | t
Y → sY | t
Z → Y Zss | Y ss
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This grammar is transformed to the required form as follows.

X → XsY &Zt | t
Y → sY | t
Z → V sU | Y sU
U → s
V → tZ | WtZ
W → sW | s

The enumeration of conjuncts is α1 = XsY , α2 = Zt, α3 = t, α4 = sY ,
α5 = V sU , α6 = Y sU , α7 = s, α8 = tZ, α9 = WtZ, α10 = sW .

Then the symbols have the following images:

h(s) = acaacdaaacddcaacabaaaacdcaacabaaadcaaabaaaacdcaaabaaad

bbbbaaaacdbbbbaaacdcaaaaaaaabbbbbaaaaaaacdcaaaaaaaaabbbbbaaaaaaacd

caaaabbbbbbaaaaaaacdcaaabbbbbbaaaaaaacdbbbbbbbd

bbbbbbbbbbaaaaaaaaaacdbbbbbbbbbbaaaaaaacd#

h(t) = acaacdaaacddcaaaaabbdcaaaaaabbdbbbdbbbbbbbbaaaaacdbbbbbbbbaaaaaacd

caaaaaaaaaabbbbbbbbbaaaaacdcaaaaaaaaaabbbbbbbbbaaaaaacd

caaaaaaabbbbbbbbbaaaaacdcaaaaaaabbbbbbbbbaaaaaacd#

The images of all strings of length up to 9 over the alphabet {s, t} were
parsed, and only the images of the strings t, tsst and tsstsssst were accepted.

C A Boolean grammar

Consider the following grammar, which defines the language { ambn | m >
n > 1 } by a vigorous use of nested negation:

X → sZ &¬sY
Y → Zt&¬Xt
Z → sZ | Zt | t

For the enumeration of conjuncts α1 = sZ, α2 = sY , α3 = Zt, α4 = Xt,
α5 = t, the images of the symbols are

h(s) = aceaacddbacdbaaacdbaaaaacdbbaaaceaaaacd#

h(t) = aceaacddcabbbdcaaabbbdcaaaaabbbdcaaecabbbbdbbbbbd#

For every string in {s, t}∗ of length at most 12, its image was parsed
according to the grammar in Section 4. The images of all 36 strings in
{ ambn | m > n > 1 } of length at most 12 were accepted, while the rest of
the images were rejected.
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