
Marta Olszewska | Jeanette Heidenberg | Max Weijola | Kirsi
Mikkonen | Ivan Porres

Did it actually go this well? A Large-Scale
Case Study on an Agile Transformation

TUCS Technical Report
No 1108, May 2014

Did it actually go this well? A Large-Scale
Case Study on an Agile Transformation

Marta Olszewska
Åbo Akademi University
Department of Information Technologies
Joukahainengatan 3-5 A, 20520 Åbo, Finland
marta.plaska@abo.fi

Jeanette Heidenberg
Ericsson R&D Center Finland
Hirsalantie 11, 02420 Jorvas, Finland
jeanette.heidenberg@ericsson.com

Max Weijola
Åbo Akademi University
Department of Information Technologies
Joukahainengatan 3-5 A, 20520 Åbo, Finland
max.weijola@abo.fi

Kirsi Mikkonen
Ericsson R&D Center Finland
Hirsalantie 11, 02420 Jorvas, Finland
kirsi.mikkonen@ericsson.com

Ivan Porres
Åbo Akademi University
Department of Information Technologies
Joukahainengatan 3-5 A, 20520 Åbo, Finland
ivan.porres@abo.fi

TUCS Technical Report

No 1108, May 2014

Abstract

Agile software development continues to grow in popularity and is begin
adopted by more and more organizations. However, there is a need for em-
pirical evidence on the impact, benefits and drawbacks of an agile transfor-
mation in an organization since the cost for such a transformation in terms of
money and disrupted working routines can get high. Such evidence exists in
the form of success stores and case studies, but most of the existing research
in this area is qualitative in nature. In this article we provide a quantita-
tive metrics model containing eight rigorously described metrics and their
application with a case study evaluating an agile and lean transformation in
a large telecommunications organization. Our findings show significant im-
provement in six of the eight metrics whereas one metric showed deteriorated
results.

TUCS Laboratory
Software Engineering Laboratory

1 Introduction

The IT world of today remains highly competitive and value oriented. Due
to constant business and technological changes in requirements or in the
environment, companies active in this area strive to be flexible and adaptive
to change. Therefore, agile and lean software development methods are far
from mere buzz-words popular only in certain small, innovative organizations.
Rather, they are gaining popularity among companies of various sizes and
domains [31, 11]. Agility is in itself a desired characteristic with over a decade
of successful adoption both as a complete development process or customized
to a pre-existing organizational process. One popular customization is the
combination of the lean thinking concept with agile software development
resulting in a powerful combination.

It takes time, effort and resources to transform the way of working and
thinking in a large-scale organization. Therefore, it needs to be quite likely
that such change will be beneficial for the company and the employees before
starting such transformation. Evidence that this is the case can be gathered,
e.g., from empirical investigations into existing cases. It is essential to provide
such information not only for the sake of existing organizations, but also for
the purpose of enriching the software engineering body of knowledge.

The impact and benefits of agile and lean software deployment have been
investigated previously and reported in [34, 1, 23, 26, 29]. Most of these
studies are, however, of a qualitative nature. There is a need for further
empirical study[14, 11], but also for quantitative results [13].

In this work we present a quantitative comparative case study in the
context of a large-scale telecommunication company. We are exploring an
organization before and after agile and lean transformation. We investigate
the impact of the change on the software development process in order to pro-
vide information on the effect of such a change. In particular, we use metrics
and measurements that are feasible to analyze both plan driven development
and agile and lean development.

Based on the state of the art, our research goal, as well as the context of
our research, we formulate the main question to be answered in this study
as:

RQ: What are the measurable impacts of the changes in the development
process before and after an agile and lean transformation?

We utilize the metrics model presented in our previous work [18], where we
proposed a set of metrics for evaluation of improvement of the development
process. In this paper we describe in more detail the earlier established
metrics and extend them by formulating them in a neutral, structured and
formalized manner (the change itself is assessed – not the improvement) and
by further developing the model based on empirical data. The key idea
behind the metrics and measurements in this paper is for the purpose of

1

comparing the state of the organization before and after an agile and lean
transformation. However, the metrics can be applied with other purposes, for
instance, to provide transparency, feedback and aid for the self-organization
of teams.

Experience and continuous learning are central tenets in both the agile
and lean communities. With our results we contribute to this idea by building
the body of knowledge in the agile and lean domain as well as enabling further
empirical investigations by providing a re-usable metrics model.

Agile methods typically use time-based measures, which intentionally
have no standard definition, as the goal is team autonomy and self-organization
rather than consistency across teams or projects. In this work, we provide a
comprehensive description of metrics, so that their application is transparent
and their use by others in the future is reliable and straightforward.

Our contribution in this paper is as follows. We provide a structure
for the description of metrics and thoroughly define each metric accordingly.
Moreover, we discuss the validity and appropriateness of the proposed metrics
for their intended use. Furthermore, we apply the metrics to a case study
on a large organization from the telecommunication domain. We perform
verification and validation on two levels: (i) when presenting the analysis
and investigating the weaknesses and strengths of the proposed metrics, (ii)
when discussing the validity of the case study. We examine our results both
on a general level (metrics definitions), as well as study their usefulness (case
study). We examine our results on a generic level, i.e., the feasibility of the
proposed metrics for the purpose of the case study.

Our results are presented in such a way that organizations of similar size
or organizational context could use them as a reference for answering their
concerns about carrying out an agile and lean transformation.

The remainder of this paper is structured as follows. Section 2 introduces
some relevant terminology and related work, followed by a description of
topics related to the investigation strategy in Section 3. In Section 4 the
metrics model is introduced at a high level, whereas each metric is described
in detail in Section 5. Following the metrics description, Section 6 contains
a discussion on validity concerns regarding the metrics. The main results of
the case study are presented in Section 7. Discussion and conclusions are
given in Sections 8 and 9 respectively, thus finalizing the paper.

2 Background and Related Work

Since the terms metrics, measurement and large-scale have been used in dif-
ferent ways in literature and the terms can have varying meaning in different
contexts, we want to provide the terminology that we rely on in this work
in section 2.1. Related empirical investigations are presented in Section 2.2,

2

where we focus on findings where quantitative data is reported.

2.1 Terminology

Metrics and measurements are measurement concepts that provide aware-
ness on certain aspects of quality. Thus, in order to measure given quality
attributes, we want their properties to be expressed in terms of those mea-
surements.

In this work we define metric in accordance to the IEEE Standard glossary
of software engineering terminology as a quantitative measure of the degree
to which an item possesses a given quality attribute [37].

A measurement is defined in accordance with Fenton & Pfleeger as a
number or symbol assigned to an entity by the measurement mapping in
order to characterize an attribute [15]. Thus, we understand a measurement
as an application of a metric to a specific entity.

This paper focuses on a large-scale agile and lean setting. However, what
constitutes large-scale is still being discussed in [11], where Dingsøyr and
Moe present a number of factors that have been suggested as definition for
large-scale: (i) project costs, (ii) project duration, (iii) size of the software
developed, (iv) persons involved, (v) number of sites, (vi) number of teams.

Dingsøyr and Moe focus on the number of teams in development and
define large-scale agile as consisting of more than two teams [11, 10]. In
our work we agree on defining large-scale by number of teams. However, in
contrast to Dingsøyr and Moe, we consider the minimum number of teams
to be at least three in order to constitute a large-scale agile development
setting.

2.2 Related Empirical Investigations

When examining the existing literature with regard to empirical investiga-
tions related to agile and lean transformations, many studies are to be found.
However, most of the related work is of a qualitative nature. Our focus is on
reporting quantitative results.

Talby & Dubinsky report findings related to software project governance
[36] with both qualitative and quantitative data. However, their focus is on
single sprint iterations in a project using only extreme programming (XP)
as development processes. Swaminathan & Jain reports [35] quantitative re-
sults related to introducing lean principles into agile software development.
Again the study examines only agile development methodologies with one
development team. A similar report is presented by Sjøberg, Johnsen and
Solberg [33] where indeed quantitative results are presented, although com-
paring two agile methods against each other (Kanban vs Scrum). Although

3

we find these studies beneficial and interesting, we focus on plan driven versus
agile development methodologies.

One report that shares our focus on the plan-driven “old” versus agile
“new” development methods is presented by Li, Moe & Dyb̊a [24]. Li et al.
reports a longitudinal case study with focus on software quality, comparing
a plan-driven development setting with Scrum. In contrast to the Li, Moe &
Dyb̊a study, in our work we aim to focus on a broader set of attributes than
purely software quality.

3 Investigation Strategy

In this section we describe our case study by first explaining the research
method (Section 3.1), followed by the description of the context of our inves-
tigation (Section 3.2). We continue with the portrayal of the data collection
process (Section 3.3). Finally, we post the research questions and describe
the context of the data collection in Section 3.4. The details and specific
challenges regarding data collection are to be found in the section describing
the case study (Section 7.1)

3.1 Research Method

We chose case study as our research method, mainly for two reasons: (i)
case study is a flexible investigation strategy that allows us to observe and
understand the effects of a change, (ii) practice is often ahead of research [11].
We perform our investigation following the guidelines given by Runeson and
Höst [32].

Our study has an exploratory objective, meaning that we want to investi-
gate the impact of changing the development process on the organization and
possibly obtain some new insights. In the long run, there is also an improve-
ment aspect present in our research work, since the metrics we use now for
the comparison can be used for providing transparency in the development
in the future. Our case study is considered embedded [32], as we investi-
gate two development processes in the same organization, each for a certain
period of time. The investigation is classified as sister projects [15], since
the environment in the research is the same, only the development process
differs.

3.2 Research Context and Case Description

The key drivers for this research were identified in the Cloud Software Fin-
land [6] project, where one of the purposes was to support Finnish software
organizations in transforming their operations with the aid of agile and lean

4

methods through cooperation with academic partners. The characteristics
of the participating organizations varied not only with respect to their size,
development processes and cultures, but also their profile, ranging from soft-
ware development to consultancy services.

In this paper we present the results of iterative collaboration with Er-
icsson R&D Center Finland – a large-scale software development telecom-
munication company that has completed an agile and lean transformation.
There has already been some research concentrating on qualitative results
of the agile and lean transformation [19]. However, a need for providing
quantitative measurements was identified by the case company, and further
motivated by the gap in the state of current research [13]. Therefore, in
this work we pursued the aspect of quantitatively measuring the transforma-
tion from plan driven to an agile and lean development process in order to
complement current qualitative research.

The studied projects within Ericsson R&D Center consists of around
350 people, distributed in research and development centers in Finland and
Hungary, with the major part of the development taking place in Finland.
The telecommunication product is roughly 10 years old and highly complex,
consisting of RoseRT, C++ and Java code [22]. The case company had
worked in a standardization-driven development style with teams focusing
on different components in development silos. In 2010 the big transformation
towards agile development was performed, breaking up the old silo structure
and forming cross-functional agile teams. Around the beginning of 2011, the
agile and lean way of working emerged as the organization continued to grow
into the new agile mindset.

For the new way of working, the case organization adopted Scrum for
product development and Kanban for product maintenance [22]. The or-
ganization decided to adopt these approaches without extensive tailoring in
order to ensure consistency between teams. Scrum was adopted as defined
by Deemer et al.[9], including the rearrangement of the physical environment
and the introduction of the product owner and scrum master roles. On the
other hand, the introduction of Kanban required the customization of the
status columns in the Kanban boards and the adjustment of the work in
progress limits [22]. The number of agile teams changed slightly according
to needs during the transformation. However, the total number of teams was
usually more than 20 and hence fulfills the definition of large-scale according
to [11, 10] (see section 2.1).

As the transformation was inspired by success stories, it was so complex
that it could not be justified with regular business case procedures. There-
fore, both qualitative and quantitative studies were in demand in the case
company.

5

3.3 Units of Analysis

Within the research context and case description above, we are interested in
how the change in the development methodology impacted the development
process and artifacts involved. We want to measure the impact neutrally,
not with a desired outcome in mind (e.g. improvement). The metrics model
can, in this perspective, simultaneously be seen as a quality model, since
the attributes defined in the metrics model are implicitly related to quality
attributes [20].

The data was collected incrementally through discussions with a number
of experts in the company. The collection loop consisted of three main iter-
ative steps: (i) the need for data, (ii) clarifications, and (iii) gaining access
to the data. Most of the data were raw datasets (collected automatically),
whereas some other data were processed either by tools or the experts them-
selves. We utilized a third degree data selection strategy [38], since we used
already available and compiled data. We also used archival data, therefore
the follow-ups with experts in the organization and filtering the data were
necessary.

The priority for our investigation was to create a setting that would have
the highest degree of comparability between two sets of data representing
both plan driven as well as agile and lean development. Therefore, we propose
a time-wise assessment of investigating the before and after transformation
artifacts. This type of investigation is objective and reflects the actual time-
line of change, as well as makes automatic data collection easier. Another
considered option was a feature-driven investigation, which was thought to
be more accurate, but was rejected due to challenges with feasible mapping
of the artifacts before and after the transformation (e.g. what features are of
comparable size and complexity in the old and new ways of working?). Fur-
thermore, we wanted to prevent the bias that would potentially be introduced
when choosing the artifacts for the comparison.

The obtained dataset was gathered from multiple sources, covering the
time period from 2006 to 2012. Yet the dataset was not complete for all the
aspects under the investigation (some files contained more restricted dates).
Therefore, after further discussions with experts from the organization, we
chose the most representative time intervals, i.e. 2008-2009 for the old way
of working, 2010 for the transformation period and 2011-2012 for the new
way of working.

6

3.4 Research Questions

We use the Basili et al. goal template [3, 38] for defining the purpose of our
experimentation. The goal of our study is to:

analyze the plan driven versus agile and lean development
for the purpose of comparison
with the respect to the impacts of the changes in the development process
from the point of view of the organization and the researchers
in the context of a large-scale telecommunication organization.

In the light of this goal, we continue to discuss our main research question,
mentioned in the introduction, i.e.

RQ1: What are the measurable impacts of the changes in the development
process before and after an agile and lean transformation?

Since the question is quite generic, we refine it by specifying what we mean
by ’the development process’. The term includes the timeliness factor, i.e.
the time (delay) between initiation and execution of a process (end-to-end
lead time), delivering the business value (or product, feature, functionality,
service, etc.) and effectiveness of the software development process. All
these issues were identified as essential during discussions with the partnering
organization. Naturally, both the organization and the researchers are also
interested in the quality aspect of the development process in both time-
frames.

Considering these identified issues, we propose the following questions to
be answered by the comparison of the periods before and after the transfor-
mation from the point of view of the organization and the researchers:

Q1: How did the responsiveness change?

Q2: How did the throughput change?

Q3: How did the workflow distribution change?

Q4: How did the product quality change?

These four questions are further discussed in the context of the metrics model
in Sections 4 & 5.

4 Metrics Model

The quality model we present in this paper is a refined version of the one
that was introduced in our previous work [18]. In general, the model was

7

Better ?

Change in
responsiveness?Q1

Change in
throughput?Q2

Change in
workflow
distribution?

Q3

Change in
quality?Q4

Goal MetricQuestion

Request
Journey IntervalM1

Processing
IntervalM2

Hustle MetricM3

BV MetricM4

Pacemaker
MetricM5

Bottleneck
GaugeM6

Snag MetricM7

Typical Snag
MetricM8

Figure 1: Visualization of the metrics model

developed to quantitatively compare a software development organization
before and after an agile and lean transformation. Moreover, it should serve
as a complement to qualitative studies, i.e. interviews and surveys, performed
so far. The model components were iteratively developed with a number of
industry partners within the Cloud Software Finland research project. The
metrics are elicited with the use of the Goal Question Metric approach [4].
The resulting metric model is presented in Figure 1. It consists of four
questions (Section 3.4), for each of these questions there are two metrics
established (subsections 1-4 in Section 5). Depending on the availability of
data and rigour of the investigation, it might suffice that only one out of these
two metrics is computable in order to be able to answer a given question.
The characteristics of interest are reflected in the four questions presented
earlier, i.e.: responsiveness, throughput, workflow distribution and quality.

Our contribution to the model in this paper is the refinement of the
established metrics. We concentrated on defining and detailing the metrics
in such a manner, that they are feasible for providing measurements for
comparison purposes, while remaining valid for both traditional as well as
agile and lean development processes.

Since we wanted our metrics to be practical, usage of existing data sources
[4] was one of the key aspects which we prioritized highly when constructing

8

the metrics. It is particularly important for our metrics and measurements
not only to be meaningful, useful and applicable, but also to be objective and
available with respect to existing data. Each metric should preserve concep-
tual relationship with the attribute, i.e. be intuitive and easy to understand,
as well as practical, i.e. be feasible to deploy in a software development
setting. Metrics themselves are of a minor value if their calculation is not
possible (e.g. due to the lack of data). Therefore, the data availability played
a vital role in the choice of metrics for the metrics model. We rely on the
rich dataset collected from the organization in order to obtain meaningful
results. The data collection process is mostly automatic and objective, i.e.
no subjective judgment is required to obtain the data.

In perspective of an agile and lean transformation, the general purpose
of metrics is to use them as techniques to analyze organizational change,
with respect to the questions listed in Section 3.4. Metrics should provide
means and facilitate continuous self-assessment and improvement. Moreover,
they need to provide transparency to project status evaluation, as well as act
informatively with respect to e.g. customers or potential customers whenever
necessary. Metrics are expected to support agile principles by providing
tangible evidence to aid collaboration and self-organization in agile teams,
rather than serve as control mechanisms [16]. The proposed metrics are
not designed to be used for inspecting and comparing the performance of
different teams. On the contrary, the teams should be able to react quickly
to the development needs themselves.

5 Description of Metrics

We concentrate on software quality metrics and measurements (see Section
2.1) which are relevant for both agile and plan driven settings. In the remain-
der of this section we describe in detail, and provide the reasoning behind, the
choice of software metrics and measurements for our model. For each met-
ric we follow a descriptive structure, which is a merge of the framework for
evaluating metrics presented by Kaner et al. [21] with property-based soft-
ware engineering measurement given by Briand et al. [5]. In consequence,
we provide a detailed, but also concise description of the purpose, scope and
attributes of measurements, as well as the measurement scale, variability
and possible relations between metrics and attributes. Finally, we conclude
each metric description with some mathematical properties and dimensional
analysis, if there are any. The discussion regarding side effect of using mea-
surement instruments, measurement errors and validity concerns is presented
separately in Section 6.

9

5.1 Q 1. How Did the Responsiveness Change?

With this question we want to explore if there has been an observable change
in response time. This question refers to differences in end-to-end lead times
in the before and after transformation periods.

Responsiveness is often considered as a key issue in software development.
Reinertsen [30] claims that in domains where response time is vital, this is
the only metric that should be utilized for improving service. It is especially
important when it comes to supporting operations where solving bugs and
problems quickly is of high value to stakeholders. Petersen discusses numer-
ous disadvantages with long lead-times, further motivating measurement and
improvement of lead-times [28].

Likewise, during development of new features, fast lead-time is significant
for many competitive benefits, e.g. fast feedback loops and reducing the risk
of requirements becoming outdated (waste) [7].

Metric 1. Request Journey Interval (Customer Service Request
(CSR) turnaround time)

Purpose The metric measures the turnaround time for customer service re-
quests. Customer service requests include the needs issued by the cus-
tomers for new (or extension of) features, functionality, services (e.g
support), as well as fixing some issues (e.g. bug reports). The metric
is calculated as a time period, from a timestamp when the request first
comes to the development organization to a timestamp when the re-
quest is resolved. These values/timestamps can be collected from the
entire duration of the project or from a limited period of time that
is of interest. The metric facilitates private self-assessment and eval-
uation of the organizational process improvement. It brings a higher
level viewpoint on the status of customer requests, which serves as in-
formational measure on how well the organization deals with incoming
CSRs.

Scope The CSR turnaround time can be measured across organization and/or
within a team of an organization for a period of time defined by the
organization. It can also be limited by the severity (or priority) and
the type of the CSRs.

Attribute Time period.

Natural scale (Attribute) Ratio scale (although timestamps are interval
scale).

Variability (Attribute) The duration may vary, depending e.g. from the
priority, complexity of the task or the organizational capacity to solve

10

the CSR.

Measuring instrument CSRPeriod = CSRSolv - CSRCre, where CSRSolv

and CSRCre are timestamps for CSR Solved and CSR Created respec-
tively. The measurement is timed (to obtain the measures CSRSolv

and CSRCre) and counted. For the sake of sensible discussion about
this metric, we assume that the CSRSolv is later in time than CSRCre,
which means that CSRSolv>CSRCre, where “>” means “older than”.
Furthermore, we define CSRCre and CSRSolv as having values that are
positive or equal to zero.

Natural scale (Metric) Interval scale, since two elements of the metric
are measured on the interval scale. Moreover, it is possible to make
measurements from an arbitrary epoch in time (assuming that the data
exist). There also exists a ”zero point”, which is arbitrary and to be
defined by the organization applying the metric. However, negative
values cannot be used, since it would indicate that the definition of the
metric is false.

Attribute-Metric relationship The relationship between attribute and
metric is straightforward and self-explanatory.

Formal properties non-negativity and positivity (self explanatory), zero-
element – immediate closing of CSRs without an effort needed, disjoint
attribute additivity meaning that if one CSR is solved in certain period
of time, second not related CSR is solved in another period of time, one
needs to have the sum of periods to solve both CSRs; monotonicity,
as the time period always increases or remains constant as the time
and measurement process progresses; normalization is possible as the
comparisons between measured attributes are meaningful, since they
all belong to the same interval.

Dimensional analysis We recommend using days as a unit of measure-
ment, but in case of organizations, where CSRs are solved in signifi-
cantly shorter time intervals, it might be beneficial to use, e.g. hours.

Metric 2. Processing Interval (Lead-time per feature (end-to-end))

Purpose The metric measures turnaround time for features selected for de-
velopment. It is calculated from a timestamp when the feature is ac-
cepted for implementation (TImpl) and timestamp when the feature
is ready to be shipped (TShip). Quick turnaround time is essential for
competitive advantages as noted by Petersen [28]. The metric aids self-
assessment and evaluation of the organizational process improvement.
It provides an explicit overview on how long it takes for a feature to

11

be implemented, which gives an informational measure on how well the
organization processes the feature (end-to-end). It also endorses metric
4 – BV Metric, since shorter turnaround time supports the concept of
more frequent releases.

Scope The lead time per feature can be calculated on the organizational
and/or a development team level for a given period of time. It can
also give an idea of the complexity of features and effectiveness of units
working on the features.

Attribute Time period.

Natural scale (Attribute) Ratio scale (however timestamps are interval
scale).

Variability (Attribute) The length of the time periods may be different,
due to differences in the intricacy and priority of the task or the orga-
nizational capability to develop a feature.

Measuring instrument LdTime = TShip - TImpl, where TShip and TImpl

are timestamps denoting feature shipping ready date and feature ac-
cepted date respectively. The measure is timed (to obtain the measures
TShip and TImpl) and counted. In order for the discussion on metric is
reasonable, we assume that the TShip is later in time than the TImpl,
which means that TShip >TImpl.

Natural scale (Metric) Ratio scale, although two elements of the metric
(timestamps) are measured on the interval scale. Furthermore, mea-
surements can be obtained from an arbitrary period of time (if there
are data points for this period). A specific ”zero point” should be
defined by an organization. Nevertheless, no negative values can be
used, as it would be against the definition of relation between times-
tamps (elements of metric). Moreover, it is meaningful to say that the
implementation of feature A was e.g. twice as long as feature B.

Attribute-Metric relationship The relationship between attribute and
metric is direct and easy to follow.

Formal properties non-negativity and positivity (straightforward), zero
element (feature can be concluded with no effort needed, because e.g.
the implementation was trivial or the feature is implemented already
as a part of other implementation), disjoint attribute additivity (two
disjoint lead times per features is equal to the sum of the lead times);
monotonicity (this measure always increases or remains constant as the
time and measurement process progresses); normalization (meaningful

12

comparison between lead times per feature - as they all belong to the
same interval).

Dimensional analysis Recalculating the metric for different time-granularities
(hours, days, etc.) is straightforward and depends on the specificity of
the development.

5.2 Q 2. How Did the Throughput Change?

While the first question concerned the issue of timeliness, this one aims to
explore whether the total amount of value delivered changed in the new
way of working during similar time periods and projects. The benefits of
increased throughput have been discussed widely, including Andersson [2]
and Petersen & Wohlin [27], therefore investigating this characteristic in the
scope of evaluating a transformation is of interest.

Metric 3. Hustle Metric (Functionality / Money spent)

Purpose This metric measures how much functionality (also denoted as
product size [17]) can be delivered in relation to a certain work effort.
The proposed metric could be computed as the ratio of test points, as
described by Dubinsky et al. in [12, 17], function points or use cases
divided by total money measured in monetary value, or time spent on
development measured in person hours. In this work, due to the fact
that function point data was not possible to collect retrospectively, we
use number of sellable licenses per money spent. Sellable licenses ∆1

are defined as single or grouped features, which are possible to sell as a
certain functionality to a customer. This metric (similarly to Metric 1)
also supports Metric 4, since more functionality can be split into more
frequent releases. The metric supports internal and external assessment
and evaluation of the organizational process improvement. It gives a
perspective on how much money or work effort needs to be spent on
implementing and delivering certain functionality.

Scope The amount of functionality using money spent or specific work ef-
fort can be measured across organization and/or within a team in the
organization. It can also provide a viewpoint on how effective the work

1∆ Jeanette: Ivan suggested changing the name from sellable license to sellable feature
pack OR sellable license type. The motivation was that sellable license can be interpreted
as 10 licenses sold for one type (e.g. windows vista), while the sellable type is only one
product. Sellable license types would be the portfolio, and not account for the actual
number of sold licenses. Do you agree on changing the terminology to feature packs/
license types?

13

is, which can be used for assessment of organizational improvement
with respect to the organizational performance.

Attribute Throughput.

Natural scale (Attribute) Sellable licenses, defined as a feature, a prod-
uct or a service for which the company can charge the customer - ab-
solute scale (simple count), money spent - ratio scale.

Variability (Attribute) The number of the sellable licenses per money
spent may vary, depending e.g. from the complexity, amount of func-
tionality to be implemented, or the organizational competence and re-
sources to implement this functionality.

Measuring instrument Sellable licenses
Money spent

, where sellable licenses and money
spent are natural numbers, both greater than zero.

Natural scale (Metric) Ratio scale dictated by the money spent element,
since it is represented by a weaker scale than absolute scale (sellable
licenses). There is a ”zero point”, which is when there are no sellable
licenses or there has been no money involved in implementing the func-
tionality. Negative values cannot be used, since it would indicate that
the definition of the components of metric is invalid. Moreover, it is
meaningful to say that the implementation of certain functionality (fea-
ture A) costs twice as much as some other functionality (feature B),
disregarding the fact that the functionality delivered by the features
might be totally different and is not comparable.

Attribute-Metric relationship The relationship between attributes and
metric is valid only if we assume that the measure is equal to zero in
case when there are no sellable licenses or there is no effort required for
developing the feature.

Formal properties Non-negativity and positivity (straightforward), zero
element (no costs of a development or no sellable licenses), disjoint at-
tribute additivity (two disjoint licenses of certain different functionality
need as much money to be implemented, as the sum of their function-
alities; naturally here we do not consider the design factors and the
entailed complexity issues, which might impact the development cost
when dealing with larger and more complex features); monotonicity
(this measure decreases with respect to the growing amount of money
required for the development of a certain functionality); normalization
is not meaningful, as the type and complexity of functionality to be
implemented and solutions used may differ.

14

Dimensional analysis In our work we propose a measure of the type:
“number of sellable licenses per money spent”. However, we can easily
change the functionality unit of this measurement by admissible trans-
formation into e.g. features or components. Moreover, money spent
can be interpreted as some other resources used, e.g. person hours.
Thus dimensional analysis is possible.

Metric 4. BV Metric (Nr. of releases / Time period)

Purpose Business value is measured as more frequent major releases [8, 16]
in relation to the time period we are interested in (e.g. number of
months). The metric aids assessment of the value that the organiza-
tion generates when developing a set of features or components. The
value should be understood not only in a monetary sense, but also in
perspective of satisfying customer needs etc. It can be used for or-
ganizational process improvement by comparing several samples taken
at different points of time. More frequent releases signify keeping up
the pace with the users needs and staying competitive on the market.
Moreover, the more frequent releases (which mean rolling out high-
value software more rapidly), the quicker value is realized and the risk
is reduced [16]. Additionally this metric gives an informational mea-
sure on how well the organization processes their tasks, which can act
as input for their continuous improvement process.

Scope The business value can be measured across organization and/or within
a team of that organization. It can provide a viewpoint on how smooth
and well organized the work is, which indirectly transfers to creating
business value.

Attribute Throughput.

Natural scale (Attribute) Number of major releases absolute scale (sim-
ple counting), time period ratio scale.

Variability (Attribute) The business value in this case is defined as a
relation between major releases and time required for the releases. The
variability depends to a large degree from human factor (capability
and effectiveness of a team) and the amount of and complexity of the
features included in the release, as well as market needs and feasibility
of features that can be ”packed” in one release in order to create value.

Measuring instrument BV = Number of major releases during a fixed
time period, where number of major releases and time period is a nat-
ural number. BV equals zero when there has been no releases done in
the given time period. For the simplification purposes, we assume that

15

if there were no major releases and there is some development time
involved, the value of BV is still equal to zero (although according to
the common viewpoint, the profitability would be negative – we have
to invest in developers, work environment, etc. and have no chance of
getting a return on this investment).

Natural scale (Metric) Ratio scale, although two elements of the metric
number of major releases and time period are measured on the absolute
and ratio scales, respectively. It is possible to make measurements for a
given epoch in time (assuming the presence of data). There is a ”zero
point”, which is denoted by the beginning of the work, where there
is time frame yet and there are no releases available. Negative values
cannot be used, since the number of releases and work effort have a
non-negative value.

Attribute-Metric relationship The relationship between attribute and
metric needs some additional assumptions for the computations (see
the above description). Additionally, it should be noted that the met-
ric is more oriented towards organizational performance and market
sustainability, than for instance purely monetary value.

Formal properties Non-negativity and positivity (from the definition), zero
element (no releases made), disjoint attribute additivity exist in theory
(two disjoint business values are equal to their sum) although is not ap-
plicable in reality (scenario when two disjoint releases combined have
more value for the user than separately); monotonicity (BV measure
decreases with respect to the growing amount of time required for the
development of a release); normalization is not meaningful, as the type
of features included in the release may differ.

Dimensional analysis This measure is of the type: “releases per time pe-
riod”, where releases should be defined by the organization. The time
unit of this measurement can be changed by admissible transformation
(e.g. between hours, days, months or years, depending on the develop-
ment characteristics). Thus dimensional analysis is possible.

5.3 Q 3. How Did the Workflow Distribution Change?

By answering the third question concerning workflow distribution, we want
to characterize the way of working, with respect to its iterations. Having
frequent iterations enables proactive way of working, meaning discovering
the development issues and timely reacting upon them. This is also one of
the goals for an agile and lean transformation. Measuring the workflow aids
the organization to determine that there has been actual change in the way
of working.

16

Metric 5. Pacemaker Metric (Commit pulse)

Purpose Commit pulse measures how continuous integration is done dur-
ing development by counting the frequency of number of days between
commits. The key idea is to keep the frequency and number of days
between commits as low as possible, so that the integration is as con-
tinuous as possible. The metric is adapted from [12, 17], where it is
defined within sprints and by counting the number of check-ins per
day. In order to for our metric to work for both plan driven and agile
settings, we cannot use the term of sprint in our definition. Hence,
in our case we scrutinize the data with respect to a larger time-frame,
concentrating on visualizing the steadiness of development.

The check-in data can be visualized in a diagram with days between
the commits on the x-axis and the frequency of their occurrence on
the y-axis (for a defined time period). Optimally, we would have a left
hand side shifted bar chart implying few days between commits. The
unwanted situation is when the number of days between commits are
shifted to the right, which means long periods with no integration.

The metric serves for self-assessment and self-organization purpose. It
describes how systematically the workload is distributed throughout
the development. It is an informational measure of how to manage
continuous and regular development, in order to avoid integration re-
lated issues and risks. Moreover, it reflects the stepwise and steady
introduction of changes, which reduces the complexity of integration
and decreases the pressure related to issues of meeting the deadline
(which can happen with big bang development).

Scope The commit pulse can be measured for a particular time period on
the team-level or unit(organization)-level.

Attribute Regularity.

Natural scale (Attribute) Absolute scale (simple counting is the only
possible measure).

Variability (Attribute) The number of days between commits may differ,
depending e.g. from the difficulty of the task and the distribution of
work. The computation of the metric also differs when e.g. weekends
and holidays are not excluded.

Measuring instrument Number of days between commits. The measure
is timed and counted.

Natural scale (Metric) Absolute scale. Decimals are allowed, however
negative values cannot be used.

17

Attribute-Metric relationship The relationship between attribute and
metric is straightforward, i.e. the data collected for the number of
days between commits for a specific time frame will provide us with
data points for a certain period. The data set can be plotted with a
bar chart of a frequency of number of days between commits.

Formal properties Non-negativity and positivity (straightforward), zero
element (no commits done), no disjoint attribute additivity (two dis-
joint numbers of days between commits is not equal to the sum of
the days between commits); normalization (meaningful comparisons
between the number of days between commits per time period).

Dimensional analysis Units of measurement are simple counts and are
fairly straightforward in this case. We suggest using days between
commits as a unit of measurement. If the commits are more frequent,
as desired in agile processes, we suggest changing the granularity from
days to hours.

Metric 6. Bottleneck Gauge (Flow Metric)

Purpose The metric measures the difference between the timestamps of
each of the handover for features or service requests selected for devel-
opment. This may be counted either phase-wise (requirements, speci-
fication, implementation, testing, deployment) or feature-decision wise
(rough idea for the feature, feature concept study, feature implemen-
tation, marketing of the feature, including the feature in next release).
Having a short handover time is essential for competitive advantages
(as noted by Petersen [27] for turnaround time, which is similar to a
concept of handovers). Moreover, it supports responsiveness, which
connects this metric back to the first questions. Having a continuous
and smooth flow without bottlenecks allows the development organi-
zation to quicker respond to customer requests. The metric aids self-
assessment and evaluation of the organizational process improvement.
It brings an explicit overview on how long it takes for the feature to
be implemented, which gives an informational measure on how well
the organization processes the feature (end-to-end). It also supports
Metric 4 – Business value, since shorter turnaround time makes more
frequent releases easier.

Scope The timestamps between the handovers per feature can be measured
across an organization and/or within a team of the organization for a
period of time defined by the organization. It can also give an idea
of the complexity of features and effectiveness of units working on the
features.

18

Attribute Time period (handover time).

Natural scale (Attribute) Ratio scale.

Variability (Attribute) The length of the time periods may vary, with
respect to the complexity and priority of the task, as well as the capa-
bilities of the organization to tackle a feature.

Measuring instrument HandoverTime = TFi - TFi−1, where TFi and
TFi−1 are timestamps denoting certain phase of processed feature and
the proceeding phase of processed feature, respectively and i is a nat-
ural number and i≥1. The measure is timed (to obtain the measures
TFi and TFi−1) and counted. In order for the discussion on metric to
be reasonable, we assume that the TFi is later in time than the TFi−1,
which means that TFi >TFi−1.

The metric can be represented by flow diagrams.

Natural scale (Metric) Ratio scale, even though timestamps are on the
interval scale. Additionally, assuming that the data exists, measure-
ments can be made from a specific time period. Furthermore, a ”zero
point” can be identified specifically by the organization. However, neg-
ative values are forbidden to be used (indication of a false definition of
relation between timestamps). Finally, saying that the implementation
of feature A took e.g. twice as much as for feature B is meaningful.

Attribute-Metric relationship The relationship between attribute and
metric is direct and easy to understand.

Formal properties non-negativity and positivity (straightforward), zero
element (no work performed on a feature), disjoint attribute additiv-
ity (two disjoint handover times per features is equal to their sum);
monotonicity (this measure always increases or remains constant as the
time and measurement process progresses); normalization (meaningful
comparisons between handover times per feature as they all belong to
the same time-frame).

Dimensional analysis The granularity of the time measurements should
vary according to the context (specifics of organization and develop-
ment). Recalculation of metrics from days to hours is rather basic.

5.4 Q 4. How Did the Quality Change?

The three previous questions concern the changes in the development pro-
cess, whereas this question takes into consideration the quality aspect of the

19

product developed. While we are interested in the transformation and re-
lated process differences, the product quality still remains a priority, both
for the organization and the customers.

Metric 7. Snag Metric (Number of External Trouble Reports
(TR))

Purpose External trouble reports are defect reports submitted from ex-
ternal users. This comparative metric measures the total number of
external trouble reports during a certain time period in a release of
software in the old way of working compared to total number of exter-
nal trouble reports from a similar project and similar time period in
the new way of working. The metric gives a perspective on the qual-
ity of the delivered features or components by counting the number of
trouble reports submitted by external users. It additionally gives a be-
fore and after view on how many trouble reports were denoted during
specific time intervals in development, which can give evidence on the
improvement or deterioration of the development process in an orga-
nization. It aids the evaluation of a development process and can be
used as an indicator for answering the question “are we going in the
right direction?” with our organizational performance.

Scope The number of external trouble reports can be measured across orga-
nization and/or within a team of that organization for a defined period
of time.

Attribute Amount (a number of).

Natural scale (Attribute) Absolute scale (one measurement mapping – a
simple count).

Variability (Attribute) The number of External Trouble Reports within
periods and in comparison of the old and new way of working may vary,
depending e.g. from the quality of the released feature or component
and the length of the chosen period. The severity and type of trouble
report is not considered in this metric.

Measuring instrument Number of external TR’s originating from a cer-
tain release is time constrained. The measurement is straightforward
and can be directly obtained from objective data sources (e.g. logs,
databases, etc.).

Natural scale (Metric) Absolute scale, it is a number of occurrences of
the external trouble reports. Can be obtained from a specific time-
frame (if there is data). There also exists a ”zero point”, meaning no

20

external trouble reports. The measurement mapping starts at zero and
increases in equal intervals (units). In order for the metric to make
sense, negative values cannot be used. Moreover, for the comparison
reasons, it is meaningful to relate the number of external trouble reports
in old way of working with the new way of working, i.e. it is meaningful
to say that the number of external trouble reports in old way of working
is bigger (or twice as big) as in the new way of working.

Attribute-Metric relationship The relationship between attribute and
metric is self explanatory.

Formal properties Non-negativity and positivity (straightforward), zero
element (no external trouble reports), disjoint attribute additivity (two
disjoint numbers of external reports, where disjoint means that the pe-
riod from where the measurements are taken does not overlap, is equal
to the sum of the numbers of these external reports); monotonicity
(increases or remains constant with respect to the progress of time);
normalization (meaningful comparisons between external trouble re-
ports - as they all belong to the same interval).

Dimensional analysis Assignment of units of measurement is rather straight-
forward in this case, it is a simple count. There is no need to change
the unit of measurement in this case.

Metric 8. Typical Snag Metric (Average number of Days open,
External Trouble Reports)

Purpose The metric measures the average number of days, when external
trouble reports have had the unsolved status, i.e. from creation of
trouble report until it being solved in a given period. It indicates
the improvement or deterioration of performance regarding fixes and
answers to the received trouble reports. Moreover, it shows whether
the organization has actually improved in their way of working, as it
brings an explicit overview on how long it takes for the trouble report
to be dealt with. It gives an informational measure on how well the
organization processes the trouble reports.

This metric is related to responsiveness, but implicitly, it also measures
the quality of the product. Thus, in case the trouble reports consis-
tently take longer to solve, then it is likely that the defects found are
more complicated or that the code base is more difficult to maintain.
Both of these are indications that the quality of the product has de-
teriorated. Furthermore, long response time (number of days open)
for external trouble reports may also mean that there are not enough
resources to effectively deal with the existing trouble reports.

21

Scope The number of days to solve the external trouble reports can be
measured across organization and/or within a team of that organization
for a specific period of time. It can also indicate the complexity of issues
reported and effectiveness of units working on the features.

Attribute Time period (days).

Natural scale (Attribute) Absolute scale (one measurement mapping – a
simple count of days).

Variability (Attribute) The duration of the periods may vary, depending
e.g. from the complexity and priority of a trouble report, the organi-
zational capacity to fix the reported problem.

Measuring instrument

DETR =

∑n
i=0 SETRi − CETRi

n
(1)

where CETRi and SETRi are days when trouble report i was created and
solved, respectively and n is the total number of trouble reports in a
period that is investigated.

The measure is timed or dated (to obtain the measures SETR and CETR)
and counted. In order for the discussion on the metric to be meaningful,
we assume that the SETR is later in time than the CETR, which means
that SETR >CETR, where “>” denotes the ordering relation “older
than”.

Natural scale (Metric) Ratio scale, although two elements of the metric
(dates) are measured on the interval scale for a particular period of
time. The organization is the one to identify a ”zero point”, from which
a measurement starts. No negative values can be used. Moreover, it is
meaningful to say that solving the external trouble report A took e.g.
twice as much or longer than for trouble report B (severity of tackled
task is not in the scope of this metric).

Attribute-Metric relationship The relationship between attribute and
metric is based on the basic mathematical computations (computing
average), which are allowed in the ratio measurement scale.

Formal properties non-negativity and positivity (straightforward), zero
element (no work performed on the trouble report), disjoint attribute
additivity (separately solving two disjoint error reports is equal to the
sum of the time it takes to solve them); monotonicity (this measure
always increases or remains constant as the time when trouble report
is open progresses); normalization (meaningful comparisons between
days when reports are having the open status).

22

Dimensional analysis Computing the metrics for various time-granularities
is straightforward.

The goal of the thorough description of metrics is to assist organizations
and developers in the assessment of the usability of the presented metrics in
the context of their application. In order to be able to make an informed
decision about including these metrics in any development setting, we follow
our discussion on metrics with their validation in Section 6.

6 Validation of Metrics

In this section we first discuss the side effects of using measurement instru-
ments, followed by the measurement errors and validity concerns on a general
level for all the metrics. This analysis is then completed by specific valid-
ity concerns that exist for certain metrics only. Finally in Subsection 6.2,
we enhance and support the validity description by applying the validation
criteria given by Meneely et al. [25].

6.1 Validity Concerns of Metrics

The side effects of using measurement instruments to the presented metrics
can be discussed only if a measurement itself has an negative impact on the
developers behavior or the way the development progresses, i.e. distorts the
employee’s behavior and thus provides less value to the organization. In our
case there are no foreseeable side effects, since the measurements are not used
for judgmental purposes, but rather as information radiators. Moreover, it is
not possible to tamper with the timestamps (metrics 1, 2, 5, 6 and 8) and time
periods (metric 4 and 5), as they are collected automatically. Furthermore,
simple counts of sellable licenses, major releases, number of days or trouble
reports (metric 3, 4, 5 and 7, respectively) are rather straightforward and
therefore not anticipated to cause any distortion.

The presented metrics are generic in the sense that they are applicable
to different settings (e.g. (i) plan driven development, (ii) agile and lean),
as well as feasible for the assessments of various types of granularities, i.e.
assessing single release, sprint, feature, or collect measurements within cer-
tain period of time. Moreover, they can provide a high-level viewpoint on
the organization, without specifying any time and resource constraints. In
this case they can be treated as indicators for process measurements.

One should keep in mind that for a certain measurement application,
many properties will be specific to the environment and the organization
where the metrics have been applied. This is where domain knowledge sup-
ports the measurement process to create viable empirical evaluation.

23

A practical implication of using the metrics proposed in this work is gain-
ing a deeper understanding of the software development processes dynamics
(in particular the observable characteristics between different development
approaches). Another implication is the identification and measurement of
improvement areas in the development process. In the following subsection
we employ the Goal Driven Philosophy and discuss the validity concerns ac-
cording to the framework presented by Meneely et al. [25], as we are in
principle interested in the usefulness of metrics.

6.2 Applying Validity Framework to Metrics

We follow the validity scheme described by Meneely et al. [25], where the
authors listed 47 validity criteria and thoroughly described their semantics.
In our work we use a subset of 21 criteria (denoted in italics) that are ap-
plicable for our setting. These are appropriate for the metrics only, rather
than the case study as a whole. The validity of a case study is discussed later
(Section 7.3).

The priority for our metrics is their applicability, instead of them being
theoretically correct. We do, however, provide some mathematical properties
of the proposed metrics without mathematically proving these properties.

Providing the measurement scale and hinting some mathematical prop-
erties serves to indicate how the metric can be used, i.e. the possible sta-
tistical operations (as well as statistical tests) that could be performed on
the obtained measurements. The scale validity is preserved, meaning that an
explicit and appropriate measurement scale is defined so that all meaningful
transformations of the metric are admissible. Moreover, the unit validity is
taken under consideration, as for each metric we propose suitable means of
measuring the attribute in question. We also shortly discuss the monotonic-
ity of each metric and check whether the development of a single component
or feature is no more complex or takes longer to develop than the entire
program.

Our metrics descriptions are deliberately quite thorough. Our goal is to
provide a clear definition for each of the metrics, so that other researchers
would not be misled or draw wrong conclusions about them. Additionally,
the internal validity, meaning how well and correct do the metrics measure
certain attributes, is supported, since it is related exclusively to the metrics
themselves and not the external quality factors. Our metrics are conceptu-
ally interrelated (see the quality metrics model, Figure 1) and facilitate the
interpretation of the measurement results, also with visual means. Therefore
the internal consistency is considered.

We firstly create opportunity for potential users of metrics to check the
feasibility of the metrics for their purpose (transferability of metrics). Sec-
ondly, we aim for the metrics to be accurately applied in other projects

24

(repeatability of metrics). Our ambition is to demonstrate that the metrics
are repeatable, i.e. to show that they are empirically valid, in two settings:
plan driven as well as agile and lean software development in a given organi-
zation. We are aware that we are not able to declare universal repeatability
or generalizability of the metrics yet, as the metrics have not been tested
in a sufficient number of other settings or projects. Due to the quantita-
tive nature of our metrics, there is little space left for bias or random errors
related to human perception. Thus accuracy and reliability are sustained.
Furthermore, our metrics exhibit non-exploitability characteristic, since the
developers or teams cannot manipulate a metric to acquire the results they
wish nor impact the attribute being measured.

The metrics presented have construct validity, as the gathering of mea-
surements for these metrics corresponds to the definition of the targeted
attribute. Moreover, the operational definition produces data related to an
abstract concept. The metrics are mostly based on time measurements, as
well as simple counts, all of which are automatically collected. Their con-
struct validity is rather straightforward. However the functionality and busi-
ness value metrics are compound and their meaning and computations are
organization-specific. The construct validity cannot be therefore generally
confirmed for these two cases – it can only be confirmed in the perspective
of their application to our case study.

The goal of these metrics is to aid the understanding of software quality,
i.e. give constructive feedback on the quality and aspects related to quality,
e.g. development process oriented qualities. The metrics are actionable as
they enable a software development team or a software developer to make
empirically informed and timely decisions based on the software product’s
status during development. The metrics reflect certain properties of software
and by that serve as guidelines or recommendations for development.

Presented metrics are relevant and usable, i.e. they are generally defined
at first, then tailored and finally cost-effectively implemented by a given orga-
nization. We established and empirically validated the metrics in the domain
of a large telecommunication company. Our experimentation corroborated
the intended measurements of given metrics, as well as the relationship be-
tween the metrics and respective software quality factors (external validity).
The metrics have potential to be transferable to other organizations and do-
mains, as well as to be feasibly included in the quality assurance practices or
development process.

We support the economic productivity, as using our metrics implicitly
quantifies a relationship between cost and benefit. One of the goals of ap-
plication of metrics is for them to serve as catalysts in the development
process by reinforcing the development with quantitative data. Ultimately,
an implicit goal of applying a metric should be saving resources (such as
development time and money) and provide other cross-organization benefits

25

(transparency of information, possibility of self-organization, etc.). Collect-
ing measurements for given metrics, as well as achieving viable measurements
should be and is economically feasible, since metrics are well described and
tailored to the needs of certain development type and its environment, and
the data collection is automated.

This discussion on validity of metrics was necessary in order to show that
we use them in our case study in a reasonable manner. Being aware of the
limitations of our metrics is crucial to obtain meaningful results. Further-
more, it is important for other organizations and researchers to understand
the restrictions of our metrics in case they would be utilized in other context.
Finally, it gives a perspective on the purpose of our metrics and some of their
characteristics on a more general level.

7 Case Study Results

In order to fulfill the goal of our investigation and answer the four research
questions, we apply the proposed metrics to our case study. Therefore, in the
following subsections we describe the process of data collection and analyze
the gathered data. Furthermore, we discuss the validity issues concerning
large, complex and real-life case study.

7.1 Data Collection

In our work we rely on multiple data sources, i.e. the logs from customer
service requests, database of trouble reports, version control tool reports and
additional pre-processed data. The data collection was hardly a straightfor-
ward activity, since it required several iterations with the experts from the
organization to discuss what data is available and representative for the at-
tribute or metric we want to use. Considering these challenges, the gathering
of data for the research became an iterative process (dashed lines), consist-
ing mainly of collection-analysis-clarification loops as illustrated in Figure 2.
Typical topics of discussion in these iterations consisted of clarifying abbre-
viations and anomalies in the data files. All meetings and discussions were
documented and served as valuable notes for the data collection and analysis
process. The final step of the data collection process was to review and con-
firm the usefulness of the existing dataset, as well as appropriately updating
it before beginning final analysis (solid line).

Most of the data was obtained automatically, by e.g. querying the databases
or specifying search criteria in excel sheets. The majority of this data was
made available to the researchers in the form of raw data files of considerable
size, providing a high level of transparency between the case company and
researchers. However, a smaller set of data was pre-processed, e.g. aggre-

26

Data
Collection

Data
Analysis

Clarification

Final Data
Analysis

Figure 2: Visualization of the data collection process

gated and normalized with respect to financial entries. The case organization
experts graded the data collection effort to be cheap, with most of the effort
being spent on e.g. communication and confidentiality considerations. Fur-
thermore, some of the collected and used data was gathered and stored for
other purposes than the case study.

It should be mentioned that the data availability influenced the choice
of metrics and their feasibility (and vice versa) to some degree. This means
that other metrics could have been used to better assess certain attributes
for agile and lean development, but could not be applied in our case in the
plan driven setting (which automatically excluded them from our scope). For
instance, the Hustle Metric (metric 3) was initially planned to be measured
as number of test points [12] delivered per time unit, but was altered to
number of sellable licenses per money spent.

7.2 Analysis

The data analysis was done in several iterations, in parallel with data collec-
tion as illustrated in Figure 2. First, the basic and self-explanatory data was
collected, studied and the obtained results were presented to the experts. Af-
terwards the more complex (and pre-processed) data was gathered, analyzed,
and discussed together with experts. Finally, for the results reported here,
the complete dataset was analyzed, ran against the metrics we defined, and
the results were compared internally at first, then consulted with experts a
final time.

The dataset we collected is of considerable size, however due to confi-
dentiality reasons we cannot provide a detailed description here. We may
however reveal that e.g. only 5% of trouble reports logs were issued by cus-
tomers, and there were twice as much of customer service requests (mostly
related to the extensions of the contemporary development) than trouble re-
ports. The aforementioned data is collected for the period from the year 2006
to the end of year 2012. This large sample size brings additional challenges,
like having various tools as data sources, which are further discussed in the
validity section.

27

Regarding the visualizations of the final results on pages 30 - 32, differ-
ent variations of bar charts were the preferred visual methods to make the
comparison between the old way of working (old WoW) and the new way of
working (new WoW) as clear as possible despite the data being made anony-
mous. To aid the comparison, the highest value of each metric corresponds
to the numerical value one (1), whereas the other value or values in the same
metric are ranging from zero to one (0-1). The scale of y axis is linear.

The analysis for Metric 1 was performed directly from a single file of
raw data that was made available to the researchers. Dataset reduction
was performed for data points that lacked either start or finish time stamp
(removing the incomplete data). The results show roughly a 24 % decrease
for the customer service request turnaround time going from the old WoW
to the new WoW.

Metric 2 required slightly more effort in the analysis step since the data
sources were different due to the transformation. Again, the raw data files
were made available to the researchers and through iterations with company
experts, the company’s development process was discussed and abbreviations
were clarified to ensure a meaningful comparison. The data presented consists
of actual developed features with representative interrelation on a linear scale.
The ordering of the features is randomized. The results show an average
decrease of 64 % in feature lead-time between the old WoW and the new
WoW.

Due to the sensitive nature of the data, a preprocessed data file was
supplied to the researchers to compute Metric 3. However, the researchers
took part in the data collection during a workshop where the correlation
between the preprocessed data and the metric was determined. Also in this
case, dataset reduction was necessary, this time regarding releases for which
the metric Sellable licenses

Money spent
was impossible to obtain. A scatter plot is used for

the data presentation to both show the interrelation between the data points,
as well as illustrating the time factor in the metric (showing trends). The
average sellable licenses per money spent is 483 % times higher in the new
WoW than on the old WoW.

The data for Metric 4 was retrieved in the same workshop as for the Metric
3, consisting of a single data file with preprocessed data. The analysis of the
data was straightforward with no dataset reduction needed. The results show
an improvement of 400% the number of releases during a time period when
comparing the old WoW to the new WoW.

Metric 5 was analyzed from a single file of raw data extracted from a
version control system that was made available to the researchers. In the
analysis step, dataset reduction was applied, so that the weekends are not
included in the computations. The data is visualized with a bar chart, depict-
ing the frequency of number of days between commits, with separate series
for the old WoW and the new WoW. The results show that the maximum

28

days between commits decreased from 12 down to 4. For the remaining days
(1 to 4 days between commits), the occurrences decreased on a weighted
average by roughly 38 %.

Metric 6 was the most challenging of all metrics. In our case study set-
ting, we were not able to provide an analysis with regards to the data set
obtained in our research. When developing the metric, we were inspired by
the work of Petersen & Wohlin [27]. For the old WoW we were able to obtain
data for metric 6 in accordance to the original description of the flow metric
[27]. In the new WoW we were not able to retrieve data that would satisfy
our needs for the original flow metric description. After discussion between
the researchers and company representatives, the current description of flow
metric was developed (based on HandoverTimes) and a data set was ob-
tained. However, after careful initial analysis and consultation with the case
company, it turned out that the two datasets for the old and new WoW were
not comparable. A method for converting the old WoW data to correspond
to the new WoW data was proposed but it was considered too expensive to
perform and would violate the properties of the metrics model to be practi-
cal and easy to obtain. A further discussion regarding the challenges of this
metric is presented in the Discussion in section 8.

The analysis for Metric 7 was based on a single data file of raw data, which
was provided by the case organization. Dataset reduction was performed to
conform with releases pertaining to the old and new WoW, respectively. The
results show an 188 % increase in Trouble Reports. As this metric showed
a degradation in performance, the decision was taken to also add data from
the transformation period to evaluate the trend for trouble reports.

Metric 8 was analyzed based on the same data file as Metric 7 with
the same dataset reduction. The results for the average time that external
Trouble Reports remain open show a decrease of approximately 31 %.

In this subsection the analysis process was described and the results pre-
sented. To ensure a fair discussion of the results in Section 8. we discuss
threats to validity in the following subsection.

29

0

0
,2

0
,4

0
,6

0
,8 1

1
,2

Time open for CSRs
(Normalized)

O
ld

 W
o

W

N
ew

 W
o

W

(a)
M

etric
1

-
R

eq
u

est
J
ou

rn
ey

In
terva

l

0

0
,2

0
,4

0
,6

0
,8 1

1
,2

Feature development
time (Normalized)

N
ew

 W
o

W

O
ld

 W
o

W

(b
)

M
etric

2
-

P
ro

cessin
g

In
terval

0

0
,2

0
,4

0
,6

0
,8 1

1
,2

Sellable licences / Money spent
(Normalized)

N
ew

 W
o

W

O
ld

 W
o

W
 (c)

M
etric

3
-

H
u

stle
M

etric

0

0
,2

0
,4

0
,6

0
,8 1

1
,2

Number of releases
(Normalized)

N
ew

 W
o

W

O
ld

 W
o

W

(d
)

M
etric

4
-

B
V

M
etric

30

7.3 Validity Issues

Empirical investigations entail a degree of uncertainty regarding the validity
of obtained results. Therefore, discussing the validity threats is not only
helping to better understand (and possibly replicate) the presented work, but
also gives the reader a sense of trust in the presented results. In this paper
we already reviewed the validity threats with respect to metrics (Section 6),
thus providing the analysis on a generic and abstract level. Now, we analyze
the validity of our results, i.e. the application of the proposed metrics in a
case study.

We follow the validity discussion scheme proposed for software engineer-
ing domain by Wohlin et al. [38]. The analysis distinguishes four different
types of validity, dealing with the issues of causality (internal validity), gener-
alization of findings (external validity), relation between theory and practice
(construct validity) and relationship between cause and effect (conclusion
validity).

7.3.1 Internal Validity

Discussion on internal validity studies the relationships between causes and
effects. In our case we want to ensure that the agile and lean transformation
caused the observed changes (the effect). We examine that the changes were
not resulting from factors of which we had not planned or measured.

While the selection of subjects had no impact in our investigation (moti-
vation and suitability of persons involved was appropriate), the non-human
related factors were affecting the complexity of the case study, e.g. impacting
the data collection process.

The instrumentation, although bringing objectivity, triangulation and au-
tomation to our work, entailed some difficulties due to having multiple tools
providing different format of data. These low level challenges had to be
tackled when working on feasibility of datasets (dataset reduction).

7.3.2 External Validity

The main concern in the discussion about external validity is the issue of
conducting the investigation in a single organization. However, the context
of our work, as well as metrics themselves were carefully described (Sections
3.2 & 5 respectively), which significantly reduced that risk.

The type of chosen investigation strategy (case study) makes it difficult
to generalize the results. The presented outcomes can be to some degree
generalizable in contexts similar to ours, i.e. large-scale and customer driven
organizations, which are either planning, executing or are after the agile
and lean transformation. Also organizations with iterative and incremental
development processes may find our results applicable to their setting.

31

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12

O
cc

u
rr

en
ce

s
(N

o
rm

al
iz

ed
)

Days between commits

Old WoW

New WoW

(a) Metric 5 - Pacemaker Metric

0

0,2

0,4

0,6

0,8

1

1,2

N
u

m
b

er
 o

f
tr

o
u

b
le

 r
ep

o
rt

s
(N

o
rm

al
iz

ed
)

Old WoW New WoW Transformation

(b) Metric 7 - Snag Metric

0

0,2

0,4

0,6

0,8

1

1,2

Ti
m

e
o

p
en

 f
o

r
ex

te
rn

al
 T

R
s

(N
o

rm
al

iz
ed

)

New WoW Old WoW

(c) Metric 8 - Typical Snag Metric

32

Metric Indicator of success Result Interpretation
M1 Request Journey Decreased time interval -24 % Improvement

Interval
M2 Processing Interval Decreased time interval -64% Improvement
M3 Hustle Metric Increased functionality per

money spent
+483 % Improvement

M4 BV Metric Increased number of releases
/ time period

+400% Improvement

M5 Pacemaker Metric Decreased interval between
commits

-38 % Improvement

M6 Bottleneck Gauge Decreased HandoverTime N/A N/A
M7 Snag Metric Decreased amount of TRs +188% Degradation
M8 Typical Snag Metric Decreased time interval of

open TRs
-31 % Improvement

Table 1: Summary of the results obtained from the collected data sets in the
case study.

We kept the environment as realistic as possible, therefore the application
of our metrics model to other industrial practices has potential. Our aim was
to not only show a result for a certain company, but also enable the utilization
of our model by companies of a comparable size, development process and
application domain. The findings are envisaged to provide valuable insight
to practitioners and researchers, who are interested in applying the metrics
model themselves.

Naturally, the implementation of certain metrics may differ between or-
ganizations, meaning that e.g. the business value or functionality metric
may be defined in some other way that takes into account the specifics of
that organization. Yet, the measurement of a change in throughput should
remain as one of the factors monitoring of how much value the organization
delivers.

7.3.3 Construct Validity

When discussing construct validity we are concerned if we can generalize
the constructs, i.e. if the right measures were used for the concept being
studied. The thorough definition of metrics, followed by their validation adds
value to the overall construct validity of the investigation. Although there is
always a danger that the researcher(s) or the organization may impact the
outcome of the investigation, in our case it was reduced by having several
rounds of reviews of the work-in-progress done by co-authors of this paper
and the representatives of the organization. The common understanding
of the metrics used was achieved due to multiple discussions. Finally, the
organization had influence on establishing the metrics model only on the
conceptual level. Due to confidentiality reasons, the data that were made

33

available to the researchers were impacted by the organization (delivering
pre-processed data); however, it did not bias the resulting measurements.

The results of application of metrics to the case are itself interesting.
Since we investigate the problem of a ”change” from many perspectives, i.e.
having a number of metrics, we avoid the mono-method bias. Moreover, the
experiment setting reflects the construct under study – we are exploring a
change in its natural environment with the appropriately defined metrics that
were previously studied in research and applied in practice. Furthermore, our
metrics have been tailored specifically for the organization described in the
case study with respect to the available data.

7.3.4 Conclusion Validity (Reliability)

When collecting data there often rises a challenge of the data collection and
the completeness of the obtained dataset. Obviously, the quality of the data
is reflected in the final outcome of the investigations. In most cases large
datasets are beneficial for the investigations (large sample size), but at the
same time may also obscure the problems with the quality of data. In our
case study we tackle such large dataset, but we do not use all the collected
data due to the incompleteness of records, e.g. lacking the start or end dates,
not completed development or features. Therefore, a dataset reduction was
necessary. Some data points were removed since they did not have a specified
end date, but only a release date or release number (the release date might
be significantly later than the feature completion date). The lack of a few
data points could in most cases be compensated by results of other metrics
(functionality could be balanced by the BV metric).

One important topic to be mentioned is that we are proceeding with our
case study in a time-frame manner, meaning that some of the older data
(originating before the explicitly defined investigation periods) were ”cut-
off” and it is not possible to state what impact this data could have had on
the outcome. However, also in this case we discussed the problem with the
experts from the organization and as a result the most feasible periods of
time were chosen.

In our work we are comparing the development processes before and after
the transformation, however we are not interested in statistical significance.
We are more concerned with the careful data collection and definition of
metrics, in order to obtain a meaningful measurements in our case study.
We place emphasis on having the same outcome of a measurement, if the
measurement is done many times.

By neutrally formulating our main research question and the supporting
questions, we are not searching for a desired outcome, e.g. improvement.
Rather, we are interested in the change itself, regardless if it is for better or
worse.

34

.

We regard our metrics model as generic enough to be tailored for the
specific needs of organizations. However in this paper we propose concrete
metrics (Section 5) that were applied in the studied organization. Most of
the data is collected automatically and the metrics are computed in the same
way. We are not claiming that none of the metrics can be manipulated, but
when having explicitly defined metrics and limiting the human factor in the
measurement process, this risk is very much reduced.

8 Discussion

So far, measurements of agile development process and especially the or-
ganizational changes leading to establishing this process in large-scale or-
ganizations have been neglected in research[13]. In this paper we focused
on providing metrics and quantitative measurements of the transformation
from plan driven to agile and lean development process performed in a large
telecommunication organization.

The choice and definition of metrics was dictated by three key factors: i)
The metrics were to answer the research question about the changes resulting
from the transformation from the traditional way of working (plan driven)
to agile and lean. ii) They were meant to be comparable, i.e. used, accepted
and computable in both the old and new way of working. iii) Finally, the
data for the computations were supposed to be available and valid.

There exists several types of metrics that are well known, discussed in
literature and used in practice, but were not included in this work. These
are, amongst other, productivity metrics, such as lines of code per person,
capacity utilization and code churn [33]. We anticipated that metrics such
as these can be directly targeting personnel abilities, and thus be destructive
and demotivating (and at the same time hindering the agile principles). The
metrics we established were process oriented, related to both internal and
external attributes, i.e. functionality and execution related.

Our results show that the most significant improvement occurred in the
change in throughput (Q2), both considering developed and deployed func-
tionality per money spent (M3) and the number of releases in a certain time
period (M4). The improvements were 483% and 400% respectively. The sec-
ond largest improvement was observed in faster responsiveness (Q1), both
to process a customer service request (M1) with a 24% decrease and to de-
velop a feature (M2) showing a 64% decrease in time. Moreover, the time
between commits has shortened 38% (M5), which signifies that the working
code is sent to the repository more often, which by itself smoothens and
speeds up the development. Furthermore, the quality aspect of development
in the organization improved (Q4), as the time necessary to answer and tackle

35

reported problems decreased with 31% (M8).

Interestingly enough, number of external trouble reports increased with
188% (M7), which we consider not as a deterioration of quality; rather, we
reason that it is because of substantially more functionality being imple-
mented (M4) and delivered in shorter time (M2). When looking at the data
from the transformation period, a decreasing trend can however be identi-
fied. As a consequence, there are more potential customers who provide more
feedback and can send a trouble report with same problem multiple times,
causing a sudden rise in the number of trouble reports.

Only one of our metrics (M6 Bottleneck Gauge) occurred to not be fea-
sible to be applied both in the plan-driven and agile and lean setting in
a straightforward manner. This was caused by the dataset that we were
able to obtain from the organization. According to our assumption that the
metrics should be straightforward to apply and the data should be easy ob-
tainable, we were not able to have a direct comparison of the old and new
ways of working for the handover time. The data reported in the plan-driven
development differed significantly from those in the agile and lean setting.
The transformations on the data would consume significant amount of effort,
therefore, this practice would be against the practicality and applicability of
metrics. Based on our experience from this case study, M6 could be more
applicable in a transformation made in smaller steps that are retaining more
of the old way of working.

As can be seen in Table 1 on page 33, the results are to a high de-
gree noticeable, with two metrics showing 400% and above improvement.
The results were discussed with different members of the case company and,
whereas the actual numbers were new, they corresponded to the experienced
improvement in the company.

Naturally, not all observable changes that were indicated by measure-
ments can be explained solely by the transformation as the case company
operates in a rapidly changing market. However we tried to limit the factors
impacting the measurements. We purposefully narrowed down the scope to
measuring the software development organization, in contrast to the whole
company. By that we concentrated on the turnaround times and trouble
reports, and thus minimized the effects of external factors (revenue or user
experience).

9 Conclusions

This work is a result of our collaboration with our industrial partner (Er-
icsson) on providing quantitative data and analysis to measure impacts of
the changes in the development process after the agile and lean transforma-
tion that took place in the organization in 2010. We defined metrics in a

36

systematic and thorough manner based on work from Kaner et al. [21] and
Briand et al. [5] through numerous iterations on the initial proposal of met-
rics presented in our previous work [18]. Moreover, we presented a complete
case study from the telecommunications domain with detailed analysis of col-
lected and processed data. Finally, we provided validation of our approach
on two levels: separately for metrics and for the case study.

Often agile and lean software development methods are motivated by suc-
cess stories and qualitative studies. Our goal with this work was to contrast
the existing qualitative studies with a quantitative one. The task was not
straightforward and required many iterations between the researchers and
the case company. Examples of factors that contributed to complexity were:
change in software supporting development, challenges in data retrieval from
older projects and mapping of metrics between old and new way of working.

Besides being used for comparison purposes, the actionable goal of our
proposed metrics was to be motivational, i.e. to demonstrate the current
state of development and encourage continuous improvement. Additionally
the metrics are informational, enhancing the overall understanding of the
current state of development.

Six out of the eight metrics showed a clear improvement due to the agile
and lean transformation, where only one displayed well justified deterioration.
The advantage of our metrics in the comparison is their objectivity and
repeatability, which is achievable due to the highly automated data collection
process.

References

[1] D.J. Anderson. Agile Management for Software Engineering: Apply-
ing the Theory of Constraints for Business Results. The Coad Series.
Prentice Hall, 2004.

[2] David Andersson. Agile management for software engineering : applying
the theory of constraints for business results. Pearson Education inc.,
2004.

[3] V. R. Basili and H. D. Rombach. The tame project: towards
improvement-oriented software environments. IEEE Trans. Softw. Eng.,
14(6):758–773, June 1988.

[4] Victor R Basili, Gianluigi Caldiera, and H Dieter Rombach. The Goal
Question Metric Approach. In Encyclopedia of Software Engineering,
pages 646–661. Wiley, 1994.

37

[5] Lionel C Briand, Sandro Morasca, and Victor R Basili. Property-Based
Software Engineering Measurement. IEEE Transactions on Software
Engineering, 22(1), 1996.

[6] Cloud Software Finland. Cloud software finland. 2013.

[7] Alistair Cockburn. What engineering has in common with manufactur-
ing and why it matters - ac, September 2006.

[8] Mike Cohn. Succeeding with Agile: Software Development Using Scrum.
Addison-Wesley Professional, 2009. ISBN 978-0321579362.

[9] Pete Deemer, Gabrielle Benefield, Craig Larman, and Bas Vodde. The
scrum primer. Technical report, 2010.

[10] Torgeir Dingsøyr, Tor Erlend Fægri, and Juha Itkonen. What is Large
in Large-Scale? A taxonomy of Scaling in Agile Software Development.
Work in progress, 2013.

[11] Torgeir Dingsøyr and Nils Brede Moe. Research challenges in large-scale
agile software development. SIGSOFT Softw. Eng. Notes, 38(5):38–39,
August 2013.

[12] Yael Dubinsky, David Talby, Orit Hazzan, and Arie Keren. Agile Metrics
at the Israeli Air Force. Development, 2005.

[13] Tore Dyb̊aand Torgeir Dingsø yr. Empirical studies of agile software de-
velopment: A systematic review. Information and Software Technology,
50(9-10):833–859, August 2008.

[14] Christof Ebert, Pekka Abrahamsson, and Nilay V. Oza. Lean software
development. IEEE Software, 29(5):22–25, 2012.

[15] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A
Rigorous and Practical Approach. PWS Publishing Co., Boston, MA,
USA, 2nd edition, 1998.

[16] Deborah Hartmann and Robin Dymond. Appropriate Agile Measure-
ment: Using Metrics and Diagnostics to Deliver Business Value. In
AGILE 2006 Conference (Agile’06), pages 6 pp.–134. IEEE Computer
Society, 2006.

[17] Orit Hazzan and Yael Dubinsky. Agile software engineering. Undergrad-
uate topics in computer science. Springer, Berlin, 2008. ISBN: 978-1-
84800-199-2.

38

[18] Jeanette Heidenberg, Max Weijola, Kirsi Mikkonen, and Ivan Porres.
A metrics model to measure the impact of an agile transformation in
large software development organizations. In Hubert Baumeister and
Barbara Weber, editors, Agile Processes in Software Engineering and
Extreme Programming, volume 149 of Lecture Notes in Business Infor-
mation Processing, pages 165–179. Springer Berlin Heidelberg, 2013.

[19] Ville Heikkilä, Maria Paasivaara, Casper Lassenius, and Christian En-
gblom. Continuous release planning in a large-scale scrum development
organization at ericsson. In Proceedings of the 2013 International Con-
ference, XP2013 on Agile Processes in Software Engneering and Ex-
treme Programming, LNBIP, pages 195–209, Berlin, Heidelberg, 2013.
Springer-Verlag.

[20] ISO/IEC. ISO/IEC 25010 - Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE) - System
and software quality models. Technical report, ISO/IEC, 2010.

[21] Cem Kaner and Walter P Bond. Software Engineering Metrics : What
Do They Measure and How Do We Know ? Direct 2004, 8:1–12, 2004.

[22] Kirsi Mikkonen et al. How we learn to stop worrying and live
with the uncertainties. https://www.cloudsoftwareprogram.

org/results/deliverables-and-other-reports/i/27891/1941/

ericsson-journey-of-change, 2012.

[23] D. Leffingwell. Scaling Software Agility: Best Practices for Large Enter-
prises. The Agile Software Development Series. Prentice Hall, 2007.

[24] Jingyue Li, Nils B Moe, and Tore Dyb̊a. Transition from a plan-driven
process to Scrum. In Proceedings of the 2010 ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
- ESEM ’10, page 1, New York, New York, USA, 2010. ACM Press.

[25] Andrew Meneely, Ben Smith, and Laurie Williams. Validating soft-
ware metrics: A spectrum of philosophies. ACM Trans. Softw. Eng.
Methodol., 21(4):24:1–24:28, February 2013.

[26] Emma Parnell-Klabo. Introducing lean principles with agile practices at
a fortune 500 company. In Proceedings of AGILE 2006, pages 232–242,
Washington, DC, USA, 2006. IEEE Computer Society.

[27] K. Petersen and C. Wohlin. Measuring the flow in lean software devel-
opment. Software: Practice and Experience, 41(9):975–996, 2011.

39

[28] Kai Petersen. An empirical study of lead-times in incremental and agile
software development. In Proceedings of the 2010 international confer-
ence on software process, ICSP’10, pages 345–356, Berlin, Heidelberg,
2010. Springer-Verlag.

[29] Kai Petersen and Claes Wohlin. The effect of moving from a plan-driven
to an incremental software development approach with agile practices.
Empirical Softw. Engg., 15(6):654–693, December 2010.

[30] Donald G. Reinertsen. The Principles Of Product Development Flow:
Second Generation Lean Product Development. Celeritas Publishing,
2009.

[31] Pilar Rodŕıguez, Jouni Markkula, Markku Oivo, and Kimmo Turula.
Survey on agile and lean usage in finnish software industry. In Proceed-
ings of the ACM-IEEE international symposium on Empirical software
engineering and measurement, ESEM ’12, page 139, New York, USA,
2012. ACM Press.

[32] Per Runeson and Martin Höst. Guidelines for conducting and reporting
case study research in software engineering. Empirical Softw. Engg.,
14(2):131–164, apr 2009.

[33] Dag I.K. Sjøberg, Anders Johnsen, and Jorgen Solberg. Quantifying
the effect of using kanban versus scrum: A case study. IEEE Software,
29:47–53, 2012.

[34] D. Šmite, N.B. Moe, and P.J. Ågerfalk. Agility Across Time and Space:
Implementing Agile Methods in Global Software Projects. Springer, 2010.

[35] Balachander Swaminathan and Karuna Jain. Implementing the Lean
Concepts of Continuous Improvement and Flow on an Agile Software
Development Project: An Industrial Case Study. In 2012 Agile India,
pages 10–19. IEEE, February 2012.

[36] David Talby and Yael Dubinsky. Governance of an agile software project.
In 2009 ICSE Workshop on Software Development Governance, pages
40–45. IEEE, May 2009.

[37] The Institute of Electrical and Eletronics Engineers. Ieee standard glos-
sary of software engineering terminology. IEEE Standard, 1990.

[38] Claes Wohlin, Per Ruenson, Martin Hst, Magnus C. Ohlsson, Bjrn Reg-
nell, and Anders Wesslén. Experimentation in Software Engineering.
Springer, 2012.

40

Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku

Faculty of Mathematics and Natural Sciences
• Department of Information Technology

• Department of Mathematics

Turku School of Economics
• Institute of Information Systems Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

ISBN 978-952-12-3054-7
ISSN 1239-1891

