

Turku Cent re Computer Sciencefor

TUCS Technical Report
No 1176, March 2017

Author One | Author Two | Author Three Author Four |

Author Five

Title of the Technical Report

Marta Olszewska | Mikołaj Olszewski | Sergey Ostroumov

Gohar Shah | Haider Rizvi | Bilal Altaf

Experimenting

with Event-B and Scrum

on Student Project Course

TUCS Technical Report

No 1176, March 2017

Experimenting with Event-B and Scrum on

Student Project Course

Marta Olszewska
PhD, Åbo Akademi University, Department of Information Technologies

Mikołaj Olszewski
PhD, Vaadin Expert at Vaadin

 Sergey Ostroumov
 PhD, Software Engineer at Softability; Åbo Akademi University,

Department of Information Technologies

Gohar Shah
Åbo Akademi University, Department of Information Technologies

Syed Haider Abbas Rizvi
Åbo Akademi University, Department of Information Technologies

Bilal Atlaf
Åbo Akademi University, Department of Information Technologies

Abstract

Agile methodologies and frameworks are present in IT field for over 15 years now.

Coming from industry, they reached research and teaching at the academia, to finally be

utilised in the student projects. Formal methods, on the other hand, exist for over 40

years and constantly iterate between the needs of industry and the resources provided by

university research. Nonetheless, they seem to remain difficult to be taught and learnt.

Thus, usually, they are placed as a separate learning module, not re-used between

courses.

Student projects can be thought of as small ecosystems combining the learning

methods required by the given project with the application of knowledge and skills

gathered so far. This paper presents a student project, which was executed within a

Project Course throughout 7 months. The project was combining the Vaadin framework

(UI), Event-B formal method (proving system properties) and Scrum (development

process) in order to create a web-application. The course was mimicking the real-world

environment, where a Team of developers is having an industrial customer to whom a

functional system needs to be delivered.

Our contribution is two-fold and encompasses observations and recommendations

regarding (i) the use of Scrum in student projects and (ii) the application of formal

methods in "traditional" software development in the student context.

Keywords: Event-B, Scrum, Student Project Course, Experimentation

RITES Laboratory

Distributed Systems laboratory

Integrated Design of Quality Systems Group (InDeQS)

1

1 Introduction

Agile methods have been present on the IT stage for over 15 years now [1]. The

application spectrum varies in many respects: from small-scale companies like start-ups

[2] to large-scale industrial players [3]. In addition, the application domains are diverse:

web-applications [4] and services [5] on one hand and the safety-critical systems [6] on

the other.

Regardless of the application, there is a need for validation of the feasibility of the

used methods. Experimentation is one of the techniques, which allows one to

investigate the practicality of the proposed novel approaches, as well as highlights its

advantages and drawbacks [7].

Agile methods, although primarily present in the industry and research, are also a

part of the academic curriculum, usually as an element of a software engineering course

that tackles the software development processes [8]. Students learn the basis of agile

philosophy, its values, principles and practices, together with certain agile processes

(e.g. XP [9] or Scrum [10]). However, they lack the possibility of the hands-on

experience on how agile approaches work in practice. Therefore, it is difficult to find

substantiation that agile methods, in particular Scrum, actually facilitate students’ work

when they are involved in software engineering team-projects [11].

There is even less evidence on the use of formal methods by the students, although

formal methods have been applied for over 40 years and are present in most of

academic teaching curricula [12] [13]. In particular, the empirical work on group

assignments involving students who apply formal methods is scarce [14]. Formal

methods, such as Event-B, are especially beneficial when applied to safety-critical or

mixed criticality systems [15]. They assure that the created system preserves some

required properties, i.e., it functions as desired. They can be used to model and prove

the most critical part of the system, while the rest of the system is implemented in the

"traditional way" [16].

To the best of our knowledge, there have been no experience reports on combining

formal methods and agile approaches in software engineering student projects involving

teams, so far. This paper describes a student project executed within the master-level

course Project Course within Åbo Akademi University [17], where a group of students

was working on the development of a scheduling system utilising an agile development

process (Scrum). The uniqueness of this particular project is two-fold: (i) the use of an

agile method in the student project, (ii) engaging formal methods in the development.

Regarding the former, the environment for the project was made as real as possible, i.e.,

involving the industrial customer, providing loose requirements document, as well as

requiring certain methodologies and development frameworks – all to be arranged

within Scrum. As for the formal methods, these were used to model the key properties

of the scheduler. No project within the Project Course has been using any kind of

formalisms, so far.

As a major contribution of the paper, we consider the lessons learnt from the

student project, where students were embracing an agile method (Scrum), learning and

2

using a formal method (Event-B), as well as utilising other methods and frameworks

required by the customer. Furthermore, we provide our insight on how to successfully

conduct a project course running in an agile setting, reflect on the possible risks and

problems, as well as give recommendations on how to sustain the progress of the

project. We base our advice on the semi-structured interviews and collection of

statements we gathered from the developers and the customer during and after the

project. We believe that some of our observations can be transferred to industry,

especially in the cases when a new team is being formed, formal methods are employed,

or a new staff member not familiar with the technologies used is added to the project.

The paper is structured as follows. First, we describe the Project Course at Åbo

Akademi University that sets up the scene for the development. Then we follow with a

short description of a scheduler system developed within that course. Next, we present

the methodologies used in the project. Afterwards, we give the context of our

investigation. Next, we describe the development itself, focusing on two aspects: the

formal modelling and the system implementation parts, as well as the aspect of quality

assessment. Then we provide the observations on the development from the perspective

of the developers and the customer. Consequently, we build the lessons learnt and

recommendations. We conclude with the discussion on the threats to validity in our

investigation and final remarks.

2 Project Course

Project Course is a course organised yearly, from October to March by Åbo

Akademi University. It can be taken by Master-level students of Computer Engineering,

Computer Science and Information Systems. It is worth 10 study points, which

corresponds roughly to 240 work-hours. A group of 4-6 persons works collaboratively

to develop a fully functional version of the planned ICT solution, i.e., carry out a

development project from concept, through design and implementation to testing and

deployment. Furthermore, there should be an exploitation plan detailing why and how

the solution is useful and/or can be turned into a viable business solution.

The team is supposed to use the theoretical skills from previous courses and apply

them in practice. It is also required to provide documentation and business plan for the

solution, as well as present the project, product and progress to stakeholders, lecturers,

colleagues and the general public. Moreover, it is essential for the team to interact with

the stakeholder, be it a company, a lecturer or other external party, in order to learn how

to communicate the requirements and progress, as well as to develop a product that

reflects the vision of the stakeholder. Finally, the team needs to react to the changes in

the project while the project is being executed, which means modifying and tailoring the

project as it advances. Each team has a mentor assigned to it, who deals with issues

regarding project management, team and motivation. A mentor can be of help also in

technical matters.

Project course with its setting is structured to mimic the challenges entailed by a

real life IT project. In this setting, it is advised to use, e.g., a task management system,

version control tools (repository) and any other tools that facilitate the development. It

3

is also important to track the effort of the development team members, as well as

estimate the effort necessary to complete the tasks. Moreover, the team should be able

to evaluate the risks in the project (person on a sick leave, a person leaving the team,

technological difficulties, etc.).

A similar format of the course is given in parallel by Turku University of Applied

Sciences and Turku University. The final products are demonstrated by the teams at the

annual ICT Showroom. The Showroom is an exhibition and competition, where

students of the course present their project work done during the past year. A jury

consisting of lecturers and representatives of IT companies decides who will be granted

the prize of the best project in terms of commercial potential, technical feasibility and

presentation (poster and demo). Moreover, students and visitors can vote for their

favourite project.

2.1 Meeting Scheduler

The idea for the project has been given by the stakeholder and specified in a

document presented in Appendix A. The purpose of the project was to develop a

Meeting Scheduler implemented as a web-application. The Meeting scheduler had to

support its users with organising events by scheduling them in a calendar with the best

suitable date for every invited participant. A second separate part of the system was

responsible for aggregating calendars from other services and managing them within the

Meeting Scheduler. Since there were numerous properties that the system should

maintain, the stakeholder had emphasised an idea of formally modelling these

properties. Therefore, the development of the Meeting Scheduler differed quite much

from a usual project development in a sense that, apart from regular coding, it

comprised formal modelling.

The system required a Client-Server Architecture: a front-end web application and a

back-end service, which is presented in Figure 1.

Figure 1 High-level view of architecture of the Meeting Scheduler

4

Scrum [10] had been chosen as the agile development process. Most of the

technologies to be utilised were predefined by the stakeholder:

 Vaadin [18] as a framework for UI,

 Event-B and Rodin tool [19] for formal modelling,

 CalDav protocol [20] for the calendar aggregation,

 PostgreSQL [21] for the database.

The back-end technology, Node.js [22], was chosen according to the preferences of

the developers. It is responsible for the application logic: scheduling of meetings,

registration of users etc. It retrieves and processes the information through an SQL

database server.

Potential users of the meeting planner are anyone who needs to meet with other

people at irregular times. A plethora of people uses different calendars in various

contexts – private ones or assigned by the organisation they are affiliated with. This

application is to help with handling this complexity: the aggregation of different

calendars to determine availability provides the relevant information for scheduling a

meeting in one place.

A simplified functionality of the Meeting Scheduler is as follows. Users registered

in the application can host meetings, suggest some alternative dates and times and invite

users. Invited users are notified by e-mail with a link to the meeting. The link allows a

user to vote for the available times even without being registered in the application. A

registered logged-in user can add URLs to other calendars supporting the CalDav

protocol. This way the application knows at which times the user is busy, based on other

calendars. This allows the application to give the user only the relevant time suggestions

for meetings to which he or she is invited.

The application would only approve the actual time for a meeting when a time

suitable for all invitees has been found. Possibly some lesser constraints can be

implemented as well. Users can be assigned roles in meetings and can comment on and

discuss a meeting they have access to.

3 Supporting Methodologies, Processes and Tools

Project course, by definition, groups people into teams of various expertise and

backgrounds. In this manner, their skills and knowledge acquired prior the course are

combined to accomplish the best possible outcome – a fully working, innovative and

viable product that potentially compete on the current stage of ICT solutions. Therefore,

numerous methodologies, processes and tools are combined to realise this undertaking.

This section describes the practices and means that were utilised in the development of

the Meeting Scheduler.

3.1 Scrum

In this work, we chose Scrum [23] as an iterative agile development framework.

Scrum is based on frequent releases and short development cycles. As one of the

5

processes within agile philosophy, it supports process improvement. Scrum provides a

well-defined platform for interactions between the developers and the stakeholders, as

well as enables good control over the development. Since some of the characteristics

conceptually overlap with the ones of Event-B (e.g., iterations and refinement steps), we

consider the integration of the two to be seamless.

There were several reasons for which we chose Scrum as the development process.

First of all, we identified it as the most suitable for the Event-B developments (see

FormAgi framework [24]). Scrum has a clear definition of the time frames for iterations

(organisation of sprints) and the set of meetings to be held during the development

process [25], which provides certain degree of control over the progress of the

development.

Second of all, the Project Course with its setting serves not only as a platform for

developing a viable ICT solution, but also as a material for our research. We consider it

as a continuation of our exploratory work on the synergy of agile and formal methods.

Previously we have experimented with Scrum in the academic setting with experienced

Event-B developers [26]. Now we want to study the opportunities and challenges

encountered by having a project run with Scrum development process, where the

developers are new to Event-B. Moreover, the Event-B development is considered only

as a part of the project, where the vital system properties need a model with proof.

An overview of a sprint within Scrum is shown in Figure 2. During each sprint, the

development team takes a set of features from the product backlog (listed in the issue

tracking system) which holds a set of high-level requirements. Then the stakeholder

informs the developers of the features that should be completed in this iteration. From

this subset, the team selects the features that are realistic to be implemented. Next, when

the goals for the sprint are determined, they are shifted to the sprint backlog, which

remains fixed at the time of the sprint. The sprint lasts for a specific amount of time (2-4

weeks) and at the end, it produces a potentially shippable product increment, which is

presented by the team to the stakeholder. Any of the unimplemented features are

returned to the product backlog.

Figure 2. The overview of a Scrum sprint

Communication, one of the cornerstones of the agile approaches, is also important

within Scrum. Various meetings are held throughout the development: before the sprint

starts (Planning), during the sprint (Daily Scrum), after the sprint (Review and

Retrospective). The retrospective is a process improvement-oriented meeting, while the

other meetings concern the development itself.

Scrum + meetings

Product
Backlog

Sprint
Backlog

Sprint Working increment
of the software

24h

30 days

Daily

6

There is a strong involvement of the representative of the end user (or the

stakeholder) in Scrum, so that the directions for further development can be indicated at

the end of each sprint. The issue of how much functionality will be implemented during

each iteration is controlled and decided by the development team. The contents of a

sprint do not change during its duration. Thus, the moments at which functionality

changes can occur are limited and well-defined.

The goal of this development methodology is to increase the relative effectiveness

of development practices for the improvement purposes. At the same time, the delivery

of a framework for the development of complex products has to be accomplished [10].

3.2 Event-B Modelling

Application of formal methods ensures correctness of the system (or part of it) that

is being developed already at the early stages by formally modelling and proving system

properties. It is particularly important in the safety-critical domains such as medical,

military, transportation or airspace [13]. Learning formal methods by students prepares

them for the work in industry, where the formal modelling skills may be required.

Finally, the skills can be useful when tackling the system requirements, regardless of the

criticality of the application domain.

Event-B [16] is a formal method and modelling language for stepwise system-level

modelling and analysis, based on the Action Systems formalism [27] [28] [29]. It is

derived from the B-Method [30], with which it has several commonalities, e.g., the set

theory and refinement. Event-B is dedicated to model complete (reactive) systems,

including hardware, software and environment [19] and has gained appreciation in

industrial settings [31].

An Event-B specification uses a pseudo-programming notation – Abstract Machine

Notation – and consists of dynamic and static parts – a machine and a context

respectively. The formal development starts with the specification of an abstract

machine from a set of requirements and proceeds by its refinement in a number of steps.

A machine consists of its unique name and has the following constructs:

 a list of distinct variables that give the state space of the system;

 invariants which state the vital properties of the system required to be

preserved;

 a collection of events that pose operations on the variables, where

"initialisation" is the event that initialises the system.

A more abstract machine can be refined by another, more concrete one. The

refinement chain and the modelling process can be easily tracked and controlled.

The static part of the specification is also extended with respect to the development

of the machine. It encapsulates the sets and constants of the model with their properties

given by axioms and theorems.

An Event-B machine can refer to a context through the "sees" relationship. The

relation between machines and contexts, as well as the refinement relation for these, is

presented in Figure 3.

7

CONTEXT_0
sets
constants
axioms

theorems

MACHINE_0
variables
invariants
teorems
variant

events

CONTEXT_1
sets
constants
axioms
theorems

MACHINE_1
variables
invariants
teorems
variant

events

refinesextends

sees

sees

Figure 3 Refinement in Event-B (following [16])

Event-B utilises refinement (described later) to represent systems at different

abstraction levels. Refinement enables the developers to gradually introduce details into

the constructed system and to represent new levels of a system with more functionality.

Mathematical proofs are used to verify consistency between the refinement levels. This

is supported by Event-B and provides rigour to the specification and design phases of

the development of critical systems. It is effectively supported via the Rodin platform

[32]. Rodin is an Eclipse-based tool (an open source "rich client platform") extendable

with plug-ins. For instance, there are plug-ins that provide the model simulation and

animation, as well as its visualisation. Finally, the model can be used for the source

code generation into various programming languages.

Refinement [33] [34] [35] [27] is a stepwise approach to the system development,

which allows developers to iteratively create the system following certain rules called

refinement rules (also referred to as proof obligations) [36] [37]. The stepwise

refinement is a top-down approach [34] which aids handling all the implementation

matters and complexity by splitting up the problems to be specified and gradually

introducing details of the system to the specification. In the refinement process

(presented in Figure 4), an abstract specification, that is usually non-deterministic and

capturing system level properties, is created from the requirements. It is then

transformed into a more concrete and deterministic system that preserves the

functionality of its specification in consecutive refinement steps. Each refinement step is

supported by an invariant that states the properties of the system. Hence, the invariant is

also created in an iterative manner.

Figure 4. Refinement process

8

This approach to the system development results in a system that is correct by

construction [33]. The correctness of each refinement step is ensured by the

mathematical proof of the model consistency and feasibility. These are ensured by the

fact that each refinement model preserves the invariant. Even if proving is tool-

supported, there are still some proofs that cannot be automatically discharged, but will

require human interaction. The amount of involvement needed heavily depends on the

chosen modelling strategy and is a subject of our current work.

The complexity of proofs depends not only on the problem and the complexity of

the system to be modelled, but also on the refinement strategy utilised and, e.g., on the

decomposition mechanisms [38]. Therefore, assisting the modelling activity by

facilitating the development process would help to deal with the complexity issues.

3.3 Vaadin

Vaadin is an open-source framework for building web applications in Java. It

requires a Java servlet container (such as Tomcat or Jetty) to execute the applications in.

Once an application is deployed, the framework takes care of capturing events and user

actions that happen in a web browser and forwarding them to the Java application code.

The framework contains also a number of graphical user interface components and

means of their composition and extension to enable creating responsive and accessible

applications. Furthermore, a significant number of components can interact with any

data source that is compatible with the Vaadin Data Model. Several implementations of

the model are available in the framework by default, so that it is possible to interact with

SQL databases or Java Persistence API implementations.

3.4 Other Tools and Technologies

According to the guidelines provided by the Project Course Mentors, version

control (SVN [39]) and issue tracking system (Trac [40]), were in use. All features were

supposed to be specified as entries in Trac, with priorities and associated milestones

etc., as agreed with the customer. Submissions to the main branch of the code repository

were to take place once a code was tested and functional. The team was expected to

create branches for the development on the as-needed basis.

The programming environment for the front-end was Java 8. The developers were

free to choose a development environment they felt most comfortable with.

4 Experimental Setup

The requirements for the project and its execution were given at one of the first

lectures of the Project Course. Then, a three-hour Crash Course was organised

specifically for the developers, who joined the project, where the introduction to the

methods and tools was given. Moreover, the requirements document for the scheduler

9

was presented, as well as the requirements and technicalities were discussed (30th

September 2015).

The Crash Course tackled:

 The project and its requirements – customer’s perspective

 Methods and tools needed in the project

 Introduction to Agile / Scrum

 Overview of Trac and Vaadin

 Event-B modelling in Rodin (including demonstration)

There was also a time slot dedicated to possible questions and comments.

The project was not only executed for the purpose of the project course (student

perspective), but also generated data for an academic experiment (research perspective).

Thus, it had to be explained what data will be collected and what type of observations

are sought. Finally, the role of the researcher in the project needed to be clarified for

ethical reasons.

4.1 Roles

Scrum quite clearly identifies the roles in the project, which enabled us to divide the

responsibilities in an unambiguous way. The customer (stakeholder) was a product

owner at the same time. He was the initiator of the project, as he was the one providing

the idea for the development.

The development Team was international and initially consisted of 5 Master-level

students with various experiences in programming. The division of responsibilities in

the project was left to the Team. However, it was emphasised that the Team should be

cross-functional, with shared responsibility and should have one goal in mind – to

produce a shippable system.

Initially, the responsibilities within the project were divided into four sub-teams,

each responsible for the front- and back-end development, formal modelling and

databases. The distribution of work given in the following listing shows that the Team

organised the work in a careful manner, having in mind that there should not be a task

left without the contingency plan, i.e., the members typically had a "double

responsibility". It is justified by the various real-life scenarios, such as the one when one

of the team members is not capable of working due to, e.g., sickness. The allocation of

tasks was as follows:

 Team Lead: back-end and the business and visibility matters (e.g., poster)

 Team member 1: database development and formal modelling

 Team member 2: front-end and formal modelling

 Team member 3: front-end

 Team member 4: back-end and database development

During the project course, two team members quit the project. One member

resigned from the project due to some other commitments after three months of the

project duration, whereas another one occurred to be inactive and eventually was not

considered as a Team member. The personnel changes resulted in leaving the front-end

10

angle of the project without a developer. Moreover, the formal modelling part of the

project was significantly weakened, since had a strong background in the formal method

to be used. In the end, one member of the remaining team members got assigned to the

front-end (previously meant to assist in database and back-end development); formal

modelling was left with one team member assigned, so was the database development.

Consequently, the team roles were as follows:

 Team Lead: back-end and the business and visibility matters (e.g. poster)

 Team member A: database development and formal modelling

 Team member B: front-end

The development tasks had to be partially sequential, e.g., database design was

planned first to provide the infrastructure for the project; only then the focus was put on

learning how to formally model the system and proving its properties. This sequence of

actions was also caused by delaying the formal development by the team member

initially assigned to it (who later resigned). The management and visibility of the

project were executed throughout the project, as well as the development of the front-

and back-ends, which had to be developed in parallel.

4.2 Process - Schedule, Meetings and Communication

The Scrum process was adapted to the development specifics. The development

team worked in a distributed manner. The students were meeting face-to-face mostly for

the purpose of the lectures at the Project Course or the appointments with the

stakeholder. The team members were working at their own pace, at various hours of the

day, depending on their schedule and time preferences.

The Scrum process tailored to the needs of the project is shown in Figure 5. The

figure illustrates the product and spring backlog together with the scrum meetings –

planning, daily, review and retrospective.

Figure 5 Suggested development process – tailored Scrum

To keep certain level of control of the project, the distribution of the work-load had

to be balanced out by the Scrum meetings. It was suggested to keep the “dailies” as a

cycle of weekday meetings occurring every second or third day. The sprints were kept

as two week periods, at the end of which a meeting with stakeholder was organised. At

that point, the current status was checked and the features from the backlog, which were

not implemented within the current sprint, were moved to the next one. Furthermore,

11

the planning of next sprint took place and the features to be implemented in the

following sprint were agreed on with the stakeholder. Unlike in a regular sprint, the

retrospective was not done within the Team. The possible improvements to the current

process and the challenges and difficulties that appeared in the previous sprint were

enquired by the researcher.

The project took place between 1st of October, 2015 and 1st of April, 2016. A Crash

Course Workshop was organised before the official start of the project. During the

progress of the project, there were 5 milestones set, including the “preliminary design”

milestone, the purpose of which was to obtain the basic idea on how the software

system works and how it is done. At that point, all programming languages and

methodologies were supposed to be chosen and the repository structure was set up.

Long iterations were set for two and three week periods. However, in the beginning and

at the end of the project the iterations were weekly. It also meant that some milestones

had a few iterations.

Various types of meetings, as suggested by scrum methodology, were scheduled.

These helped to manage, control and improve the development. The planning and the

review were held when meeting with the stakeholder, whereas the "daily" stand up

meetings were organised within the Team, with frequency of 3 times a week (initial

setting, then less frequent – controlled by the team lead), often remotely due to the

distributed location of the developers.

Table 1 Project schedule with milestones, meetings and special events.

Week # Mon Tue Wed Thu Fri Sat Sun

41 M

42 M, D0

43

44 D1

45 M

46 M

47

48 M Event-B

49 D2

50 M

51

52

53

1 D3

2 M

3

4 M

5 D4

6 M

7

8 M D5

9 M

10 M ICT

11

12

13

14 Post

12

InError! Reference source not found. Table 1 we present the project schedule,

where the columns represent the days of the week, the rows represent the numbers of

weeks in a year, the cells marked "M" show the days of meetings with the customer,

whereas the "D" stands for the milestones (deliverables). In addition, we included some

special events in the figure, such as the Event-B workshop (denoted as Event-B)), where

formal modelling “learning-by-doing” was realised, and previously mentioned ICT

Showroom event. Finally, a post mortem meeting took place after the project ended

(denoted as "Post"). The goal was to summarise the project, ICT Showroom experience

and the collaboration, as well as collect suggestions for improvement regarding the

quality and functionality of the delivered project.

The communication between the team members was mainly based on internet

messaging, phone and e-mails. Face to face discussions were difficult due to the

distributed location of the members whose main opportunity to meet in person was

during the planning and review meetings. However, during the holiday break and the

time preceding the ICT Showroom event, the communication was more intensive and

direct.

During the retrospectives the possible process improvements were discussed. They

mainly concerned the working times of the Team, which vastly varied between the

developers. Some Team members worked in the middle of the night, whereas others

preferred to work over the day, which made it difficult to synchronise the efforts and

organise dailies. Also, the schedule of the Team members differed with respect to their

obligations towards attended courses and other university activities.

5 Scheduler Development

The development can be conceptually divided into two parts, which are

interleaving, but in practice were executed separately: the formal modelling with Event-

B and implementation in Java and database-related techniques. Both are set up within

the Scrum development process (see Figure 6). In the following sections, we will

describe both, focusing more on the formal modelling part.

Figure 6 Relation of the methodologies used

Agile process

Scrum

Implementation

UI (Vaadin)

Server-side (Node.js)

Database (PostgreSQL)

Formal modelling

Event-B formal model Basic system properties

13

5.1 Formal modelling

The formal development was started when the database structures were established,

and the basic concepts on the front-end and back-end were implemented. The delay was

caused by the need of being able to present the working software to the customer.

Although formal modelling was a vital part of the development, it was not integrated

with the java implementation (no code was generated from the model, since it was built

to prove the basic logic behind the scheduler).

The Team member responsible for modelling and proving took a 2-month course

(Specification Methods) prior to the Project Course in order to gain some familiarity

with formal modelling. The course provided mathematical ways to solve given

problems and notations used to build the respective models. The course was utilising the

B-Method, a formalism similar to Event-B. Event-B is derived from B-Method, thus

both notations share many concepts, however, they differ in terms of e.g. operator

precedences (on the differences between the formalisms, see Rodin Handbook [41]).

These differences can be quite misleading, especially for the beginners. The modeller

was not familiar with the Event-B formalism and was not aware how to create a model

using Rodin. It took roughly 2-3 weeks to learn how to develop a simple model in

Rodin.

Machine0

Machine01

Context0

Context01

Machine02

refines

refines

extends

sees

sees

sees

Figure 7 Event-B model – relations between dynamic (machines) and static (contexts) parts

The formal model consisted of 3 machines and 2 contexts. The high level structure

of the model is given in Figure 7. Functionality of Machine0 is basically to manage the

users of the meeting scheduler system, i.e., to add users to the application, as well as to

log them in and out. In the first refinement step, Machine01, the management of the

meetings takes place, for instance adding e-mails to the contact list, sending invitation

and cancelling meeting. In the second refinement step, Machine02, the voting is

modelled. Note that the created model is kept on the high and nondeterministic level,

which makes the code generation impossible. Having the model fully developed would

require far more effort than it was foreseen for the project course and expected from the

students.

14

All 20 proof obligations were discharged automatically. Most of them were related

to the abstract machine (Machine0) – 4 and its refinement (Machine01) – 14. The proof

statistics data were taken directly from Rodin tool.

Figure 8 Measurements on dynamic part of the model (machines)

The model was evaluated with metrics based on the syntax of Event-B models [42].

From the model measurements that were collected, we computed the size, complexity

and effort required to construct the model. In Figure 8 we can observe that the biggest

effort was made to build the abstract machine, whereas the largest size of the model and

the biggest diversity of operands were observable in Machine01. The difficulty of

building the model was quite steady throughout the development.

Unfortunately, the detailed data concerning the developer’s effort and time spent for

particular activities when learning the method and constructing the model were not

available. The developer in charge of the Event-B modelling, focused mainly on

designing and implementing the system. Abandoning or limiting the documentation and

reporting were associated with the time pressure (project schedule) and the idea of the

working code being a priority.

In post-mortem analysis, the developer stated that the time spent on building the

model was roughly 3-4 weeks. Interestingly enough, refactoring of the model, which

was advised by the formal methods expert, took one day. It implies that the intensive

work with Event-B and Rodin platform together with the acquired domain knowledge,

flattens the learning curve and it is much easier and efficient to implement the requested

changes.

5.2 Vaadin Implementation

The implementation of the user interface (UI) was done in Vaadin framework. We

ran a STAN code analysis tool [43] on the Java code produced by the Team. STAN

supports a set of carefully selected metrics, suitable to cover the most important aspects

of structural quality. Special focus has been set on visual dependency analysis, a key to

structure analysis. The tool helps to identify the design issues and reports on the design

flaws.

1

10

100

1000

Machine0.tex Machine01.tex Machine02.tex

Size

Length

Vocabulary

Difficulty

Effort

15

The UI for Meeting Scheduler consists of one library and one package. The analysis

tool listed several issues regarding the size of the implemented methods, as well as the

depth of inheritance tree. Moreover, the complexity metric represented as FAT values,

shows how big and cluttered are the individual classes and/or packages. It is also

reported as a violation. In Figure 9 we present the "pollution chart", which summarises

the biggest concerns with respect to the quality of the design according to the STAN

report.

Figure 9 Pollution chart for the UI of Meeting Scheduler

The stable abstractions principle [44], also calculated by the STAN tool, points out

a relation between two package measures: the abstractness of a package, which

expresses the portion of contained abstract types, and its stability, which indicates

whether the package is mainly used by other artifacts (stable) or if it mainly depends on

other artifacts (instable). A package should be as abstract as it is stable, meaning that

one should avoid packages which are used heavily by the rest of the application and

which, at the same time, have a low degree of abstraction. Such packages are a constant

source of trouble, since they are hard to change or extend [45]. The goodness of the

dependencies of packages can be displayed on the chart as a distance metric, where

being on or close to the line of "main sequence" is desired. The line falling diagonally

from the top left to the bottom right signifies that packages with a low degree of

instability should have a high degree of abstractness and vice versa.

The only package in the UI development is placed in the upper-left corner of the

distance chart, which shows that the package is concrete and instable. This in

consequence means that in case of any changes in the user interface, everything will

need to be changed in the very package, which may involve complications (ripple

effect).

The implications of this are the following. The UI code will be difficult to modify

or extend because of its monolithic structure, lengthy code in methods, as well as the

complexity of relations between methods. In case of further development of the Meeting

Scheduler, as was foreseen by the Team, the UI will need to be re-engineered to be

manageable and could be used as a basis for the product evolution.

16

6 Observations on the development

Based on the diary from the development and post-mortem unstructured interviews

we identified the following remarks. We divided them according to the perspective of

the development Team and the stakeholder. We separately analyse the impact of Scrum

on the project, as we believe it vastly influenced not only the development itself, but

also its social aspect.

The development Team found it exceptionally useful and important to have the

preparatory activities for the project. In particular, the Crash Course covering the basics

of agile (Scrum) process and other methodologies and techniques occurred to be

beneficial. Since formal modelling was one of the requirements for the project and was

considered as one of the most difficult parts, due to the learning curve, it also required

an introductory example-based lecture. It was followed by a two-hour hands-on

workshop, when the actual modelling was to start. Afterwards, it was followed by “on-

demand” iterations, whenever there were some major difficulties encountered.

The team member, who was assigned to the formal modelling, reported problems

with the availability of learning materials, which was one of the reasons of the need of

consultancy with the formal methods expert. Moreover, some of the materials were

dedicated to a specific operating system, which was quite limiting. One of the main

comments about the formal modelling part of the development was that the learning

time needed to obtain the basic working-idea of the method was significant, in case of

this project roughly 3 weeks of intensive learning, which confirmed the estimates of the

researcher. Finally, the Handbook of Rodin, which is a tutorial on the use of the Event-

B method within the Rodin platform, was considered difficult to follow, specifically for

a person who does not have strong mathematical background and is only beginning with

the formal methods as such.

The developer assigned to modelling pointed out that the formal modelling done

prior to the implementation would benefit the project. He reasoned that the modelling

helps to understand how the system should work and what kind of properties and

functions need to be considered later in the implementation stage. This in turn, makes

the developers aware and early warned about possible problems and requirement

inconsistencies which may appear in the development phase. He also emphasised that

this approach is feasible for those who already have some experience in working with

Event-B and the Rodin platform.

Yet another claim made by the Team was that the tools used in the project were not

working well together and also with the process. Instead of supporting developers’

work, they required an extra effort. The developers stated that the use of the Git version

control instead of SVN could have smoothened the development. Different philosophy

of having a local copy and then pushing it to the main branch of development could

have helped with the steady pace of the development. Furthermore, Trac was hardly

ever employed, i.e., it was used at the beginning of the project and when the code was

requested by the stakeholder. Later, especially in the final two months of the project, the

Team members considered the documenting the features to be implemented as an

activity of lowest priority and concentrated on the implementation activities.

17

One of the missing elements of the Crash Course, and Project Course in general,

that was considered by the Team was a short introductory lecture on how to handle the

requirements given by the stakeholder, i.e., how to organise them, so that they are

grouped in backlog. Since the requirements for the project were given in a non-

structured form, they needed to be processed by the Team, discussed with the

stakeholder, refined and specified in more detail. This was regarded as quite a

challenging task, in particular when considering the formal modelling, when the

properties to be modelled have to be clearly defined. Agile process enabled the Team to

better work on the requirements, i.e., timely identify and resolve the inconsistencies and

uncertainties.

There were many risks and variables that could not be controlled during the project.

The academic context of the development was a source of additional risks that might

have never occurred in the industrial setting. Some of the risks, such as resignation of

one of the team members, were identified at the beginning of the project. The possibility

of team members quitting the project is much higher in the academic setting, since there

are no real consequences for such actions (except of not receiving the points from the

course; however, the course can be taken in the following edition). Nonetheless, when

there are changes in personnel, adjustments are needed on an individual and managerial

level. For instance, when the team members leave the group, it not only hampers the

schedule, but also forces the team to divide their resources anew. It also has a de-

motivational factor and largely hinders the possibility of a successful outcome.

There were no specific testing strategies, code reviews or code quality evaluations

implemented. This made the evaluation of the project with respect to its quality, while it

progressed, impossible. The team employed in vivo (black box) testing, which, by

nature, does not capture most of the defects. The stakeholder suggested having unit tests

as the quality assurance mechanism; however, they were not employed. The only solid

quality assurance technique used was formal modelling in order to prove some of the

system properties. However, it was done after the logic behind the system was

implemented.

Agile development process played a vital role in the student project. We analyse it

according to the terms of the Manifesto for Agile Software Development: (i) Individuals

and interactions, (ii) Customer collaboration, (iii) Working software and (iv)

Responding to change.

Individuals and interactions

The idea of self-organising teams could not be fully implemented in the student

projects. There was a lack of high-level vision of the project and it seemed difficult to

divide and prioritise tasks. It was also related to the fact that the project course was not

the only item in the students’ schedule. For instance, as observed by the developer

assigned to formal modelling, it would be much easier to first model the system and its

properties and only then get to the implementation stage. This, however, could not be

fulfilled by the Team.

Moreover, the schedules and availability of the Team members differed and it was

difficult to synchronise the meetings, which in consequence hampered the

communication and information flow. Different work-times, e.g., working overnight or

18

not working on the weekends, lead to further problems with coordination. The

development very much resembled the global system development, where the Team is

spread with respect to location (here within one city, though) and work-times, as well as

diverse when it comes to cultural and behavioural characteristics (international team).

The obstacles that are known to be brought by the global development were, in this

case, highlighted even more than in the real life, industrial setting.

The frequent meetings embedded in the agile process enabled the Team and the

stakeholder to observe the progress of the project. This, in consequence, helped with

sustaining the motivation of the Team. Moreover, it kept customer informed, since he

has been continuously updated with how the project evolved by seeing the working

version of the software in each sprint.

Customer collaboration

Scrum was strengthening the interaction not only within the Team, but also with the

stakeholder. Moreover, it was enforcing the deadlines and putting the pressure on

continuous progress and sustainable pace of the development. Since the stakeholder was

coming from industry, the format of the meetings, the way the technicalities were

discussed, the schedule, the time pressure and the demand level resembled the real-life

environment. The meetings were more frequent than the ones scheduled for the Team

by the schedule of the lectures alone.

The collaboration with the customer also helped with the elicitation of

requirements. This has ultimately contributed to the implementation of the software

with the desired functionality, taking the schedule and team capabilities into account.

Working Software

As mentioned from the Team perspective, the documentation and reporting were

given the lowest priority, although it was emphasised at the Crash Course that the agile

development philosophy does not discard documentation. The documentation was

limited to the minimum required by the lecturers of the Project Course (project plan,

progress reports, business pitch, user documentation, post-mortem presentation, etc.),

whereas the documentation within the code was reported for the server-side.

The stakeholder was highlighting the need of providing the documentation,

especially, that the developers were expressing the will to continue after the course was

finished. In this case it would be put the system into to production and later maintain it.

The issue tracking system was managed and updated not when the request of a

feature or a bug to be fixed was reported. Rather, it was used after the feature has been

implemented, thus making it impossible to track and manage the project. Furthermore,

this course of action excluded the stakeholder from the development, as he was unable

to observe its progress. Updating the issues was considered as infeasible for the

development and, as noted by the Team, required additional effort that did not explicitly

lead to working software. Thus, using it was considered as a "waste" in the agile sense.

There was an issue with scheduling the actions and features to be implemented in

sprints. Since the Team was new to many techniques and just started working together,

it was very difficult to make good estimates for the development. As a result, it was

observed that the first 3 sprints were undemanding and could be filled additionally with

some other tasks. Note that the Team was still intact at that time and consisted of 5

19

developers. The difficulties appeared when the number of active team members reduced

and there was a need to re-assign developers to other tasks, which required from them to

use their time on learning. This was not anticipated when prioritising and structuring the

requirements with respect to schedule. It led to project delays and an immensely filled

in the Team members’ timetable at the end of each sprint. It was estimated that roughly

80% of planned features were implemented in each sprint. As observed by the Team,

the haste would not have happened if the persons involved in the development were

skilled and experienced, since they could put all their effort into the development (as

opposed to learning new methods).

The technical problems related to the use of new technologies and methods became

extremely apparent when the system was integrated. This surfaced each time the

working version of the system was to be presented to the stakeholder, as well as during

the final preparations for the ICT-Showroom. The integration problems were also

related to the lack of the documentation, e.g., for the protocol connecting various

databases with the server, as well as and learning new technologies. Agile facilitated the

integration in terms of dealing with the issues regularly, which prevented the big-bang

integration and the related problems.

Responding to Change

Due to the fact that the students were learning the new technologies (Event-B,

Vaadin, some communication protocols) while developing the system, it was difficult to

tackle the changes in the requirements, regardless if they came from the stakeholder or

were a result of misinterpretation of the requirements document. The agile process did

not contribute to managing the changes in a more efficient manner. It was mainly due to

the academic context of the study where the students were gaining experience and skills

at the same time as the project was running.

Moreover, the need of distributing the effort and focus not only on the project

(development and learning), but also on the study plan meant that the Team was hastily

jumping between the tasks. Learning new methods and tools in an industrial setting

would be much more straightforward, since it would most likely be scheduled within

the responsibilities and/or work description. Usually, the industrial setting allows the

developers to be dedicated to specific responsibilities. The developers, in this case, are

driven by the idea of sustaining the job (financial motivation), self-development

(acquiring new skills), contributing to the common progress and result of a Team, and

thus empowering the Organisation. On other hand, students have obligations on various

courses which typically have a different focus. Therefore, the time and resources of

students are scattered over diverse topics, sometimes preventing students from

executing certain tasks in an excellent manner due to distraction.

7 Lessons learnt and recommendations

In this section we collected the guidelines for the students taking part in group

projects, which use Scrum and/or formal methods. The advices are based on the

experiences of the Team members and the views of the stakeholder. The

recommendations were collected at the post-mortem interviews.

20

7.1 Team Perspective

Crash Course occurred to be very constructive to give proper foundation and

background for the project. It was also considered useful by the Team members. In

particular, the introduction to formal methods and Event-B supported by practical

example in Rodin gave some level of comprehension of why the rigorous part is

required in the project and what formal modelling actually involves. Furthermore, the

overview of agile principles and practices, with the special focus on Scrum was

regarded as valuable. It laid a common understanding of the development process to be

used. Before the Crash Course, some of the Team members were not familiar with agile

philosophy, while others were uncertain about specifics of Scrum.

To support the development, a toolchain is typically used. It should fit the needs of

the team, as well as the purpose of the project and align with the expectations of the

stakeholder. In this project the tool used for code revision was considered not feasible

and there was no motivation within the Team to use issue management system. Finally,

the Rodin tool did not fit well in the toolchain, which was apparent already at the point

when the Team decided to postpone the formal modelling until some work on the

implementation of the database, user interface and back-end was done. The system

properties were modelled once they have been dealt with on the implementation level.

Modelling using formal methods within a group project could be improved in terms

of efficiency. There are two scenarios to consider:

(i) if there is a developer familiar with the formal methods, they should be the one

starting the work early (to precede the implementation executed by the other Team

members) and focus solely on processing the requirements needed for the model

development and modelling itself;

(ii) if none of the Team members is familiar with the formal modelling, all of the

Team members should be involved in requirements processing and their formulation in

such way that they can be modelled formally.

In the latter case the Team member, who feels most suited and skilled to formally

model the system focuses exclusively on this activity, while the others start the

implementation. Naturally, the Team members need to consult and integrate their

results, so that the properties modelled are the same as the ones being implemented.

Code generation from formal models, which is enabled by one of the plugins to Rodin

platform, could be a solution in this case. However, it was not utilised in this project

(the model created was too abstract to be used for code generation).

Quality assurance mechanisms are certainly needed in such an undertaking.

Although formal modelling was included in the development, it only covered a part of

the whole system (the logic behind the scheduler). To assure the quality of the produced

code, the source code requires unit testing and analysis. The unit tests and code analysis

tools should be placed within the scrum process.

In order to manage better with the system requirements, the requirements document

should, according to the Team, have a more structured format, enriched by

visualisations. The tabular format, listing features to be implemented with their

properties, would be particularly useful for the development and, in particular,

21

modelling. The scenarios that were present in the requirements document given by the

stakeholder were useful for the testing stage.

7.2 Stakeholder perspective

There were a few problems typical for industrial software projects identified by the

customer. Focusing on remedies to these problems, while teaching agile, might give a

better understanding of the development process by the students. Therefore, it can help

to better prepare them for the challenges in their professional career.

The discrepancy about the decision making process was found to be the most

problematic. The Team was at times reluctant to contact the customer about their

doubts, instead choosing to implement the solution they saw as optimal. While it was

true with respect to the implementation details, it did not hold for business-related

matters – and the Team clearly had problems differentiating between these two. This

behaviour was probably caused by two factors. The first factor is the lack of experience

with software development that lead to incorrect separation between what is a business-

logic decision and what is not. The other factor is the wrongly understood agile

philosophy, in which – by common misconception – a plan and vision for the developed

software are not needed.

The other significant problem that directly affects the software and any of its future

development is the lack of documentation and design decisions. This is especially

evident in the parts developed in the final weeks of the course, as the Team opted to

focus fully on the implementation of the remaining functionality. This issue could have

been solved in many ways – of which emphasising the need for documented code

during the course appears to be the most useful.

Agile methods, in particular scrum, need to be adjusted to the specifics of the

academic context, where students cannot work full-time on the project and are not

dedicated solely to the project development. Furthermore, when learning new methods,

techniques and frameworks during the project, it is difficult to manage the progress of

the project and learning process at the same time. In this context, either the students

should have a strong background and skills of the methodologies to be employed in the

project, or the learning process should be scheduled at the beginning of the project (as

first and/or second sprint) and the development should be shifted for later sprints.

Moreover, the definition of working software or consumable (as in the DAD [46]

taxonomy) being the measure of the progress should be redefined.

The academic context of the student projects brings additional risks other than the

ones in the industrial setting. The agile way of working seems not to be suitable when

the student project is not the sole activity of the Team. Since the schedules of the

students differ, so does their availability. Moreover, the coordination of tasks can

become an issue (continuous system integration). All of these factors combined with,

e.g., one of the Team member leaving the team, impact the commitment and motivation

issues much stronger than in the industrial setting. Thus, the agile process should be

adjusted in terms of interaction and effort distribution (i.e., be project-specific).

22

8 Conclusions

We are aware that the investigation presented in this paper is quite specific for the

context that it is set in. However, we believe that the observations and recommendations

that we made, will be applicable and useful to other student projects on a master-level of

IT education. In this section, we emphasise the motivation for this study by presenting

the related work. Furthermore, we describe the threats to validity in our enquiry.

Finally, we conclude with some general remarks.

8.1 Related work

Since the agile philosophy, values, principles and methods have been present for 15

years now, they have also put their mark on education. In this section, we present the

works that are preceding our investigation and are related to the observations in our

setting to a various degree. It should be noted that one of the papers we came across was

using at the same time Scrum and formal methods within student project course.

The impact of using the agile practices for student software projects in computer

science education was investigated in [47], where students were using a Pair

Programming method. An enhancement was noticed, especially in terms of

programming skills and final course grades in general. Although we describe the student

project course in our work, where the Scrum method is utilised, our observations

corroborate the improvement of skills within the Team. Additionally, we are oriented

towards managing the development process. Thus, we do not put focus on the aspect of

the upgrade in the course final results.

In [48], the authors proposed a hybrid methodology based on Extreme

Programming method and Throwaway Prototyping method. The methodology

emphasised the need of users or customers being an integral part of the development

team. The results showed that the agile methods can be easily tailored to fit the needs of

students at the courses. In our work, the customer was very much involved in the

development without being considered as a part of the Team. Nevertheless, both

publications, [48] and our work, confirm that the flexibility of the agile methods makes

them feasible to be successfully incorporated in a student project.

The application of Scrum in student projects when developing three applications is

described in [49]. The authors perceive Scrum as a framework for managing projects

and introducing good software engineering practices. In contrast, our observations

consider one large-scale project executed within 7 months, where the project has an

external industrial customer. Nonetheless, our observations overlap in the underlying

motivation for using Scrum, as well as in terms of the need for Scrum to be fine-tuned

when it comes to the assignment of roles in project and duration of sprints. We fully

agree that the students benefit from the flexibility of Scrum. They also gain skills and

knowledge when utilising the agile practices related to requirements engineering,

project planning and tracking, testing and effective team collaboration.

The use of agile methods in software engineering education has also been described

in [50], where the three teams were developing competing electronic websites for the

23

period of 13 weeks. While the students were managing well with technical aspects of

used methodologies and agile methods, the social aspects (teamwork and customer

collaboration) needed more attention. Our work focuses on one Team working on a

scheduler, where the Team members are familiarising themselves with new

methodologies and frameworks (Event-B and Vaadin), and at the same time learning

how to work applying agile values and practices (Scrum). Furthermore, the teams in

[50] based their work on general principles, practices and values of agile, only

sometimes presenting elements of Scrum, while we focus solely on Scrum and its

adaptation in the student project.

The experiences from student projects using agile practices in software

development are given in [8]. There, the student teams developed a project over 12

weeks, were required to use the agile practices and be exposed to an agile spirit (they

did not need to get a fully-developed system). Our work describes the development over

roughly 26 weeks, where as a result students have to produce a working product (which

gives additional pressure to the Team). The objectives of collecting experiences differ

quite much between [8] and our work. Namely, the former focused on familiarising

students with agile philosophy, agile values and principles, and observing adaptation of

agile in the academic setting. The latter focuses on how feasible an agile method, in

particular Scrum, can be for the Project Course, where the development environment is

mimicking the real industrial conditions, by default accompanied by the project risks

and time pressure.

Finally, to the best of our knowledge, there have been no publications describing

the use of formal methods and formal modelling within student projects, where students

worked in a team, that would also involve agile development methods. This makes our

study unique in terms of the experimentation that already exists within software

engineering.

8.2 Threats to validity

We are aware about the limitations of our work, e.g., the sample size in the

experimentation, human-factors, lack of quantitative data for effort or quality collected

during the development, etc. This section describes the threats to validity according to

the scheme presented in [7].

Since there was only one team being involved in the study, the significance of the

study is limited and the results cannot be generalised outside the scope of our study. The

recommendations, by no means exhaustive, are based on a one student project, where

initially five students were involved. Therefore, to collect a set of principles and tactics

for teachers and students on using agile methods and formal modelling in academic

setting, more in-depth investigations are necessary.

Given that we are dealing with the students (as opposed to experienced developers),

there are additional factors that have to be taken into account during the

experimentation and when summing up the observations. Moreover, all benefits and

drawbacks of the used approaches are more apparent, i.e., they are visible as big

successes and failures. We reason that less experienced students are more likely to

24

struggle with new technologies and methods. Thus, they have to spent more time and

effort on the development for the successful outcome of their project.

In academia, and particularly in this investigation, we were quite limited to the

choice of participants of the study and the sample size (one team). Naturally, having

multiple teams performing the same development with the same technological means

would provide us with the data for comparison and would aid in generalising the results.

In such case, human factors (skills, prior knowledge, commitment, etc.) would be the

only ones posing a threat to validity. It should be noted, though, that the environment of

the study was as planned (academic setting) and the timing did not affect the results

(regardless of the time of the year, students would have other academic commitments

that impact their availability for the project course).

Since the crucial factor for the experiment to bring valid results is people, we

needed to be objective with our observations. We documented special events in the

investigation (Team member leaving the team, Event-B workshop, meetings with the

customer), which could impact the project. Furthermore, there was a "mortality" aspect,

which could affect our investigation. In the described experimentation it was when two

Team members dropped out from the project. The situation was well handled by the

Team by reorganising the work-tasks. It has, however, impacted the collected data

(effort distribution, time-pressure factor, etc.), which is well documented in this paper.

Finally, there is the factor of performance of people being observed, which is also

called evaluation apprehension. It means that people have the tendency to perform

better when they are observed and evaluated. In the case of this project, students were

trying to perform as good as possible in order to fulfil the expectations of the course and

earn the highest possible grade. They were aware of being observed and what is the

purpose of the study (ethical reasons), but they did not seem to act differently. It may be

explained by the fact that the environment of the experiment resembled the real-life IT

project (including stakeholder, who had no prejudice or expectations to the experiment

whatsoever).

8.3 Final remarks

We believe that learning and refining new methods and approaches are the key

drivers in progress of IT in general. Furthermore, we consider learning by doing as an

effective learning method. These factors provided the motivation for this work to equip

students with the background on the up-to-date techniques and enable their application,

all in a controlled environment mimicking the actual software development. Generally,

agile methods fit well in this context, as they provide a tailorable development process.

However, some reflection is needed to fine-tune agile processes (here Scrum) to the

specifics of the academic setting (different schedules, availability, distributed

environment, resources, background and skills, etc.). Similarly, the idea of utilising

formal methods (here Event-B) in the student project needs some additional attention,

due to the steep learning curve and producing artefacts other than executable code or

project documentation.

25

Acknowledgements

This work was carried out within the project ADVICeS

(https://research.it.abo.fi/ADVICeS/), funded by the Academy of Finland, grant No.

266373.

References

1. Manifesto for Agile Software Development, http://agilemanifesto.org/

2. Paternoster Nicolò, Giardino Carmine, Unterkalmsteiner Michael, Gorschek Tony, Abrahamsson Pekka, Software

development in startup companies: A systematic mapping, Information and Software Technology, 56 (2014),

pp.1200-1218.

3. Laanti Maarit, Agile Methods in Large-Scale Software Organizations - Aplicability and Model For Adoption. PhD

thesis, Oulu University (2012), pp.192.

4. Ge Xiaocheng, Paige Richard, Polack Fiona, Chivers Howard, Brooke Phillip, Agile development of secure web

applications, Proceedings of the 6th International Conference on Web Engineering. ACM], Paolo Alto (2006)

5. Lankhorst Marc, Agile Service Development. Combining Adaptive Methods and Flexible Solutions. Springer

Publishing Company (2012), pp.204.

6. Wolff Sune, Scrum Goes Formal: Agile Methods for Safety-Critical Systems, Formal Methods in Software

Engineering: Rigorous and Agile Approaches (FormSERA). IEEE, Zurich (2012)

7. Wohlin Claes, Ruenson Per, Höst Martin, Ohlsson Magnus, Regnell Bjorn, Wesslén Anders, Experimentation in

Software Engineering. Springer (2012), pp.248.

8. Schneider Jean-Guy, Vasa Rajesh, Agile practices in software development - experiences from student projects,

Proceedings of Australian Software Engineering Conference. IEEE, Sydney (2006)

9. Beck Kent, Extreme Programming Explained: Embrace Change, 2nd edition. Addison-Wesley Professional (2004),

pp.224.

10. Schwaber Ken, Sutherland Jeff, Scrum. The Official Guide.. Scrum.org (2010).

11. Sanders Dean, Using Scrum to Manage Student Projects, Journal of Computing Sciences in Colleges, 23 (1)

(2015), pp.79-79.

12. Holloway Michael, Why Engineers Should Consider Formal Methods, AIAA/IEEE16th Digital Avionics Systems

Conference. (1997)

13. Butler Ricky, What is Formal Methods?. In: NASA LaRC Formal Methods Program, (2001).

14. Sobel Kelley, Clarkson M., Formal Methods Application: An Empirical Tale of Software Development, IEEE

Transactions on Software Engineering, 28 (3), pp.308-320, (2002).

15. Baruah Sanjoy, The Modeling and Analysis of Mixed-Criticality Systems, Proceedings of Formal Modeling and

Analysis of Timed Systems: 12th International Conference (FORMATS). Springer, Florence (2014)

16. Abrial Jean-Raymond, Modeling in Event-B: System and Software Engineering. Cambridge University Press

(2010).

17. Project course 2016-2017, https://abacus.abo.fi/proj.nsf/Webdocs/AFC16D84D723C90AC225800900379305,

Accessed February 2017

18. Vaadin, https://vaadin.com/home. Accessed February 2017

19. Event-B, http://www.event-b.org/index.html, Home of Event-B and the Rodin Platform. (2008), Accessed

February 2017

20. CalDav, http://caldav.calconnect.org/., Accessed February 2017.

21. PostgreSQL, https://www.postgresql.org/, Accessed February 2017.

22. Node.js, https://nodejs.org/en/, Accessed February 2017.

23. Schwaber Ken, Agile Project Management with Scrum. Microsoft Press (2004).

24. Olszewska Marta, Waldén Marina, FormAgi – A Concept for More Flexible Formal Developments., Turku (2014)

26

25. Shore James, Warden Shane, The Art of Agile Development. O'Reilly Media, Sebastopol (2008).

26. Olszewska Marta, Ostroumov Sergey, Waldén Marina, Synergising Event-B and Scrum - Experimentation on a

Formal Development in an Agile Setting., Turku (2016)

27. Back Ralph-Johan, Refinement Calculus, Part II: Parallel and reactive programs. Stepwise Refinement of

Distributed Systems. In: Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness, Springer-

Verlag (1990).

28. Back Ralph-Johan, Kurki-Suonio R., Decentralization of process nets with centralized control, 2nd ACM

SIGACT-SIGOPS Symposium on Principles of Distributed Computing, (1983), pp.131-142.

29. Back Ralph-Johan, Sere Kaisa, From modular systems to action systems, Software - Concepts and Tools, 17

(1996), pp.26-39.

30. Abrial Jean-Raymond, The B-Book: Assigning Programs to Meanings. Cambridge University Press (1996).

31. Romanovsky Alexander, Thomas Martyn, Industrial Deployment of System Engineering Methods. Springer

Heidelberg (2013).

32. RODIN, http://www.event-b.org/platform.html, RODIN - Rigorous Open Development Environment for Complex

Systems. (2006)

33. Dijkstra Edsger, A Constructive Approach to the Problem of Program Correctness, BIT Nmerical Mathematics,

8(3) (1968), pp.174-186.

34. Wirth Niklaus, Program Development by Stepwise Refinement, Communications of the ACM, 14(4) (1971),

pp.221-227.

35. Back Ralph-Johan, On the Correctness of Refinement Steps in Program Development; PhD thesis. University of

Helsinki (1978).

36. Metayer Christophe, Abrial Jean-Raymond, Voisin Laure, Event-B Language, RODIN Deliverable 3.2 (D7).

(2005)

37. Waldén Marina, Sere Kaisa, Reasoning about Action Systems using the B-Method, Formal Methods in System

Design, 13 (1998), pp.5-35.

38. Yeganefard Sanaz, Butler Michael, Problem Decomposition and Sub-Model Reconciliation of Control Systems in

Event-B, IEEE International Workshop on Formal Methods Integration., Turku (2013)

39. Subversion, https://subversion.apache.org/, Accessed February 2017

40. Trac, https://trac.edgewall.org/, Accessed February 2017

41. Jastram Michael, Butler Michael, Rodin User's Handbook v.2.8. (January 2017).

42. Olszewska (Pląska) Marta, Sere Kaisa, Specification Metrics for Event-B Developments, 13th International

Conference on Quality Engineering in Software Technology (CONQUEST 2010)., Dresden (2010)

43. STAN - Sturcture Analysis for Java, http://stan4j.com/, Accessed February 2017

44. Martin Robert, Object-Oriented Design Quality Metrics: An Analysis of Dependencies. (1994)

45. STAN - Structure Analysis for Java. Odysseus Software (2008)

46. Ambler Scott, Lines Mark, Disciplined Agile Delivery: A Practitioner's Guide to Agile Software Delivery in the

Enterprise. 1st ed., IBM Press (2012).

47. Perera G.I.U.S., Impact of using agile practice for student software projects in computer science education,

International Journal of Education and Development using Information and Communication Technology, 5(3),

2009.

48. Abdulwahab L., Abdalla A., Galadanci Bashir, Algudah Marshal, Murtala M., Agile Methods for Software

Engineering Students Project: A Proposed Hybrid Methodology, Proceedings of the The Third International

Conference on Digital Enterprise and Information Systems. SDIWC, Shenzhen (2015)

49. Reichlmayr Thomas, Working Towards the Student Scrum - Developing Agile Android Applications. American

Society for Engineering Education (2011)

50. Rico David, Sayani Hasan, Use of Agile Methods in Software Engineering Education, AGILE, (2009), pp.174-

179.

27

Appendix A. Requirements document (original)

HTTP-based service centre (application server):

 manages authentication for every request

 ideally, handshake occurs the first time, and some auto-timeout is given (e.g. 30

minutes)

 handles meeting scheduling

 provides CalDAV calendar aggregation

 mix of http status codes and a platform independent format (json?)

2 separate parts of the core of the software:

 Meeting scheduler

 Calendar aggregation

Both of these run available as one service. Any implementation language ok.,

though web framework preferred. Rails or Sinatra best choices?

Each user has his own timezone. Date and time stamps used in the software include

time zone information (i.e. ISO standard with time zone). This is converted to user's

local time on the application side.

Application front-ends:

 Web front-end - Responsive would be best, as it supports many platforms at the

same time, Otherwise, there must be a dedicated mobile version; Ideally written

with Vaadin

 Text terminal (nice to have) - Preferable command line interface; Another

possibility to have interactive shell, with keypresses and the like; Written in a

script language, e.g. Ruby

Each user has many read-only calendars, in CalDAV format. Scheduled meetings is

one of those calendars. Its address is user-specific and includes all meetings of that user.

On the meeting page there can be a free-form discussion (comments) only by the

invited people.

Scheduling a meeting:

 User A selects participants of the meeting (user A can opt himself out of the

meeting, while still keeping the "meeting host" role - however, such meeting

will not show up in his calendar)

 User A selects date and time suggestions

 A meeting page is created for the user to share with other invited users, where

they can vote on suggestions

o The service is used to check if a given date/time suggestion is valid for a

given user

28

o Already taken spots are greyed out and users are unable to select them

o Available answers are yes, no, maybe. For the purpose of voting

"maybe" means "no", but is shown differently in the date/time grid

 Once all users have given their votes, the meeting is confirmed and no more

changes to it are allowed, unless a change in somebody's calendar overlaps with

it. In such case, the meeting becomes editable again.

 For the purpose of confirming a meeting, "maybe" means "yes", and no answer

means "no".

Nice to have features:

 By default, each meeting is stored in the application's own calendar. While

voting, a user could select a calendar (for which the application has writing

permissions) the meeting is going to be saved into. In such case, it does not go to

the application's own calendar.

 The above option can have its default in user's profile settings.

 There should be an option to allow meeting host to force a certain date/time

suggestion to a meeting participant, if the participant had agreed to that. This

should also have its default in user's profile settings.

 Text terminal app is nice to have, a standalone command line tool that could be

run in Linux shell (Java not the best option here, rather Ruby or other scripting

language), and even nicer to have would be an interactive mode ("interactive

shell")

Meeting host can provide extra privileges to each user:

 Inviting other people

 Suggesting more date/times

 Removing existing date/times

 Confirming the meeting

Those options can be given only to registered users.

A meeting host cannot be changed. Only the host can remove a meeting, though any

user with a given privilege can confirm the meeting.

Voting on a meeting:

 User picks one of the date/time suggestions he is allowed to, i.e. none of it is

already booked.

 As long as the meeting is not confirmed, the user can undo or change votes.

 A user does not need an account to vote.

As a user I want to schedule a one-time meeting. I open an application on my

mobile, or visit a web page. I do not want to be prompted to enter a password when I am

on my mobile phone, and I would like to avoid entering it through the web page, if I

have used the service within last two weeks. I select dates and times from a calendar

showing current week and the next 4 weeks - I do this by clicking. At any time I can

29

move forward and backward in the calendar to find another date/time suggestion. In the

mean time I can invite guests. I do this by either selecting them from a list of contacts

that I have already used, or by manually typing email address. Once added, I can

intuitively select role of each user or delete their participation by clicking a self-

explanatory icon or short text. At any time during my editing I can notify guests about

the meeting. This results in an email being sent to their address. I do not want my guests

to receive more than one email, and I would like the sending being optional. Note that I

can add new guests after sending an email, and they should be notified when I resend

the message. Also, removing a person from a list of guests should result in (optionally)

sending an email, if the invitation was sent already. At all times there should be a link to

the meeting I can share with others by copying it. The link must display an error page of

some sort if it is clicked by a person not invited to the meeting. Once I make a

modification to the list of guests, the calendar allowing me to pick date/time gets

updated - the date/times that ANY of the guests is busy at are marked as "taken". I can

still select them, though. The date/times that I am busy at cannot be selected at all,

unless I select an option to just organise the meeting, not to host it. In such case, if I

return to being the host, unavailable dates for me count as a "no" vote.

The names of invited guests should appear in a table, with columns being date

suggestions, so that I can see votes cast by them on a given date/time. The cells that

correspond to a date/time that is already occupied for that guest are disabled and cannot

be voted on by that user.

Once there exists a date/time suggestion that every invited guest answered "yes" to,

I can confirm the meeting. I have an option to send email notification to the guests and

the event is entered into their calendars.

When the agreed date/time passes, the meeting cannot be edited anymore.

As a user I want to modify a meeting I am hosting (or I have admin rights to). I

open an application on my mobile, or visit a web page… etc. I then click a visible item

in the menu that shows the meetings I have created or been invited to. I am shown the

same screen as when creating a meeting. When the meeting is already confirmed, there

should be an option to "unconfirm" it. Guests receive an email, and the meeting is

withdrawn from the calendars. Voting and inviting new people is allowed then, as when

creating new meeting.

As a user I want to disband a meeting. I do the same things as if I would like to edit

the meeting. Then I click on the button/link "Cancel meeting" and confirm that I want to

do it. If an email was sent to guests, an email is sent to inform them about cancellation.

This operation is irreversible. The meeting link stops working (i.e. shows information

about cancelled meeting and nothing else). The information about guests availability is

updated (i.e. the meeting gets removed from the calendar).

As a non-registered user I want to register or log in. I visit the web page, and since I

am not logged in, I am shown a form to log in, with email address and password. When

30

my credentials are matching an existing record in the database, I am shown a screen for

organising a new meeting. When the password is incorrect, I am shown an option to re-

enter the password, or a link to reset it. Resetting is done by sending an email to my

account with a link that opens a password reset page. There is an option to enter and

retype new password. On successful change I am logged in and shown a screen for

organising a new meeting, and an email about successful password change is sent to my

address. When the email is not found, I am shown both email and password field - each

of them two times (so the form has 5 fields - one of them is a checkbox for accepting

terms, conditions and privacy policy), and I am asked to retype them. Once emails and

passwords are ok, and terms are agreed to, I am logged in and shown a screen to create a

new meeting. In the mean time I receive an email about the fact that I have registered,

and that I should confirm activate my account by clicking a link. THE EMAILS MAY

NOT, under any circumstance, CONTAIN THE PASSWORD.

As a non-registered user I have been invited to a meeting, and I received an email

with a link. I open the web page. I am shown a page in which I can vote on a date/time

suggesting, pretty much as if I would be a registered user - with one exception. There is

a visible button somewhere that allows me to register. This opens a form for entering

and retyping password, and agreeing to terms and conditions. The email field is not

required - but it should be shown as a read-only field or label.

A user must be logged in to organise meetings, but does not have to be to accept

date/times. Only registered users may be given extra rights to the meeting (inviting

guests, suggesting date/times).

As a registered user, I want to update my profile information. I open a web page,

and in the menu I click a button to modify my profile information. I can change

password and set my name. Email address cannot be changed - but there should be a

possibility of merging an account for a different email address. I can also add addresses

of calendars in CalDAV format. At most one of the calendars I can mark as the default

one to which meetings are written to. By default it should be app's calendar, which

should be listed there as well.

A link that is sent to a guest, with the information about the meeting, should include

email address. Email addresses of other guests should not be visible to other people (use

names instead, or first part of the email).

As a user I want to withdraw my participation from the meeting. I open the meeting

page and click "remove from meeting", and then I can specify an optional reason of

leaving the meeting. This operation must be confirmed and cannot be undone. The

meeting is removed from my calendar. I can still be added by the host to the meeting

again, though not if the meeting has been confirmed. The host of the meeting receives

an email with the information, and a link to the meeting. Note that I can leave a meeting

that has already been confirmed.

31

Appendix B. Event-B Specification of the Scheduler

8.4 Machines

machine Guarantime0 sees GuarantimeContext0

variables members // Members of the Application

 login // Members can login into the system

invariants

 @inv1 members ⊆ PERSON // Members come from the set of PERSON

 @inv2 login ⊆ PERSON // User who can login into the system are alson
belongs to the set of PERSON

 @inv3 login ⊆ members // Only Member can do login in to the system

events

 event INITIALISATION

 then

 @act1 members ≔ ∅

 @act2 login ≔ ∅

 end

 event Add_Members

 any pp

 where

 @grd1 pp ∈ PERSON

 @grd2 pp ∉ members

 then

 @act1 members ≔ members ∪ {pp} // Adding New Member

 end

 event User_Login

 any mm

 where

 @grd1 mm ∈ members

 @grd2 mm ∉ login

 then

 @act1 login ≔ login ∪ {mm} // Member logging into the system

 end

 event User_Logout

32

 any mm

 where

 @grd1 mm ∈ login

 then

 @act1 login ≔ login ∖ {mm} // User logout from the system

 end

end

machine Guarantime01 refines Guarantime0 sees GuarantimeContext01

variables members login

 email // Set of people with email addresses

 contact_list // contact list of the members

 meeting_host // member who generates the meetings

 meeting_guest // guests of the particular meetings

 suggested_date // Suggested dates of the Meetings

 date // Sets of dates of the month, in this case i have choose only
31 days of the month

invariants

 @inv1 email ⊆ EMAIL

 @inv2 contact_list ∈ email ↔ members // the person who has email address
can be the part of contact list of more than one member

 @inv3 meeting_host ∈ INVITES ⤔ members // one member can generate more
than one meeting

 @inv4 meeting_guest ∈ email ↔ INVITES // one person who has email
address can be invited to more than one meeting

 @inv5 date ⊆ 1 ‥ 31

 @inv6 suggested_date ∈ INVITES ↔ date // more than one meeting can be
hel on single date

events

 event INITIALISATION extends INITIALISATION

 then

 @act3 email ≔ ∅

 @act4 contact_list ≔ ∅

 @act5 meeting_host ≔ ∅

 @act6 meeting_guest ≔ ∅

 @act7 date ≔ ∅

33

 @act8 suggested_date ≔ ∅

 end

 event Add_Members extends Add_Members

 end

 event User_Login extends User_Login

 end

 event User_Logout extends User_Logout

 end

 event Contact_List

 any cc

 where

 @grd1 cc ∈ contact_list

 then

 @act1 contact_list ≔ contact_list ∪ {cc} // Adding email address to
contact list

 end

 event Send_Invite

 any gg mm dd db dc

 where

 @grd1 mm ∈ meeting_host

 @grd2 gg ∈ meeting_guest

 @grd3 dd ∈ suggested_date

 @grd4 db ∈ suggested_date

 @grd5 dc ∈ suggested_date

 then

 @act1 meeting_host ≔ meeting_host ∪ {mm}

 @act2 meeting_guest ≔ meeting_guest ∪ {gg}

 @act3 suggested_date ≔ suggested_date ∪ {dd,db,dc}

 end

 event Cancel_Meeting

 any dd cc mm ii

 where

 @grd1 mm ∈ ran(meeting_host)

 @grd2 dd ∈ ran(suggested_date)

 @grd3 cc ∈ dom(meeting_guest)

34

 @grd4 ii ∈ dom(meeting_host)

 then

 @act1 meeting_host ≔ meeting_host ∖ {ii ↦mm} // removing pariticular
invitation/meeting which user generated

 @act2 suggested_date ≔ suggested_date ∖ {ii ↦ dd} // making the
particular date free for which the meeting has been canceled

 @act3 meeting_guest ≔ meeting_guest ∖ {cc ↦ ii} // making guests free
from the meeting which has been canceled

 end

end

machine Guarantime02 refines Guarantime01 sees GuarantimeContext01

variables members login email contact_list meeting_host meeting_guest
suggested_date date

 votes // vote which invities give for a meeting

invariants

 @inv1 votes ∈ email ↔ Votes // people who have email address can vote on
meetings in which they have been invited

events

 event INITIALISATION extends INITIALISATION

 then

 @act9 votes ≔ ∅

 end

 event Add_Members extends Add_Members

 end

 event User_Login extends User_Login

 end

 event User_Logout extends User_Logout

 end

 event Contact_List extends Contact_List

 end

35

 event Send_Invite extends Send_Invite

 end

 event Cancel_Meeting extends Cancel_Meeting

 end

 event Voting

 any vv

 where

 @grd1 vv ∈ votes

 then

 @act1 votes ≔ votes ∪ {vv} // Adding vote for a meeting

 end

end

8.5 Contexts

context GuarantimeContext0

sets PERSON // Set of People who can be the user of Application

end

context GuarantimeContext01 extends GuarantimeContext0

sets INVITES // It shows the set of Invitations/Meetings

 EMAIL // Set of people who have Email Addresses

 Votes // Votes can be given in 'yes' or 'no'

constants yes no

axioms

 @axm1 partition(Votes, {yes}, {no})

end

ISBN XXX-XX-XXXX-X

ISSN 1239-1891

