
1

Turku Cent re Computer Sciencefor

TUCS Technical Report
No 1152, February 2016

Author One | Author Two | Author Three Author Four |

Author Five

Title of the Technical Report

Marta Olszewska | Sergey Ostroumov | Marina Waldén

Synergising Event-B and Scrum -

Experimentation on a Formal

Development in an Agile Setting

1

Synergising Event-B and Scrum - Experimentation on a Formal

Development in an Agile Setting

Marta Olszewska
Åbo Akademi University, Faculty of Natural Sciences and Engineering

Sergey Ostroumov
Åbo Akademi University, Faculty of Natural Sciences and Engineering

Marina Waldén
Åbo Akademi University, Faculty of Natural Sciences and Engineering

2

Abstract

This paper explores the opportunities and challenges of the synergy between formal and agile methods, in

particular Event-B and Scrum. We fine tune Scrum process in order to fit the specificity of formal

development. We then perform formal modelling of a part of the landing gear system within scrum

development process. The development serves as hands-on investigation for the quantitative and qualitative

analysis of the applicability of such merge.

Our findings show that there is a great potential in this synergy, especially in terms of improving

comprehension of requirements and understandability of the system domain, and thus positively impacting

the quality and correctness of the system being built. Furthermore, the communication within the team is

enhanced, which leads to fine-tuning the development approach and smoothening the modelling process.

Finally, the rules and ideas behind formal modelling can be closely associated with agile philosophy, as the

latter is flexible enough to handle the rigour necessary to create a correct system.

Keywords: Event-B, Scrum, Formal Methods, Agile Development Process, adaptable development

framework, FormAgi

TUCS Laboratory

RITES – Resilient IT Infrastructures

Distributed Systems Laboratory

Integrated Design of Quality Systems group

2

Table of contents

1. Introduction... 3

1.1. Related Work.. 4

2. FormAgi Framework ... 5

2.1. Event-B... 5

2.2. Agile Methods, Principles and Practices .. 7

2.3. Scrum ... 8

2.3.1. Process .. 9

2.3.2. Roles ... 10

2.3.3. Communication – meetings .. 11

2.3.4. Scrum and Event-B – possibilities of synergy and challenges 12

3. Experimentation ... 13

3.1. Landing Gear System (LGS) Case Study ... 13

3.2. Scrum Process for Event-B Development .. 14

3.3. Experimental Setting .. 16

3.4. Event-B Development of the LGS Case Study .. 18

3.4.1. First Iteration (Sprint 1) .. 19

3.4.2. Second Iteration (Sprint 2) .. 20

3.4.3. Case Study – Summary of the Development .. 24

4. Monitoring and Analysis .. 25

4.1. Development Process ... 25

4.2. Meetings ... 26

4.3. Development Effort .. 27

4.3.1. Proving Effort ... 29

4.4. Model Measurements ... 31

4.5. Observations of the Developer ... 34

5. Conclusions .. 36

5.1. Validity of Experimentation ... 36

5.2. Implications of Research and Future Work.. 37

3

1. Introduction

Formal methods exist for more than 40 years [1], while agile methods are dated back to Agile Manifesto

(2001) [2]. There are many formalisms serving formal development of a system, each suitable for a certain

purpose, be it development of computer-based systems, applications that demand safety, security or business

integrity. The same applies for agile methods, where particular practices and values can be selected

according to the needs of the context the method is supposed to be used in.

Formal methods are known for assuring quality and correctness of critical systems [3], while agile

methods became popular due to enabling rapid, flexible and evolutionary development with strong emphasis

of its social aspect (team work and communication) [4]. Clearly, the mixture of these methods would create

a volatile and adaptable environment that would ensure high quality of the system development process.

This combination would benefit from providing transparency in the project by increasing the interaction

between team members and improving comprehension of the requirements of the system to be developed.

The merge of these two highly opposing approaches has been discussed on the conceptual level several

years after agile methods were proclaimed, for instance in [5]. However, only recently the discussion

became more sophisticated and gained visibility via events like International Workshop on Formal Methods

and Agile Methods (since 2009) or International Formal Methods in Software Engineering: Rigorous and

Agile Approaches (FormSERA, since 2012). The potential of such synergy in software development is well

described in [6].

We already investigated the merge of agile and formal methods in [7], which resulted in establishing the

FormAgi framework. We identified the aspects of agile methods that can act as facilitators for a formal

development, as well as determined challenges that can appear when committing to particular agile method.

We also determined that for the formal method that we use in our work (Event-B), Scrum development

process would be the most suitable agile method. We use Event-B as it supports iterative systems creation in

a correct-by-construction manner, i.e., we are able to model software, hardware and environment. Scrum

seemed to be a suitable match to Event-B and its idea of stepwise development of a system, as it is time-

framed, iterative and incremental, among others. Our goal is to bring all the best from these two and

combine it, so that it can lead to development of a high quality and correct system in an adaptive, flexible,

continuous and timely way.

We are aware that conceptual study is not sufficient to convince formal modellers and agile enthusiasts

that the formal-agile mix is not only possible, but can enhance the development in terms of timeliness and

adaptability, on the one hand, and quality and correctness, on the other. To validate our claims, we perform a

hands-on experimentation on Event-B development in Scrum setting. We use a case study from the

aerospace domain (Landing Gear System – later referred to as LGS) to provide the evidence on how this

synergy functions.

This paper is structured as follows: first we present related work. Then in section 2 we give the

background for the formal and agile method of our choice. Section 3 describes our experimentation,

including the portrayal of the LGS case study, the description of development process and how it is fine-

tuned to our setting, as well as explanation of the development itself. In section 4 we present and analyse the

qualitative and quantitative data regarding development process and the created model. Finally, we conclude

with the discussion on validity of our examination, as well as implications of our work and present our

research plans for the future.

4

1.1. Related Work

The potential of a synergy between formal and agile methods for the development of software was

described in [6]. The authors observe that the merge, if applied cautiously, can minimise change-related

problems and aid the evolution of the system being built. We believe that the synergy already has taken

place and that it needs to be documented, along with its benefits and drawbacks, and then possibly increase

the usefulness of this merge. This paper focuses on the former and provides our vision of possible

improvement of this mix.

The LGS case study is well described in [8] and modelled using different formalisms and approaches, just

to mention a co-simulation environment for Rodin based on the Functional Mock-up Interface standard and

ProB animator for Event-B [9]. Majority of the papers considering the LGS case study focussed on the

development methods and how to use them in a smart way, while only a few of them mentioned the process

perspective of the development, in particular refinement [10]. In our work we concentrate on the

development process and investigate how it can act as a facilitator for the development.

Usually, the V-model [11] is the development process used for critical systems development, as it

conforms to the recommendations of standards. The development process that we utilised for our

development of the LGS case study, Scrum, is far from being the first choice for any type of rigorous

developments. However, with our motivation we follow [12], where it is stated that "Although at first

glance, agile and formal methods seem incompatible, we see many opportunities to combine them

effectively." The claim in the quoted paper is not supported with any evidence, though. In our work we

demonstrate how this synergy works and provide qualitative and quantitative data to support our supposition.

Yet another conceptual solution is given in [13], where authors use XP agile method and integrate it with

practices of formal methods, specification and verification (VDM and Z). They perform a formal experiment

within academic context and analyse the time of system development phase, error rate and product quality

within planning, designing and implementation phases. In our work we use case study as an experimentation

technique to evaluate effort, proving-related data and complexity of the model, focusing on the early stage

development (requirements, specification and modelling).

To the best of our knowledge no other experimentation on the merge of Event-B and agile methods,

specifically Scrum, was performed. Our earlier work [14], concentrated on modelling approach, which starts

the development from multiple abstractions and then merges the development into a single refined model of

the complete system and by that creates possibility of parallel team work. We have not collected any data

during this development, except model metrics, and, therefore, were not able to report any substantial

findings from this case study. Here we performed the hands-on experimentation in such a way that we

monitored the development and the created model, as well kept a diary with the notes from our meetings.

Our goal was to be able to analyse our observations and provide an insight on the realisations and challenges

of formal-agile synergy.

The methodology for experimentation in software engineering is very well presented in [15], where

authors describe the methods of empirical investigations, guidelines how to choose an appropriate technique

and perform experimentation. In our setting we were not able to completely follow the instructions provided

there for case studies, as we were not able to compare one situation (method, development, etc.) to another.

Instead, we performed a singular small-scale experimentation (a pilot study) with all the steps required for a

case study.

The methodology for conducting formal experiments in the field of the agile formal methods is presented

in [16]. The authors mainly concentrate on the structure of an experiment, i.e., how to design it. They also

emphasise that there are some works on experiments in formal setting; however, there is a need for evidence

on the developments regarding the combination of formal and agile approaches. We follow this rationale and

consider it as a key-driver for our research.

5

One of our goals is to make the development with Event-B more flexible and adaptable, as well as

"encouraging" and efficient for the (new) users. Our idea is based on merging agile philosophy (process

aspect) into the formal development (methodology aspect). Nevertheless, there is a plethora of related work

attacking this issue from other perspectives, just to mention visualisation, modularisation or decomposition.

Snook and Butler [17] have proposed an approach to merge visual UML [18] with B [19] by the use of a

UML-B profile which provides specialisation of UML entities to support refinement. The idea of this

approach is to compensate the lack of precise semantics of the former and to reduce the training effort

required to overcome the mathematical barrier of the latter. The approach has been extended to Integrated

UML-B [20] which allows the changes in UML mode to be visible in B mode and vice versa.

A modularization mechanism to support scalability of Event-B modelling has been proposed by Iliasov et

al. [21]. The authors consider sequential systems whose functionality is distributed among several

components. The authors propose to extend Event-B with (atomic) operation calls and introduce the notion

of modules (i.e., components) which contain groups of callable operations. According to the authors, their

approach can be seen as a special type of the decomposition approach proposed by Abrial [22]. The goal is

to split a monolithic model into sub-models, each of which can be further developed separately in parallel.

However, once all the modules contain the necessary level of detail, they can be composed back into a

system. The composition mechanism is supported by the corresponding proofs.

2. FormAgi Framework

In our previous work we investigated several of agile methods with respect to their feasibility in

development of critical systems. [7] We explored the values, principles and practices of agile development

methods and placed them in the context of formal, refinement-based developments. We provided a mapping

between the characteristics of these two, which established FormAgi [7], a high-level framework consisting

of (i) guidelines on what concerns should be tackled before committing to a certain agile method and (ii)

pointers in which aspects an agile method can be a facilitator in the formal development.

We chose to use Event-B as a formal method within an agile process. Although Event-B is not considered

as a lightweight approach, we want to examine if by conducting the development in small refinement steps

[22], and by decomposing the models [21], as well as using component-based visual development, it can be

applied in a rapid manner.

In the following subsections we first present short overview of Event-B, then follow with a description of

agile methods and illustrate Scrum as an agile method of our choice.

2.1. Event-B

Event-B [23] [24] is a formal method and modelling language for stepwise system-level modelling and

analysis, based on the Action Systems formalism [25] [26] [27]. It is dedicated to model complete systems,

including hardware, software and environment [28]. It is derived from the B-Method [29], with which it has

several commonalities, e.g., set theory and the refinement approach.

Event-B employs refinement to represent systems at different levels of abstraction. It enables us to

gradually introduce more details to the constructed system and to represent new levels of a system with more

functionality. The consistency between the refinement levels is verified by mathematical proofs. Event-B

provides rigour to the specification and design phases of the development process of critical systems. It is

effectively supported via the Rodin platform [30], an Eclipse based tool, which is an open source “rich client

platform” that is extendable with plug-ins.

6

Figure 1 Refinement process

The formal development starts from modelling an abstract specification from a set of requirements and

then refining it in a number of steps (as presented in Figure 1). Each consecutive step is called

REFINEMENT. It enables tracking and controlling the refinement chain and the modelling process.

An Event-B specification uses a pseudo-programming notation – Abstract Machine Notation (AMN) –

and consists of a dynamic and a static part, called machine and context respectively. An Event-B machine

consists of its unique name and has the following constructs: context, which links the machine with its static

context via the SEES relationship, a list of distinct variables that give the attributes of the system; invariants

– stating properties that the machine variables should preserve; a collection of events – depicting operations

on the variables, where INITIALISATION is an event that initialises the system. A more abstract machine

can be refined by another, more concrete one. The context, on the other hand, encapsulates the sets and

constants of the model with their properties given by axioms and theorems. This static part of the

specification can also be refined, which is indicated by the EXTENDS clause. The relation between

machines and contexts, as well as the refinement relation for these is presented in Figure 2.

CONTEXT_0
sets
constants
axioms

theorems

MACHINE_0
variables
invariants
teorems
variant

events

CONTEXT_1
sets
constants
axioms
theorems

MACHINE_1
variables
invariants
teorems
variant

events

refinesextends

sees

sees

Figure 2 Refinement in Event-B (following [23])

7

In our work we want to benefit from the way software systems are developed with Event-B. The gradual

introduction of properties to the system enabled by refinement allows us to comply with the iterative and

incremental nature of agile development. Moreover, we can handle complexity issues more efficiently by

decomposing the problems to simpler and smaller ones. Finally, the quality aspect of development is assured

by the correct-by-construction approach and strengthening the work on requirements (elicitation).

Furthermore, modelling and proving properties of the system contributes to building a well-defined system

and diminishing the risk of unnecessary re-work due to misunderstood or not sufficiently described

requirements.

2.2. Agile Methods, Principles and Practices

Agile software development is a concept that has been on the IT stage already for almost 25 years. Agile

manifesto [2], which initiated the agile movement in software systems development, was a mixture of old

ideas, new ideas, and transmuted old ideas. It emphasised the social aspect of development, e.g., close

collaboration within the development team, as well as between the developers and business experts. It

pointed out that the face-to-face communication is more efficient than written documentation. Moreover, it

brought up the idea of small, self-organizing teams, where each team member provides his expertise to the

development, but does not have to be an expert in all the areas required by the development.

One of the most important aspects identified in the manifesto was the frequent delivery of new deployable

business value. Finally, the Manifesto mentioned the issue of volatile requirements, which is inevitable to

every development, and ways to handle them so that the risks are mitigated.

Figure 3 Definition of agile process and the practical take up on these

In Figure 3 on the left hand side we present the definition of agile process, whereas on the right hand side

we show a practical take up on the definition. As presented, major emphasis is placed on the communication

and collaboration, as well as the delivered values in a form of working quality code.

The Manifesto is based on 12 principles and recognises certain practices, in order to assist in many areas

of development, like requirements, design, modelling, coding, testing, project management, quality

assurance etc. All of these serve for facilitating communication and collaboration, boosting team morale,

supporting actionability, adaptability, flexibility and quality of development and are oriented towards

continuous improvement. We list these principles and practices in Figure 4.

Agile process definition

• An evolutionary
• Highly collaborative
• Quality-focused approach
• To software development
• Where potentially shippable

working software is produced on a
regular basis

Practice

• Work closely with stakeholders, ideally on a
daily basis

• Be self-organizing within an appropriate
governance framework

• Regularly reflect on how the team works
together and then act to improve on its
findings

• Produce working software on a regular basis
• Do continuous regression testing (and better

yet, take a test-driven development approach)

8

Figure 4 Principles and practices in agile software development

Agile methods are in fact a family of methods, just to mention Scrum [31], Lean [32], Kanban [33] [34],

XP [35] [36], DAD [37], DSDM [38] [39], sharing certain characteristics, presented in Figure 5. Agile

methods differ with respect to their focus on different aspects of software lifecycle. While some focus on the

agile practices, like XP, others focus on managing software projects, e.g., Scrum. There are also methods

providing full coverage over the development life cycle, like DSDM, or act as higher-level frameworks for

other agile methods, DAD.

Figure 5 Common characteristics of agile approaches

To summarise, agile methods attempt to provide means for a flexible and transparent development, which

is responsive to change and oriented towards customers satisfaction by meeting stakeholders’ needs within

the given time. Moulding the development process according to agile methods helps in dealing with

development complexity and supports social aspects of IT project, i.e., by facilitating collaboration.

2.3. Scrum

Among plethora of agile methods we chose to use Scrum in our work. Not only is Scrum a flexible and

complete development strategy, but also it gives a well-described working process with respect to, e.g., roles

and interaction between the team members, time limitations of work, supports communication and

Principles

•Customer Satisfaction

•Frequent Delivery / Deployment

•Motivated Team

•Technical Excellence

•Emergent Design

•Incremental development

•Embrace Change

•Collaboration

•Communication

•Sustainable Pace

•Simplicity

•Continuous Improvement

Practices

•Close customer collaboration

•Daily stand-up meetings

•Planning and estimating

•Frequent feedback

•Short iterations

•Prioritized requirements

•Artefact reviews

•Self-organized teams

•Retrospectives

Iterative Incremental

Software
development

method

Adaptive and
flexible

Evolutionary
development
and delivery

9

collaboration within this process, and it presents some similarities with Event-B. In this section we first

illustrate the Scrum process (Section 2.3.1), then depict roles of the team members in the process (Section

2.3.2) and describe how the communication is handled (Section 2.3.3). Finally, we provide reasons why we

choose this agile method (Section 2.3.4).

2.3.1. Process

Scrum development process is strongly time-framed, not only with respect to the development, but also

with respect to communication. Moreover, advice is given on how to handle the development regarding the

requirements: the way they are structured and managed during the development (how they should be

described, dividing to “sub-requirements”), as well as when they ought to be implemented (prioritising and

their scheduling in the development).

A typical Scrum process is shown in Figure 6, where product backlog and sprint backlog contain

requirements (features) to be implemented in the project and during current iteration, respectively.

Moreover, two iterations, long and short are present in the diagram, in the given example lasting 30 days and

24 hours, correspondingly. The meetings in Scrum process are marked with green arrows and are described

in more detail in Section 2.3.3. At the end of each sprint a working version of software is expected to be

shown to the customer.

Figure 6 Scrum development process

When choosing Scrum as a development process one needs to answer three questions:

1. What product are we building?

2. What are we doing in this iteration?

3. How well are we doing?

These questions help to keep the project on track, providing the higher-level vision of the product being

developed, lower-level viewpoint on the actual work in progress and finally the evaluation of progress itself.

The first question is tackling requirements and their management. Requirements, which are named in agile

development as features, have certain form of user stories: "As a (role), I want (feature), so that (benefit)". A

collection of user stories are placed in the product backlog. Product backlog essentially describes the

features which will enable the product to be of value. Finally, at this stage the planning which user stories go

to which release takes place. Note that release means an executable version of project to be shown to the

stakeholders.

10

The second question to a large degree concerns the roles of team members and their tasks in the project.

The roles are described in the following subsection. As an answer to this question, the plan for the current

iteration is being agreed on. First, the scenarios are chosen and are being moved from product backlog to

release backlog (task of product owner). Release backlog is a collection of scenarios chosen for a specific

iteration. Then, the prioritisation of user stories and estimates for the work for each item is being done by the

team. Additionally, larger user stories are broken down to smaller, manageable requirements. Afterwards, it

is decided on how much it can be committed to during cycle (team). Finally, the prioritised stories are placed

to sprint.

Sprints usually take 2-30 days and there are 2-12 sprints in release. The main concept of a sprint is to get a

subset of release backlog to ship-ready state. This means that after a sprint the product should be fully tested

and all of the features of the sprint ought to be complete. Any items that are left unimplemented in the sprint

backlog are returned to the product backlog at the end of the sprint.

While first two questions tackle what needs to be implemented and how to do it, the last question is after

the assessment of the actual progress of the project. This is well described with the use of burndown chart.

This type of chart shows the relation between the time in the sprint and effort estimated for implementing the

feature, shown on x and y axis respectively. An example of a burndown chart is given in Figure 7. In the

figure we see a descending red line, oscillating closely to the blue line estimating the average progress of the

project. The red plot optimally reaches a "Done" status, which means that the work in the current iteration

has been completed by implementing all features planned in the sprint backlog. The desirable scenario is

when the plot showing work in progress is gradually descending and ultimately getting to the zero point,

where all the functionality planned is implemented and tested to an executable state.

Figure 7. Example of a burndown chart

2.3.2. Roles

Apart from defining time-frames for the development process, Scrum defines also three roles in the

project, which are represented by the people involved in the development:

 Product owner, who makes sure which features are going into the product backlog; he also

represents a user and/or a customer of a product and the business.

 Scrum master, whose responsibility is to ensure that the project progresses smoothly and sees to

that everybody in the team has all that is necessary to make the job done, e.g., sets up meetings. He

can be compared to a manager in traditional development processes.

11

 The Team, which is a cross-functional and self-organising group of people, consisting of

developers, testers, executives, etc.

Product Owner’s responsibility is to act as the representative of the stakeholders and the customers. It

usually is the customer himself, its designated representative, or an executive of the company that produces

the software, i.e., a person that finances the development. Product Owner has a final say in negotiations

regarding the functionality of the product. The presence of the Product Owner is not required during the

development process. This implies assuring other means of contact in case the Product Owner is not

constantly available.

Scrum Master, functioning typically as a project manager, is responsible for managing and maintaining

the development process and for providing necessary resources for the Team. He is to ensure that there are

no hindrances to deliver the product from the development side.

The Product Owner specifies his requirements according to which the Team implements the software.

This way, ideally, the cross-functionality in the area of software development can be achieved within the

Team. Typically, one or more Teams are formed consisting of, e.g., programmers, designers, architects,

product-line managers, and testers. All team members are equally and jointly responsible for delivering the

product. Furthermore, the Teams are self-managing, meaning that they solve the management issues,

regarding for instance the division of work, internally. The decision about the number of members in each

Team is left for the Teams themselves; however, it is advised that the team size should not exceed 6 persons

[40] [41].

2.3.3. Communication – meetings

Agile methods emphasise that communication is the cornerstone of smooth development, regardless if it is

within the team or between the team and the stakeholder. Communication can be realised in many ways, for

instance, using messenger type of applications, e-mails, note-cards while meetings. Due to peoples’

perception and ways of acquiring information, meetings (especially face-to-face) seem to be the most

informative due to combination of knowledge-carriers, e.g., the body language, facial expressions and the

tone of voice.

Scrum has very well defined set of meetings, i.e., sprint planning meeting, daily scrum, sprint review and

sprint retrospective (see Figure 8). Each meeting aims to provide better information flow and supports the

agile ideas of improvement. Moreover, the meetings can be used as a way of controlling the development

and its process in a less formal and demanding manner. In the rest of this subsection we describe the

meetings in Scrum, their purpose and the people involved.

Figure 8. Meetings in Scrum

12

Every long iteration (sprint) starts with a sprint planning meeting, where it is decided what items from the

product backlog should be included in the sprint backlog. It is also agreed on how the work should be

organised within the team. During the meeting the Product Owner assigns priorities to the items in the

product backlog. Then, the Team decides which items are to be implemented during the sprint and by that

commits to a certain amount of work. It should be noted that the priorities and the selection of items can be

changed during the meeting as a result of discussion between the Product Owner and the Team.

In order to manage the work in progress and timely react to the difficulties in the development, daily

meetings are set up. They are quite short, up to 15 minutes, held by the Team every day, approximately at

the same time of the day. They are also called stand-ups and are a check on how the development is

advancing. There are three basic questions to be answered, which aim at checking the work completed since

the last meeting, planning the work for the day, as well as identifying impediments and challenges for the

development:

1. What was done yesterday?

2. What will be done today?

3. What are the problems / obstacles that prevent you / make it harder for you to execute your plan for

today?

The meeting that focuses on the work that has been carried out during the sprint is called sprint review

meeting. During this meeting the Team discusses sprint backlog items that have been completed (status:

done) or not. Moreover, the Team is expected to present an executable version of the system to the

stakeholders.

Scrum, as an agile method, is oriented towards continuous improvement. An inner-team meeting

dedicated for identifying possibilities for improvements in the development process is called retrospective.

The goal is to examine the current state of the development from a higher-level viewpoint and elicit the

guidelines for fine-tuning the process. Retrospective should last 15-60 minutes and is supposed to answer 3

questions:

1. What went well during the sprint cycle?

2. What went wrong during the sprint cycle?

3. What could we do differently to improve?

Meetings are not only the basis for collaboration, but also support self-organisation of teams. Furthermore,

they facilitate the idea of a cross-functional team, particularly when planning the work and discussing the

challenges in the development. Not every team member has to be an expert in all problem domains – it

suffices that the team knows the expertise of other team members, so that the problem can be shifted to the

most knowledgeable person.

2.3.4. Scrum and Event-B – possibilities of synergy and challenges

It might seem that formal modelling cannot be combined with agile development processes. However, we

found particular characteristics that Event-B – a formal method of our choice, and Scrum – an agile method

selected after conducting research for FormAgi framework, have in common. Moreover, there are properties

that enrich and smoothen Event-B developments.

We have chosen an agile method that has well-defined rules, but at the same time is flexible enough to

handle the rigour imposed on the development by a formal method. Introducing Scrum into formal

development with Event-B meant first of all emphasising that every development needs a process to better

manage the development activities, and second of all highlighting that every development process needs

continuous improvement based on its progress. Scrum, as an agile method, by definition very well supports

process improvement. It can be achieved not only through the retrospectives, which were set up specifically

for the purpose of improvement, but also indirectly by the organisation of work.

13

The work arrangement within Scrum strongly supports communication, which seemed to lack in

developments using formal methods. A set of meetings to be held during the development process helps not

only to control the progress of development, but also timely discover and act upon the challenges and

problems that occur. Since Scrum is a team-based process, it assists the team members with the knowledge

exchange and eases the acquisition of "second opinion" or model review, whenever needed. The idea of

having teams with multifaceted know-how reinforces the development by allowing people with various

levels of expertise in different domains complement each other. Finally, Scrum puts emphasis on human

factor in development underlining that it is a very much developer-centred activity. Although formal

development is strongly relying on mathematical foundations, it is the developer who decides to apply

certain modelling strategy, which is only later reinforced by the mathematical know-how.

The sprints in Scrum resemble the refinement steps in Event-B. The short development cycles (long

iterations aka sprints) to some degree correspond to the gradual construction of system (refinement steps).

Division of features according to their feasibility within the time of sprint is a similar mechanism to

decomposing certain properties of a system to few smaller ones. All of these efforts serve to lessen the

complexity of a problem to be developed or modelled.

Scrum has a clear definition of time frames for development, specifying long and short iterations (sprints

and dailies) and associated meetings. This aids in managing the progress of the development. It also supports

the steady pace of work, minimising the risk of having too many features to be implemented at the end of the

development. Event-B development relies on the continuous and gradual introduction of properties to the

system, since it is based on the refinement process and refinement rules. Thus, the aforementioned

characteristics of Scrum and Event-B harmonise with each other.

3. Experimentation

In FormAgi we investigated a possibility of a merge of formal and agile development approaches. As a

result, we proposed a framework which provides guidelines on what concerns should be tackled before

committing to a certain agile method. Moreover, we gave pointers in which aspects an agile method can be a

facilitator in the formal development. Then, we chose to utilise Event-B as a formal method. Furthermore,

following the advices presented in FormAgi, we selected Scrum as (seemingly) most suitable method that

would correspond to characteristics of Event-B development. In this section we explore our claims and

examine how feasible it is to use Event-B within Scrum development process. We experiment with a case

study originating from aerospace industry to bring up strong points of such a merge and highlight the

challenges that need some further attention.

3.1. Landing Gear System (LGS) Case Study

We demonstrate the proposed approach using the LGS [8]. The focus of this paper is on the Event-B

development within agile process, in particular Scrum. Therefore, we omit the construction details of the

formal model and focus on a high-level description of the modelling process. The details about the formal

development of the case study can be found in [42].

The system consists of a digital controller and a few actuators. The function of the system is to operate the

landing gears and associated doors. Depending on the reactions from the pilot, the digital controller

manipulates the mechanical part. The mechanical part, in its turn, consists of front, left and right landing

sets. Each set includes a door, a landing gear and hydraulic cylinders that are attached to and move the

14

corresponding doors and gears. In addition, the system has an analogical switch, which purpose is to prevent

an abnormal behaviour of the digital part. The architecture of the system is shown in Figure 9.

Figure 9 Architecture of the LGS [8]

The general electro-valve provides hydraulic power to the specific electro-valves from the aircraft

hydraulic system. There are 4 specific electro-valves which set the pressure to the cylinders opening/closing

the doors as well as to the cylinders extending/retracting the gears. Clearly, the position of the piston of a

cylinder coincides with the position of the corresponding controlling component. For instance, if the front

door cylinder is extended, the front door is open.

We develop the part that consists of the general electro-valve, the specific doors and gears electro-valves,

the cylinders as well as the analogical switch. We start by introducing the general electro-valve. We then add

specific electro-valves and cylinders. Finally, we extend the specification with the analogical switch. To ease

the development and distinguish between different valves and cylinders, we number them from 0 (topmost)

to 3 (bottommost) for the specific electro-valves and from 0 (left-top) to 5 (right-bottom) for the cylinders in

addition to the name. For example, the general electro-valve is named GEV_0 whereas the electro-valve

used to close the doors (retraction circuit) has a name “evalve_0”.

3.2. Scrum Process for Event-B Development

One of the major advantages of agile methods is their flexibility, i.e. the ability to be tailored to fit the

characteristics of the environment they are utilized in. The possibility of adjustments helps to benefit the

most from the used methodologies and tools. For Event-B developments we aim at making the development

more proactive and smoothen it by enabling shorter iterations. Moreover, we want to facilitate the intra-

project communication, as well as support the communication between the team and the stakeholders, as we

believe they are crucial to obtain software of high quality.

15

Formal development (herein modelling activity) differs from traditional development (consisting mostly

of coding activity) not only in the rigour of the development, but also how the progress of the development

can be seen and measured. This has its reflection in the artefacts being created during the development.

Namely, instead of recognising executable code as the main measure of development, we consider

requirements, specifications, model on specific abstraction levels or implementation of a feature as factors

determining the progress of the development.

Figure 10 Scrum adapted for Event-B development

 We adjust Scrum to suit the specifics of Event-B development, which is depicted in Figure 10. We use

the term item, to denote that we understand the term "features" in a slightly different way. Not only we

transform features, and in our case requirements, into models and afterwards prove the models and their

properties to be correct, but also we work on elicitation and modelling of requirements themselves. Thus,

formal development has much broader implications for the development process already at the conceptual

stage.

Item pool consists of a set of requirements and acts as product backlog. It not only contains high-level

requirements, but also lower-level requirements, safety cases, environmental and context descriptions. A

subset of the item pool comprising of requirements chosen for the current sprint is called an item backlog.

The requirements in item backlog are not prioritised, since prioritization may take more time than what is

scheduled for regular Scrum process. Therefore the prioritisation is done within sprints. The reasoning is

twofold: (i) we do not want to rush decisions which would lead to a complex and hard to prove model and

(ii) the work on the requirements and their structuring with respect to the modelling strategy will pay off

later, when the model needs to be extended. Therefore, a sprint includes modelling of the requirements, as

well as developing and proving a model. Finally, model animation and simulation, verification mechanisms

well supported by the Rodin platform, can also be a part of the sprint.

The duration of long and short iterations should be decided before the development starts and then fine-

tuned, if necessary. There is a risk that some requirement or property is too complex to be processed within a

short iteration. In this case it should be discussed during the short daily meeting so that the team is informed,

and in consequence it is decided that it either spreads over two or more sprints or is possibly decomposed to

few smaller problems. The sprint review resembles the discussions in a regular sprint. However, some issues

like model walkthroughs, or demonstrating the results to stakeholder as model simulation or animation

should also be included at this stage. The retrospective is meant to reflect upon the sprint and highlight the

areas of the sprint for future improvement from the process perspective.

16

We believe that formal development and development process are not equivalent; however, we want to

examine it. Explicitly, we will study the relation between refinement step and development process iteration

and check if there exists a one-to-one mapping. We suppose that there can be several refinement steps within

a single iteration. Moreover, in case a requirement is not defined precisely (so that refinement needs to be

revised), a refinement step might occur to be too large and complex for a single short iteration. In this

scenario, the problem to be modelled needs to be decomposed into sub-problems and only as such placed

into the item backlog.

Finally, although not present in original Scrum, a feedback system is included in the sprint via the

Monitoring and Metrics mechanisms (M&M), which is to raise understanding on what is being done (short

iterations), as well as to facilitate the process improvement and provide evidence on the development (long

iterations). We have a tool support within Rodin platform for M&M, which provides us with the

measurements regarding the number of proof obligations and the time that is used for modelling (proactive

metrics), as well as an external metric tool that evaluates the size and complexity of a model (status metrics).

We are aware that metrics and measurements within agile developments are sometimes considered as

harmful to the team morale and against agile philosophy. However, we use them for informational purposes

rather than “plunger of blame”.

3.3. Experimental Setting

We fine-tune Scrum for formal development in Event-B, in particular for modelling of a LGS case study

from the aircraft industry. We perform our experiment in academic setting, where three people are involved

of various backgrounds and expertise domains: formal methods, formal modelling of systems, quality

assurance and quality measurements. The standard roles in the Scrum process were fine-tuned in order to

enable knowledge exchange, facilitate the adaptation of Scrum to Event-B modelling activities and

accelerate the comprehension of the concepts of the case study to be modelled (domain knowledge). The

roles were to some extent shared and in our context they were as follows:

 product owner: role shared by the modeller, due to the familiarity with the requirements given in

[8], and the senior expert,

 scrum master: quality assurance expert and agile expert,

 team: role shared by the modeller, Event-B senior expert and quality assurance expert.

Due to some other work-related commitments of the team members, we have set up a two-week restriction

time for the development. Also, note that the effective worktime is not a complete workday. Thus, it is

visible that the development process heavily depends on human factors.

We have divided our development into two sprints, each a week long (long sprint), within which every

day was tackled as a short sprint. We kept the planning and daily meetings, retrospectives and reviews, just

as it is defined in the original Scrum. We also held an introductory planning meeting, "sprint 0", to

familiarise the non-agile members with concepts of Scrum, as well as to ensure that the goals of the project

are clear for all of the team members ("what product are we building?”). In addition, functionality of a case

study and vocabulary used were explained, so that their comprehension is the same for all of the participants

of the experiment. We used various communication means throughout the development; however, we relied

mostly and benefitted from the direct and active communication (face-to-face or internet communicators).

Our item pool and item backlog was managed in Excel form, which was constructed as a simplified

tracking system and is exemplified by Table 1. The table contains ID field – a unique number assigned to a

requirement, which enables accurate classification and discussions over the requirement. Furthermore, the

Name of a feature / title is a short term describing the requirement and bound to ID. The requirements are

prioritised with natural numbers 0 to 3, designating 0 as requirement of low relevancy and 3 as the

17

requirement of utmost significance. A Description is a simplified version of a requirement (taken after

analysing the requirements document); Additional field, Remarks, describes to which iteration the

requirement is assigned to; it can also provide some further comments. The Done field depicts whether the

requirement is modelled and proved; if a requirement is only modelled or partially proved it has the “not

done” status. Finally, there are two optional fields in the table (denoted with an asterisk) that we thought

could be of use: (i) Category, assigning the requirement to a product or a model, depending on the activity in

the development (implementation/code generation or modelling and proving) and (ii) Complexity/story

points showing the difficulty level according to Fibonacci sequence, where the lower value means the easier

it is to model and prove a requirement. It is an estimation given by the developer according to his/hers

experience and is not time related; rather it is related to the difficulty of the problem. Note that we have not

utilised the two latter columns due to several factors: small scale of the development, keeping our main

focus on modelling and proving (no code generation or implementation involved) and the way the

requirements were provided (creating use cases would require additional effort and not bring much benefit to

the modelling and proving activity).

Table 1. Item pool (backlog) of features in the LGS case study (result of Sprint “0”)

ID Name of a feature / title Priority Description Remarks

1 Developing a valve 3 Can be done in parallel with 2 & 11

2 Developing a cylinder 3 Can be done in parallel with 1 & 11

3 Developing analogical

switch

2 -

4 Introducing general electro-

valve

3 general electro-valve supplies the specific

electro-valves with hydraulic power from the

aircraft hydraulic circuit

5 Refining generic component

into valves of doors and

gears

3 electro-valves set pressure on the portion of the

hydraulic circuit related to door opening/closing

and landing gear extending/retracting

6 Introducing generic

component for valves of

doors and gears

3 Can be done when 11 is done

7 Refining generic component

into cylinders

3 cylinders open/close doors as well as

retract/extend the landing gear

8 Introducing generic

component for cylinders

3 Can be done when 11 is done

9 Introducing analogical

switch

2 switch tolerates an abnormal behaviour of the

digital part

10 Developing a pump 1 -

11 Developing a generic

component

3 Can be done in parallel with 2 & 1

Figure 11 Backlog of the case study (result of sprint 0)

The backlog presented in Table 1 is a result of the so called "sprint 0", where we planned the modelling by

first prioritising the features listed in the item pool (assigning priorities 0-3) and then scheduling them for

18

certain iterations (1
st
 or 2

nd
 iteration). We deliberately left out columns Category and Complexity, as either

they were not yet relevant or at all not needed in this project.

As a technical support for our development we used subversion control system (svn) in order to be able to

better control the development and its progress, as well as run the metrics tool on the versions of the model

in the retrospective manner (if it occurs to be not feasible during the development).

The safety, functional, equipment and other requirements were provided in [8] and added to the item

pool/backlog. However, more requirements can be included to the item pool/backlog by the team and

product owner / stakeholder later on, since during the development, some additional properties might be

revealed; these can be initially overseen, for instance, by the stakeholder.

The Excel sheet that we use contains also the documentation for tracking the time spent on the

development. It is based on the time recorded by the Rodin tool when the developer is actively constructing

and proving the model. Naturally, some additional resources are put for, e.g., elicitation of requirements,

getting familiar with technical documentation or inner-team discussions. Note that the development was not

a sole activity of the development Team during the regular work-days, therefore one cannot relate the

collected data to the complete work-day.

3.4. Event-B Development of the LGS Case Study

The initial backlog of the features to be developed together with their prioritisation is captured by Table

10. Clearly, the features that have the highest priority (3 in this case) need to be developed first. This is

because the other features typically dependent on them, so that the development cannot proceed forward, if

they are not done. Observe that the features with the same priority can also have interdependencies, so that

some features may need to be implemented first. Note also that the development of components (features

with IDs 1, 2, 3 and 11) can be done in parallel with the system development, even though we chose to

develop some of them beforehand. Table 2 is a result of transformation of Table 1 according to the priorities

and related iterations in which the modelling was planned.

Table 2 Item pool (backlog) consisting of features ordered according to the priorities and planned iterations

ID Name of a feature / title Priority Description Remarks

1 Developing a valve 3 Can be done in parallel with 2 & 11 1st iteration
2 Developing a cylinder 3 Can be done in parallel with 1 & 11 1st iteration
11 Developing a generic

component
3 Can be done in parallel with 2 & 1 1st iteration

4 Introducing general
electro-valve

3 general electro-valve supplies the specific
electro-valves with hydraulic power from
the aircraft hydraulic circuit

1st iteration

6 Introducing generic
component for valves of
doors and gears

3 Can be done when 11 is done 1st iteration

5 Refining generic
component into valves of
doors and gears

3 electro-valves set pressure on the portion
of the hydraulic circuit related to door
opening/closing and landing gear
extending/retracting

2nd iteration

8 Introducing generic
component for cylinders

3 Can be done when 11 is done 2nd iteration

19

7 Refining generic
component into cylinders

3 cylinders open/close doors as well as
retract/extend the landing gear

2nd iteration

3 Developing analogical
switch

2 2nd iteration

9 Introducing analogical
switch

2 switch tolerates an abnormal behaviour of
the digital part

2nd iteration

10 Developing a pump 1 2nd iteration

The analysis of Table 20 provides us with the following refinement strategy for the system development.

Once, the components are developed and added to the library, we first instantiate the formal library

component, namely the electro-valve (see [42]), into the general electro-valve. Then, we refine this model by

adding a connector between the general electro-valve and the other electro-valves controlling the doors and

the gears. However, instead of instantiating these valves directly, we will first add a generic component as

the placeholder and only then replace it with the specific electro-valves in a separate refinement step. This

development sequence is done deliberately to show the development when not all the components have

assigned priorities, but the overall architecture has been established. After specific electro-valves are

introduced, we perform several more refinement steps, in which we gradually add connections between the

components, as well as add cylinders using the generic components in a similar manner as when adding

specific electro-valves. As a final step, we introduce the analogical switch component.

3.4.1. First Iteration (Sprint 1)

During the first iteration (sprint), we develop the necessary components (task ID 1, 2, 11, Table 3),

namely the electro-valves and cylinders in Event-B (see [43] for details on the development). The

components are made parameterized, so that the development is performed once and the components can be

reused later (library of components). In addition, we start the development of the LGS by introducing the

general electro-valve (task ID 4, Table 3). Note, however, that the development is not restricted to the

sequence described here. We opt for this sequence due to the component-based rigorous development using

the library of visual reusable components.

Table 3 Features to be modelled in first sprint

ID Name of a feature / title Priority Description Remarks

1 Developing a valve 3 Can be done in parallel with 2 & 11 1st iteration

2 Developing a cylinder 3 Can be done in parallel with 1 & 11 1st iteration

11 Developing a generic
component

3 Can be done in parallel with 2 & 1 1st iteration

4 Introducing general
electro-valve

3 general electro-valve supplies the specific
electro-valves with hydraulic power from
the aircraft hydraulic circuit

1st iteration

6 Introducing generic
component for valves of
doors and gears

3 Can be done when 11 is done 1st iteration

5 Refining generic
component into valves of
doors and gears

3 electro-valves set pressure on the portion of
the hydraulic circuit related to door
opening/closing and landing gear

1st iteration

20

extending/retracting

8 Introducing generic
component for cylinders

3 Can be done when 11 is done 1st iteration

7 Refining generic
component into cylinders

3 cylinders open/close doors as well as
retract/extend the landing gear

1st iteration

At the abstract level, the system specification corresponds to the model of the general electro-valve whose

graphical representation is shown in Figure 12. Notice that the system development can be initiated from the

components already available in the library. The components that may be missing from the library can be

developed and added to the library in parallel with the system development whenever needed.

GEV_0

Figure 12 LGS, specification 0: General electro-valve

After deriving the abstract specification, we refine it by first adding a connector and then the generic

component, i.e., we implement the task ID 6 (Table 3). Consequently, in two refinements, we obtain the

specification visually illustrated in Figure 13.

GEV_0

system_GEV_EVs_

connection_r1

GenericCo

mponent_0

Figure 13 LGS, refinement 2: GEV connected with generic component

Although there were several tasks left in the item backlog (tasks ID 5, 7 and 8, Table 3), they were moved

to the second iteration. This was due to our over estimation of tasks that could have been developed within

the first iteration.

3.4.2. Second Iteration (Sprint 2)

The second iteration consists of tasks that were shifted from the first sprint, and the ones originally

planned for the second sprint (Table 4).

21

Table 4 Features to be modelled in second sprint

ID Name of a feature / title Priority Description Remarks

5 Refining generic
component into valves of
doors and gears

3 electro-valves set pressure on the portion
of the hydraulic circuit related to door
opening/closing and landing gear
extending/retracting

2nd iteration

8 Introducing generic
component for cylinders

3 Can be done when 11 is done 2nd iteration

7 Refining generic
component into cylinders

3 cylinders open/close doors as well as
retract/extend the landing gear

2nd iteration

3 Developing analogical
switch

2 - 2nd iteration

9 Introducing analogical
switch

2 switch tolerates an abnormal behaviour of
the digital part

2nd iteration

10 Developing a pump 1 - 2nd iteration

The second iteration starts with the refinement of the generic component (see Figure 13) into the set of

specific electro-valves (task ID 5, Table 4). Specifically, we introduce all four specific electro-valves which

control the doors and the gears. The development proceeds according to the pattern described in [42].

Therefore, we obtain the system model illustrated by Figure 14.

GEV_0

system_GEV_EVs_

connection_r3_0

evalve_0

evalve_1

evalve_2

evalve_3

system_GEV_EVs_

connection_r3_1

system_GEV_EVs_

connection_r3_2

system_GEV_EVs_

connection_r3_3

Figure 14 LGS, refinement 3: general electro-valve connected with specific electro-valves

 Next, we gradually add all the cylinders starting from the ones that open/close the doors. Clearly, the

valves and the cylinders have to be connected in order for the system to function properly. The cylinders

require two connections: one for the head and the other one for the cap. Since the specification refinement

with connectors is rather simple [42], we add both connectors at the same refinement step. This leads to the

model visualised in Figure 15.

22

system_connection_EVs_Doors_r4_headGEV_0

system_GEV_EVs_

connection_r3_0

evalve_0

evalve_1

evalve_2

evalve_3

system_GEV_EVs_

connection_r3_1

system_GEV_EVs_

connection_r3_2

system_GEV_EVs_

connection_r3_3

system_connection_EVs_Doors_r4_cap

Figure 15 LGS, refinement 4: all the valves with connectors between them and cylinders of doors

Instead of directly extending the system specification with the specific cylinders, we first add another

generic component (task ID 8, Table 4). While adding the generic component, we connect it to the

corresponding valves (Figure 16).

system_connection_EVs_Doors_r4_headGEV_0

system_GEV_EVs_

connection_r3_0

evalve_0

evalve_1

evalve_2

evalve_3

system_GEV_EVs_

connection_r3_1

system_GEV_EVs_

connection_r3_2

system_GEV_EVs_

connection_r3_3

system_connection_EVs_Doors_r4_cap

GenericCo

mponent_1

Figure 16 LGS, refinement 5: introduction of the generic component for cylinders of doors

The generic component is then replaced by the specific cylinders (task ID 7, Table 4) at the subsequent

refinement step following the same approach as for the valves. At this point, the specification of the system

contains all the electro-valves and three cylinders, as well as connections between them (Figure 17).

23

system_connection_EVs_Doors_r6_head_

GEV_0

system_GEV_EVs_

connection_r3_0

evalve_0

evalve_1

evalve_2

evalve_3

system_GEV_EVs_

connection_r3_1

system_GEV_EVs_

connection_r3_2

system_GEV_EVs_

connection_r3_3

system_connection_EVs_Doors_r6_cap_

cylinder_0 cylinder_1 cylinder_2

0 1 2

0 1 2

Figure 17 LGS, refinement 6: cylinders of doors

Following the same approach as for the addition of the cylinders manoeuvring the doors, we add the

remaining cylinders that extend/retract the gears (repeat tasks ID 8, 7, Table 4). Eventually, we derive the

complete specification of the actuators part. It consists of the general electro-valve, 4 specific electro-valves

and 6 cylinders. All components are interconnected as specified by the requirements (Figure 18)

system_connection_EVs_Doors_r6_head_

GEV_0

system_GEV_EVs_

connection_r3_0

evalve_0

evalve_1

evalve_2

evalve_3

system_GEV_EVs_

connection_r3_1

system_GEV_EVs_

connection_r3_2

system_GEV_EVs_

connection_r3_3

system_connection_EVs_Doors_r6_cap_

cylinder_0 cylinder_1 cylinder_2

0 1 2

0 1 2

system_connection_EVs_Doors_r8_head_

system_connection_EVs_Doors_r8_cap_

cylinder_3 cylinder_4 cylinder_5

0 1 2

0 1 2

Figure 18 LGS, refinement 9: interconnected electro-valves and cylinders

As the last step of our development, we have specified the model of the analogical switch component

(task ID 3, Table 4) and added it to the system specification (task ID 9, Table 4). Consequently, we obtain

24

the system as depicted in Figure 19, where analogical switch is placed on the left-hand side of the system

(component denoted as "as_0").

system_connection_EVs_Doors_r6_head_

GEV_0

system_GEV_EVs_

connection_r3_0

evalve_0

evalve_1

evalve_2

evalve_3

system_GEV_EVs_

connection_r3_1

system_GEV_EVs_

connection_r3_2

system_GEV_EVs_

connection_r3_3

system_connection_EVs_Doors_r6_cap_

cylinder_0 cylinder_1 cylinder_2

0 1 2

0 1 2

system_connection_EVs_Doors_r8_head_

system_connection_EVs_Doors_r8_cap_

cylinder_3 cylinder_4 cylinder_5

0 1 2

0 1 2

as_0

Figure 19 LGS, refinement 10: Analogical switch

Developing a pump (task ID 10, Table 4) was not completed within the second sprint due to the lack of time.

In real life, this task would be moved to the next sprint. However, we were limited to only two weeks in our

experiment, thus the task is not included in the development.

3.4.3.Case Study – Summary of the Development

We completely developed the part of the case study comprised of the valves, cylinders and the analogical

switch. However, we left out the development of the pump due to the time limitation. In total it took ten

refinement steps to complete the development (see Table 5).

The summary of the proof statistics for the LGS case study is shown in Table 5. The numbers in the table

reflect the sum of POs of a context and a machine of the corresponding refinement step. Most proof

obligations were automatically proven by the tool. A large number of the manual proof obligations were

derived from the specifications of the library components and can be simply reproduced. Note that the

asterisk (*) in refinement steps 1, 4 and 7 denotes a requirement that we have not considered when planning

the development. Despite this, these were naturally needed to interconnect the components and were rather

simple. In addition, the development of the library of components is not shown due to the fact that the focus

is solely on the LGS. Therefore, the requirements with IDs 1, 2, 3 and 11 were modelled and proven for

generic purpose (library of components) and only utilised in this case study, although included in the sprints.

25

Table 5 Case study proof statistics

Ref.
Step

Req.
ID

Name Total
POs

Auto

0 4 General electro-valve 24 21

1 * Connection between general electro-valve and
the other valves

7 7

2 6 Generic component for specific electro-valves
of doors and gears

26 26

3 5 Electro-valves of doors and gears 143 131

4 * Connection between electro-valves of doors
and cylinders of doors

14 14

5 8 Generic component for cylinders of doors 41 41

6 7 Cylinders of doors 73 73

7 * Connection between electro-valves of gears
and cylinders of gears

14 14

8 8 Generic component for cylinders of gears 41 41

9 7 Cylinders of gears 73 73

10 9 Analogical switch 48 47

 Summary 504 478

4. Monitoring and Analysis

In this section we include our comments on the development, containing not only analysis of the Excel

trac document (development timeline and effort), but also we provide information on the proof statistics.

Furthermore, we investigate the measurements we took from our models during the development. The

measurements are based on the versions of the models submitted to the repository, meaning that the models

needed to be modelled and proved. Moreover, we study the relation between the iterations and refinement

steps, which was one of the interest points raised in one of our recent papers [44]. Finally, we present the

remarks of our developer on the development process and its feasibility for the formal developments.

4.1. Development Process

Our development consisted of two sprints. In addition, we held sprint ‘0’ whose purpose was to clarify the

goals of the project, plan the work and familiarise the non-agile team members with the principles and

practices behind the scrum development process. Moreover, some fine-tuning of scrum was needed for the

setting of the experiment. We found it particularly useful to have the planning sprint, so that the case study

can be discussed and preliminary strategy for the formal development can be agreed upon. Moreover, the

setup for the development (process viewpoint) is made transparent for all the team members.

In Table 6 we present the final snapshot of our requirements document that we used for tracking and

managing the development and iterations. Similarly like in traditional agile developments, where only the

tested and executable version of a system can be committed to the repository, it was essential in our setting

that a requirement should be modelled and proven in order to be submitted to the version control system

(and thus obtain status “Done”). As can be seen, almost all the requirements are modelled and proved (status

26

“Done”), except the one regarding the pump, which was moved for next iteration. Note that the timetable for

our experiment was limited to two weeks, meaning that the development of pump needed to be continued

beyond the experimental setting.

Table 6 Requirements table (Excel trac document) captured at the end of the development

ID Name of a feature / title Priority Description Remarks Done

1 Developing a valve 3 Can be done in parallel
with 2 & 11

1st iteration V

2 Developing a cylinder 3 Can be done in parallel
with 1 & 11

1st iteration V

11 Developing a generic
component

3 Can be done in parallel
with 2 & 1

1st iteration V

4 Introducing general electro-
valve

3 general electro-valve
supplies the specific
electro-valves with
hydraulic power from the
aircraft hydraulic circuit

1st iteration V

6 Introducing generic
component for valves of
doors and gears

3 Can be done when 11 is
done

1st iteration V

5 Refining generic component
into valves of doors

3 electro-valves set
pressure on the portion of
the hydraulic circuit
related to door
opening/closing and
landing gear
extending/retracting

2nd iteration V

8 Introducing generic
component for cylinders

3 Can be done when 11 is
done

2nd iteration V

7 Refining generic component
into cylinders

3 cylinders open/close
doors as well as
retract/extend the
landing gear

2nd iteration V

3 Developing analogical switch 2 - 2nd iteration V

9 Introducing analogical
switch

2 switch tolerates an
abnormal behaviour of
the digital part

2nd iteration V

10 Developing a pump 1 - 3rd iteration -

4.2. Meetings

By introducing agile principles and values to our development, in particular scrum practices, we wanted to

support the internal communication in the project. Based on our experience, we claimed it was a weak point

27

when applying formal methods [44], which can certainly be improved. As in scrum, we kept basic four

meetings, i.e. planning, daily, review and retrospective meetings and reinforced them with other

communication means (e-mails, live chats and calls with shared screens).

We held sprint "0", when we discussed the scrum development process and fine-tuned it for our setting, as

well as we agreed on the technologies used and introduced some additional development facilitators (e.g.,

the times we communicate, how the development will be documented). Afterwards, we started component-

based formal development governed by the adjusted scrum process, with two sprints, each having 5 days

(see Figure 20).

10.8 24.8

11.8 12.8 13.8 14.8 15.8 16.8 17.8 18.8 19.8 20.8 21.8 22.8 23.8 24.8

11.8 - 18.8

Sprint 1

18.8 - 24.8

Sprint 2

10.8 - 11.8

Sprint 0

Weekend RetrospectivePlanning Review

Figure 20 meetings within development

Every day we held a daily meeting, according to the scrum-by-the-book instructions, i.e., having 3

questions to be shortly answered within 15 minutes. We noticed that sometimes the discussions became

quite technical; however, we found it beneficial for the progress of the development, as we could jointly

come up with a solution to a bottleneck. On the first day of each sprint we had a planning meeting, where we

decided which features from item pool will be moved to the item backlog and what are their priorities.

Moreover, for sprint 2, we determined if the features which were not handled in sprint 1 will be processed in

sprint 2 and in which sequence (according to priorities and the latency fact). The review meeting and

retrospective were held on the fifth day of each sprint and served as checkpoint for the development and a

chance for process improvement, respectively. Some comments regarding the latter are presented in Section

4.5.

4.3. Development Effort

It was essential for us to be able to show evidence on the effort spent on particular tasks in the development,

so that somebody interested in applying the method gets the feeling about what it involves in terms of time

and effort. Table 7 presents the report on the effort spent by our developer on particular activities (including

modelling and proving).

28

Table 7 Report on effort and activities recorded by the developer

Date Description

10.08 Introductory planning meeting - Sprint 0

11.08 Checked components: generic, valve, cylinder; took ~18min. Introduced generic component for
the valves, had troubles with a variant; took ~70 min. Due to variant issue had to split the
refinement into steps: first introduced connection, then generic component. Total time spent:
~1.5 hours

12.08 Instantiated valves with specific values, took ~22min. Refined generic component into valves;
took ~180 min. The issue is with gluing invariants and proper data structures for refinement
(replacing one generic component with 4 parallel valves)

13.08 Fixed the second refinement with the control variables (instead of two, there is one now); took
~5min. Tried to fix the issue with the refinement took ~35min

14.08 Worked on the refinement took ~136min

15.08 -

16.08 -

17.08 Experimented with the case study without generic components took ~40min. Continued working
on the refinement took ~62min

18.08 Worked on the refinement took ~111min. Done with the refinement took ~524min (total 8
hours 42 min). Worked on task id 8 took ~34min

19.08 Worked on task id 8 took ~3min. Worked on task id 7 took ~42min

20.08 Worked on the connections of the valves with cylinders for gears took ~16min. Introduced and
refined generic component into cylinders for gears took ~60min

21.08 Started the development of the analogical switch took ~11min

22.08 -

23.08 -

24.08 Developed analogical switch including timeput for opening took ~11min. Total took ~22min;
Accomplished task id 9 took ~23min. Updated analogicalswitch component took ~2min.

The report is quite detailed for the purpose of our experiment and demonstration of the development

process. We believe that for a development, which is not within experimentation, the documentation does

not need to be so thorough. Note that the excerpt is in the form of an Excel table. Rodin tool offers reporting

of effort spent on active modelling and proving; however, it does not support additional time needed in the

development for e.g., the requirement analysis, checking the model, working on assumptions for the model,

reworking the modelling strategy, etc. Naturally, reading the documentation or spending time on the inner

project communication is not reported there either. However, more complex tracking system may be

employed, if it occurs to be necessary.

In Figure 21 we present the pre-processed data described by Table 7. Note that the developer was not

having the complete work days devoted for the experiment (due to other work-related obligations). Sprint

“0” is marked with yellow colour, whereas sprints one and two are given with green and violet colours

respectively. The lack of data for days 15, 16, 22 and 23 signify weekends. The brown arrows below the

dates signify the days when there was a commit to the repository.

29

Figure 21 Distribution of effort (in minutes) within the development

When analysing Figure 21 one can observe the preparatory activities involved at the beginning of the

development. Like in most of rigorous developments, there is an overhead that needs to be taken into the

consideration, when the system is being studied and the modelling is planned. It should be emphasised that

the choice of modelling strategy and the sequence of modelling artefacts and properties has an impact on

how easy it will be to prove the model. Therefore, we believe that investing some time at the beginning of

the development (sprint “0” and part of sprint “1”) is beneficial in the long run and does not contradict the

idea of agile development process. On the opposite, any progress, also involving preparatory actions as

eliciting and reworking the requirements conforms to the idea of agile by supporting value creation (and

indirectly eliminating waste by constructing system in such a way that it does not need to be remodelled).

We observed that the time necessary to model and prove requirements very much varied from case to

case. In order for some requirements to obtain status “Done” the developer needed to spend more than one

day of work per requirement (e.g., requirement ID 5, for which it was necessary to adjust the modelling

approach in order to ease proving; submitted to svn 18
th

 August); whereas for several other requirements it

was sufficient to be completely modelled and proven within one day (e.g., requirements ID 1, 2, 4 and 11;

submitted to svn 11
th

 August).

4.3.1. Proving Effort

Whenever analysing some formal development, it is particularly interesting to investigate the proof

statistics, which may shed some light on the development complexity, required effort or even give some

indirect information on the experience of the modeller. Proof statistics for our experiment (Table 5) are

displayed in Figure 22 and consist of data representing manual, automatic and total number of Proof

Obligations (POs) for each of the machine and context combined for each refinement step. The analysis of

Figure 22 shows that the modelling and refinement of electro-valves between doors and gears, as well as

modelling of analogical switch entailed more manual proving than any other machine. This is because the

number of manually proved POs for a single valve equals to 3. Since we introduced 4 valves at the third

refinement step, the total number of manually proved POs equals 4x3 = 12. Note however, that since these

components have been instantiated from the library, the corresponding proofs can be reproduced from there

as well. The only manual PO for the analogical switch regarded well-definedness condition which

sometimes requires user assistance due to necessary substitutions.

30

Figure 22 Proof statistics

Some interesting finding emerges when the machines and contexts are treated separately, like in Figure

23. It is quite apparent that the development of machines required more effort with respect to proving, than

the development of contexts. This is due to the fact that a machine models the behaviour of the system

(events), as well as incorporates invariant properties. Since events change the state of the system, they are

required to show consistency with the invariants. Clearly, the greater the number of events and invariants,

the more proof obligations generated and the more proving is needed.

0

20

40

60

80

100

120

140

160

N
u

m
b

e
r

o
f

P
ro

o
f

O
b

lig
at

io
n

s

Refinement steps

Proof Obligations

Total POs

Auto

Manual

31

Figure 23 Proof obligations – a detailed view

4.4. Model Measurements

We are also interested in the size and complexity of created models, as it is claimed that application of

formal methods and refinement may add complexity to the development, not only due to a steep learning

curve for the formal method to be used, but also due to multiple refinements. However, the use of modelling

strategies, herein abstractions and decomposition [45], application of patterns (see related work section) and

simple monitoring of the development [46], as well as providing a feasible development process [44] can aid

in controlling complexity.

Model measurements were automatically collected from all the versions of the model that were submitted

to the repository. Therefore, all the measurements are investigated according to the “Done” status, and not

(as in most formal developments) according to the refinement steps. Since there are minor differences

between the contexts or machines of the same level between versions, for the purpose of analysis we only

chose the final version of the model, dated 24
th

 August. The model consists of eleven machines and contexts,

each numbered from 0 to 10.

We used a set of metrics we established in [47], which is based on the syntactical metrics created for the

programs on the code level by Halstead [48]. The metrics we use are adapted for the Event-B setting and the

syntax of Event-B language (well identified operators, such as "and", "or" and "implication", as well as

operands, such as sets, constants and variables). They have been previously verified on a large and complex

system from the aerospace domain. The metrics are applied separately to each machine and context, and

comprise of:

 size of a vocabulary (n) of a specification (machine or context); defined as a sum of distinct

operators and operands;

0

20

40

60

80

100

120

140

160

C
0
_G
en

er
al
_E
le
ct
ro
v
al
v
e_
P
ar
…

C
1
_G
E
V
_E
le
ct
ro
v
al
v
es
_C
o
n
n
…

C
2
_E
le
ct
ro
v
al
v
es
_D
o
o
rs
_G
ea
…

C
3

_E
le

ct
ro

v
al

v
es

_D
o

o
rs

_G
ea

rs

C
4

_E
V

s_
D

o
o

rs
_C

o
n

n
ec

ti
o

n

C
5

_C
y

li
n

d
er

s_
D

o
o

rs
_G

en
er

ic

C
6

_C
y

li
n

d
er

s_
D

o
o

rs

C
7

_E
V

s_
G

ea
rs

_C
o

n
n

ec
ti

o
n

C
8

_C
y

li
n

d
er

s_
G

ea
rs

_G
en

er
ic

C
9

_C
y

li
n

d
er

s_
G

ea
rs

C
1

0
_A

n
al

o
gi

ca
lS

w
it

ch

M
0
_G
en

er
al
_E
le
ct
ro
v
al
v
e_
B
e…

M
1
_G
E
V
_E
le
ct
ro
v
al
v
es
_C
o
n
n
…

M
2
_E
le
ct
ro
v
al
v
es
_D
o
o
rs
_G
ea
…

M
3
_E
le
ct
ro
v
al
v
es
_D
o
o
rs
_G
ea
…

M
4

_E
V

s_
D

o
o

rs
_C

o
n

n
ec

ti
o

n

M
5

_C
y

li
n

d
er

s_
D

o
o

rs
_G

en
er

ic

M
6

_C
y

li
n

d
er

s_
D

o
o

rs

M
7

_E
V

s_
G

ea
rs

_C
o

n
n

ec
ti

o
n

M
8

_C
y

li
n

d
er

s_
G

ea
rs

_G
en

er
ic

M
9

_C
y

li
n

d
er

s_
G

ea
rs

M
1

0
_A

n
al

o
gi

ca
lS

w
it

ch

N
u

m
b

e
r

o
f

p
ro

o
f

o
b

li
g

a
ti

o
n

s

Machines and contexts

Proof obligations

auto_PO

manualPO

total_PO

32

 a size of a specification (N); it is a sum of operator and operand occurrences;

 the information contents of the program volume (V); it relates the size of the vocabulary (n) and

the size of the specification (N);

 the difficulty level (D), representing the difficulty experienced during writing a specification,

meaning modelling and proving; it is proportional to the number of distinct operators and

occurrences of operands, and inversely proportional to the number of distinct operands (4). One

should note that in practice, since there is a possibility that no operators are used in a machine

(empty events with skip) or in a context (either no axioms or theorems are present or sets are given

without their properties), the result of D after computation could be undefined;

 the effort (E) of modelling and proving a specification; defined as dependant on the number of

proof obligations (automatic and interactive), the volume V and difficulty D.

In Figure 24 and Figure 26 we present the measurements and computed metrics for the dynamic and static

parts of our model. Note that we use a logarithmic scale for plotting data, since there are quite big

differences between the values of particular groups of data (e.g., for machines values of n are roughly within

a hundred, whereas values of N within thousand, values of V are up to 8000, values of D are, again, lower –

below hundred and values of E are very high – up to 350 thousand). Additionally, negative or zero values

cannot be plotted correctly on log charts. Only positive values can be interpreted on a logarithmic scale.

Division by zero handled by substituting zero to the result.

Figure 24 Statistics for the dynamic part of the model

In Figure 24 we observed that each machine and its refinement have steady pace of development denoted

by no sudden peaks in the chart for the size indicators (n, N and V). This signifies that the system

requirements were well decomposed into features and that they were modelled in a stepwise way following

the refinement process. The difficulty and effort results (D and E) are also confirming the even development

growth, D showing the difficulty in modelling and E the effort required form modelling and proving the

machines. Most of the plots are displayed in parallel to each other, meaning the measurements are correlated

(n, N, V, E). The only exception is the difficulty plot (D), which is almost "flat". It suggests that the

difficulty of modelling was kept on the same level throughout the development, regardless of the size of the

machine.

1
10

100
1000

10000
100000

1000000

V
al

u
e

s

Machines over the refinement process

Statistics for machines

n

N

V

D

E

33

Additionally, in Figure 25 we display the effort distribution that was computed from the dynamic part of

our model (machines). We can compare it with the development effort reported by the developer in Figure

21. It can be observed that the former solely represents the modelling and proving activities, whereas the

latter also shows other activities related to the development (including modelling and proving). Note also

that the effort slightly rises while the development continues. We attribute it to the fact that the model gets

larger and, thus, requires more effort to comprehend all the relations between the system functionalities and

properties.

Figure 25 Distribution of effort based on the model measurements

In Figure 26 we observe the measurements for the static part of the model throughout the refinement

process displayed on the logarithmic scale. One can see that there are regular peaks in the chart, which are

regarding contexts C0 (general electro-valve), C3 (specific electro-valves for doors and gears), C6 (cylinders

of doors) and C9 (cylinders of gears). These contexts include the parameters of the components being

introduced at these refinement steps. The C0 is introducing one component, whilst C3, C6 and C9 "peaks"

are caused by introducing several components in one step.

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

V
a

lu
e

s

Consecutive machines

Effort distribution

34

Figure 26 Statistics for the static part of the model

4.5. Observations of the Developer

In this section we present the remarks made by the developer during the review and retrospective

meetings of the experiment, as well as some generic comments that were raised during the development. We

first describe the technical issues that appeared during the experiment, as we believe they can re-appear in

other developments using a reusable approach (parameterised components); only afterwards we present

some observations related to process improvement.

We aggregated our comments from both sprints, as there was certain degree of overlap in our observations

regarding iterations one and two. We provide the problem followed by our reasoning on what could have

been the cause and (possibly) a suggestion on how to handle such situation.

We found the following statements regarding the technical side of the development especially interesting:

 Refinement from generic component (placeholder) to several different components (e.g., valves)

working in parallel occurred to be problematic. There were issues between how the generic

component was defined and how it could be refined (refinement restrictions). It was implicitly

caused by the Event-B limitations (see future work).

 Finer granularity (better connectivity between the components) was needed in refinement strategy,

which led to the development of reusable refinement patterns [42]. However, stepwise

development and instantiations were working well, due to the prior knowledge of the developer

regarding such a refinement strategy – the basic specifications of the components were available,

only some refactoring was needed.

 Some tasks turn out to be particularly time consuming, although they did not seem to be, when

planned. For instance the refinement of generic component (e.g., into valves) was not at all

1

10

100

1000

10000

V
al

u
e

s

Contexts being refined

Statistics for contexts

n

N

V

D

E

35

straightforward and required a lot of effort to model and prove. Therefore, more careful planning

and better monitoring combined with some estimation mechanisms would be valuable when

scheduling the requirements within iterations. We suppose that larger projects would benefit from

having the column "Complexity / story points" in the trac document, as it would facilitate project

management and reduce the risk for requirements to be pushed to the following iteration due to

lack of time in current iteration.

As for the development process, we noticed that a more thorough plan would be needed (item pool and/or

item backlog), especially if the project is within an unfamiliar domain or the development team has little

experience. The detail level of such plan is mostly related to technology (Rodin tool) and/or formal method

(Event-B) restrictions, which are only encountered while actively modelling properties (not when working

with requirements and planning the modelling). In our case these involved for instance proving the

connections of refined components, which were not considered when creating item pool, or refining generic

components to specific ones. In both cases there were some constraints on logical side of refinement, which

required choosing a more detailed refinement strategy ("softer refinement").

Although agile processes stand against plan driven developments, there should be some planning and

anticipating involved in the project due to the fact that the sequence of modelling matters and it impacts the

difficulty of proving. The order of modelling depends on how the requirements are processed and prioritised,

as well as refinement rules. In our case the order of introducing components did not matter, as the

development was based on library of components that needed to be linked.

 Moreover, we observed that the daily meetings could actually take place less frequently, as there are

situations, where the progress of the development is not visible and there is not much to present or discuss

(e.g., planning the development in more detail or decomposing a problem). However, the meetings should be

held regularly, for instance once per two days. The daily meetings should be more tightly related to the item

backlog and priorities of requirements to be modelled, so that they follow the sequential character of

stepwise refinement. With this respect sequential development following refinement rules does not fully

conform to rapid and iterative development suggested by agile methodologies. Finally, the dailies should be

treated as safeguards for the development, specifically help in monitoring the actual direction of a

development and its original plan. This is especially important when working in a team.

We also noticed that the frequency of meetings should be dependent on the complexity of a problem, i.e.

the more complex the problem, the more frequent meetings. These meetings should not be under the

"dailies" banner, as they might be too technical for this purpose. Nevertheless, they should facilitate

communication, knowledge exchange and decision making. The main idea behind it is not to get stuck with

the development and by that support the agile philosophy of a continuous progress.

Formal modelling requires mathematical background and application of formal methods differs from

using traditional development methods and languages. In order to efficiently model and prove a system

involves not only (mathematical) knowledge, but also largely benefits from experience. Gathering

knowledge on how to formally model a system is in fact a complex, and often long, process and involves

steep learning curve. Therefore, having an expert on site (or on-call) for consultancy and monitoring

purposes would facilitate and smoothen the development. Presence of such a specialist in the project would

mainly concern obtaining advice on the development strategy, handling the restrictions of Event-B language

and refinement relations. Finally, model reviews done by such a skilled person (or a person of some

experience in formal modelling) would be beneficial for the development and serve as a mechanism for

assuring that the chosen design decision is "good enough". The reviews could also help to decrease the risk

of subjective thinking (biased decisions of a modeller). The model could then be shown to the expert (or

stakeholder) in two ways – statically (proofs) or dynamically (using ProB [49]).

36

Our final remark regards the tool support and multiple plugins that are optional for the Rodin platform. In

our project we noticed that tweaking the tool, e.g., by extending the time for the provers to work, increases

the possibility to automatically discharge some of the proof obligations.

5. Conclusions

The experimentation on using Event-B in an agile context, in particular Scrum development process, was

necessary to investigate our claims regarding their synergy (given in our previous work [44]). We are aware

that the setting for the experiment was small-scale. However, we believe that the analysis and our

observations will shed some light on what kind of issues need special attention when choosing Event-B as a

modelling language in an agile setting, as well as what kind of fine-tuning of an agile process is needed to

benefit the most from the agile and formal merge.

Juxtaposing the development iterations (see Table 6) and the data regarding submissions to the repository

lead us to the following remarks:

 One refinement step and iteration are not equal. This is especially the case when a refinement strategy

involves decomposing a problem into several smaller ones. This leads to subsequent comment:

 There can be several refinement steps in a single iteration. In fact, we would recommend this manner of

developing a system, since it is easier to backtrack and pinpoint some erroneous or inaccurate

assumptions, or make changes to the model, as the complexity of a problem is being divided to tasks

with smaller complexities.

 Submissions to the svn system are often not daily, since the “Done” status might not necessarily be

obtained at the end of the working day. For instance, in case there is more proving involved or a change

in the modelling approach is needed. Therefore, one refinement step does not equal to one commit to the

repository.

 Set of meetings proposed by Scrum is facilitating the communication within and transparency of the

development. However, the daily meetings can be less frequent, depending on the nature of a specific

development.

 Sequential nature of refinement does not fully conform to rapid and iterative development suggested by

agile methodologies. This is especially the case when a new feature request is made, which means that

the created model needs to be adjusted to fit the new properties (reengineering the model).

 Scrum process helps to monitor and manage the development with respect to the planned modelling.

The item pool and item backlog supports organisation of requirements and, specifically the latter,

requirements prioritisation. Furthermore, the sustainable pace and continuous progress is controlled in a

twofold manner: by the meetings and the backlog.

5.1. Validity of Experimentation

The validity discussion shows how reliable the results of the experimentation are. It also illustrates the

truthfulness of work and discusses the risks of bias that could potentially be injected in the investigation by

the researcher. We sequentially consider construct, internal, external and reliability (conclusion) validity

[15].

The construct validity is a check whether the problem being investigated truly reflects the observations

drawn from the experimentation. Here we managed to keep the artefacts being studied and the context of our

study transparent for all parties involved; everybody had the same level of familiarity of the terminology

37

used and concepts being studied. The experimentation was supposed to validate the claims we made in our

previous paper, regardless whether they would be confirmed or refuted. Therefore, we were not biasing the

experimentation with our expectations. Finally, we avoided the mono-method bias, as we support our

observations with qualitative and quantitative means.

The internal validity discussion involves identifying the influences that impacted the studied problem and

thus could have caused the observed effect. To our knowledge there were no threats to internal validity that

we would not describe in the context of the experiment (see Section 3.3).

We held a small-scale experimentation (a pilot study), so that we cannot generalise our findings. In this

respect the external validity is threatened. However, we believe that our findings are of interest to other

people outside the investigated case (as motivated in the introductory section of this paper). Our intention

was to show hands-on research, which is based on the concepts theoretically investigated in our previous

work. We believe that our results are relevant when extended to other cases with characteristics common

with our experimentation. Since we described the environmental characteristics of our work (methods, tools,

experimental setting), the others can themselves assess the applicability of presented approach to their

specific context.

We believe that there is a threat to conclusion validity, as we have not statistically checked the soundness

of our results. There are many variables that can impact the experimentation, for instance, experience of the

developer with a formal method or the tool that supports it; familiarity to agile processes; domain knowledge

of the problem to be modelled, etc. However, they were well described in the section about experimental

setting (see Section 3.3). Furthermore, we did not bias the investigation, as were not fishing for a certain

result (we were quite curious about the results of the study). Finally, for the quantitative analysis we used the

metrics that we verified in our previous work [47].

5.2. Implications of Research and Future Work

The synergy of formal method and agile philosophy has a potential, since the well-defined development

methods are complemented with efficient and flexible development process, respectively. We believe that

our results can be, to some degree, transferable to other formalisms and different agile methods. We suppose

that further advances both on formal method end (Event-B) and agile method end (Scrum) will foster the

development of systems even more.

We are currently investigating guidelines for modelling in Event-B, which will aid the developer with

modelling decisions. The guidelines would be beneficial for the experienced formal method users with

developing their modelling strategy and fine-tuning of modelling approach. Moreover, they could serve as

recommendations for the less experienced ones. Finally, they could be used in the training sessions, such as

the university courses.

As for Scrum, we would like to continue our work on fine-tuning the Scrum process to the specifics of

Event-B modelling. Therefore, as future work, we plan to perform experimentation in academic setting,

which would involve students working on a project course. Formal methods, specifically Event-B would be

used as part of the development (modelling some logical relationships), whereas all the development process

would be of agile type, preferably scrum. We are aware that the future experimental setting differs from the

one described in this paper. For instance, having students as modellers might mean that the formal part will

be more difficult for them due to their minor experience. Moreover, some learning process for the use of

formal method and associated toolset might be necessary when preparing for the formal part of the

development.

The idea of experimentation with the synergy of formal and agile approaches was born when we came

across the DevOps philosophy [44]. We were wondering if formal methods are at all suitable in DevOps

38

context [50] [51]. Now, we are aware what challenges and opportunities there are in such a mix for the

development part of DevOps and want to continue our study on its operational part.

Acknowledgements

This work was carried out within the project ADVICeS, funded by Academy of Finland, grant No.

266373.

References

1. Butler, R.: What is Formal Methods? In : NASA LaRC Formal Methods Program. (2001)

2. Manifesto for Agile Software Development. (Accessed February 11-13, 2001) Available at: http://agilemanifesto.org/

3. Holloway, M.: Why Engineers Should Consider Formal Methods. In : AIAA/IEEE16th Digital Avionics Systems

Conference (1997)

4. Alliance, A.: What is Agile? In: Agile Alliance. Available at: https://www.agilealliance.org/agile101/what-is-agile/

5. Larsen, P., Fitzgerald, J., Wolff, S.: Are Formal Methods Ready for Agility? A Reality Check. In : Second International

Workshop on Formal Methods and Agile Methods, Pisa (2010)

6. Bowen, J., Hinchey, M., Janicke, H., Ward, M., Zedan, H.: Agility, Security, and Evolution in Software Development., 86-

89 (2014)

7. Olszewska, M., Waldén, M.: FormAgi – A Concept for More Flexible Formal Developments. TUCS TR, Åbo Akademi

University, Turku (2014)

8. Boniol, F., Wiels, V.: ABZ 2014: The Landing Gear Case Study. In Boniol, F., Wiels, V., Ameur, Y., Schewe, K.-D., eds.

: Proceedings of Case Study Track, held at the 4th International Conference on Abstract State Machines, Alloy, B, TLA,

VDM, and Z, Toulouse, France, pp.1-18 (2014)

9. Savicks, V., Butler, M., Colley, J.: Co-simulation Environment for Rodin: Landing Gear Case Study. In Boniol, F., Wiels,

V., Ait Ameur, Y., Schewe, K.-D., eds. : ABZ 2014: The Landing Gear Case Study, Toulouse, France, vol. 433 of the series

Communications in Computer and Information Science, pp.148-153 (2014)

10. Arcaini, P., Gargantini, A., Riccobene, E.: Modeling and Analyzing Using ASMs: The Landing Gear System Case Study.

In Boniol, F., Wiels, V., Ait Ameur, Y., Schewe, K.-D., eds. : International Conference on Abstract Statemachines, Alloy, B,

TLA, VDM, and Z, Toulouse, France, vol. 433 CCIS, pp.36-51 (2014)

11. Pressmann, R.: Software Engineering: Apractitioner's Approach 8th edn. The McGraw-Hill Companies (2014)

12. Jaspan, C., Keeling, M., Maccherone, L., Zenarosa, G., Shaw, M.: Software Mythbusters Explore Formal Methods., 60-63

(2009)

13. Shafiq, S., Minhas, N.: Integrating Formal Methods in XP — A Conceptual Solution., 299-310 (2014)

14. Parsa, M., Snook, C., Olszewska, M., Waldén, M.: Parallel Development of Event-B Systems with Agile Methods. In

Mousavi, M., Taha, W., eds. : Proceedings of 26th Nordic Workshop on Programming Theory, NWPT '14. Halmstad

University, Halmstad (2014)

15. Wohlin, C., Ruenson, P., Höst, M., Ohlsson, M., Regnell, , Wesslén, A.: Experimentation in Software Engineering.

Springer (2012)

16. Sfetsos, P., Stamelos, I.: Formal Experimentation for Agile Formal Methods. In : Proceedings of the 1st South-East

European Wokshop on Formal Methods, Thessaloniki, Greece, pp.48-56 (2003)

17. Snook, C., Butler, M.: UML-B: Formal Modelling and Design Aided by UML., 92-122 (2006)

18. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language - A Reference Manual 2nd edn. Pearson Higher

Education (2004)

19. Schneider, S.: The B-method: An Introduction. Palgrave Macmillan (2001)

http://agilemanifesto.org/
https://www.agilealliance.org/agile101/what-is-agile/

39

20. Snook, C., Butler, M.: UML-B and Event-B: an integration of languages and tools. In : Proceedings of the IASTED

International Conference on Software Engineering, Innsbruck, Austria, pp.336--341 (2008)

21. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D., Latvala, T.: Supporting Reuse in

Event B Development: Modularisation Approach. In : Abstract State Machines, Alloy, B and Z: Second International

Conference (ABZ) (2010)

22. Abrial, J.-R.: Event Model Decomposition. Available at: http://wiki.event-b.org/images/Event_Model_Decomposition-

1.3.pdf

23. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press (2010)

24. Abrial, J.-R.: “Extending B without Changing it (for Developing Distributed Systems). In : Proceesings of 1st Conference

on the B Method, Nantes (1996)

25. Back, R.-J.: Refinement Calculus, Part II: Parallel and reactive programs. Stepwise Refinement of Distributed Systems.

Åbo Akademi (1990)

26. Back, R.-J., Kurki-Suonio, R.: Decentralization of process nets with centralized control. 2nd ACM SIGACT-SIGOPS

Symposium on Principles of Distributed Computing, 131-142 (1983)

27. Back, R.-J., Sere, K.: From modular systems to action systems. Software - Concepts and Tools 17, 26-39 (1996)

28. Event-B: Home of Event-B and the Rodin Platform. http://www.event-b.org/index.html (2008)

29. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press (1996)

30. Platform, R.: http://www.event-b.org/platform.html. (2006)

31. Takeuchi, H., Nonaka , I.: New New Product Development Game. Harvard Business Review 86116, 137-146 (1986)

32. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit. Addison-Wesley Professional, Boston,

MA, USA (2003)

33. Anderson, D., Reinertsen, D.: Kanban: Successful Evolutionary Change for Your Technology Business. Blue Hole Press

(2010)

34. Klipp, P.: Getting Started with Kanban. Amazon Digital Services (2014)

35. Beck, K.: Extreme Programming Explained. Addison-Wesley (2000)

36. Beck, K.: Extreme Programming Explained: Embrace Change, 2nd edition. Addison-Wesley Professional (2004)

37. Ambler, S., Lines, M.: Disciplined Agile Delivery: A Practitioner's Guide to Agile Software Delivery in the Enterprise 1st

edn. IBM Press (2012)

38. Tudor, D., Tudor, I.: The DSDM Atern Student Workbook: A Guide to the Definitive Agile Framework. Galatea Training

Services Ltd (2010)

39. Consortium, D.: The DSDM Atern Handbook. DSDM Consortium (2013)

40. Jones, C.: Applied software measurement: assuring productivity and quality 3rd edn. McGraw-Hill, Inc., New York (1996)

41. Sutherland, J.: ScrumInc. In: SCRUM: Keep Team Size Under 7! Available at: http://www.scruminc.com/scrum-keep-

team-size-under-7/

42. Ostroumov, S., Waldén, M.: Facilitating Formal Event-B Development by Visual Component-based Design. TUCS

Technical Report 1148, Turku Centre for Computer Science, Turku (2015)

43. Ostroumov, S., Waldén, M.: Formal Library of Visual Components. TUCS Technical Report 1147, Turku Centre for

Computer Science, Turku (2015)

44. Olszewska, M., Waldén, M.: DevOps Meets Formal Modelling in High-Criticality Complex Systems. In : 1st International

Workshop on Quality-Aware DevOps (QUDOS 2015), collocated with 10th Joint Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, Bergamo (2015)

45. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.: Use of Formal Methods at Amazon Web

Services., 66-73 (2015)

46. Olszewska, M.: On the Impact of Rigorous Approaches on the Quality of Development. Turku Centre for Computer

Science (2011)

47. Olszewska (Pląska), M., Sere, K.: Specification Metrics for Event-B Developments. In : 13th International Conference on

Quality Engineering in Software Technology (CONQUEST 2010), Dresden (2010)

48. Halstead, M.: Elements of Software Science Operating and programming systems series edn. Elsevier. Elsevier Science

http://wiki.event-b.org/images/Event_Model_Decomposition-1.3.pdf
http://wiki.event-b.org/images/Event_Model_Decomposition-1.3.pdf
http://www.scruminc.com/scrum-keep-team-size-under-7/
http://www.scruminc.com/scrum-keep-team-size-under-7/

40

Inc., New York, NY, USA (1977)

49. ProB: The ProB Animator and Model Checker. (Accessed November 18, 2013) Available at: http://www.stups.uni-

duesseldorf.de/ProB/index.php5/Main_Page

50. Loukides, M.: What is DevOps? O’Reilly Media, Sebastopol (2012)

51. Loukides, M.: What is DevOps (yet again)? Radar(radar.oreilly.com) (2015)

http://www.stups.uni-duesseldorf.de/ProB/index.php5/Main_Page
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Main_Page

ISBN 978-952-12-3342-5

ISSN 1239-1891

