

Turku Cent re Computer Sciencefor

TUCS Technical Report

No 1124, November 2014

Author One | Author Two | Author Three Author Four |

Author Five

Title of the Technical Report

Marta Olszewska | Marina Waldén

FormAgi – A Concept for

More Flexible Formal
Developments

TUCS Technical Report

No 1124, November 2014

FormAgi – A Concept for More Flexible

Formal Developments

Marta Olszewska
Åbo Akademi University, Department of Information Technology

Marina Waldén

Åbo Akademi University, Department of Information Technology

Abstract

It is increasingly important that the software system that is developed is not only of

good quality, but also delivered within the anticipated cost and deadlines. Formal

methods ensure that the system is correct and created according to specification, and

thus fulfils the requirements and preserves certain quality attributes. Since the methods

are based on establishing a heavy design upfront, the development schedule can be quite

well estimated. However in reality, when the customer is changing the requirements

during the development, neither the schedule nor the cost can remain constant.

Therefore, a more flexible development process is needed in order to facilitate a well-

established development method and, thus, enable efficient tackling of the volatility of

requirements.

In this report we propose an adaptable development framework called FormAgi, which

merges the strengths of formal methods and agile development methods. We base our

study on concepts that are vital in formal development and combine them with ideas

from well-known agile methods. Furthermore, we indicate how the framework can be

utilised in the Event-B environment. Finally, we identify the challenges and

opportunities for this kind of fusion.

Keywords: Formal methods, agile development process, flexibility, adaptable

development framework, Event-B

TUCS Laboratory

RITES – Resilient IT Infrastructures

Distributed Systems Laboratory
Integrated Design of Quality Systems group

1

1. Introduction

When developing a product there are plenty of factors to be considered and most of

them are related to one (or more) of the categories cost, quality and time. Although

projects always strive for achieving all three [1], as they are interrelated, it is nearly

impossible to optimise all of them – one will always suffer. Cost is thought to be more

likely to be fixed (or estimated with some margin) at the beginning of the project, thus

“only” quality of the end product (and used development process) and time to produce

and deploy the product is what is left to be tackled separately.

Quality is an important matter in software development. Nevertheless, it can be

understood differently by people with diverse backgrounds e.g. software engineers,

business managers, and researchers. Software quality, according to the definition by

IEEE Standard 1061, “is the degree in which software possesses a desired combination

of quality attributes”.

There are several decisive factors that impact the quality of a software product and the

related development process, which in consequence determine the success of the whole

development. Firstly, it is the broad knowledge of the domain and developers’

commitment to a development. Secondly, it is the choice of an appropriate development

methodology to be applied. Finally, it is the support for suitable technologies, processes

and tools that bring the reinforcements for the system development. All of the

aforementioned factors are, however, impacted by the real-life dynamics, such as for

example requirement change, sociological circumstances, economic situation on the

market and the continuous race with competitors. Therefore, the contemporary software

development has to deal with a variety of non-technical issues. The technical issues

mainly regard requirements, which are increasingly volatile.

Efficiency and effectiveness of the development method, which is necessary in the

perspective of the listed factors, are two of the most important aspects in existing

software developments, particularly with respect to the concept of the “need for speed”

in the ICT field. Naturally, end-users, customers and stakeholders should be satisfied

with the software they obtain, just as the developers should be satisfied with the

software they created. Providing a supportive development environment and a well-

defined development method brings benefits in obtaining feasible development

2

processes, which in turn results in quality products that meet the needs of the business

customer and the stakeholder, and satisfies the developers.

Formal methods and Agility – why together?

Developing systems in safety-critical domains differs from developing, e.g. games or

office tools, although in both cases the size and complexity of systems may be

significant. Quality, as a broad aspect, is especially important with regard to the former,

since failure or malfunctioning of these systems can cause some hazardous effects. For

instance, it can endanger human lives by causing death or considerable injury, cause

loss or serious damage to equipment, or lead to environmental harm. Furthermore,

severe financial losses can be involved. Therefore, creating high quality software

systems, which can be depended upon, is of essence.

Development of safety-critical systems requires special treatment, e.g. methods and

tools that would ensure that the system functions correctly, according to requirements.

Traditional development methods cannot assure achieving high enough quality of a

critical system. However, this can be, and often is, provided by rigorous methods, i.e.

formal and semi-formal methods by eliminating ambiguity and thus making the

specification or a model of a system more precise. Application of formal methods

brings high quality to critical systems, but at the same time it may cause complexity

issues. These issues can be managed by suitable choice and application of modelling

strategies, i.e. patterns, decomposition and abstraction mechanisms. However, some

experience and mathematical background is needed in order to properly utilise the

existing modelling solutions.

Using formal methods brings high level of rigour to the development, but at the same

time limits its flexibility. Due to the needs of standardisation or certification, criticality

of software adds conditions to the product life-cycle and development, i.e. tools and

methods, design, documentation etc. Therefore, there is a need to complement the

development and activities involved and enable shorter iterations and faster delivery,

better complexity control and customer-driven approach.

While academia puts emphasis on establishing formal methods that would serve their

purpose of achieving high quality software, and at the same time be accepted by

industry, the development process that would facilitate projects is pushed far behind the

main scope. Industry, on the other hand, would be eager to utilise what is offered by

academia as is. However, some tailoring often needs to be done in order to make the use

of formal methods efficient, i.e. tailoring it to a specific project or organisation.

3

Therefore, there is still a noticeable gap between industry and academia, which could be

diminished by making formal methods more flexible in their applicability.

In order to make the development of large systems pragmatically feasible, timely and

supportive to the developers, as well as resulting in satisfaction to all involved parties,

e.g. developers, stakeholders and users, the development methods that currently are

used might not suffice. They need to be supported by employing an efficient

development process, which would facilitate chosen development methods and

techniques. This can be achieved by injecting elements of agile development methods in

the safety-critical development, minding that correctness and assuring high quality is

still the priority.

Since agile methods can be seen as a conceptual framework, many of the development

ideas can be brought into this framework and adjusted to the needs and characteristics of

the environment, domain and developers. Given that there is a plethora of

methodologies, practices and techniques that are to be used simultaneously, combining

them may cause serious organisational problems. It is often the case that the initial

process set up in the project needs to be tailored and iteratively improved in order to

find a perfect mix. We intend to use a number of existing methods and capture the

practices and values that best suit the needs of the formal setting.

Well-founded and established formal methods, which bring necessary rigour to the

safety-critical developments, and the widely-used agile principles and methods, which

introduce iterative and transparent development, need to be combined into a hybrid

approach that emphasises the strengths from both of the concepts. Naturally, the hybrid

approach should comprise a risk assessment considering characteristics of a particular

project, e.g. balance the high risk of system failure versus an overwhelming need for

speed to market [2][3].

Our aim is not to limit ourselves with a particular formal method. Rather, we aim at

proposing a generic approach, which can be utilised by various types of formal

development. However, we are strongly linked with the Event-B formal method and

modelling language [4], both by experience and history, and therefore when giving

examples in our study, we will show how agile principles can be merged into Event-B.

We strongly believe that successfully injecting agile principles to formal methods (also

other than Event-B) can prove to be efficient and feasible due to elasticity of agile

approaches. Agile methods will thus act as facilitators not only in the combining and

fine-tuning of methods, techniques and practices, but also in the adjustment of the

proposed framework to the formal methods of choice. Agility brings no reference model

4

for the decision making, as principles and practices of software development are still

evolving. Therefore, formal methods with their design patterns etc. to guide the

development will complement agility in this respect.

In this report we propose to merge a formal method with elements of agile software

development principles and values. The former provides a well-defined development

methodology, whereas the latter brings tailorable elasticity to the development process,

in particular to modelling. Our goal is to increase usability and flexibility of formal

development methods, and in particular to extend the flexibility of formal modelling

process. By flexibility we mean a degree to which a process or a method can be used

effectively, free from risk and with satisfaction in contexts beyond those initially

specified in the development setting1. Additionally, we see a potential in using agility in

formal approaches, since it may widen the take-up of formal methods in industry.

2. Related work

Formal methods can be traced back to 1970s, whereas agile methods date back to year

2001 (Agile Manifesto [5]). Although these two methodologies seem to be on the

completely opposite sides of the line, their various combinations have been reported for

almost a decade now.

Agile and Formal – separate worlds

There is a variety of formal methods, application of which differs with respect to the

domain, and properties of the modelled systems. Application of formal methods

involves knowledge of theoretical computer science fundamentals, in particular logic

calculi, formal languages, automata theory, and program semantics, but also type

systems and algebraic data types in order to solve problems in software and hardware

specification and verification [6]. To our knowledge, there is no single source providing

a comprehensive overview of existing formal methods, which is most likely caused by

the substantial diversity of formal methods. However, there is a plethora of material

regarding certain type of formal methods, just to mention formal methods for

verification, architecture, modelling, etc.

1 Definition based on standard ISO/IEC SQuaRE [67]; rephrased from product-oriented to process and

methodology-oriented

5

An overview of research on agile methods, which aims at explaining its role in software

development throughout a decade (involving transformation from e.g. plan-driven,

waterfall, etc.) is presented in [7]. Authors present different viewpoints and definitions

of agility, as well as research themes and theoretical perspectives used in agile research.

However, several common characteristics are identified, such as prioritising people over

development processes (emphasis on communication), documenting only necessary

artefacts (no wasteful documentation) and acceptance of uncertainty (volatile

requirements). The authors mention that many practices, including merging agile with

other development methods, have been reported as successful, however without

empirical validation or deeper research of such claims. Therefore, further investigation

is necessary to support the statements posed in experience reports and industrial white

papers. In another paper regarding agile practices for large-scale developments [8]

authors clearly state that in case of agile development the practice is inherently ahead of

research; therefore, it needs the support and reinforcements from academia.

Agile and Formal – a common direction

Until recently, a question of maturity of formal and agile methodologies was broadly

discussed in different contexts, mostly separately. For instance, formal methods were

examined with respect to their adoption in industry [9], while agile methods were

investigated in connection with their role in software development [7]. The readiness of

formal methods for adaptation of agile principles and vice versa has already been

considered for several years. However, only recently the discussion has become more

systematised and coordinated, e.g. via events like International Workshop on Formal

Methods and Agile Methods (since 2009) or International Formal Methods in Software

Engineering: Rigorous and Agile Approaches (FormSERA, since 2012).

The analysis of readiness of formal methods for agility has taken place in [10], where

authors notice that the integration is already taking place and, thus, is an interesting

emerging research topic. They confirm the claim of agile enthusiasts Torgeir Dingsøyr

and Nils Brede Moe given in [8] that the practice precedes research. In [10] benefits of

future synergy between two approaches are portrayed. The potential for the combination

of formal and agile techniques in software development is described in [11]. The

authors observe that the merge, if applied cautiously, can minimise change-related

problems and aid the evolution of the system being built. We believe that the synergy

already has taken place and that it needs to be documented, along with its benefits and

drawbacks, and then possibly increase the usefulness of this merge. In this paper we

focus on the former and provide our vision of possible improvement of this mix.

6

A powerful combination

One can perceive the merge of formal methods and agile methods in a twofold manner:

1. Agile teams applying formal methods in their development;

2. Formal development being enriched by agile method principles and practices.

In the following subsections we will first concentrate on the adoption of formal methods

to the agile setting and then follow with utilising formal methods in agile environment.

Finally, we give some remarks about the role of standardisation and the industrial aspect

in the discussed merge of formal and agile approaches.

Agile teams applying formal methods

It has been demonstrated that agile teams are able to employ highly disciplined formal

methods [12]. A proposal of a way to employ formal development methods in the agile

development process, in particular Scrum, is described in [13]. The motivation of the

author is to make advantages of formal specification visible and at the same time enable

the use of agile development techniques for critical systems. The main idea is to fulfil

the time and budget obligations with agile methods and assure quality with formal

methods. We agree with these goals and statements, however, we are interested in a

two-fold scenario: the developers utilising formal methods and making use of agile

elements, as well as users of agile methods who include formal methods in their

development, if there is a need for employing rigour in their system. Furthermore, in

[13] the discussion evolves mainly around Scrum (however not limited to it) and VDM

methodologies (Event-B is shortly mentioned as a related work). In our work we discuss

several agile methods and integrate the best of concepts to a formal development

methodology, considering the Event-B method as the primary formal method.

A proposal of formal methods being “injected” into the agile development was

presented in [14], where the author was arguing for supporting agile development with

formal system modelling and transformation. He puts emphasis on refactoring, e.g. by

proving transformation for parts of a system and having patterns or rules to check the

correctness of a system, which can be done in an agile way. Also the importance of

possibility of standardisation of such an agile and formal combination is required in

order for the mixed method to be fully utilised. In our work we also support the concept

of having guidelines on how to proceed with the development so that it is effective.

However, we also focus on supporting the developers, who are using formal methods,

with advice on development process that originate from agile methods.

7

Formal development with an agile twist

An example of using an agile method, in particular XP, in order to improve a software

process for the development of avionics software is presented in [15]. Authors apply

agile principles to the certification driven process (DO-178B) of avionics software

development and identify three agile principles that need re-interpretation in order to be

able to apply them in this safety-critical setting. These three principles regard producing

valuable software (here software needs to be more than tested), face to face

communication (here software needs to be well documented) and the issue of working

software (not only should the software be working, but it should also be certifiable).

Using agile methodologies to build safety-critical software is described in form of a

case study in [16]. Agile methods, particularly Scrum, were used to develop an open

source image-guided surgical toolkit. The software project has been utilised by teaching

hospitals and research labs, and used for clinical trials. In the paper the authors claim

that “agile methods have matured since the academic community suggested almost a

decade ago that they were not suitable for safety-critical systems”. Therefore, we

believe that it is the right time to experiment with them in the context of e.g. Event-B.

Blending agile methodologies into plan-driven software development was discussed in

several publications within a special issue of Computer magazine [17]. Topics such as

mixing agile and plan-driven development, as well as identification how and when to

mix these two approaches were discussed among others in perspective of Scrum and XP

methodologies.

Employing agile methodologies can be set not only in the context of a development

process or a product, but also when engineering new (development) methods [18], and

in particular for integrating formal methods. In the referred paper authors presented a

framework for establishing a development method utilising agile principles and

practices. Specifically, they used technical practices of XP method to integrate parts of

Eiffel formal development method with CSP. They demonstrated via a case study the

idea of using an agile method for engineering formal methods and integrating them into

the development. In our work we aim at creating a framework for flexible and adaptable

development that uses formal methods. We do not limit ourselves with a particular agile

method. Rather, we combine best suited (for our purpose) practices from a subset of

agile methodologies with the intention to make them as generic as possible. Having

Event-B formal method in the background serves as an example for our proposals.

8

Standardisation aspect

Regardless if the discussion is on agile methods utilising formal development methods

or the other way around, the issue of certification often arises. This is due to the type of

systems where formal methods are applied, namely safety-critical systems. These

typically need to be qualified or certified in order to be deployed into use. Although

agile methods are not explicitly considered in standards (e.g. IEC 51608 standard), their

use in safety-critical development is already present.

Project RECOMP [19], a European funded FP7 project (2010-2013), reported three

companies which were working with different agile methods in the safety critical

domain. The research, among other topics, concerned certification issues, including IEC

61508, DO-178 and CMMI standards. The particular project deliverable discussing

these topics is confidential, thus we can only mention information that was approved to

be made public or is made public by companies Skov, Kone and Symtavision

themselves.

Skov is a Danish company developing systems handling climate control and production

monitoring of animal production. They work on systems and components for ventilation

systems, livestock house air cleaning and production control, e.g. ventilation systems

for animal stables. The industry is safety-critical, however, the development is not

certified, since no standards for this particular industry exist. Skov does all of their

development with Scrum.

A Finnish company developing various types of elevators and escalators, Kone, uses

Scrum only for development of new functionality. The well-known functionality and

development parts that have to be certified are still developed with traditional processes.

Finally, a German company Symtavision provides timing analysis solutions for

planning, optimizing and verifying embedded real-time systems. They make software

tools for safety critical development (aerospace, automotive), however, nothing of their

development is included in safety critical products. Thus, they do not have

certifications. Their development is built around Scrum.

The aforementioned companies are using agile methods (in one way or another) on a

daily basis, meaning that the concept of having agile principles and practices in safety-

critical development did not remain in the conceptual area only. It is rather the

practicality of the methodology merge, i.e. increase of development effectiveness,

enhancing communication between developers and providing better development

9

transparency, among other factors, that caused the adoption of this mix in real life.

However, most of the evidence and details regarding successes and challenges of this

kind of hybrid approaches is not public due to the industrial secrecy. Therefore, we

investigate the merge of agile and formal methodologies by taking into account the

perspective of potential standardisation (see e.g. the discussion on documentation in

later sections of this paper).

3. Formal methods

Formal methods are mathematically based techniques for the specification, development

and verification of software and hardware systems [20]. The application of formal

methods for system (software and hardware) design is motivated by the expectation that

doing proper mathematical analysis can lead to reliable and robust design [21].

Formal development is a development that requires the application of formal methods,

while semi-formal methods may omit the proofs in favour of e.g. simulation, as main

analysis technique [22]. We are interested in both formal and semi-formal techniques,

since both of them contribute to the correctness of designed systems. Moreover, we

consider them equally suitable to be made more flexible.

Quality

Safety-critical systems are required to be of high quality. Primarily, they need to be

dependable, which means that they should have the ability to avoid service failures that

are more than acceptably frequent and severe [23]. Dependability, as a quality attribute,

can be decomposed into availability, reliability, safety, confidentiality, integrity and

maintainability [23].

According to the ISO / IEC 9126 standard [24] (now relabelled to ISO 25000 series),

the quality attributes are reliability, maintainability, functionality, usability, efficiency

and portability. The two first ones are dependability attributes. All of these signify

aspects of the end product quality for the software to be developed [25].

In our work we are interested in providing a development framework, which would

facilitate development of high quality safety-critical systems. In our context the quality

encapsulates dependability with special focus on maintainability, as well as other

attributes like functionality, usability and efficiency. Our main goal is to establish a

framework that tackles not only the product related artefacts (be it a specification, a

10

model or a final system), but also the way how to achieve high-quality software

systems. The latter basically means tailoring a development process, which in principle

should be adaptable, flexible and reactive, while still retaining the necessary degree of

rigour. Therefore, ensuring high-quality is a requirement not only for the final product,

but also for the development process.

Refinement

Refinement [26] [27] [28] is a stepwise formal development method, which allows the

system to be created iteratively following certain rules called refinement rules (also

referred to as proof obligations) [29] [30] [31]. Stepwise refinement is a top-down

approach [27], which aids handling all the implementation matters and complexity by

decomposing the problems to be specified and gradually introducing details of the

system to the specification. In the refinement process, an abstract specification A is

created from requirements. Specification A is then transformed into a more concrete and

deterministic system C that preserves the functionality of A in consecutive refinement

steps. The refinement process is shown in Figure 1.

Figure 1 Refinement process

In our work we mainly use superposition refinement [32]. This is a certain kind of

refinement that allows new variables and related events that operate on them to be

added within each refinement step. The existing behaviour of the system is not changed

during the refinement.

11

Proving

The correctness of the system development, resulting in correct by construction [26]

systems, is ensured by mathematically proving that the abstract model is consistent and

feasible. It involves proving that an invariant is established after the initialisation of the

machine and that each event preserves the invariant. Although proving is nowadays

tool-supported, there are still some proofs that require human involvement (which can

sometimes be cumbersome).

The complexity of proofs depends not only on the problem and the complexity of the

system to be modelled, but also on the refinement strategy utilised and e.g. on

decomposition mechanisms [33]. Therefore, providing an aid in modelling activity by

facilitating the development process would bring reinforcements with the complexity

matters.

The Event-B method

Event-B [4][34] is a formal method and modelling language for stepwise system-level

modelling and analysis, based on the Action Systems formalism [35] [36] [37]. It is

derived from the B-Method [38], with which it has several commonalities, e.g. set

theory and the refinement idea. Nevertheless, the methods differ with respect to the

refinement rules. Event-B is meant for distributed systems, while the B-Method can

only prove sequential systems. Moreover, Event-B is dedicated to model complete

systems, including hardware, software and environment [39].

Event-B utilises refinement to represent systems at different abstraction levels, which

enables us to gradually introduce more details to the constructed system and to represent

new levels of a system with more functionality. Mathematical proofs are used to verify

consistency between the refinement levels. Event-B provides rigour to the specification

and design phases of the development process of (critical) systems. It is effectively

supported via the Rodin platform [40], an Eclipse based tool, which is an open source

“rich client platform” that is extendable with plug-ins.

An Event-B specification uses a pseudo-programming notation – Abstract Machine

Notation (AMN) – and consists of a dynamic and a static part, called machine and

context respectively. An abstract Event-B machine consists of its unique name and has

the following constructs: context, which links the machine with its static context via the

SEES relationship, a list of distinct variables that give the attributes of the system;

12

invariants – stating properties that the machine variables should preserve; a collection of

events – depicting operations on the variables, where INITIALISATION is an event that

initialises the system. The context encapsulates the sets and constants of the model with

their properties given by axioms and theorems.

The formal development starts from specifying an abstract machine from a set of

requirements and then refining the machine in a number of steps (as presented in Figure

1). Each consecutive machine is called REFINEMENT. It identifies the machine being

refined, so that the refinement chain and the modelling process can be tracked and

controlled. The static part of the specification can also be refined, which is indicated by

the EXTENDS clause.

The best out of the formal world

There are several key elements of formal methods that we want to emphasize, especially

in the light of further discussion:

 Quality as a main concept

o Correctness given with formal modelling and proofs

o A strive for technical excellence and good design

o Traceability as part of the formal process

 Iterative modelling

o Provided by refinement mechanisms

 Complexity control

o Stepwise introduction of functionality and properties

o Simplicity as a key element when it comes to modelling and proving

 Applicability for system development

o Including hardware and software

 Tool support

o Enhancing the efficiency of a development (design) method

o Enabling application to larger problems

o Aid for finding inconsistencies and conflicts in an efficient manner

o Essential for adoption of a method in industry setting

It is common to associate formal methods with “heavy” design methods. However,

many of the newer formal methods are already presenting some elements of agility [41],

for instance: Design-by-Contract (Eiffel, JML, Spec#), extended static checking based

13

on contracts (ESC/Java, Boogie) and automatic test generation. Formal methods can be

linked very well with many of the agile method principles.

In this paper we consider formal methods in general. However, our examples are related

to the Event-B method and the Rodin tool.

4. Agile methods

Agile software development methods (in various forms) have been present on the arena

of IT some time before year 2001. However, it was only in 2001 that Agile Manifesto

[5] was written down and its principles and practices were established.

Agile Manifesto – values, principles and practices

The Manifesto for Agile Software Development recognises several values for

improvement of the way the software is being developed. The primary values are given

in the following statements on the left hand side:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

There are twelve principles behind the Agile Manifesto [5] (listed below). We will refer

to these principles when discussing the enhancements in the development based on

formal methods.

1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within

a development team is face-to-face conversation.

14

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity – the art of maximizing the amount of work not done is essential.

11. The best architectures, requirements, and designs emerge from self-organizing

teams.

12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behaviour accordingly.

Agile development is facilitated by practices, which are concrete techniques proposed

for certain areas of development, like requirements, design, modelling, coding, testing,

project management process, quality. The most known practices are pair programming,

refactoring, use cases and test-driven development [42].

The strength of agile methods lies in their flexibility and adaptability, which is also

referred to as method tailoring. Adjusting the development to the organisational needs

of the project and developers, as well as to the specifics of development context,

distinguishes agile methods from traditional development methods (including formal

methods).

Agile development methods are described as iterative and incremental, promoting

teamwork and collaboration, as well as endorsing the idea of adapting the process

according to the needs of the project. The development is considered evolutionary and

as it builds gradually on the close collaboration with customer. Figure 2 shows these

most common characteristics of agile methods.

Here we have chosen to look closer at four agile development methods: Dynamic

Systems Development Method (DSDM), Kanban, Scrum and eXtreme Programming

(XP). These were selected with respect to their features and their capabilities to fit the

formal development specificity. In the following sections we will shortly describe each

of them and emphasise the characteristics that have potential for our FormAgi adaptive

framework.

15

Figure 2 Agile methods – commonalities

Agile principles emphasise the importance of human factor in the development, i.e. the

role of a customer and a team, as well as their collaboration. They propose to deal with

change through requirements and consider simplicity as the core of development [18].

All these characteristics combined can facilitate complexity management, which is

much needed in the development of contemporary software systems.

DSDM

Dynamic systems development method (DSDM) [43][44] is an agile project delivery

framework. It was first released in 1994 and was primarily used as a software

development method (bringing some control to the rapid application development –

RAD, where minimal planning and rapid prototyping are the priorities). The latest

version, DSDM Atern, was established in 2007 and aims at helping people to

collaborate more effectively to achieve business goals. Thus, it is most feasible for

information systems projects.

DSDM involves eight principles supporting the idea of continuous delivery and team

work. If not completely complying with the rules, some other control mechanisms have

to be utilised. However, some concepts may be borrowed and adjusted to the formal

development setting.

Below we present the principles that we believe are most suitable in the context of

adaptive development framework:

 The quality of software system is a primary property. Therefore, there is a need

for proper design, providing documentation and performing tests (which could

Iterative Incremental

Software
development

method

Adaptive and
flexible

Evolutionary
development
and delivery

16

seem as being opposite to principles of agile methodologies). Moreover, reviews

are advised as another mechanism for ensuring the quality. Delivering the

product (or feature) on time is strongly advocated, which is supported by

iterative and incremental development, as well as collaboration with customer

(along the lines of agile principles). Moreover, there are some suggested

practices, like prioritisation or time-boxing to aid meeting the deadlines.

Continuous user and/or customer involvement is considered vital when it comes

to having a project that progresses effectively and in time, as it supports decision

making and collaboration. The incremental development from firm foundations

is crucial in order to benefit the user and/or the customer, as well as the

development team, regardless if it is a business profit or a personal/social

benefit. Confirming that the correct solution is being developed is the foundation

for having early delivery of desired solution and functionality. Re-assessing the

priorities and the contemporary project capability should be done in each

increment.

 Iterative development is not only a part of agile strategy. In case of DSDM it is

complemented by having strong foundations from the start by providing enough

design up front. Gradual system building (stepwise introduction of features) is

supported by the idea that more details emerge while the development

progresses. Customer feedback is needed on a regular basis (in every iteration),

which aids to produce the right solution and embrace change. Moreover, DSDM

encourages creativity, continuous evolvement and learning, as well as

experimenting, since it builds the morale and strengthens the confidence of

developer(s) and positively impacts the team.

 Continuous and clear communication should exist not only on the informal level

(face to face communication), but also on the more formal one (lean and timely

documentation, modelling and prototyping) in order to benefit from an efficient

and effective development. The granularity of communication should be kept at

least on the iteration-basis. Some degree of control is necessary in order to

manage proactively, measure progress (delivery of products rather than

completed activities) and make plans. Progress of a project should have

appropriate visibility, which can be obtained by using appropriate level of

formality for tracking and reporting. Finally, evaluation mechanisms should be

implemented to measure project viability with respect to business objectives.

17

DSDM vs formal development

DSDM has several commonalities with formal development, as well as some principles

that would well fill in the formal development needs. DSDM is flexible enough to allow

users and/or customers fill in the specific steps of the process with their own techniques

and software aids of choice. This means that in case of systems, which have some

components of higher criticality, these components could be designed with the use of

one of the formal methods. As a consequence a proper degree of rigour would be

assured for the components and the development process would remain flexible.

The main variables in the DSDM development are the requirements (neither time nor

resources). This is similar to the formal development, where building software system

heavily depends on constructing it from requirements and proving certain properties of

the system. Developing the system based on requirements combined with frequent and

continuous communication ensures the main goals of DSDM: to stay within the

deadline and the budget. The strong focus on communication between the users and/or

stakeholders, as well as the involvement of all the stakeholders in the system

development could complement formal development. Among the benefits of such a

contribution, one can list: a quicker reaction to wrongly interpreted requirements,

capturing the inconsistencies in the understanding of functional and non-functional

requirements in a timely manner or constant support in case some artefacts are not clear.

All of the above mentioned contribute to saving time and resources during development.

Finally, commitment to the project is regarded essential in order to ensure a successful

outcome. This psychological aspect is also important for other agile methods. However,

it seems that formal methods do not emphasise this aspect of human involvement and

concentrate mostly on the correctness of the developed system. We believe that

introducing this aspect to formal development would add value to the development

process, since system development is fundamentally a human activity, regardless if it is

tool supported.

Kanban

Kanban [45] [46] is an approach for managing knowledge work with a focus on just-in-

time delivery, while not straining the involved participants. In this method the

participants have clear information on the tasks to be executed and the team members

take work from a queue consisting of these tasks. This process involves all the steps

from definition of a task until its delivery to the customer.

18

Kanban can be characterised in a two-fold manner:

 As a graphical management process telling what, when and how much to

produce, and

 As an approach to incremental, evolutionary process improvement for

organizations.

Kanban is based on four principles, focusing strongly on incremental and evolutionary

change for the continuous improvement:

 It starts from the existing process steps and set of roles, and builds on top of that

 Since some of the existing elements in the organisation may work acceptably,

they do not need to change, at least initially

 It is based on the common agreement towards improvement

 It encourages initiative and leadership on all organisational levels

There are six core practices supporting Kanban and facilitating execution of its

principles:

 Visualising the workflow and the system needs – by increasing the understanding

of the process and the system by bringing the necessary level of clarity

 Limiting work in progress – by implementing changes in a stepwise manner

 Managing flow – by evaluating the changes

 Making policies explicit – by having a clear and understandable process

 Implementing feedback loops – by collaboration, use of measurements, etc. to

make the process improvements and related benefits clear

 Improving collaboratively and evolving experimentally – by using models and

scientific methods.

Kanban vs formal development

Kanban suggests that a scientific approach should be used to achieve improvement by

implementing continuous, incremental and evolutionary changes. However, it does not

prescribe a specific scientific method to be used, thereby leaving this decision for the

organisation and/or developers. Formal development can be used as such a scientific

method and bring necessary rigour to the development. In Table 1 we present how

Kanban can be related to formal development and suggest how it can contribute to

adding flexibility to a rigorous method.

19

Table 1: Relation between Kanban practices and formal development characteristics

Kanban Formal development

Visualise (the workflow) Visualise (the model)

Limit work in progress Refinement mechanism with its incremental and

evolutionary system development. Effect: limitation on

defects (faults).

Manage flow The design and its process needs to be monitored, measured

and reported. Evaluation should include the modelling

strategies used. Continuous workflow should be ensured by

small refinement steps.

Make policies explicit The organisational policies need to be set in order to

support the discussion about the design and design strategy

between the team members. Also the tool(s) used in the

development should support the exchange of ideas and

experiences. This visibility should be sustained for the

improvement purposes.

Implement feedback

loops

Feedback loops can be facilitated by including e.g. metrics,

measurements and indicators for trends into the design

process, as well as supporting collaboration and team work.

Design reviews done by other (senior) team members would

certainly strengthen the process both by providing quality to

the design and aiding the learning process.

Improve collaboratively,

evolve experimentally

Using formal models and formal method brings necessary

rigour to the development while Kanban is there to facilitate

the design process. Collaboration and experimentation

would increase understandability and support creating

specialised and cross-functional teams.

Scrum

Scrum was based on case studies from manufacturing companies in the automotive,

photocopier and printer industries and is described in [47] as a method to increase

flexibility and speed of development. The method was created to tackle complex

software systems and has been used as a project management method.

20

Following the agile spirit, Scrum is oriented towards short feedback loops in system

development, fulfilling customer requirements and providing a clear development

process. The customer is heavily involved in the development on a regular basis, which

gives valuable feedback on the software being developed (whether the customer needs

are satisfied) and allows to timely capture divergence from customer’s vision of the

product. Hence, communication and adaption are cornerstones also in this agile method.

The Scrum development process is iterative and the result of each iteration should be a

potentially shippable product. New requirements for the final product can be dealt with

when a new iteration starts. After each iteration the development process is reviewed

and necessary changes to the process may be taken at this point.

Scrum vs formal development

The relationship between Scrum and formal development is presented in Table 2. We

focused on the main and comparable characteristics, suggesting how formal

development can be extended or fine-tuned with Scrum in order to be more flexible and

adaptable.

Table 2: Cross-comparison of major characteristics of Scrum and formal development

Scrum Formal development

A flexible, holistic product

development strategy where a

development team works as a

unit to reach a common goal

A rigid approach - encountering challenges

concerning team-work and distributed development.

A holistic approach - domain knowledge is,

however, a necessity when proving system

properties, in order to ensure that the system is

correct.

Emphasis on communication Needs to be fine-tuned to formal methods reality.

Heavy involvement of a customer might not always

be possible. Formal methods are more focused on

individual problem solving than communication.

Via animation of the models they could, however,

be discussed with others.

Divided into sprints that last a

certain amount of time

Formal development does not have a time-frame

structured process. However, such a process can be

established to suit the needs of the project and

enable establishing check-points for the refinement

steps.

21

Teams with multifaceted know-

how, role oriented

Team work on one model might face difficulties.

However, a team with versatile know-how could be

useful and easier to assemble.

Empirical approach - Quick

delivery and quick response to

emerging requirements

Theory based approach – The time factor is

different in formal development (more emphasis on

correctness than on rapid development). Changing

requirements may also involve re-proving the

changed models, which in turn entails delays.

XP

Extreme Programming (XP) is a software development method, and a type of agile

software development, intended to improve software quality and responsiveness to

changing customer requirements [48]. The most important characteristic of XP is

providing the visibility, simplicity and stability to software development by pushing the

best practices to the extreme, yet in a disciplined manner [49].

Among many elements of XP there are: pair programming, extensive code review, unit

testing of all code, delaying implementation of features until they are needed, simplicity

and clarity in code. Moreover, anticipating changes in the customer's requirements when

the problem is better understood, as well as communication with the customer and

among programmers is vital for the success of XP. Therefore, XP answers such

development problems as: poor system quality (making the system unusable), not

meeting the requirements, and finally the situation where the resulting system is

outdated by the time of deployment. As in other agile methods, XP is also based on

short iterations (“inspect and adapt”) and short feedback loops (interaction with

users/customers).

XP provides a number of values, principles and practices, which are based on the agile

principles. A combination of all of them gives a detailed picture of the method.

Therefore, it is significant to evaluate the currently used approach against the complete

set of values, practices and principles, in order to fully benefit from utilising XP [18].

There are four XP activities:

 Coding - The only truly important product of the system development process is

code. No code means no working product

22

 Testing - Some testing can eliminate some flaws, but extensive testing can

eliminate more flaws (unit tests, acceptance tests)

 Listening - Communication with customers to understand their needs and

facilitate the collaboration between developers

 Designing - Control over the complexity and dependencies within a system

Since XP relates to the software system code and acknowledges testing as one of the

most important practices, the method needs some fine tuning for the formal

development setting. The four abovementioned activities should be related to the model,

instead of to the code. Therefore, modelling and models should aid in communication

between the developers. Furthermore, a model should not leave space for interpretation

of system properties. In addition, keeping a model simple not only facilitates its

modification (e.g. due to changed requirements), but also helps when proving properties

of the model.

Testing activities, advocated by XP can be “translated into” proving activities, needed

when constructing the system. As testing is treated as a mechanism for quality control in

XP, in case of formal modelling proving would be a way to ensure correctness, and thus

quality. Listening to the other developers, as well as communication with users and/or

customers early in the development (in the design stage) not only aids in achieving the

desirable solution or product, but also reduces the risk of producing a useless artefact

and capture some potential problems in time. This in consequence decreases the

possibility of money loss, waste of resources and time.

According to XP activities, having a design is a way of controlling the complexity and

managing the dependencies within a system. Having formal development with clear and

simple specifications and models that are being proven while constructed is contributing

to complexity control. Moreover, adding features to the system in a stepwise manner

helps to minimise the difficulty of proving system properties and by that reduces the

possible complexity.

There are four important values in the XP method, which basically can be treated as

guidelines on how to foster decisions in a system development project; communication,

simplicity, feedback and courage. They guide the development as follows:

 Communication

o Brings clarity and visibility to the development

o Helps in sharing knowledge between development team members, as

well as the users of the system

23

 Simplicity

o Starts with the simplest solution

o More functionality can then be added by incremental changes to increase

control over the development process and the system

o Facilitates communication

o A simple design with very simple code could be easily understood by

most programmers in the team

o A disadvantage is that more effort might need to be entailed later to

change the system

 Feedback

o From the system via unit tests

o From the customer via acceptance and functional tests

o From the team via time estimation for the feature to be implemented

o Emphasis is given to timely feedback that is provided frequently and

promptly.

 Courage

o Design for today

o Preparation to refactor the code

o Persistence in finding solutions

XP methodology also emphasises respect within team members and respect of

developers to their work. This helps to keep the team motivation high, as well as pushes

the progress of the development from a psychological aspect, as opposed to purely

implementing technical solutions.

Interestingly enough, NASA was using elements of XP methodology in their

development earlier than the XP principles and practices were established [50]. Already

in the 1960s’s NASA had a practice of test-first development, which meant planning

and writing tests before each micro-increment. Formal test documents for acceptance

testing based on formal requirements were written before the tests for the actual system

were created. Furthermore, the tests were automated (to even further shorten the

development time) and worked on small sections of code instead of big features.

XP vs formal development

In Table 3 we present a list of characteristics vital for eXtreme Programming and relate

them to features of a formal development setting.

24

Table 3: Listing of eXtreme Programming characteristics and how formal development relates to it

XP Formal development

A software-development discipline that

organizes people to produce higher-quality

software more productively

Aiming at high quality (correctness) and

productivity, where the former is of

priority

Introduce checkpoints where new

customer requirements can be adopted

(feasibility of new requirements and their

prioritisation consulted with customer)

No checkpoints defined. Checkpoints

should be identified according to the type

of organisation and development. – First

the time between the checkpoints should

be defined and then the actual modelling

can begin, which should be supported by

the collaboration with customer and aided

with initial empirical insight. After that the

initial assumptions can be checked and the

decision on further progress of this part of

the project can be made.

Improve responsiveness to changing

customer requirements; requirements are

considered as an opportunity

Changing requirements are the reality, but

may cause a lot of work. – Modifications

mean reproving parts of the system, which

entails rework and costs. Models need to

be well structured, so that the effort is

minimised

Multiple short development cycles (cost

and complexity reduction)

Small refinement steps (risk and

complexity reduction)

Pair programming Writing specifications and building

models in pairs or a specification and/or

model created by one person is reviewed

by another

Extensive code review Specification and/or model review

(preferably by senior staff)

Simplicity and clarity in code Simplicity and clarity in specification

and/or model

Beneficial elements of traditional SE

practices are taken to extreme levels

Best practices taken to formal

development

25

As for the main mechanisms for maintaining the scope of the project, in case of XP it is

to limit the number of requirements being processed to the minimum, as well as iterate

together with the customer new versions of the working software (feedback loop).

Formal development, on the other hand, focuses on introducing changes in a stepwise

manner, so that the proving activity can be simplified, and proposes simulation or

animation as means to obtain feedback from customer.

The values of XP need to be adjusted to meet the needs of formal development

methodologies. For instance, models and documentation can be used as communication

means. Keeping design simple is also important for both kinds of environments, but is

even more visible in the formal ones, as it simplifies e.g. the proving process. It also

improves the team communication and overall understandability of a model. However,

designing and coding according to the currently known requirements (the XP idea of

“design for today”) might cause the effort of “tomorrow” to be excessive, and e.g. cause

a delay in modelling crucial features and properties. Hence, formal development should

not adopt fully the idea of design for today, but plan the design to make it well-

structured.

The courage in XP should be understood in formal development as the courage to think

ahead, but at the same time be able to balance it with prioritising what needs to be added

or modified. One should aim for an iterative and steady pace of development, since

refactoring a model or specification can be problematic (also as a tool issue). Therefore,

it is vital to introduce changes one by one, while keeping the broader perspective on the

development.

Feedback in a formal environment can be viewed in three different dimensions of the

system development, just as for XP. However, the type of feedback and the way it is

obtained can slightly differ between the two environments. Feedback from the system

can be given by the modelling tool when modelling and proving. On the other hand,

feedback from the customer can be provided by showing the customer a model

simulation or animation which gives information on the implemented functionality and

properties. Note that the model does not have to be executable and final at the point of

validating it with the customer. The validation would serve as a checkpoint to see

whether the development is progressing in the right direction. Finally, the feedback

from the team can help to e.g. redesign the system (for simplification) or confirm the

choice of a modelling strategy.

A cross-comparison of other characteristics of XP and formal development in

perspective of potential drawbacks of XP methodology [51] is presented in short in

26

Table 4. In the right column we propose solutions to these weaknesses, some of them

already provided by formal development.

Table 4: Relationship between other characteristics of XP and formal development

XP issues Possible solutions /formal development

Unstable, iteratively defined requirements Requirements are rather stable for safety-

critical systems

Requirements expressed as automated

acceptance tests rather than specification

documents

Requirements as specification documents2

No documented compromises of user

conflicts

Most of the potential conflicts can be

detected when proving system properties.

They should be documented

Lack of an overall design specification or

document

The design specification is provided,

however, there is a need for better

documentation

No design up-front – threat of re-designing Stable design, created incrementally

Too many meetings Just enough meetings

Risk of scope creep Focused design

Best out of the agile world

In this section we shortly summarise the agile principles that we consider the most

beneficial in perspective of using them in combination with formal methods. First and

foremost, the quality orientation and striving for excellence is the main shared aspect in

both types of development, but tackled in a slightly different manner.

Flexibility and adaptability of a development, which means tailoring the development

process according to the existing context, be it project specifics or organisational needs,

is extremely useful not only in the aspect of the development environment, teams and

single developers, but also when considering the volatility of requirements.

2 Requirements can be checked with model animation, which would correspond to acceptance testing in

XP. There are some tools (and plug-ins) from the formal development domain that deal with requirements

before the requirements are being modelled. For instance ProR plugin [51] within Rodin tool (idea similar

to ProB) sorts requirements given in natural language in a structured way so that it is easier to model them

later.

27

Furthermore, using the best existing practices and artefacts (model, code, experience)

and building upon them covers the socio-psychological side of the development, i.e. it is

easier to modify something existing than to start with something completely new.

Hence, the evolution is strongly emphasised as opposed to revolution.

The steady pace of the development and exceeded control over the project is brought by

the iterative and incremental development. Note that control is used in a sense of

manageability and not e.g. controlling and comparing developers in teams. Iterative and

incremental development entails reducing development risks and reacting to the

encountered problems in time.

Communication, collaboration and user involvement is especially important, since the

human aspect is inevitably present in software systems development. Social interaction

is facilitating the knowledge exchange, as well as it helps in promptly discovering the

problems and inconsistencies regarding the development (regardless if it is the

development itself, team work, customer needs, etc.). Similarly, the time factor is

present in having frequent releases of the system, which also helps in getting feedback

from users and/or customers, as well as identifying inconsistencies and problems with

development.

Maintaining a simple development has an effect of making the development activities

easier and more effective. Furthermore, it helps to maximise the amount of work not

done and facilitates adding more features to the system.

There is a large choice of agile methods, which basically share features within the agile

concept, but at the same time are answering different types of development challenges.

Thus, the organisations or developers can certainly find a method that best suits their

needs.

5. Towards a synergy between formal and

agile methods

Nowadays there is a need for tailored solutions, which would be based on well-known

practices that at the same time are feasible in a specific context. This demand for hybrid

approaches is based on a risk assessment of a particular project’s characteristics, e.g.

having high risk of failure (especially in case of safety-critical developments) versus an

overwhelming need for speed to market [52]. Our goal is to make formal development

more flexible and adaptable. Therefore, we aim at combining two recognized

28

approaches: formal development methodology and agile approaches in order to establish

a flexible formal development framework. So far, there have been some critical

opinions about combining these two, as they were thought to behave like “oil and

water” [53]. These approaches have been recently put in a new light and described as

mature enough in order to be experimented with [13].

We want to use and highlight the strengths of agile and formal approaches and inject the

elements of agile methodology into the formal one. If we do not focus on any specific

agile software development method, there are several agile principles and practices that

can be merged directly and effortlessly with formal development, inter alia striving for

high quality, iterative and incremental development. In Table 5 we present a listing of

characteristics that are considered crucial for agile approaches and depict how formal

development can be fine-tuned to go hand-in-hand with agile processes.

Table 5: Cross-comparison agile and formal development characteristics.

Characteristic Agile approach Formal development and its tailoring

Approach type Evolutionary Refinement-based

Collaboration Highly collaborative Model reviews; team-work;

visualisations and simulations as a

support for discussion

Quality issue Quality-focused

approach

Quality is the priority

Software or system

development?

Software System (also including software)

Steady development Potentially shippable

working software is

produced on a regular

basis

Stepwise refinement; working SW

can be understood as providing

animations or generating code from

the models

Executable releases Produce working

software on a systematic

basis

(Stepwise) refinement combined

with animation or code generation

Quality assurance Continuous regression

testing (or a better

alternative, a test-driven

development approach)

Quality is assured by correct-by-

construction development (proving

properties of the specification,

verification mechanisms, etc.)

Collaboration with Close collaboration, Collaboration is limited –

29

customer and/or user ideally on a daily basis development is based on expert

domain knowledge3

Self-organising

teams

Strongly supported

within an appropriate

governance framework

The social factors are not well

supported – there is a need for

mechanisms for building and sharing

experience, lessons learnt etc.; tool

support needs to be extended

Improvement Regularly reflect on how

the developers work

together and then act to

improve on their findings

Iterate on what can be improved –

either with process or product –

needs methodological and tool

support

As depicted in Table 5, many of the ideas originating in agile principles are already

present in formal development. The iterative, incremental, evolutionary and steady type

of approach is visible through the refinement mechanism, where properties or features

are added gradually in each of the modelling iterations. Each refinement step is then

also proved correct in an iterative manner. However, producing executable releases for

each single iteration of formal development might not be feasible. Therefore, in order to

confirm or refute the properties of the produced system, one would need to provide

simulations or animations or even automatically generate code, so that the collaboration

with the user and/or customer is facilitated.

Formal methods enable us to build software and hardware, as well as their environment,

while agile approaches focus mostly on the software. However, one should note that

many of the agile practices and specific agile methods (e.g. Lean, Kanban) originate in

industrial procedures for system engineering (manufacturing lines, where software is

only a fragment of the whole process).

Striving for technical excellence and achieving high quality of software systems are the

cornerstones of formal developments. In safety-critical environments there is no room

for faults or misinterpretations. Therefore, proving correctness and assuring high quality

of the produced system is the priority. In this aspect, formal development is far more

recognized than the development using agile methods. However, agile methods strongly

aim for improvement, e.g. through feedback mechanisms and refactoring, which is not

3 Can be supported by verification and simulation mechanisms, which should be combined with close

collaboration with user and/or customer

30

so visible in formal development. There can be several reasons for this fact, just to

mention that formal development is often related to big design upfront or so called

“design for tomorrow”, where almost all the details are thought through and decided

before entering the next phase of development, leaving almost no space for changes.

Moreover, refactoring can occur to be quite expensive in formal setting, both in sense of

time and resources. Hence, some flexibility in the formal development process would

enable not only easier refactoring, but also support the idea of improvement, regardless

if it concerns a product or a process.

Frequent feedback and short iterations, as well as artefact reviews can be enabled in

formal development by tool support and well established modelling methods. The

feedback can be twofold: from the tool itself, e.g. when proving or generating

documentation or from the user and/or customer, when the tool is used to show

animation or simulation of a system. In both cases it enables artefact reviews.

Moreover, tools can be used as a medium for the internal communication between the

development team members, e.g. for the more experienced developers to give feedback

on the modelling strategy.

Self-organising teams are much encouraged by the agile methods, but not so well

supported by the formal development. There is a need for organising social mechanisms

for building and sharing experience, lessons learnt etc., which could also be assisted by

a tool. Currently, such a knowledge exchange is usually done internally between

developers and researchers and is not structured. Some elements of this kind of

collaboration and self-management are visible through research papers or research

projects [54][19], but no rules have yet been proposed.

Frequent delivery and deployment need to be thought through and adapted to the type of

formal development or organisation that runs the project. Rushing the deliveries causes

a threat of lowering the quality of formal development, which in case of safety-critical

systems is a serious issue and has severe consequences. When considering modelling

and proving some system properties, one might need more time to either perform a

proof or re-model and re-prove the system. Therefore, some checkpoints should be set,

but at the same time they should not endanger the correctness of a development. As for

frequent deployment of a system, tool support for code generation is necessary in order

to be able to manage the fast pace of the development, as well as possible system

refactoring.

There is one more crucial issue when considering inherently complex and large real life

systems and the industrial deployment of development methods. The methods should

31

fulfil a vital requirement – they have to be scalable, otherwise they are useless. As

reported in [55] it is possible to improve scalability of agile methods (explicitly XP) with

the help of a formal development method (explicitly VDM). As observed by the

authors, lack of scalability is one of the problems of the agile development method.

Appropriate merge of agile and formal methods results in more effective and timely

development, often of higher quality [55]. The major success factor of this blend is

balancing between flexibility and control, characteristics offered separately by the two

methods.

While agile methods provide software development how-to’s on the project

(management) and process level, formal development gives well-established systems

engineering practices and rigour, which is often required in large and high-risk projects.

In this work we aim at combining agility with formal development principles at a

conceptual level. We propose injecting elements of the agile methodologies to the

rigorous formal development process.

Additional issues formal vs agile

Formal development methods are placed on the opposite end of the scale compared to

the agile ones with respect to predictive vs adaptive criterions [2]. Although they

display some major differences between each other, they also have a large number of

commonalities, mostly due to the fact that the creation of high-quality software is a

human-oriented activity. In this section we present how the differences can be

reconciled and how these two supposedly distinct methodologies can support each

other, when combined.

It has been reported that agile methods need to propose some mechanisms for handling

traceability issues [56]. Since documenting the development of a system and measuring

its state was by many considered as a waste, many agile developments were

encountering problems, especially when the deployed system entered the maintenance

phase [1]. However traceability issues can be managed on behalf of formal modelling,

where the formal models can be treated as a source of system documentation, where

modelling decisions are recorded. Again, offering an appropriate tool support for the

formal modelling is vital.

The volatility of requirements is one of the reasons that agile methods became so

popular – they were proposing a solution to constantly changing requirements.

Although change is welcome in agile methods, it is not so welcome in formal

32

development, as the latter involves much more effort than in the agile setting. Daily

„builds” may not occur to be reasonable in a formal setting, but having regular

checkpoints e.g. twice a week can aid in structuring the development and make it more

regular. Having these (less frequent) checkpoints prevents from rushing into wrong

decisions, consequences of which would have to be fixed or refactored later on.

The structure and the properties of a system have an impact on when and how much of

effort will be spent on system refactoring. It is more feasible if the system is

decomposed to many refinement steps with small abstraction gaps, which makes it a

„well-proportionated” one. This type of model of a system facilitates change while

minimising the effort. There are guidelines on how to deal with abstractness, as well as

guidelines on system decomposition, which both facilitate “good” design [57] [58]. It is

worth noting that changing the invariants is the most “expensive” change. An example

of a balanced modelling and the role of a well proportionated system can be found in

[59], where the authors describe the incremental development of the Mondex system in

Event-B (discussed in more detail in section Challenges and opportunities specific for

Event-B).

There is a need not only for well-structured systems, but also for clear and simple

developments, which would decrease the problems regarding understandability of a

system and facilitate development management. There is significantly more

transparency in the development process achieved with agile methods, as there is an

emphasis on communication between team members, as well as between developers and

users and/or customers. In formal development the transparency is mainly provided by

the tool, yet in a limited way. Furthermore, it can be obtained with measurements

(metrics) and feedback mechanisms (proofs). However, the guidelines on how to

communicate in a structured way (social aspect) are not defined for formal

development. For instance, there exists a way of visualising the system at the design

stage in the Rodin platform, e.g. via the UML-B plug-in. However, providing a

visualisation of the development structure in Rodin, which is taking into account the

granularity of a system, could be beneficial. Likewise, comparing the graphical

representations of two development steps would add value to the development.

Event-B flavour

The biggest and most beneficial characteristic of the Event-B modelling language, apart

from being a formal method with a vast history and experience behind it, is its tool

support. Rodin platform is an open source, Eclipse-based tool offering plenty of plugins,

33

which not only facilitate formal modelling, but also serve as additional development

aids. It is worth noticing that providing the tool support played a major role for the

adoption of Event-B in industrial settings (projects RODIN [60], DEPLOY [54]).

Many plugins extend the tool concerning communication, knowledge transfer,

increasing understandability, as well as tackling the concept of team work. The

characteristics that are supported can be grouped as:

 Code generation to the following languages (various level of technical support):

o multi-tasking Java, Ada, and OpenMP C code

o JML-specified Java abstract classes and JML-specified Java

implementations

o VHDL

o C, C++, Java and C#

 Animation and simulation

o ProB

o AnimB

o UML-B - Statemachine Animation

 Visualisation

o BMotion Studio

 Documentation

o ProR

o B2Latex

Domain knowledge from the Event-B perspective can be supported by using for

example the Pro-B [61] plug-in, which is an animator and model checker for the B-

Method. It enables scenario based model testing and checks the specification for a range

of errors. Moreover, it can be used for model finding, deadlock checking and test-case

generation. Another Event-B plug-in, BMotion Studio [62], is a visual editor for formal

specifications, which allows the developer of a formal model to arrange a domain

specific visualisation, e.g. for discussing it with the domain expert (user and/or

customer). BMotion Studio enables to create the visualisation via the graphical user

interface, instead of writing code.

34

6. Challenges and opportunities in the hybrid

approach

The combination of formal methods and agile methods is far from straightforward,

mostly due to the fact that these are perceived as two completely different approaches to

software development (adaptive vs predictive). Therefore, it is not possible to merge all

the elements of agile methods into the formal framework as is. Some of them need to be

fine-tuned according to the specificity of the formal setting. One of these issues is for

instance the matter of communication (and implementation) vs documentation and the

issue of frequent delivery and deployment.

Need for speed in contemporary software systems development forces quick

implementation in order to obtain executable code that can be shown to the customer,

e.g. to gain appropriate feedback. This pressure for continuous and rapid coding

discards in many cases creating documentation or design specifications, since these

activities are often considered as a waste in the agile setting as it is not an executable

software per se. The misconception that follows the idea of producing working software

and not documenting it is often a cause of many problems, as it often results in not

having any documentation at all. As a consequence, difficulties accumulate when a

created system is large and complex, as well as when it is deployed and enters the

maintenance phase [1].

Producing documentation in safety-critical development is vital not only for the sake of

recording the development process (for certification and authorisation purposes), but

also for documenting the steps of the development. Thus, the case when no

documentation exists poses a serious threat to the development.

Furthermore, prioritising communication over documentation, although potentially

making the development smoother at the time of developing a feature, also has its

drawbacks. It can cause some traceability issues or situations when e.g. decisions are

not documented and cannot be reasoned about, which in turn lead to problems with

maintainability of a system later on. In addition, some certification difficulties may arise

due to insufficient documentation.

We want to keep documentation and support communication. For example, the models

in a formal development are already some form of documentation of a system. Although

the specification as such is not documentation (it needs some additional notes,

comments and traces), it is already a foundation for the further steps of the

35

development. Finally, tool (or tool-chain) support for documenting specifications and

models in the formal environments is crucial not only for traceability purposes, but also

to be able to use documentation as a communication medium.

Frequent delivery and deployment is regarded as one of the priorities in agile

development. However, for formal development it is more important that the delivered

software is correct and dependable. Therefore, it is more important to have a steady,

evolving and iterative development – sustainable pace – in formal development, which

can be regulated by e.g. periodic checks or reviews. The control over the development

process provided by these regular inspections can aid the detection of design and

development problems, missing requirements, wrong modelling directions etc. before

too much work is invested in the development

From the practical point of view, the practice of “end-of-day working software” could

be changed to an “end-of-week working software” schedule, or simply be reduced to

mutually agreed regular dates, specific for instance for a project or an organisation.

Such a more relaxed schedule would allow people to avoid the feeling of being rushed

to generate artificial stubs just to deliver “something” working regardless of its quality.

Additionally, a less-rigid schedule would allow developers working on complex

features and functionality to more fully develop them over a longer period of time.

Establishing guidelines on how to successfully manage formal development with

frequent checks would be beneficial for providing transparent control over the

development process and the development itself.

Challenges and opportunities specific for Event-B

There are also some issues with Event-B, which need further investigation. For instance,

the monolithic approach to modelling, which is characteristic for Event-B, creates

difficulties in developing several components separately and then integrating them later

on. It can also be an obstacle to separately refine certain parts of the system (in order to

investigate them more) and then integrate them in the whole project. This can be a

major impediment to refactoring, as well. Moreover, there is a lack of support for team-

work, which means that only one person can work on a particular specification at a

time. This in turn, brings difficulties with globally distributed developments, where

collaborative modelling and analysis would be one of the key-features.

The strength of the Event-B method lies in the extendable tool support. Consequently,

the weaknesses are linked to the lack of tool assistance for specific needs. Below we

present the opportunities for further development of the Rodin tool, as well as discuss

36

the social aspects of the formal development process, all in order to support the needs of

adaptive development framework.

Team work and globally distributed developments

Team work and self-organising teams are one of the cornerstones of agile

developments. The responsibility is being spread equally in the team, but at the same

time team members have strong motivation for the common goal. Therefore, the

hypothetical risk that “if everybody is responsible then in effect nobody is” is limited. In

Event-B team work is strongly limited by the lack of proper tool support for it.

Naturally, one could implement the practice of regularly reviewing the specifications

and models by senior and more experienced team members. Furthermore, writing and

proving specifications, in addition to constructing models in pairs, as an idea similar to

the one given in XP programming, could be an option. The latter, however, would

involve more resources and effort. Therefore, there is a risk that this solution does not

seem attractive for the industrial environment.

Another issue which to the same degree concerns team work and globally distributed

developments is how to handle requirements for unified understanding of a specification

or a model. This is especially the case, when the model is built by several developers.

There are several factors that can affect perception of an artefact, starting form cultural

and social characteristics, through the policy and standards set in the organisation, to the

skills and domain-knowledge of the developers in each team (or unit). Naturally, these

can be somewhat unified by introducing some standards for writing specifications or for

modelling. However, the human dynamics combined with the tooling element, i.e.

appropriate communication between and within teams, supported by the tool, is the

basis for a successful development.

Additionally, there is a need for a repository for handling models and specifications and

the changes performed on these. This type of repository should be integrated with the

Rodin platform, possibly in the form of yet another plugin, and enable managing

models. Specifically, it should facilitate working on the development simultaneously,

which would mean managing and (enable manually) resolving conflicts when the same

part of the model was changed. Moreover, the tool should support dividing the model

(branching), so that the developers can work on the model at the same time and merge

the changes at the end of the day (or whenever they are ready).

37

Collaboration between self-organising and cross-functional

teams

The collaboration between the teams was shortly mentioned in previous section,

however here we would like to emphasise the need for orchestrating the communication

in formal developments. In Event-B the developers are working separately and thus the

communication between them is quite limited. This isolation impacts the exchange of

knowledge, process of learning and negatively influences the team spirit. It is not

possible to create a self-organising team, which would continuously aim for

improvement and where roles of the team members are diverse, when there is not

enough encouragement and support, neither from the development process nor from the

tool perspective. This could be solved by implementing yet another plugin or enhancing

the existing plugins with “communication features”, like notes, comments. Finally,

some mechanisms for assistance in specification and model reviews should be provided.

Evolvability issue

The evolutionary approach, one of the characteristics strongly emphasised by agile

methods, is not so obvious in the Event-B development. However, refinement as being

part of the Event-B methodology can be considered as a mechanism that enables correct

progress of the development of a system, thus allowing it to evolve. Therefore, formal

development can be regarded as evolutionary.

An example of evolution in Event-B setting is presented by Butler et al. [59]. The

authors propose an incremental refinement approach to the development of a flash-

based file storing system, which is modelled in Event-B. The modelling involves two

types of decomposition: horizontal refinement was used in feature augmentation and

vertical refinement for structural refinement. Especially the first type of refinement

resembles evolutionary development; instead of specifying everything in one level

(possibility of high proof difficulty), the system features were split into sub-features,

which were introduced in subsequent refinement steps. Hence, the evolutionary

approach is present in the Event-B method and results in a model that is easier to

construct and prove. The evolutionary approach can facilitate the creation of a well-

proportionated system, which can even further contribute to establishing adaptable

development frameworks.

Another topic related to evolution is the support of Event-B for product lines. Product

lines and agile methods seem to be complementing each other, but mostly from the

point in the development, where the basic functionality of a system is created. At this

38

point agile methods can facilitate the development of a variety of systems, e.g. within a

family of products, where only certain variability is being developed. [63] In the Event-

B setting it is possible to see the concept of product lines. In [64] authors observed the

need to develop a generic requirement set in order to create the core of a family of

products, which can later be developed for subsequent system instantiations. This

process is even more complicated because of the demand for a high level of verification

by this safety-critical domain, and standards of the avionics industry. In the paper a case

study is presented and given as an engineering method. Validation and verification of

generic requirements is proposed using domain engineering and formal methods

techniques and tools. The development method used was related to the B-Method (a

predecessor of Event-B) and Event-B.

Requirements, refactoring and emergent design

Handling requirements and their volatility can occur to be problematic in all

developments, regardless of the development process or methods used. This concerns

also agile development, which, by definition, welcomes requirement change. Managing

change in requirements, although often tackled swiftly by agile methods, can become an

issue when it comes to more rigid developments. In formal developments requirements

change entails not only changing specification and model, but also re-proving (part of)

the system. As a consequence, the required effort is much bigger and negatively impacts

the schedule and human resources of the project. Moreover, the maintainability of a

system after deployment is at risk and the matter of reuse of (parts of) a model may be

impossible.

Event-B development is of monolithic nature; however, some proposals of modular

development in Event-B were already given in order to tackle real world problems

(changes and reuse in large and complex systems, scalability issues) [65]. The authors

extended the Event-B method with a method to decompose system models into

components that can be independently developed. They emphasised benefits of

managing complexity of a model, as well as reasoned on how their approach can be

useful in e.g. formal product line development. The primary goal was to enable parallel

development of several independent parts of the system as well as reuse formally

developed modules in other developments. This approach is tool supported by the Rodin

platform via a modularisation plugin [66].

Yet another issue regarding requirements is their prioritisation. In agile development

this is usually agreed upon when having meetings with stakeholders and team members.

Therefore, customers and/or users have a large impact on what features will be

39

implemented in the following iteration. In the Event-B development the problem of

prioritisation of requirements is dependent also on the refinement strategy. The well-

proportionated system and its development that progresses on two levels of granularity,

i.e. modelling and project level, are meant to facilitate the choice of which requirement

to take-up first. However, no specific guidelines are given on how to do it. Therefore,

this topic should be investigated on the conceptual level and supported with a tool.

As for refactoring, an example of a balanced modelling and the role of a well-

proportionated system can be found in [59], where the authors describe the incremental

development of the Mondex system in Event-B. The authors show that strengthening

and skilfully adding new invariants to the system can help in reducing the proving

effort, meaning that the mathematical proof can be much easier or even done

automatically. Moreover, in the presented modelling strategy the non-proved proof

obligations and the interactive prover guided the developers in refactoring (creating new

invariants and constructing a gluing invariant). Furthermore, the case of finding an

invalid modelling assumption when a complete system is modelled and proved is

described. This is one of the most common reasons for refactoring next to the change of

requirements given by the user and/or customer. Based on a case study, the authors

describe the modifications and reproving of the system, which were necessary to fix the

wrong modelling assumption. Also in this case a “well-proportionated” system

contributed to minimising the re-proving effort, as the change was reasonably well

localised. Furthermore, the high degree of automatic proof that the approach entailed

after the first refactoring (invariant related) meant that the majority of the re-proof

required was automatic.

Another opportunity for the Event-B development lies in emergent design, a concept

which focuses on delivering small pieces of working code with business value. When

applying this concept the organisation begins delivering functionality and lets the design

emerge. At the same time as the functionality is implemented, the refactoring is done. In

consequence, at the end of a release cycle, the development fulfils at least a minimum

amount of design requirements. In a situation when emergent design is not utilised,

meaning that the refactoring of the development is left for “later”, the “size” of the

design would be significantly bigger. In Event-B the concept of emergent design would

be transferred to the modelling phase, where small iterations of model development are

delivered and the idea of refinement is utilised. However, one cannot let the design

freely emerge, as the model and related proofs would be heavily dependent on

refactoring. Thus, all the challenges that originate from refactoring in formal

development settings would be directly transferred to the issues regarding the emergent

40

design. Finally, since models and their proofs are the foundations for the correct

software, the model itself cannot be reduced.

7. Contribution and next steps

In this report we presented a study of how well the agile software development can be

applied in combination with a formal development. While the former provides

guidelines and flexibility to the development process, the latter gives strong and well-

established methods for building correct software. There is a variety of agile and formal

methods available; therefore, they need to be chosen according to the type of

development. In this report we first presented some general characteristics and benefits

of each of the approaches, and then discussed a number of agile methods in more detail

(DSDM, Kanban, Scrum and XP). Since we have a lot of experience with Event-B and

it is well suited for industrial purposes, we focused on that formal method. We cross-

checked the methodologies in order to investigate how feasible the characteristics of

identified agile methods are for the Event-B setting.

We determined that no particular agile method can be taken as is, but needs to be

tailored for the specific context. Essentially, building the FormAgi hybrid approach is

based on choosing the characteristics (principles and practices) that are appropriate for

the formal development. This may also differ between the selected formal methods.

Therefore, agile characteristics chosen as feasible for Event-B may differ from the ones

chosen for e.g. VDM.

Formal methods are mature enough and ready for being integrated in the development

with other methods [10]. Moreover, agile methods are the most appropriate means for

engineering such a merge [18]. In this paper we have deepened the understanding of

agile concepts set in the context of safety-critical development by (i) providing evidence

of such development through related work and (b) relating agile principles, practices

and values to the Event-B environment.

We also evaluated the issues that appear when agile methods are to be adopted in

environments that are not inherently encouraging or friendly to make agile. Apart from

investigating bottlenecks in transferring agile concepts to the formal setting, we

provided suggestions on how to tackle principles and practices that cannot be directly

shifted to the formal setting. Our proposals were based on the notion of tailoring the

agile method to the formal method to be used, here Event-B. The idea is to make the

41

formal method as feasible as possible by establishing and endorsing the adaptive

development framework.

Tooling is a vital issue at every stage of system development. The industrial take-up for

formal methods, herein Event-B, was heavily dependent on tool support. Establishing

an adaptive development framework with respect to the tooling aspect is on one hand

straightforward, as many of the principles and practices can be directly implemented

due to existing tool support. On the other hand, in order to be able to fully utilise the

benefits that come with agile approaches, some additional tool support would be

required. We investigated this aspect in our report, too.

Future work directions

The hybrid FormAgi approach presented in this paper is still at the conceptual level. We

would like to identify benefits and limitations to our approach when merging agile

development principles with formal development in order to validate our ideas. At the

same time, we would like to highlight the issues which may rise when applying agility

to projects traditionally considered as being non-agile. Our purpose is to show the

advantages and risks that can be involved when applying the framework, in order to

enable and facilitate the decision making in organisations, which plan to make their

formal development more flexible.

We aim at providing evidence on feasibility of the proposed adaptive development

framework. Therefore we plan to perform empirical research on the proposed approach

by creating an experimental setup, if the collaboration with industry allows, by

performing a case study. As a secondary option we plan to establish formal experiment

within a group of students, where the goal is to construct a safety-critical system (or a

part of a safety-critical system, e.g. a component) with the use of a formal method,

preferably Event-B. The development process is to be of an agile type, i.e. one of the

discussed agile methods Scrum, Kanban, DSDM, XP or the mix of their principles and

practices. Thus, a development setting would be created, which would include formal

modelling as a part of the development. We would monitor the development itself with

quality metrics.

The practicality of the adaptive development framework would be assessed in a

quantitative and a qualitative manner and the measurements would be used to isolate the

factors that impact flexibility, efficiency and effectiveness in the proposed hybrid

FormAgi approach. This would contribute to investigating in practice how to balance

flexibility provided by agile methods and control given by formal methods.

42

Acknowledgements

This work has been done within the Academy of Finland funded project ADVICeS

(No.: 266373). Authors would like to thank Prof Michael Butler and Dr Colin Snook for

the valuable discussions on the Event-B method and formal modelling, as well as on the

use of agile methods in industry.

References

1. Ågerfalk, P., Fitzgerald, B.: Flexible and distributed software processes: old petunias in new

bowls. Communications of the ACM 49, 27-34 (2006)

2. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed.

Addison-Wesley (2003)

3. Boehm, B.: Software Engineering. IEEE Transactions on Computers (1976)

4. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press (2010)

5. Manifesto for Agile Software Development. (Created February 11-13, 2001) Available at:

http://agilemanifesto.org/

6. Monin, J.-F., Hinchey, M.: Understanding Formal Methods. Springer (2003)

7. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.: A decade of agile methodologies: Towards

explaining agile software development. Journal of Systems and Software 85(6), 1213-1221

(2012)

8. Dingsøyr, T., Brede Moe, N.: Research challenges in large-scale agile software

development. SIGSOFT Software Engineering Notes 38 (5), 38-39 (2013)

9. Woodcock, J., Larsen, P., Bicarregui, J., Fitzgerald, J.: Formal Methods: Practice and

Experience. ACM Computing Surveys 41 (4), 1-40 (2009)

10. Larsen, P., Fitzgerald, J., Wolff, S.: Are Formal Methods Ready for Agility? A Reality

Check. In: Second International Workshop on Formal Methods and Agile Methods, Pisa

(2010)

11. Bowen, J., Hinchey, M., Janicke, H., Ward, M., Zedan, H.: Formality, Agility, Security, and

http://agilemanifesto.org/

43

Evolution in Software Development. Software Technologies, 86-89 (October 2014)

12. Black, S., Boca, P., Bowen, J., Gorman, J., Hinchey, M.: Formal versus agile: Survival of

the fittest. IEEE Computer 49 (9), 39–45 (2009)

13. Wolff, S.: Scrum Goes Formal: Agile Methods for Safety-Critical Systems. In: Formal

Methods in Software Engineering: Rigorous and Agile Approaches (FormSERA), Zurich

(2012)

14. Löwe, M.: Formal Methods in Agile Development. Special issue of Electronic

Communications of the EASST: Graph and Model Transformation 2010 30, 1-6 (2010)

15. Wils, A., Van Baelen, S., Holvoet, T., De Vlaminck, K.: Agility in avionics software world.

In: Extreme Programming and Agile Processes in Software Engineering (XP) (2006)

16. Gary, K., Enquobahrie, A., Ibanez, L., Cheng, P., Yaniv, Z., Cleary, K., Kokoori, S.,

Muffih, B., Heidenreich, J.: Agile methods for open source safety-critical software.

Software - Practice and Experience 41, 945–962 (2011)

17. Williams, L., Cockburn, A.: Agile software development: it's about feedback and change.

Computer 36, 39-43 (2003)

18. Paige, R., Brooke, P.: Agile Formal Method Engineering. In: Integrated Formal Methods,

Eindhoven (2005)

19. RECOMP Project - Reduced Certification Costs Using Trusted Multi-core Platforms.

Available at: http://recomp-project.eu/

20. Butler, R.: NASA LaRC Formal Methods Program. In: What is Formal Methods? (Created

2001) Available at: http://shemesh.larc.nasa.gov/fm/fm-what.html

21. Holloway, M.: Why Engineers Should Consider Formal Methods. In: AIAA/IEEE16th

Digital Avionics Systems Conference (1997)

22. Olszewska, M.: On the Impact of Rigorous Approaches on the Quality of Development.

Turku Centre for Computer Science (2011)

23. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of

dependable and secure computing. IEEE Transactions on Dependable and Secure

Computing 1 (Issue 1), 11-33 (2004)

24. Standardization, I.: ISO 9126-1 - Software engineering - Product quality — Part 1: Quality

http://recomp-project.eu/
http://shemesh.larc.nasa.gov/fm/fm-what.html

44

model. ISO (2001)

25. Bundschuh, M., Dekkers, C.: The IT Measurement Compendium. Estimating and

Benchmarking Success with Functional Size Measurement. Springer (2008)

26. Dijkstra, E.: A Constructive Approach to the Problem of Program Correctness. BIT

Nmerical Mathematics 8(3), 174-186 (1968)

27. Wirth, N.: Program Development by Stepwise Refinement. Communications of the ACM

14(4), 221-227 (1971)

28. Back, R.-J.: On the Correctness of Refinement Steps in Program Development. Åbo

Akademi, Department of Computer Science (1978)

29. Metayer, C., Abrial, J.-R., Voisin, L.: Event-B Language, RODIN Deliverable 3.2 (D7).

(2005)

30. Snook, C., Waldén, M.: Refinement of Statemachines using Event-B semantics. In: Formal

Specification and Development in B, Besançon (2006)

31. Waldén, M., Sere, K.: Reasoning about Action Systems using the B-Method. Formal

Methods in System Design 13, 5-35 (1998)

32. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Graduate

Texts in Computer Science. Springer Heidelberg (1998)

33. Yeganefard, S., Butler, M.: Problem Decomposition and Sub-Model Reconciliation of

Control Systems in Event-B. In: IEEE International Workshop on Formal Methods

Integration, Turku (2013)

34. Abrial, J.-R.: “Extending B without Changing it (for Developing Distributed Systems). In:

Proceesings of 1st Conference on the B Method, Nantes (1996)

35. Back, R.-J.: Refinement Calculus, Part II: Parallel and reactive programs. Stepwise

Refinement of Distributed Systems. Åbo Akademi (1990)

36. Back, R.-J., Kurki-Suonio, R.: Decentralization of process nets with centralized control. 2nd

ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, 131-142

(1983)

37. Back, R.-J., Sere, K.: From modular systems to action systems. Software - Concepts and

Tools 17, 26-39 (1996)

45

38. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press

(1996)

39. Event-B: Home of Event-B and the Rodin Platform. (Created 2008) Available at:

http://www.event-b.org/index.html

40. Rodin Platform. (Created 2006) Available at: http://www.event-b.org/platform.html or

directly at http://sourceforge.net/projects/rodin-b-sharp/

41. Hähnle, R.: Agile Formal Methods. In: 6th International KeY Symposium, Nomborn (2007)

42. Alliance, A.: Guide to Agile Practices. (Created 2011) Available at:

http://guide.agilealliance.org/

43. Consortium, D.: The DSDM Atern Handbook. DSDM Consortium (2013)

44. Tudor, D., Tudor, I.: The DSDM Atern Student Workbook: A Guide to the Definitive Agile

Framework. Galatea Training Services Ltd (2010)

45. Anderson, D., Reinertsen, D.: Kanban: Successful Evolutionary Change for Your

Technology Business. Blue Hole Press (2010)

46. Klipp, P.: Getting Started with Kanban. Amazon Digital Services (2014)

47. Takeuchi, H., Nonaka, I.: New New Product Development Game. Harvard Business Review

86116, 137-146 (1986)

48. Beck, K.: Extreme Programming Explained. Addison-Wesley (2000)

49. Beck, K.: Extreme Programming Explained: Embrace Change, 2nd edition. Addison-Wesley

Professional (2004)

50. Larman, C., Basili, V.: Iterative and Incremental Development: A Brief History. Computer

36 (6), 47–56 (2003)

51. Copeland, L.: Extreme Programming | Computerworld. (Created December 3, 2001)

Available at: http://www.computerworld.com/article/2585634/app-development/extreme-

programming.html

52. Boehm, B.: Get Ready for Agile Methods, with Care. IEEE Computer January (2002)

53. Gruner, S.: Innovations in Systems and Software Engineering. In: 2nd Workshop on Formal

http://www.event-b.org/index.html
http://www.event-b.org/platform.html%20or%20directly%20at%20http:/sourceforge.net/projects/rodin-b-sharp/
http://www.event-b.org/platform.html%20or%20directly%20at%20http:/sourceforge.net/projects/rodin-b-sharp/
http://guide.agilealliance.org/
http://www.computerworld.com/article/2585634/app-development/extreme-programming.html
http://www.computerworld.com/article/2585634/app-development/extreme-programming.html

46

and Agile Methods (2009)

54. DEPLOY Project - Industrial deployment of system engineering methods providing high

dependability and productivity. (Created February 1, 2008) Available at:

http://www.deploy-project.eu/

55. Mochio, H., Araki, K.: VDM++ as a Basis of Scalable Agile Formal Software Development.

In: 9th Overture Workshop on VDM (colocated with FM2011), Limerick (2011)

56. De Lucia, A., Abdallah, Q.: Requirements Engineering in Agile Software Development.

Journal of Emerging Technologies in Web Intelligence 2(3), 212-220 (2010)

57. Abrial, J.-R.: Mathematical Models for Refinement and Decomposition. Modeling in Event-

B: System and Software Engineering (2009)

58. Butler, M.: Decomposition Structures for Event-B. In: Integrated Formal Methods

(iFM2009) (2009)

59. Butler, M., Yadav, D.: An incremental development of the Mondex system in Event-B.

Formal Aspects of Computing 20 (1), 61-77 (2008)

60. RODIN - Rigorous Open Development Environment for Complex Systems. Available at:

http://rodin.cs.ncl.ac.uk/

61. ProB: The ProB Animator and Model Checker. (Created November 18, 2013) Available at:

http://www.stups.uni-duesseldorf.de/ProB/index.php5/Main_Page

62. Studio, B.: BMotion Studio. (Created November 23, 2012) Available at:

http://www.stups.uni-duesseldorf.de/bmotionstudio/index.php/Main_Page

63. Olszewski, M.: Scaling Up Stepwise Feature Introduction to Construction of Large Software

Systems. Turku Centre for Computer Science (TUCS dissertation series), Turku (2012)

64. Snook, C., Poppleton, M., Johnson, M.: Rigorous engineering of product-line requirements:

a case study in failure management. Information and Software Technology 50(1-2), 112-129

(2008)

65. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D.,

Latvala, T.: Supporting Reuse in Event B Development: Modularisation Approach. In:

Abstract State Machines, Alloy, B and Z: Second International Conference (ABZ) (2010)

66. Iliasov, A.: Modularisation Plugin - Event-B. In: Event-B. (Created September 06, 2010)

http://www.deploy-project.eu/
http://rodin.cs.ncl.ac.uk/
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Main_Page
http://www.stups.uni-duesseldorf.de/bmotionstudio/index.php/Main_Page

47

Available at: http://wiki.event-b.org/index.php/Modularisation_Plug-in

67. ISO/IEC: ISO/IEC 25000:2005 - Software engineering - Software product Quality

Requirements and Evaluation (SQuaRE) — Guide to SQuaRE., Geneva (2005)

http://wiki.event-b.org/index.php/Modularisation_Plug-in

ISBN XXX-XX-XXXX-X

ISSN 1239-1891

