
Turku Cent re Computer Sciencefor

TUCS Technical Report
No 1111, May 2014

Author One | Author Two | Author Three Author Four |

Author Five

Title of the Technical Report

Sergey Ostroumov | Pontus Boström | Marina
Waldén | Mikko Huova

Deriving Efficient and
Dependable Parallel
Programs from Simulink
Models

Deriving Efficient and Dependable Parallel

Programs from Simulink Models

Sergey Ostroumov
TUCS – Turku Centre for Computer Science

Åbo Akademi University, Department of Information Technologies

Joukahaisenkatu 3-5A, 20520, Turku, Finland

Sergey.Ostroumov@abo.fi

Pontus Boström
Åbo Akademi University, Department of Information Technologies

Joukahaisenkatu 3-5A, 20520, Turku, Finland

Pontus.Bostrom@abo.fi

Marina Waldén
Åbo Akademi University, Department of Information Technologies

Joukahaisenkatu 3-5A, 20520, Turku, Finland

Marina.Walden@abo.fi

Mikko Huova
Tampere University of Technology,

Department of Intelligent Hydraulics and Automation

Korkeakoulunkatu 10, 33720, Tampere, Finland

Mikko.Huova@tut.fi

TUCS Technical Report

No 1111, May 2014

Abstract

Modern highly-demanding applications require high computational power, on the one

hand, and fulfilment of real-time constraints and a high level of resilience, on the other.

Model-based development provides means to address these objectives. Simulink is one

such widely used tool for model-based development of software. It supports a complete

design chain starting from modelling and ending in code generation. However, the

programs generated by the built-in code generator cannot fully utilize the potential

offered by energy and performance efficient many-core platforms that are likely to be

used in various application domains: from home use electronics to complex critical

control systems. Furthermore, the failure of a processing core where the derived

implementation runs leads to the failure of the application. In contrast, the distribution

of tasks among processing cores allows for invoking dynamic reconfiguration

procedures, e.g., tasks reallocation, so that the required level of resilience is achieved

and efficiency is maintained at an acceptable level. Despite this, however, the

application tasks may lose data when they are dynamically reallocated to mask failures

of individual cores. This paper addresses the problems described above by proposing: 1)

an approach to generation of parallel implementations from Simulink models, 2) relying

on 1), a mechanism that prevents data loss when application tasks are reallocated. The

paper also presents evaluation results of the proposed approach on an industrial case

study using a commercially available NoC-based platform, namely TilePro by Tilera.

The evaluation shows only about 1% performance degradation when comparing an FT

implementation with a non-FT one.

Keywords: Data Loss Prevention; Dynamic Reconfiguration; Many-Core Platforms;

Parallel Programs; Resilience; Simulink

TUCS Laboratory

RITES – Resilient IT Infrastructures

Distributed Systems Laboratory

Integrated Design of Quality Systems group

The work was done within the Digihybrid project in the EFFIMA program coordinated

by FIMECC.

1

1. Introduction

Due to a highly dynamic nature of modern embedded applications, their computational and
communicational intensity is very high. On the other hand, they demand a new design paradigm in
order to meet real-time constraints and a high level of resilience. To abstract away implementation
details and focus on functionality of a system under development, designers typically employ
various modelling techniques. One such widely used technique is modelling within the Simulink
model-based design environment [1]. Simulink supports a complete design chain starting from
modelling and simulation and ending in generation of, for example, C code. However, the generated
programs cannot fully utilize computational and communicational power offered by energy-
efficient many-core platforms.

A Network-On-Chip (NoC) which represents a communication network of cores has been proposed
as a scalable paradigm that can provide high computational power fulfilling timing constraints and
low power consumption [2]. There are commercially available platforms such as TilePro by Tilera
[3] and Intel Single Cloud Chip Error! Reference source not found. that employ NoC. The programs
are deployed on a platform using mapping algorithms (e.g., [5][6]) in order to achieve various
objectives such as to minimize power consumption while providing high level of performance.
However, high level of on-chip integration increases the probability of various faults [7] whilst high
computational load may cause creation of hotspots leading to thermal problems [8][9]. Additionally,
radiation which is frequent in space, but becomes an issue at the ground level as well can cause
transient faults [10]. This can eventually induce a faulty execution of applications. One of the
powerful techniques to tolerate these faults is dynamic reconfiguration, namely tasks reallocation
[7][11][12]. This technique can be executed by agents that are integrated into the platform and
perform efficient management without overloading the platform with monitoring and recovering
activities [12][13][14]. However, when tasks are reallocated to non-faulty cores, they may lose data
in the process, which can lead to the production of an erroneous output. Consequently, to achieve
resilience, application tasks need to adopt a mechanism that provides means to continue execution
without losing data when they are reallocated.

This paper proposes: 1) an approach to the derivation of parallel implementations from Simulink
models, 2) relying on 1) a resilience mechanism that prevents applications from data loss when the
application tasks are dynamically reallocated. To support the proposed approaches, we present
performance evaluation results obtained using the TilePro platform [3].

The remainder of the paper is organized as follows. Section 2 reviews the related work. Section 3
provides preliminaries for the proposed approaches. Section 4 introduces the mapping between
Simulink models and application characteristic graphs as well as describes generic functionality of
tasks. Section 5 discusses the resilience mechanism for the platform and applications management
relying on the mapping in Section 4. Section 6 describes a simplified version of an industrial case
study modelled within the Simulink design environment. Section 7 illustrates the performance
evaluation results for the derived implementations as well as performance assessment of the task
reallocation procedure. Section 8 concludes the paper and outlines the directions of our future work.
Finally, Appendices A-E demonstrate implementation details in terms of the derived C code.

2

2. Related Work

A Simulink model is a hierarchical dataflow diagram from which the Simulink design environment
can generate sequential or multi-task C code scheduled according to the rate monotonic principle
[15]. Natale [16] has proposed an algorithm that allows multi-task implementations of Simulink
models to run on a single-core processor and aims at optimization of performance of the
applications in terms of space (memory) and time. The algorithm analyzes cases where additional
buffering can be avoided. However, the generated code is not aimed at parallel execution on a
many-core platform. Additionally, automatic parallelization of the sequential code is still an open
issue [17]. On the other hand, if the whole application is running on a single core and that core fails,
the application may need to be restarted, i.e., to start execution from the very beginning. This may
lead to data loss and missed deadlines.

In contrast to [15][16], we propose to generate a parallel implementation directly from a Simulink
model by using application characteristic graphs (ACG) [5] as an intermediate step. The use of
ACG allows designers to employ mapping algorithms for many-core platforms considering various
optimization objectives, e.g., performance (real-time constraints) [5] and/or power consumption
[18], resilience [7][12] etc. The generated concurrent code preserves the semantics of Simulink
models. Moreover, the division of the system into parallel tasks enables the application of resilience
mechanisms to tasks and, hence, improves the utilization of the platform.

After a parallel implementation is derived, the application should produce the expected result, i.e.,
satisfy reliability requirements. One technique to fulfil these requirements is to use redundancy, in
particular, spare processing resources. There are several works addressing this issue. For example,
Bolchini, Carminati and Miele [10] assume forked data parallel programs and propose to replicate a
whole application or some of its threads in order to detect and tolerate failures of processors. The
authors consider three duplication techniques: 1) duplication with comparison, 2) triplication and 3)
duplication with comparison and re-execution FT. The authors propose an adaptation engine that
acts according to the evolving environment. They consider several parameters which the adaptation
engine needs to take into account. The adaptation engine incorporates observe-decide-act loop in
order to achieve adaptability to faults.

Pinello, Carloni and Sangiovanni-Vincentelli have proposed another approach to replicating
dataflow actors [19]. The authors consider a fault model, in which components are fail-silent, i.e.,
they either produce a correct result or produce no result. To effectively detect failures, the authors
rely on failure patterns proposed in [20]. These patterns describe a set of vertices of a process graph
that may fail within the same iteration. The authors use software replication for critical tasks
statically at design time, where each replica is then executed on a separate control unit. Using this
technique, the authors describe a fault-tolerant data flow.

An approach to tackle hardware failures in process networks has been proposed by Ceponis,
Kazanavicius and Mikuckas [21]. The authors present an extension of Kahn process networks,
namely Error-Proof Process Network (EPPN). They give operational semantics of EPPN in the
form of labelled transition system, where concurrent nodes communicate via first-in-first-out
(FIFO) channels. The nodes can check whether the channels are full or empty and can proceed to
blocking write or read, respectively. The authors show a dynamic reconfiguration mechanism where
actions of a faulty node are transferred to an adjacent non-faulty functional node and the
communication channels are adjusted accordingly using checks on FIFO channels. According to the
authors, this mechanism may make the network non-deterministic whilst enabling further execution
of the nodes and helping in synchronizing data. When functionality of a failed node is delegated to a
non-faulty operating node, data loss occurs. To tackle this problem, the authors introduce the

3

default value. Although the mechanism appears to fulfil continuous and on-time result delivery, the
default value may not preserve semantics of the original application.

Similarly as in [10][19][21], we consider hardware failures of processing units in the underlying
many-core platform. However, in contrast to [10][19], we rely on dynamic reconfiguration of the
platform, namely tasks reallocation [7][11][12], which can be effectively and efficiently performed
by agents integrated into the platform [12][13][14]. The tasks reallocation enables uninterruptable
execution of applications [7][11] and avoids resource wasting caused by duplicating applications or
threads (actors) in contrast to [10][19]. We adopt a mechanism proposed in [12], where spare
processing units are used in case of failures of operating nodes. Similarly to [10], the approach in
[12] also allows the reuse of cores from which tasks have been reallocated when no failure of such a
core is detected anymore so that the task can be returned to its original location. We also take into
account the fact that when tasks are reallocated due to failures of processing units, they may lose
data. To address this problem, we propose a resilience mechanism, in which the reallocated tasks
operate on the current values instead of the default ones in contrast to [21]. Therefore, the
determinism of the application is preserved. Additionally, our approach is not restricted to data
parallel applications, but can also be applied to functionally parallel ones in contrast to [10].

3. Preliminaries

3.1. Simulink Models

A Simulink model is a hierarchical dataflow diagram [1]. The model consists of a collection of
functional blocks that have in-ports (inputs) and out-ports (outputs) allowing connections between
blocks via typed signals. The blocks may have parameters that are initialized at the beginning of the
execution and remain constant during the execution. Moreover, the blocks can contain memory. In
this case, the value of the outputs depends not only on the inputs, but also on the previously
computed value.

The blocks can be grouped into sub-systems. There are two types of sub-systems in Simulink:
virtual and atomic [22]. Virtual sub-systems are used for the structural purpose only and do not
affect the model execution. They can be seen as containers for functional blocks which the Simulink
engine expands in place before execution. Atomic sub-systems are treated as single atomic units.

2
x

+1

In1

In2

const

1

Out1

2
x

+1

In1

In2

const

1

Out1

3

In3

2

Out2

a) b)

In1

In2
Out1

Sub-system

c) e)

Sub-system

In1

In2

In3

Out1

Out2

x
1

In1

1

Out1

d)

1 in-port

1 out-port

const
sub-system

parameter

memory

block

signal

Figure 1: Simulink models:

a) sub-system content with memory, b) sub-system block without memory,

c) sub-system content without memory, d) sub-system block with memory, e) algebraic loop

4

Fig. 1 illustrates an example of a Simulink model. The model in Fig. 1, a) contains two in-ports and
one out-port. It includes a constant parameter as well as a memory block (i.e., the model is stateful).
The presented sub-system computes the function

Out1 = const + In1 + (In2*mem); mem+1 = mem * In2,

where mem is the current value stored in the memory and mem+1 is the next value to be stored in
the memory. This model is grouped into a sub-system presented in Fig. 1, b). The sub-system in
Fig. 1, c) represents the same sub-system as in Fig. 1, a), where the memory block is extracted
outside of the sub-system as shown in Fig. 1, d). The sub-system in Fig. 1, c) is then stateless.

The models can be continuous or discrete [22]. Each block in a discrete-time model is evaluated at
regular intervals with a specified sampling period. Generally, a Simulink block can be represented
by the differential algebraic equation (DAE) [23]:

y(k) = f(c, x(k), u(k))

 x(k +1) = g(c, x(k), u(k)) (1)

where y is a list of out-ports, u is a list of in-ports, c are the sub-system parameters and x stands for

an internal memory (state vector). The function f updates out-ports y at sample k while the function

g updates the state x.

A Simulink model may also contain algebraic loops [24]. An algebraic loop stands for the case

where the left side of equation (1) contains u. In other words, an algebraic loop describes a
connection between an in-port and an out-port of the same block such that the out-port drives the in-
port directly (Fig. 1, e)) or via feed-through blocks. A feed-through block is a block whose in-port
directly controls out-port. The Simulink solver does not solve DAEs directly, but numerically
determines the values at each simulation step. This means that the solver may not be able to always
solve an algebraic loop. Consequently, the main problem caused by algebraic loops is that the code
cannot be generated from a model containing them [24].

To effectively generate a parallel implementation, we consider discrete-time models with atomic
sub-systems that specify periodic real-time systems. We assume that the model is single-rate, i.e.,
all its sub-systems fire at the same time intervals. Furthermore, we assume that the model from
which the code is generated is causal, i.e., it does not contain algebraic loops.

3.2. Communication Platform

The generation of a parallel code requires designers to take into account characteristics of the
underlying platform. A 2D mesh NoC-based many-core platform is considered typical for parallel
applications [5][6][7][13]. It consists of tiles that include processing units (PUs) and routers (RTs)
[2] (see Fig. 2). RTs allow communication between tiles by routing packets. The communication
mechanism usually employs FIFO buffers [25][26], which preserves the flow order of data.
Moreover, the platform typically supports checks whether the buffers are full or empty. Therefore,
the tasks can read packets as soon as they arrive in the input buffers and send processed data when
there is an available space.

In this paper, we consider a 2D mesh NoC-based many-core platform as well. We assume the
platform to be homogenous at the global level, i.e., all tiles are identical, while their internal
structure might be heterogeneous. We further assume that the routers employ deterministic routing
with the dead-lock and live-lock free algorithm, which provides low latency and suits real-time
control systems [27][28].

5

Simulink Model

Platform

k k+l-1

k+l k+2l-1

k+2l k+3l-1

Mapping

Platform

Application Characteristic Graph
n3 n2

n4 n5

n6 n1n1

r1,2

r2,4

r
0

,7

r0,4

r
7

,8

r5,8

r3,4

r6,7

r 4,5

r1,5

r
1,6

r 1,
3

r
2

,5
r
5

,6

n3

n2

n5

n6

n4 n0

n7

n8

n0 n7

n8

k+3l

k+4l

k+4l-1

k+5l-1

4

u_BT

3

u_PB

2

u_AT

1

u_PA

v err_PA

v err_AT

v err_PB

v err_BT

MODE

uPA

uAT

uPB

uBT

Switch and Select Control

QPA v alv es

QAT v alv es

QPB v alv es

QBT v alv es

v _ref

v err_PA

v err_AT

v err_PB

v err_BT

Square of

velocity error

pP

Mode

F

pA

pB

pA_ref

pB_ref

MODE_v ector

Pressure references

x_ref

x

v _ref

v _rC

Motion controller

F_max_e

F_min_e

F_max_r

F_min_r

v _ref

F_est

MODE

Mode selection

pA

pB

Fest

Load force estimator

pP_in

pA

pB

pP_out

pA_hat

pB_hat

Filtering of pressures

pA_ref

pB_ref

pP

Q_PA v alv es

Q_AT v alv es

Q_PB v alv es

Q_BT v alv es

Calculate Flow rates

of the valves

pP

F_max_e

F_min_e

F_max_r

F_min_r

Available force range

5

pP

4

x

3

v_ref

2

x_ref

1

pA & pB

n0

n1

n3

n2

n4

n5
n6 n7

n8

Figure 2: Application characterization graph and mapping example

4. Derivation of Parallel Programs from Simulink Models

We translate a Simulink model into a set of concurrent tasks that are given by the sub-systems and
communicate according to the signals in between. This process can be summarized as the following
algorithmic steps (we focus on steps 2-4 in the succeeding sections):

1. Flatten the model, where the top-level atomic sub-systems reflect tasks according to the
designer choice.

2. Construct the application characteristic graph (ACG) from the flattened model using the
mapping proposed in the sub-section 4.1.

3. Generate threads for the tasks and communication according to ACG (Appendices A-D).
4. Generate the main thread that will create the necessary environment (Appendix E).
5. Apply a mapping algorithm (e.g., [5][7][12]) using the ACG.

4.1. Construction of ACG from Simulink

To apply mapping algorithms that enable optimization in terms of, e.g., performance and power
consumption [18] or resilience [7][12], we need to construct an Application Characteristic Graph
(ACG) from a flattened Simulink model. An ACG consists of tasks and edges, where the edges

show communication rates r between tasks via FIFOs. The construction of an ACG from an
arbitrary model is illustrated in Fig. 2.

Let us now show the formal mapping between Simulink and ACG. A Simulink model is formally

defined as a directed acyclic graph Gsm = (N, E, S, ℘, ∂), where:

 the set N = {ni | i ∈ 0..m-1} contains atomic functional blocks (nodes) numbered from 0 to m-1

and m is the total number of blocks,

6

 the set E = {ei | i ∈ 0..k-1} represents links between those nodes and k is the total number of
links,

 the set S = {si | i ∈ 0..m-1} includes sampling rates of the atomic blocks,

 the function ℘ : N → S assigns sampling periods to the nodes,

 the function ∂ : N x E → N specifies the next node by the current node and a link between the
nodes.

An ACG, in its turn, is a tuple ACG = (V, T) [5], where:

 the set of vertices V specifies clusters of tasks such that each v ∈ V should run on a separate
core,

 the set T : V x V x R denotes directed edges showing the communication dependencies and rates

ri,j ∈ R bits per time unit between those tasks.

Similarly as in the approach proposed by Boström [23], we interpret each node of Gsm as a vertex of

ACG with synchronous dataflow semantics, i.e., each atomic sub-system as a separate execution task

that can be run on a single core. However, in contrast to [23], we group the links of Gsm into edges

of ACG. An edge between an arbitrary pair of nodes ni, nj in ACG reflects a group of links between

the same nodes in Gsm. In essence, the links constitute communication between the nodes. The rates

of packets are computed according to the function ℘. The input and the output signals of the blocks
that interact with the environment do not participate in the construction of ACG. This is because
these signals do not affect the application internal structure. The formal definition of the mapping

function between Gsm and ACG is as follows:

 V = N,

 ∀ni, nj ∈ V . ¬ni = nj ⇒ T = {t | ∃E’ . E’ = {e | ∂(ni,e)=nj} ∧ t = (ni, nj, sizeof(E’)/℘(ni)},

where sizeof(E’) = ∑sizeof(ek), k ∈ 1..card(E’), ek ∈ E’, denotes the total size of communication in bits
determined by the types of the signals.

ni nj

si sj

e1

e2

e3

e4

a) b)

ni nj
ri,j

ri,j = sizeof({e1,e2,e3,e4})/si

1

2

3

4

5

Figure 3: Constructing ACG from Gsm: a) Simulink model, b) ACG

Fig. 3 illustrates the mapping by using a small example. There, we have two blocks ni and nj without

memory and with sampling rates si and sj, respectively (Fig. 3, a)). There are nine signals, four of

which connect the blocks. This model is then a tuple Gsm = (N, E, S, ℘, ∂), where:

 N = {ni, nj},

 E = {e1,e2,e3,e4},

 S = {si, sj},

 ℘ = {(ni,si), (nj,sj)},

 ∂ = {(ni, e1, nj), (ni, e2, nj), (ni, e3, nj), (ni, e4, nj)}.

Let us construct an ACG = (V, T) from Gsm (Fig. 3, b)). We proceed as follows:

 V = N = {ni, nj},

7

 T = {t|∃E’.E’ = {e|∂(ni,e) = nj} ∧ t = (ni,nj,sizeof(E’)/℘(ni)} =

{t|∃E’.E’ = {e1,e2,e3,e4} ∧ t = (ni,nj,sizeof(E’)/℘(ni))} =

{(ni,nj,sizeof({e1,e2,e3,e4})/℘(ni))} =

{(ni,nj,sizeof({e1,e2,e3,e4})/si)}. ☐

Please notice that the input signals of the block ni (i.e., in-ports) and the output signals of the block nj

(i.e., out-ports) do not participate in the construction of ACG from Gsm. This is because these signals
do not influence the application internal structure.

4.2. Task Pattern

Each task v ∈ V of ACG executes a function and is mapped to a separate PU in the platform.
However, independently of the functionality of different tasks, each task operates according to the
pattern shown in Fig. 4. A task runs the loop for receiving, processing and sending (RPS) data,
where the behaviour of every task is specified as follows:

 a task starts processing data as soon as it has at least one token (i.e., one piece of data) in
every input buffer,

 when a task runs, it consumes one token from every input buffer and produces one token
for every output buffer, i.e., the task processes the received data according to the function
derived from the model and sends processed data further according to the edge of ACG,

 a task without inputs fires every s sampling time.

To preserve behavioural semantics when mapping Gsm to ACG, we assume the ideal case where the
computation in tasks and communication take no time as does in the Simulink blocks and links.

terminate?

Initialization

Finalization
Yes

Receiving data

Processing data

Sending

processed data

No

run?
No

Yes

Configuration

Figure 4: Task pattern

Claim 1. The Simulink model and the ACG are functionally equivalent.

Proof. Consider the mapping between Simulink and ACG. The in-ports and out-ports of the
model are respectively inputs and outputs of the ACG graph. The number of tasks in ACG
corresponds to the number of atomic sub-systems in the Simulink model. Given the same input
data, the tasks and the corresponding sub-systems produce the same result, since each task executes
a function of the corresponding sub-system. Due to the assumption on behavioral semantics and the
fact that the model is single-rate, the tasks produce data on every output edge every s time units

when all input data are available. Hence, an ACG and a Simulink model are equivalent. ☐

8

5. Resilience of the Platform and Applications

5.1. Fault Model

We consider the fault model that captures physical failures of processing units of the platform. A
failure can be caused by transient, intermittent or permanent faults due to high temperature [8],
radiation [10], for example. We assume that only one failure of PU can occur at a time
independently of the number of faults causing it. In other words, a sufficient amount of time must
elapse between two consecutive failures.

For the sake of simplicity, we assume that PUs are fail silent that either produce the correct result or
no result at all [19][29]. Fail-silence assumption however can be softened if erroneous results are
detected and isolated by using various mechanisms such as model-based diagnosis [30], runtime
verification [31], by integrating CRC-like sums into packets and their checks into tasks [29] and
others [32][33].

After a task is reallocated from a failed tile, the task starts over from the initialization phase (see
Fig. 4); hence, all local variables receive initial values. However, the packets are stored in the
buffers of RT which is a separate unit of a tile (see, e.g., [3]) or in the main memory. Therefore,
these data remain intact and can also be reallocated along with the task.

We can assume that reading from and writing to a FIFO buffer (queue) are atomic operations, i.e.,
either the buffer is read or updated, respectively, or not. However, if a task has several input and/or
several output buffers, the reading and sending proceed in a buffer-by-buffer manner. In addition,
we distinguish between source and regular tasks. The source tasks receive input data from the
environment. The regular tasks consume data produced by other tasks and send processed data
further or provide an output to the environment. Independently of whether a task is source or
regular, it can be stateless (without memory) or stateful (with memory). Consequently, we have 4
cases in total: stateless regular tasks, stateless source tasks, stateful regular tasks and stateful
source tasks.

5.2. Fault scenarios

According to the pattern shown in Fig. 4 and the described fault model, there are several possible
scenarios of a fault occurrence within the RPS loop:

(FS1) a fault occurs before a task reads any packet from the input buffers. In this case, the task
can still read the input data after reallocation as the data remain in the FIFO buffer that
does not belong to the PU.

(FS2) a fault occurs while a task reads input data. That is, a task reads packets from some first
queues, but fails to read the necessary data from other queues. Hence, some pieces of data
may be lost.

(FS3) a fault occurs before the task sends the processed data. The task has read all the required
input packets, but has not finished processing them or has not been able to send the
processed data. In this case, the task loses data of one iteration. This can also lead to
desynchronized reception of data by the successor tasks.

(FS4) a fault occurs while a task sends data. In this case, some successor tasks may receive
packets with new data while others may not.

9

5.3. Packet Sending and Handling

To prevent tasks from losing data when addressing physical failures of PUs according to the
described scenarios, we propose the following mechanism. Firstly, the packets used for
communication between tasks incorporate a sequence number (packet id). The source tasks provide
initial values for this number starting from zero and increase it every time when a new input is read
(Fig. 5, a)). The regular tasks do not change this number, which allows tasks to synchronize packets
received from different queues as explained later in this section.

ss+1s+2...

ss+1s+2...

sss+1...

sss+1...

In queue 1

In queue j

Without FT With duplicate packets

... s – sequence

number (packet id)

a) b)

s data

Packet format

Figure 5: Packets: a) packet format, b) state of buffers with and without FT

Secondly, instead of sending one packet, each task, except for the tasks producing output to the
environment, sends the same packet a number of times: the main packet and its duplicates. The

number of duplicates (PD) depends on the number of faults occurring in a row (FR) in a linear

manner: PD = FR + 1. That is, the number of duplicates depends on the number of reallocations
required to tolerate failures of PUs. Here, we assume that a fault cannot occur immediately after one
reallocation of a particular task, since we utilize spare cores as in [12]. In this case the sufficient

number of duplicates equals to two (Fig. 5, b)): PD = 1 + 1 = 2.

Consequently, the tasks in ACG now receive and send two packets with the same data. The packets
incorporate a sequence number, where the main packet and its duplicate have the same sequence
number. However, the tasks need an intelligent reading procedure that uses duplicates when needed
and filters them when there is no failure, i.e., tackles (FS2)-(FS4).

Stateless regular tasks proceed according to the algorithm presented in Fig. 6. When a regular task
without a memory block receives a packet from an input buffer, the task compares the id of this
packet with the local id. Since initially the local id equals -1 and the id of packets start form 0, the
task will use the packets received at the first iteration. After all packets from all input buffers have
been read, the task updates the local id with the id of the packets just read. At the following
iterations, the task checks whether it has read a duplicate by repeatedly comparing the id of the
packets read with the local id. The comparison allows the task to detect duplicates since the main
packet and its duplicates have the same sequence number. If no fault has occurred, the value of the
local copy of the sequence number is less (previous packet) or equal (duplicate) to the sequence
number of the packets read. Hence, the task will simply discard duplicates and reread the buffer for

packets with a greater sequence number (condition pkt_qj.id <= lsn in Fig. 6).

j ∈ {1, …, n}

n – number of input buffers

lsn – local copy of packets id

pkt_qj.id – packet id from jth buffer

pkt_q1.id – packet id from 1st buffer

false, a packet has been read

true, read is needed
qj =

while (q1 || … || qn)
 …

 if (qj) qj = Read_from_j-th_buffer end if

 if ((pkt_qj.id <= lsn) || (pkt_qj.id < pkt_q1.id))

 qj = true end if
 …

end while

// Allow reading at the next iteration

for (j=1 to n) qj = true end for

// Store local copy of id after reading

// packets from all input buffers

lsn = pkt_q1.id;

Receive

Figure 6: Intelligent reading in regular tasks without memory: the algorithm

10

In case a fault occurs, the local copy of the sequence number is initialized with -1. Depending on
the FS, there are several possible outcomes. In (FS1), the task proceeds normally after reallocation
as the main packets remain intact in the input buffers (see Fig. 5, b)). The effect of the other FSs is

shown in Fig. 7, which captures states of the input buffers of task ni considering (FS2)-(FS4).

If (FS2) takes place, there are two possible cases. In the first one, a fault occurs while the task reads
main packets from buffers (Fig. 7, FS2, Case 1). In this case, the task can proceed normally after
reallocation since there are duplicates in the buffers. In the second case, a fault occurs when the task
has read duplicate packets from some queues but failed to read duplicates from other queues (Fig. 7,
FS2, Case 2). This may lead to desynchronized packet receiving as the task reads data in a buffer-
by-buffer manner. To avoid this, the task compares packet id received from the first queue with ids
of the packets read from other queues. If the id of a packet from another queue is less than the id of

a packet from the first queue, the task needs to reread this queue (Fig. 6, condition pkt_qj.id <

pkt_q1.id). This enables synchronization of packets read from different queues as only source tasks
provide sequence numbers for packets and regular tasks do not modify them.

In (FS3), where a fault occurs before the task starts sending the processed data, the task will use
duplicates residing in the buffers after reallocation (Fig. 7, FS3).

Finally, the algorithm also covers (FS4) if, e.g., task nl is reallocated due to a failure of PU (Fig. 7,
FS4), as at least one copy of a packet always resides in the buffers. Please notice that a task can
send more than two duplicates in case of (FS4). However, they will be filtered by the proposed
algorithm.

s – sequence number (packet id)

ni – i-th task

nk
...

ni

nl

...

...

In-queue 1

In-queue j

Normal operation: initial state

nk,nl fired twice and ni once

nk,nl fired s+2 and ni s+1times

nk
...

ni

nl

...

...

In-queue 1

In-queue j

nk
...

ni

nl

...

...

Fault after reading main packets

from all queues

nk
...

ni

nl

...

...

One iteration after reallocation

nk
...

ni

nl

...

...

s

Fault after reading duplicate

packet from queue 1

Two iterations after reallocation

Fault after reading main packet

from queue 1

nk
...

ni

nl

...

...

In-queue 1

In-queue j

One iteration after reallocation

nk
...

ni

nl

...

...

nk
...

ni

nl

...

...

nk...

ni

nl

...

...

nk
...

ni

nl

...

...

nk
...

ni

nl

...

...

Two iterations after reallocation

One iteration after reallocation

Case 1 Case 2FS2

s+1s+1

sss+1

0

0

1

1

1

1

s

ss+1

In-queue 1

In-queue j

s+1s+1

ss+1s+1

s+2

In-queue 1

In-queue j

s+1s+2s+2

s+1s+2s+2

In-queue 1

In-queue j

s+1s+2

s

s+1...

...

...

...

...

In-queue 1

In-queue j

s+2s+2

s+1

...

...

s+1

s+2 s+2

In-queue 1

In-queue j

s+3s+3...

...

s+2

s+3s+3 s+2

In-queue 1

In-queue j

ss+1s+1

s+1...

...

s+1 s

In-queue 1

In-queue j

s+1s+1

s+1...

...

s+1s+2

s+2

nl sent the main packet but failed

to send the duplicate

nk
...

ni

nl

...

...

After nl is reallocated

nk
...

ni

nl

...

...

FS4

In-queue 1

In-queue j

s

... s+1 s

In-queue 1

In-queue j

Two iterations after reallocation

nk
...

ni

nl

...

...

In-queue 1

In-queue j

s+1s+2

s+1...

...

s+2s+2

s+2

s

... s+1 ss

sss...

...

...

...

...

...

s+1

s+1s+1

nk
...

ni

nl

...

...

In-queue 1

In-queue j

s+1s+2

s+1...

...

s+2s+2

s+2

Two iterations after reallocation

s+1 s+1

In-queue 1

In-queue j

FS3

Figure 7: Intelligent reading in regular tasks without memory: buffer states

Stateless source tasks proceed according to the algorithm shown in Fig. 8. Since the source tasks
provide sequence numbers for packets, they need to synchronize the ids in case of a failure. To
achieve this, we provide such a task with a self-buffer, i.e., the buffer that is read and updated by the
task itself. At each iteration step, the source task without memory reads one service packet from the

service buffer. If the sequence number has already been used (condition pkt_qsrv.id <= lsn in Fig. 8),
the task rereads the buffer. Then, it reads the inputs and processes them. After that, the source task
sends the processed data to other tasks and, then, sends the service packets with updated sequence
number to the self-buffer.

11

Receive

Send

lsn – local sequence number

pkt_qsrv – service packet with sequence number

pkt_qsrv.id – packet id (sequence number)

while (qsrv)
 if (qsrv) qsrv = Read_from_self_buffer end if

 if (pkt_qsrv.id <= lsn) qsrv = true end if

end while

// Allow reading at the next iteration

qsrv = true;

// Store local copy of id after reading

// packets from all input buffers

lsn = pkt_qsrv.id;

…

// Update packet sequence number

pkt_qsrv.id = pkt_qsrv.id + 1;

// Send updated packet to self-buffer i times

for (i=0 to FT_PKG_NUM)

 Send pkt_qsrv to service buffer

end for

false, a packet has been read

true, read is needed
qsrv =

Figure 8: Synchronization of sequence number in source tasks: algorithm

If a failure occurs after the task has read one service packet, but before it has updated the buffer
(FS3), the task will synchronize the sequence number with the current value as at least one packet
resides in the buffer (Fig. 9, FS3). Similarly, the task synchronizes the sequence number if a failure
occurs while service buffer update as the task needs to send duplicate packets (Fig. 9, FS4). Please
notice that (FS2) cannot occur because the task either reads the service buffer or not.

s – packet sequence

number (packet id)

n ...

0

Normal operation:

initial state

n fired once

n ...

Service queue

n fired s+1 times

n ...

Service queue

Fault before updating

the service queue

n ...

Service queue

One read after

reallocation

n ...

Service queue

One iteration after

reallocation

n ...

Service queue

Two iterations

after reallocation

n ...

Service queue

0

Service queue

s+1

Fault while updating

service buffer

n ...

Service queue

One read after

reallocation

n ...

Service queue

One iteration after

reallocation

n ...

Service queue

Two iterations

after reallocation

n ...

Service queue

011

ss+1s+1

s

s+1

s+1s+2s+2

ss+1

s+1

s+1s+1s+1

s+1s+1s+2s+2

FS3 FS4

n read one service

packet

n ...

Service queue

011

Figure 9: Synchronization of sequence number in source tasks: buffer states

Stateful regular tasks with memory blocks proceed according to the algorithm presented in
Fig. 10 similarly to the previously described type of tasks. A stateful regular task also needs a
dedicated self-buffer to store a memory value and retrieve it when a failure occurs. The task reads
the input packets according to the algorithm presented in Fig. 6. Consequently, (FS2) and (FS3) are
already covered. Here, we only show the mechanism for handling a memory value and a
corresponding self-buffer.

12

Receive

Send

pkt_qmem – packet with memory value

pkt_qmem.id – packet id (sequence number)

pkt_q1.id – packet id from 1-st queue

nval – new memory value

Read input packets as shown in Fig. 6

while (qmem)
 if (qmem) qmem = Read_from_self_buffer end if

 if (pkt_qmem.id < pkt_q1.id) qmem = true end if

end while

// Allow reading of memory at the next iteration

qmem = true

…

// Update packet sequence number and packet data

pkt_qmem.id = pkt_qmem.id + 1;

pkt_qmem.val = nval;

// Send updated packet to self-buffer i times

for (i=0 to FT_PKG_NUM)

 Send pkt_qmem to service buffer

end for

false, a packet has been read

true, read is needed
qmem =

Figure 10: Regular tasks with memory: algorithm

The dedicated self-buffers used for storing a memory value are initialized according to the model
when an application is mapped to the platform. After reading all the input packets as shown in
Fig. 6, a stateful regular task reads a memory value from the self-buffer. Then, it compares the id of
the packet just read with the id of the packet read from the first input buffer. If the id of the memory

packet is less than the id of the packet read from the first queue (condition pkt_qmem.id < pkt_q1.id in
Fig. 10), the task rereads the memory buffer. After processing the data read, the task sends
processed data to other tasks according to ACG. It also updates the dedicated self-buffer with a new

memory value and a new id whose value equals to pkt_q1.id + 1. This is because new packets in the

input buffers will have an id whose value equals to pkt_q1.id + 1 as well. Therefore, there is at least
one memory value in the buffer (Fig. 11).

Fault after sending processed

data before updating memory

buffer

nj
...

Normal operation:

initial state

Memory queue

One read after reallocation

0

ival

In-queue 1

After ni fired

Memory queue

In-queue 1

ni
...

0

Memory queue

In-queue 1

nj fired once

Memory queue

In-queue 1

s iterations

Memory queue

In-queue 1

Memory queue

In-queue 1

Memory queue

In-queue 1

0

ival

0

0

ival

0

ival

0

ival

1

nval

1

nval

011

ni
...

nj
...

ni
...

nj ...

ni
...

nj
...

s

val

s+1

nval

s+1

nval

ss+1s+1

In-queue 1

s

val

ss+1s+1

nj
...

ni
...

nj
...

ni... s+1s+1

nj
...

ni... s+1s+1

s+1

nval

s+1

nval

Two iterations after reallocation

Memory queue

In-queue 1 nj
...

ni
... s+1s+2

s+1

val

s+2

nval

s+2

nval

s+2

Fault while updating memory

buffer

Memory queue

In-queue 1

Memory queue

In-queue 1

Memory queue

In-queue 1

In-queue 1

s

val

ss+1s+1

nj
...

ni
...

nj
...

ni... s+1s+1

nj
...

ni... s+1s+1

s+1

nval

s+1

nval

Two iterations after reallocation

Memory queue

In-queue 1 nj
...

ni
... s+1s+2

s+1

val

s+2

nval

s+2

nval

s+2

s+1

nval

s+1

val

s+1

nval

s+1

val

s – packet sequence number (packet id)

ival – initial memory value

val – current memory value

nval – new memory value

FS4

One iteration after reallocation

One read after reallocation

One iteration after reallocation

Figure 11: A regular task with a memory block: a) buffer states, b) algorithm

Finally, in case a source task integrates a memory block, it combines the algorithms depicted in
Fig. 8 and in Fig. 10. The order in which operations take place is the following (Fig. 12). First, the
task reads the service queue and stores a local copy of the sequence number. Then, it reads the
memory buffer, after which it reads inputs. Then, the task processes the data read and send the
processed data further. When the data have been sent to other tasks, the task updates the service

13

buffer with a new sequence number as well as refreshes the memory buffer with the same new
sequence number and a new memory value (Fig. 12).

pkt_qsrv – service packet with sequence number

pkt_qsrv.id – packet id (sequence number)

pkt_qmem – packet with memory value

pkt_qmem.id – packet id (sequence number)

nval – new memory value

Receive

Send

Read pkt_qsrv as shown in Fig. 8

while (qmem)
 if (qmem) qmem = Read_from_mem_buffer end if

 if (pkt_qmem.id < pkt_qsrv.id) qmem = true end if

end while

// Allow reading of memory at the next iteration

qmem = true

…

// Update packet sequence number and packet data

pkt_qsrv = pkt_qsrv + 1;

pkt_qmem.id = pkt_qsrv;

pkt_qmem.val = nval;

// Send updated packet to self-buffer i times

for (i=0 to FT_PKG_NUM)

 Send pkt_qsrv to service buffer

 Send pkt_qmem to memory buffer

end for

false, a packet has been read

true, read is needed
qmem =

Figure 12: Source task with memory block and synchronization of sequence number: algorithm

Fig. 13 illustrates the buffer states that can occur specifically for this kind of tasks according to the
described fault scenarios. The other cases are already handled by the algorithms in Fig. 8 and
Fig. 10 and are omitted.

Normal operation:

initial state

0

Service queue

0

n ...

Memory queue

0

ival

0

ival

After one reading

Service queue

0

n ...

Memory queue

0

ival

One iteration

1

Service queue

0

n ...

Memory queue

1

ival

0

ival

1

ival

1

s+1 iterations

Service queue

s

n ...

Memory queue

s+1

nval

s

val

s+1

nval

s+1s+1

Fault after reading service

buffer before reading memory

buffer

Service queue
n ...

Memory queue

s

val

s+1

nval

s+1

nval

s+1s+1

One reading after

reallocation

Service queue
n ...

Memory queue

s+1

nval

s+1

One iteration after

reallocation

Service queue
n ...

Memory queue

s+1

val

s+1

s+2

nval

s+2

nval

s+2s+2

Fault while updating

self-buffers

Service queue
n ...

Memory queue

s

val

s+1

One reading after

reallocation

Service queue
n ...

Memory queue

s+1

One iteration after

reallocation

Service queue
n ...

Memory queue

s+1

s+1

nval

s+1

nval

s

s+1s+1

Two iterations after

reallocation

Service queue
n ...

Memory queue

s+1

s+1

val

s+2

nval

s+1s+2

s+2

nval

s+2

s – sequence number

ival – initial memory value

val – current memory value

nval – new memory value

FS2 FS4

Figure 13: Source task with memory block and synchronization of sequence number: buffer states

Initially, the communication buffers are empty, except for the ones that store sequence numbers and
memory values. When the platform agent maps an application to the platform, it provides initial
values for these buffers according to the model. The sequence numbers of packets start with zero.

Claim 2. The application tasks operate with the same sequence number within one iteration
independently of the number of the source tasks.

14

Proof. Let us recall that the models we consider in this paper are single-rate, i.e., the tasks fire at
regular time intervals. The source tasks start the sequence number from 0 and monotonically
increase it when a new input is read. The regular tasks, on the other hand, fire when at least one
token is available on every input queue. Furthermore, regular tasks do not change the sequence
number, but redistribute it throughout ACG. In addition, the tasks with memory blocks update
memory buffer with a new sequence number so that it correlates to the sequence number of input

packets. Therefore, every task operates with the same sequence number within one iteration. ☐

Claim 3. FT packet processing preserves functionality of the application.

Proof. The proof proceeds following the inductive approach on the sequence numbers of packets.
Consider the fact that the service and memory buffers are initialized when an application is mapped
to the platform. The initial values serve as the base case. The states of the buffers reflect the
inductive case. According to Claim 2, the FT tasks operate with the same sequence number as the
non-FT tasks within one iteration. Hence, the proposed technique preserves functionality and

provides the necessary level of resiliency. ☐

In summary, the tasks do not lose packets (data) regardless of which fault scenario would happen.
Moreover, using fast fault detection, the approach provides low latency as tasks do not need to
restart computation from the very beginning, but to reprocess a single piece of data.

6. Case study

This work has been inspired by the controller of digital hydraulics described in details in [34]
developed in the IHA laboratory at Tampere University of Technology. The controller represents a
real-time periodic system which should react on changes in the environment within specified hard
deadlines. The fault occurrence of a processing unit while the controller is running may lead to
dramatic effects, e.g., dangerous pressure peaks and wear out of hydraulic components. Therefore,
the system has to be efficient and resilient.

Let us now illustrate our approach using case study tasks that represent different cases: a regular
task without memory (Fig. 14, task n3 in Fig. 2), a source task without a memory block (Fig. 15,
task n0 in Fig. 2), a regular task with a memory block (Fig. 16, task n8 in Fig. 2) and a source task
with a memory block (Fig. 17, task n1 in Fig. 2). For simplicity, the source tasks read input data
from the files. The task that produces an output to the environment stores results in a file as well.
All tasks instantiate the pattern presented in Fig. 4 and implement a corresponding FT algorithm.

To specify the number of duplicates, we introduce a global constant, namely FT_PKG_NUM. If it
equals to 1, the tasks send only main packets without duplicates, i.e., the application is non-FT. If it
equals to 2, the tasks send one main packet and one duplicate, that is, the tasks can tolerate one
failure. Failures are simulated using the statement if (fault[th_id]) goto finalize;, where

th_id is the id of a task. Hence, when the condition holds, the task finalizes its execution.

Regular task without memory. The first example is a sub-system that reflects a regular task
without a memory block (Fig. 14). The task reads one input and produces four outputs. The
constants Constant1, Constant3 and Constant5 (Fig. 14, a)) are external to the sub-system, i.e.,
these are global parameters of the controller. Although this sub-system includes other sub-systems
(Fig. 14, b)), we chose it to be a single task as these sub-systems are rather simple and used for the
structural purpose only.

15

a) b)

Figure 14: A regular task without memory, n3: a) sub-system, b) sub-system contents

The excerpt of the derived C code is presented in Appendix A. The code implements the algorithm
depicted in Fig. 6. To receive and send data, we use functions Queue_<TYPE>_dequeue and
Queue_<TYPE>_enqueue for non-blocking reading and writing, respectively. The former checks
whether an input FIFO buffer is empty or not. The latter tests whether a receiver FIFO is full or not.
The functions return -1 (true) if the buffer is empty or full. Otherwise, they return 0 (false).

Since the functions for reading from and writing to a buffer are non-blocking, we use the while
loop to achieve blocking reading and/or writing. For instance, in Appendix A, the task reads a new
packet while result of reading stored in the variable tn1q equals to -1, i.e., true. The if (tn1q)
statement does not allow the task to reread the queue, especially if a task has multiple input queues.
The task sends data while the condition qcnt < FT_PKG_NUM holds. That is, when the task sends the
main packet to all successor tasks it increments qcnt and proceeds with sending duplicates.
Therefore, each successor task first receives the main packet and then FT_PKG_NUM-1 number of
duplicates.

Source task without memory. The next example is a source sub-system without a memory block
(Fig. 15, a)). We can observe that the functionality of this sub-system is rather simple and the
computation is straightforward. First, the sub-system acquires three inputs. Then, two of them are
summed up and the result is multiplied by one of the constants. The other input and constant are
directly multiplied. Finally, both multiplication results are summed up to compute the output result
(Fig. 15, b)). The constants are the local parameters of the sub-system and therefore available to the
sub-system only.

a) b)

Figure 15: A source task without memory, n0: a) sub-system, b) sub-system contents

pP

dp

pmax

pmin

F_max_e

F_min_e

F_max_r

F_min_r

n3

3.0e6

Constant5

20e6

Constant3

3e6

Constant1

4

F_min_r

3

F_max_r

2

F_min_e

1

F_max_e

pmax

pmin

pP

dp

F_max_r

F_min_r

Retracting

pmax

pmin

pP

dp

F_min_e

F_max_e

Extending

4

pmin

3

pmax

2

dp

1

pP

x_ref

x

v _ref

v _rC

n0

1

v_rC

Product1

Product
3.0

Constant6

0.7

Constant1

3

v_ref

2

x

1

x_ref

16

The excerpt of the derived C code is shown in Appendix B. The code implements the algorithm
depicted in Fig. 8. Please notice the mechanism for the sequence number synchronization. The task
first reads the service packet (the while (srvq) loop). Then, stores the local copy (lcl_seq_num =

itd.pkg.pkg_id). Finally, after the task has processed data and has sent them to other tasks, it
sends the service packets with an updated sequence number to the service buffer (the for (short

i = 0;...) loop).

Regular task with memory. The sub-system in Fig. 16, a) illustrates an example of a regular task
with a memory block. The content of the sub-system is shown in Fig. 16, b). Although the sub-
system includes other sub-systems, we chose it to be a single task. The excerpt of the derived C
code is presented in Appendix C. This task receives data from two other tasks as well as reads and
updates the memory self-buffer. Hence, it implements the algorithm depicted in Fig. 10. The
statement if (r_data_tn7.pkg_id <= r_data_tn5_copy || r_data_tn7.pkg_id <

r_data_tn5.pkg_id) in the while (tn5q || tn7q) loop makes the task to synchronize the
reception of packets from different queues. Since the memory stores a vector of values, we use the
function memcpy to copy vectors.

a) b)

Figure 16: Regular task with memory, n8: a) sub-system, b) sub-system contents

Source task with memory. Finally, the sub-system in Fig. 17, a) represents a source task with
memory. Although this sub-system also contains sub-systems that integrate memory (Fig. 17, b)),
we chose it to be a single task. In comparison with other tasks, this task runs six times faster and
reads six times more input data. However, it sends packets with the same rate as the other source
task. This is achieved by using zero-order hold blocks whose sampling time is the same as the
sampling time of the other tasks. Hence, it preserves the value of the sequence number within one
iteration, but requires two counters: one for local iteration and the other one for sequence numbers
of the packets. Despite this, the task operates according to the algorithm shown in Fig. 12.

The derived C code is shown in Appendix D. Please notice the order in which the instructions take
place. First, the task reads the service queue (the while (srvq) loop). Then, the task reads memory
buffer (the while (memq) loop). After that, it reads the input data from a file and processes them.
At every iteration, the task updates the service and memory queues with new values. If the

v err_PA

v err_AT

v err_PB

v err_BT

Wsw

MODE

uPA

uAT

uPB

uBT

n8

4

uBT

3

uPB

2

uAT

1

uPA

u_prev

wsw

C_sw

Switching cost PB

u_prev

wsw

C_sw

Switching cost PA

u_prev

wsw

C_sw

Switching cost BT

u_prev

wsw

C_sw

Switching cost AT

v err

Csw

Primary DFCU

u

Select control3

v err

Csw

Primary DFCU

u

Select control2

v err

Csw

Primary DFCU

u

Select control1

v err

Csw

Primary DFCU

u

Select control

Memory

6

MODE

5

Wsw

4

verr_BT

3

verr_PB

2

verr_AT

1

verr_PA

17

condition cnt % RATIO == 0, where RATIO equals to six, holds, the task sends the computed data
to other tasks.

a) b)

Figure 17: Source task with memory, n8: a) sub-system, b) sub-system contents

Cluster agent task. To enable dynamic reconfiguration of the platform (i.e., tasks reallocation), we
adopt the approach proposed in [12] and implement the algorithm of the cluster agent in the form a
specific task. This task manages the application and reallocates the case study tasks when
simulating failures. The reader is referred to [12] for details on the reallocation algorithm and agent-
based management.

Main task. The main task initializes the environment and creates threads out of the ACG tasks.
Additionally, it creates the agent task and maps all the tasks to the cores. The derived C code is
presented in Appendix E. Please notice that when the main task initializes environment, it also
provides initial values for the self-buffers, i.e., for the service and memory buffers.

7. Evaluation results

The proposed approach has been evaluated on a case study described in the previous section and
implemented on the TilePro platform [3] without running other applications than OS (Linux
Santiago 6.0, Kernel 2.6.36-4). The platform integrates 64 tiles forming an 8x8 square mesh with a
network-based communication between the tiles. The network connections are 32-bit full-duplex,
there is single cycle latency between adjacent tiles and packet length is up to 128 32-bit words.
Bisection bandwidth equals 2660 Gbps. Due to the platform architecture, the size of FIFO buffers is
limited to the power of 2. To tolerate faults, the proposed approach requires buffers of size 3.
Hence, we provide communication buffers of size 4 for storing 3 packets in total: one current
duplicate packet, one new main packet and one new duplicate. The platform runs at the frequency
of 862.5 MHz so that one execution cycle approximately takes 1.1594 ns. The platform employs

pP_in

pA

pB

pP_out

pA_hat

pB_hat

n1

3

pB_hat

2

pA_hat

1

pP_out

Zero-Order

Hold2

Zero-Order

Hold1

Zero-Order

Hold
0.7

Filter

damping

factor

40

Constant1

8

Constant

u

w

d

y

2nd order transfer fcn

(discrete time,

Tustin approximation)3

u

w

d

y

2nd order transfer fcn

(discrete time,

Tustin approximation)2

u

w

d

y

2nd order transfer fcn

(discrete time,

Tustin approximation)1

3

pB

2

pA

1

pP_in

18

deterministic XY routing [26] with the dead-lock and live-lock free algorithm suitable for real-time
systems [27][28].

a)

NoC Platform

ClA n6 n1

n0 n7

n5

n3

n4M

core running worker task

faulty core

spare core

task reallocation

n8

S

S

S

S

S

NoC Platform

ClA n6 F

n0 n7

n5n4M

n8

n1

b)

NoC Platform

ClA

F

M n3

c)

NoC Platform

ClA

M

F

n8

d)

core with cluster agent task

core with the main taskM

n2 n3 n2 S

S

S

S

S

S

S

n6

n0

n4

n7

n5

n8

F n1

n2 F

n3

S

S

n6

n0

n4

n7

n5

F n1

n2 ClA

n

F

S

Figure 18: Parallel implementation of safe controller:

a) initial mapping, b) reallocation of task id 1, c) reallocation of task id 3, d) reallocation of task id 8

The initial mapping of the case study is shown in Fig. 18, a). Then, multiple tasks reallocation take
place as if faults occurred. Particularly, the tasks with ids 1 (Fig. 18, b)), 3 (Fig. 18, c)) and 8
(Fig. 18, d)) are reallocated. The locations of these tasks reflect middle, topmost and bottommost
tiles of the application region, respectively. Additionally, task 1 is a source task with a memory
block, task 3 is a regular task without a memory block while task 8 is a regular task with a memory
block, which provides output to the environment.

We have first evaluated performance of the sequential and parallel C programs derived from the
case study Simulink model without tasks reallocation. The test case consists of 2085 pieces of input
data. Tab. 1 summarizes the evaluation results for the whole set of input data, where each number is
of the order 1E+09.

Table 1: Performance evaluation of sequential and parallel programs

 Sequential, cycles Parallel, cycles Parallel FT, cycles Ratio P/S, % Ratio FT P/S, %

Min 2.3359 1.7104 1.7163 73.22 73.58

Max 2.3418 1.7316 1.7526 73.94 74.84

Avg 2.3388 1.7210 1.7345 73.58 74.16

From Tab. 1, we can observe that the parallel program without fault-tolerance technique performs
more than 26% more efficiently than its sequential counterpart. The use of the proposed fault-
tolerance technique reduces performance by about 1% while allowing the application to produce the
expected result without interruption and loss of data when invoking dynamic tasks reallocation.
Although we observe 1% reduction in performance, the fault-tolerant parallel implementation is still
more efficient (more than 25%) than the sequential implementation without fault-tolerance.

Consequently, we can see two main advantages of generating a parallel program. On the one hand,
the reduction of execution time enables the application to fulfil real-time requirements. On the other
hand, the saved time can be utilized to achieve system resilience by using dynamic reconfiguration
while maintaining performance efficiency.

Furthermore, we have evaluated the effect of the tasks reallocation on the tasks performance. Tab. 2
summarizes the evaluation results, where all numbers are of the order 1E+09. The term original
stands for the core where a task has been mapped initially, the term reallocated refers to a spare
core allocated in the rightmost column of the application region according the reallocation
algorithm in [12]. The task ids corresponds to the tasks that have initially been allocated to the top
(task id 3), middle (task id 1) and bottom (task id 8) cores of the region (see Fig. 18, c), b), d),
respectively).

19

Table 2: Tasks performance

Performance
Task id

1 3 8

Min
original, cycles 1.6981 1.7064 1.7253

reallocated, cycles 1.7079 1.7149 1.7343

Max
original, cycles 1.7287 1.7406 1.7618

reallocated, cycles 1.7242 1.7403 1.7514

Average
original, cycles 1.7186 1.7300 1.7507

reallocated, cycles 1.7183 1.7283 1.7452

Max r/o ratio, % 99.74 99.98 99.41

The table shows that the task performance reallocated to a spare core deviates from the task
performance allocated initially by at most 0.6%, which is a marginal overhead. In some cases,
performance of the reallocated task is better than the performance of the same task at the original
location (e.g., task with id 8, minimum). This can be explained by the fact that there is lighter traffic
to spare cores when routing packets.

Table 3: Algorithm performance

Performance,

cycles

Task id

1 3 8

Min 1.3094 1.0515 1.0711

Max 1.3886 1.3855 1.1035

Average 1.3444 1.2178 1.0865

Additionally, we have evaluated the performance of the reallocation algorithm that determines spare
cores to be used as substitutions [12]. From Tab. 3, where the numbers are of the order 1E+04, we
observe that the algorithm determines an appropriate spare core using at most 14000 cycles, which
is approximately 16 µS. Considering the fact that even the parallel implementation of the controller
requires about 1 mS to process a single piece of data from the input tasks to the output task, the
algorithm latency is negligible.

Table 4: Reallocation performance

Performance,

cycles

Task id

1 3 8

Min 8.3672 8.5377 8.8798

Max 9.9380 10.494 9.7322

Average 9.1065 9.2018 9.3080

We have also evaluated the performance of the reallocation procedure. From Tab. 4, we observe
that the worst case is the reallocation of task with id 3, which requires a little more than 100 000
cycles, i.e., approximately 120 µS. Hence, the total time required to reallocate a single task is less
than 140 µS.

Therefore, from the above tables, we can conclude that the proposed approach provides a high level
of efficiency and enables the applications to produce the expected result. The high level of
efficiency is obtained because the network connections are 32-bit full-duplex, there is single cycle
latency between adjacent tiles and the packet length is up to 128 32-bit words [11][26]. This
provides an adequate bandwidth for duplicating packets.

20

8. Conclusion and future work

We have shown an approach to deriving parallel programs from arbitrary discrete single-rate
Simulink models. Relying on the behaviour of the resulting ACG, we have introduced a scalable
fault-tolerance (FT) mechanism that prevents data loss when application tasks are relocated due to
failures of PUs. We have evaluated performance of the derived programs as well as of the proposed
FT mechanism. The results show only about 1% performance decrease when comparing non-FT
and FT versions. Therefore, the proposed approach maintains efficiency and provides resilience to
faults allowing applications to produce the expected result. The proposed FT can also be used
separately from Simulink but requires the aforementioned assumptions. Furthermore, it is not
restricted to data parallel applications and can be applied to functionally parallel ones. Our approach
can be integrated into FT dataflow proposed in [21] or in [35].

Due to the systematic nature of the proposed approach, it can be relatively easily incorporated into
the Simulink environment in order to allow designers to generate parallel code in an automated
manner. Hence, one direction of our future work is to develop a tool support for the proposed
approach.

In the current work, we considered single-rate Simulink models where tasks fire at regular time
intervals. However, one can specify a multi-rate model where the rate of a sub-system is computed
as a greatest common divisor of the rates of its sub-systems. Hence, another future direction of our
work is to extend the presented approach to multi-rate Simulink models.

In addition, when mapping Simulink models to ACG, we assumed that the computation in tasks and
communication in ACG took no time since Simulink blocks and links take no time either. However,
in the real world environment, the tasks take time to compute functions. Hence, another direction of
our future work is to explore approaches to semantic equality between Gsm and ACG in terms of the
described issue. Moreover, the proposed task pattern can be interpreted as a timed automaton. A
system is then a collection of communicating timed automata. Therefore, performance analysis
using timed automata and their tool support Uppaal [36] is also of particular interest and will be
explored in the future work.

Acknowledgment

The authors would like to thank Adjunct Professor Juha Plosila for fruitful discussions. The authors
would also like to thank the IHA laboratory at Tampere University of Technology for providing the
case study.

References

[1] Simulink, Simulation and Model-Based Design, 2013.

Available: http://www.mathworks.se/products/simulink/

[2] L. Benini, G. De Micheli, Networks on chips: a new SoC paradigm, Computer: IEEE, Vol.

35, Issue 1, pp. 70 – 78, 2002.

[3] Tilera, TilePro processor family, 2013.

Available: http://www.tilera.com/products/processors/TILEPro_Family

http://www.mathworks.se/products/simulink/
http://www.tilera.com/products/processors/TILEPro_Family

21

[4] T. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N.

Borkar, G. Ruhl and S. Dighe, “The 48-core SCC Processor: the Programmer’s view”, in

Proceedings of the 2010 ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis, 2010, pp. 1-11.

[5] C.-L. Chou, R. Marculescu, User-Aware Dynamic Task Allocation in Networks-on-Chip,

Design, Automation and Test in Europe DATE, Munich: IEEE, pp. 1232-1237, 2008.

[6] B. Yang, T. Xu, T. Säntti, J. Plosila, Tree-Model Based Mapping for Energy-Efficient and

Low-Latency Network-on-Chip, Design and Diagnostics of Electronic Circuits and Systems

(DDECS), Vienna: IEEE, pp. 189-192, 2010.

[7] F. Khalili, H. R. Zarandi, A Fault-Tolerant Low-Energy Multi-Application Mapping onto

NoC-based Multiprocessors, International Conference on Computational Science and

Engineering, Nicosia: IEEE, pp. 421-428, 2012.

[8] G. Link, N. Vijaykrishnan, Hotspot Prevention Through Runtime Reconfiguration in

Networks-on-Chip, Design, Automation and Test in Europe DATE, IEEE, pp. 648-649,

2005.

[9] C. Addo-Quaye, Thermal-aware Mapping and Placement for 3-D NoC Designs, SOC

Conference, IEEE, pp. 25-28, 2005.

[10] C. Bolchini, M. Carminati, A. Miele, Self-Adaptive Fault-Tolerance in Multi-/Many-Core

Systems, Journal of Electronic Testing: Theory and Applications, Vol. 29, Issue 2, Springer

US, pp. 159-175, 2013.

[11] C.-L. Chou, R. Marculescu, FARM: Fault-Aware Resource Management in NoC-based

Multiprocessor Platforms, Design, Automation & Test in Europe Conference & Exhibition

(DATE), Grenoble: IEEE, pp. 1-6, 2011.

[12] S. Ostroumov, L. Tsiopoulos, J. Plosila, K. Sere, Formal Approach to Agent-Based

Dynamic Reconfiguration in Networks-On-Chip, Journal of Systems Architecture, 59(9),

Elsevier, pp. 709-728, 2013.

[13] L. Guang, J. Plosila, J. Isoaho, H. Tenhunen, Hierarchical Agent Monitored Parallel On-

Chip System: A Novel Design Paradigm and its Formal Specification, International Journal

of Embedded and Real-Time Communication Systems (IJERTCS), Vol. 1, Issue 2, IGI, pp.

86-105, 2010.

[14] P. Rantala, J. Isoaho, H. Tenhunen, Novel Agent-Based Management for Fault-Tolerance in

Network-on-Chip, Euromicro Conference on Digital System Design Architectures, Methods

and Tools, Lubeck: IEEE pp. 551-555, 2007.

[15] MathWorks, Simulink coder, 2013.

Available: http://www.mathworks.se/products/simulink-coder/

[16] M. Di Natale, Optimizing the multitask implementation of multirate Simulink models, Real-

time and Embedded Technology and Applications Symposium (RTAS), IEEE, pp. 335-346,

2006.

[17] N. Vranic, V. Marinkovic, M. Djukic, M. Popovic, An approach to parallelization of

sequential C code, Eastern European Regional Conference on the Engineering of Computer

Based Systems, IEEE, pp. 143-146, 2011.

[18] M. Noraziz Sham Mohd Sayuti, L. Soares Indrusiak, Real-Time Low-Power Task Mapping

in Networks-on-Chip, Computer Society Annual Symposium on VLSI, IEEE, pp. 14-19,

2013.

http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.igi-global.com/journal/international-journal-embedded-real-time/1162
http://www.mathworks.se/products/simulink-coder/

22

[19] C. Pinello, L. Carloni, A. Sangiovanni-Vincentelli, Fault-Tolerant Deployment of

Embedded Software for Cost-Sensitive Real-Time Feedback-Control Applications,

International Conference on Design Automation and Test in Europe, IEEE, pp. 1164-1169,

2004.

[20] C. Dima, A. Girault, C. Lavarenne, Y. Sorel, Off-line real-time fault-tolerant scheduling,

Euromicro, IEEE, pp. 410-417, 2001.

[21] J. Ceponis, E. Kazanavicius, A. Mikuckas, Fault Tolerant Process Networks, Information

Technology and Control, Vol. 35, No. 2, pp. 124-130, 2006.

[22] MathWorks, Modeling Dynamic Systems, 2014.

Available: http://www.mathworks.se/help/simulink/ug/modeling-dynamic-systems.html

[23] P. Boström, Contract-based verification of Simulink models, International Conference on

Formal Engineering Methods (ICFEM), Durham, Springer-Verlag Berlin Heidelberg, pp.

291-306, 2011.

[24] MathWorks, Simulating Dynamic Systems, 2014.

Available: http://www.mathworks.se/help/simulink/ug/simulating-dynamic-systems.html

[25] M. Ebrahimi, D. Masoud, P. Liljeberg, J. Plosila, H. Tenhunen, Efficient Congestion-Aware

Selection Method for On-Chip Networks, International Symposium on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC), IEEE, pp. 1-4, 2011.

[26] Tile Processor User Architecture Manual, Tilera, 2011.

Available: http://www.tilera.com/scm/docs/UG101-User-Architecture-Reference.pdf

[27] M. Dehyadgari, M. Nickray, A. Afzali-kusha, Z. Navabi, Evaluation of Pseudo Adaptive

XY Routing Using an Object Oriented Model for NOC, International Conference on

Microelectronics, IEEE, pp. 204-208, 2005.

[28] V. Rantala, T. Lehtonen, J. Plosila, Network on Chip Routing Algorithms, TUCS Technical

Report No 779, TUCS – Turku Centre for Computer Science, pp. 10-16, 2006.

[29] F. Brasileiro, P. Ezhilchelvan, S. Shrivastava, N. Speirs and S. Tao, Implementing fail-silent

nodes for distributed systems, IEEE Transactions on Computers, Vol. 45(11), pp. 1226–

1238, 1996.

[30] R. Isermann, Model-based fault-detection and diagnosis – status and applications, Annual

Reviews in Control 29(1), Elsevier, Vol. 29, Issue 1, pp. 71-85, 2005.

[31] L. Pike, S. Niller, N. Wegmann, Runtime Verification for Ultra-Critical Systems, In

Proceedings of International Conference on Runtime Verification, Springer, pp. 310-324,

2012.

[32] C. Villalpando, D. Rennels, R. Some, M. Cabanas-Holmen, Reliable Multicore Processors

for NASA Space Missions, Aerospace conference, IEEE, pp. 1-12, 2011.

[33] R. Hamming, Error Detecting and Error Correcting Codes, The Bell System Technical

Journal, Vol. XXIX, No. 2, pp. 147-160, 1950.

[34] M. Huova, M. Ketonen, P. Alexeev, P. Boström, M. Linjama, M. Waldén and K. Sere,

Simulations with fault-tolerant controller software of a digital valve, Workshop on Digital

Fluid Power, Tampere, Finland, pp. 223 – 242, 2012.

[35] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, M. Peri, S. Pezzini:

Fault-tolerant platforms for automotive safety-critical applications, International Conference

http://www.mathworks.se/help/simulink/ug/modeling-dynamic-systems.html
http://www.mathworks.se/help/simulink/ug/simulating-dynamic-systems.html

23

on Compilers, Architectures and Synthesis of Embedded Syststems, ACM, pp. 170-177,

2003.

[36] G. Behrmann, A. David and K. G. Larsen, A Tutorial on UPPAAL, In Formal Methods for

the Design of Real-Time Systems, volume 3185/ 2004, Springer Berlin / Heidelberg, pp.

200–236, 2004.

24

Appendix A

A regular task without memory (n3)

// A regular task (id = 3) without memory

// tnN is shorter version of task_nN, where N is the task number

void *Task_n3(void *threadargs) {

C
o
n
fi

g
u
re

 // Configuration. Obtaining task pid used for (re)allocation

 int th_id = (int) threadargs;

 tpid[th_id] = tmc_task_gettid();

 // Declaring and initializing sub-system parameters (constants)

 rtP_tn3 rtp_afr;

 Task_n3_Init_Structure(&rtp_afr);

 // Declaring necessary variables

 // for receiving packets from task n1

 tn1_data r_data_tn1;

 // for storing local copy of the sequence number

 short r_data_tn1_copy = -1;

 // for storing computed result

 tn3_data result;

 // Declaring variables to process FIFO buffers

 // for Receiving

 short tn1q = -1;

 // flags that packets have been sent. -1 stands for true

 short tn4q[FT_PKG_NUM];

 for (short i = 0;i < FT_PKG_NUM; i++) tn4q[i] = -1;

 // counter for the number of packets sent

 short qcnt = 0;

 // Declaring other variables, if needed

 …

R
u
n
?

 // Wait until everything is ready

 while (!run[th_id]) {}

R
P

S

lo
o
p

 // Loop over receiving, processing and sending

 while (!terminate[th_id]) {

25

R
ec

ei
ve

 // Receiving data to process according to ACG in Fig. 2

 while (tn1q) {

 // If no packet has been read

 if (tn1q) {

 // Read a new packet and store the result of operation in the

 // tn1q variable. If reading is successful, tn1q = 0 (false).

 // Otherwise, it is -1 (true)

 tn1q = Queue_tn1_dequeue(tn1_queues[1], &r_data_task_n1);

 // If reading is successful and

 // the task has read a duplicate, reread

 if ((!fopq) && (r_data_tn1.pkg_id <= r_data_tn1_copy))

 tn1q = -1;

 } // end if (tn1q)

 } // end while (tn1q)

 // Store local copy of the sequence number and

 // reset the reading flag

 r_data_tn1_copy = r_data_tn1.pkg_id;

 tn1q = -1;

C
o
m

p
u

te

 // Computing a function according to the model

 Task_n3_Func(P_Constant5_Value, P_Constant3_Value,

 P_Constant1_Value, r_data_tn1.pP,

 &rtp_afr, &result);

S
en

d

 // Providing packet id

 result.pkg_id = r_data_tn1.pkg_id;

 // Sending computed data according to ACG in Fig. 2

 while (qcnt < FT_PKG_NUM) {

 // Send a packet to task with id 4 and store the result of

 // sending in the tn4q variable. If sending is successful,

 // tn4q = 0 (false). Otherwise, -1 (true).

 if (tn4q[qcnt])

 tn4q[qcnt] = Queue_tn3_enqueue(tn3_queue, result);

 // Increase packet counter in order to send duplicates

 if (!(tn4q[qcnt])) qcnt++;

 } // end while (qcnt < FT_PKG_NUM)

 // Reset all the sending flags

 for (short i = 0;i < FT_PKG_NUM; i++) tn4q[i] = -1;

 qcnt = 0;

 } // end while (!terminate[th_id])

F
in

a
li

ze

 // Finalizing the thread

 finalize:

 …

 return NULL;

} // end void *Task_n3(void *threadargs)

26

Appendix B

A source task without memory and with synchronization of the sequence number (n0)

// A source task (id = 0) without memory

// tnN is a shorter form of task_nN, where N is the task number

void *Task_n0(void *threadargs) {

C
o
n
fi

g
u
re

 // Configuration. Obtaining task pid used for (re)allocation

 int th_id = (int) threadargs;

 tpid[th_id] = tmc_task_gettid();

 // Initializing sub-system parameters (constants)

 rtP_tn0 rtp_mc;

 Task_n0_Init_Structure(&rtp_mc);

 // Local variables for inputs,

 real_T rtu_x_ref;

 real_T rtu_x;

 real_T rtu_v_ref;

 // result

 tn0_data result;

 // and local copy of the sequence number

 int lcl_seq_num = -1;

 // Local variables for processing FIFO buffers:

 // for processing service buffer (queue)

 ITD_data itd_pkg;

 short srvq = -1;

 // for sending processed data to other tasks

 // flags that packets have been sent

 short tn4q[FT_PKG_NUM], tn7q[FT_PKG_NUM];

 for (short i = 0; i < FT_PKG_NUM; i++) tn4q[i] = tn7q[i] = -1;

 // counter for the number of packets sent

 short qcnt = 0;

 // Declaring other variables, if needed

 …

R
u
n
?

 // Wait until everything is ready

 while (!run[th_id]) {}

R
P

S

lo
o
p

 // Loop over receiving, processing and sending

 while (t0inp_read > 0) {

27

R
ec

ei
ve

 // Reading the service queue in order to synchronize

 // sequence number. srvq = 0 (false), if reading is successful

 while (srvq) {

 // Reading a packet if nothing has been read yet

 if (srvq) {

 srvq = Queue_ITD_dequeue(ITD_queues[0], &itd_pkg);

 // If a packet is read and its sequence number has

 // already been used, reread the buffer

 if ((!srvq) && (itd_pkg.pkg_id <= lcl_seq_num)) srvq = -1;

 } // end if (srvq)

 } // end while (srvq)

 // Store local copy of the sequence number and

 // reset the reading flag

 lcl_seq_num = itd_pkg.pkg_id;

 srvq = -1;

 // Reading inputs from a file

 …

C
o
m

p
u

te

 // Computing a function according to the model

 Task_n0_Func(rtu_x_ref, rtu_x, rtu_v_ref,

 &rtp_mc, &result);

S
en

d

 // Providing packet id

 result.pkg_id = lcl_seq_num;

 // Sending computed data to other tasks according to ACG, Fig. 2

 while (qcnt < FT_PKG_NUM) {

 // Sending a packet to task with id 4. tn4q = 0, if successful

 if (tn4q[qcnt])

 tn4q[qcnt] = Queue_tn0_enqueue(tn0_queues[0], result);

 // Sending a packet to task with id 7. tn7q = 0, if successful

 if (tn7q[qcnt])

 tn7q[qcnt] = Queue_tn0_enqueue(tn0_queues[1], result);

 // Increase packet counter in order to send duplicates,

 // if the main packets have been sent successfully

 if (!(tn4q[qcnt] || tn7q[qcnt])) qcnt++;

 } // end while (qcnt < FT_PKG_NUM)

 // Reset all the sending flags

 qcnt = 0;

 for (short i = 0; i < FT_PKG_NUM; i++) tn4q[i] = tn7q[i] = -1;

 // Updating sequence number to be sent to the service buffer

 itd_pkg.pkg_id++;

 // Sending service packet with new sequence

 // number FT_PKG_NUM times

 for (short i = 0; i < FT_PKG_NUM; i++) {

 Queue_ITD_enqueue(ITD_queues[0], itd_pkg);

 } // end for

 } // end while (t0inp_read > 0)

F
in

a
li

ze

 // Finalizing the thread

 finalize:

 …

 return NULL;

} // end void *Task_n0(void *threadargs)

28

Appendix C

A regular task with memory and producing result to the environment (n8)

// A regular task (id = 8) with memory

// tnN is shorter version of task_nN, where N is the task number

void *Task_n8(void *threadargs) {

C
o
n
fi

g
u
re

 // Configuration. Obtaining task pid used for (re)allocation

 int th_id = (int) threadargs;

 tpid[th_id] = tmc_task_gettid();

 // Declaring and initializing sub-system parameters (constants)

 rtP_tn8 rtp_sas;

 Task_n8_Init_Structure(&rtp_sas);

 // Local variables for storing memory value

 tn8_memory tn8_memory;

 real_T Memory_PreviousInput[20];

 // Declaring necessary variables

 // for receiving packets

 tn5_data r_data_tn5;

 tn7_data r_data_tn7;

 // for storing local copy of the sequence number

 short r_data_tn5_copy = -1;

 // for storing computed result

 rtB_tn8 result;

 // Declaring variables to process FIFO buffers

 // for receiving only, since the task produces

 // the result to the environment

 short tn5q, tn7q, memq;

 tn5q = tn7q = memq = -1;

 // Declaring other variables, if needed

 …

R
u
n
?

 // Wait until everything is ready

 while (!run) {}

R
P

S

lo
o

p

 // Loop over receiving, processing and sending

 while (!terminate[th_id]) {

29

R
ec

ei
ve

 // Receiving data to process according to ACG in Fig. 2

 while (tn5q || tn7q) {

 // from task with id 5. tn5q = 0 (false), if successful

 if (tn5q) {

 tn5q = Queue_tn5_dequeue(tn5_queues[1], &r_data_tn5);

 // If reading is successful and the task has

 // read a duplicate, reread

 if ((!tn5q) &&

 (r_data_tn5.pkg_id <= r_data_tn5_copy)) tn5q = -1;

 } // end if (prq)

 // from task with id 7. tn7q = 0 (false), if successful

 if (tn7q) {

 tn7q = Queue_tn7_dequeue(tn7_queue, &r_data_tn7);

 if (!tn7q) {

 // If of the packet just read is a duplicate, reread

 if ((r_data_tn7.pkg_id <= r_data_tn5_copy)||

 (r_data_tn7.pkg_id < r_data_tn5.pkg_id)) tn7q = -1;

 }// end if (!tn7q)

 } // end if (tn7q)

 } // end while (tn5q || tn7q)

 // Store local copy of the sequence number and

 // reset the reading flag

 r_data_tn5_copy = r_data_tn5.pkg_id;

 tn5q = tn7q = -1;

 // Reading the memory value from the memory self-buffer

....// memq = 0 (false), if reading from the buffer is successful

 while (memq) {

 if (memq) {

 memq = Queue_tn8_memory_dequeue(tn8_memory_queue,&tn8_memory);

 if ((!memq) &&

 (tn8_memory.pkg_id < r_data_tn5.pkg_id)) memq = -1;

 } // end if (memq)

 } // end while (memq)

 // Resetting the reading flag and

 // storing local copy of the memory value

 memq = -1;

 memcpy(&Memory_PreviousInput[0],

 &tn8_memory.Memory_PreviousInput[0],20U * sizeof(real_T));

C
o

m
p

u
te

 // Computing a function according to the model

 Task_n8_Func(r_data_tn7.verr_PA,

 r_data_tn5.MODE_vector[0], r_data_tn7.verr_AT,

 r_data_tn5.MODE_vector[1], r_data_tn7.verr_PB,

 r_data_tn5.MODE_vector[2], r_data_tn7.verr_BT,

 r_data_tn5.MODE_vector[3], P_Controller_W_sw, &result,

 Memory_PreviousInput, &rtp_sas);

 // Updating local memory variable

 Task_n8_Update(&result, Memory_PreviousInput);

30

S
en

d

 // Updating memory variable to be sent to the buffer

 tn8_memory.pkg_id = r_data_tn5.pkg_id + 1;

 memcpy(&tn8_memory.Memory_PreviousInput[0],

 &Memory_PreviousInput[0], 20U * sizeof(real_T));

 // Sending new memory value to the self-buffer

 for (short i = 0; i < FT_PKG_NUM; i++) {

 Queue_tn8_memory_enqueue(tn8_memory_queue, tn8_memory);

 } // end for (short i = 0; i < FT_PKG_NUM; i++)

 // Storing results in a file

 …

 } // end while (!terminate[th_id])

F
in

a
li

ze

 // Finalizing the thread

 finalize:

 …

 return NULL;

} // end void *Controller_SwitchAndSelectControl(void *threadargs)

31

Appendix D

A source task with memory and with synchronization of the sequence number (n1)

// A source task (id = 1) with memory and sequence number

// synchronization.

// tnN is a short form of task_nN, where N is the task number

void *Task_n1(void *threadargs) {

C
o
n
fi

g
u
re

 // Configuration. Obtaining task pid used for (re)allocation

 int th_id = (int) threadargs;

 tpid[th_id] = tmc_task_gettid();

 // Declaring and initializing sub-system parameters (constants)

 rtP_tn1 rtp_fop;

 Task_n1_Init_Structure(&rtp_fop);

 // Declaring the necessary variables

 // Inputs

 real_T pP;

 real_T pA;

 real_T pB;

 // Local

 rtB_tn1 rtB_tn1;

 // Memory

 rtDW_tn1 rtDW_tn1;

 // Result

 tn1_data result;

 // This task reads and processes inputs 6 times faster than

 // other tasks, but sends packets with the same rate as

 // the other source task. Hence, it requires two counters:

 // one for local iteration and the other one for

 // sequence numbers of the packets

 int iter_cnt, lcl_seq_num;

 iter_cnt = lcl_seq_num = -1;

 // Declaring variables to process FIFO buffers

 // for receiving packets from the service self-buffer

 ITD_data itd_pkg;

 // and from the memory self-buffer

 tn1_memory tn1_memory;

 // reading flags

 short srvq, memq;

 memq = srvq = -1;

 // For sending processed data to other tasks

 // flags that the packets have been sent

 short tn2q[FT_PKG_NUM], tn3q[FT_PKG_NUM],

 tn5q[FT_PKG_NUM], tn6q[FT_PKG_NUM];

 for (short i = 0; i < FT_PKG_NUM; i++)

 tn2q[i] = tn3q[i] = tn5q[i] = tn6q[i] = -1;

 // Counter for the number of packets sent

 short qcnt = 0;

R
u
n
?

 // Wait until everything is ready

 while (!run[th_id]) {}

32

R
P

S

lo
o
p

 // Loop over receiving, processing and sending

 while (t1inp_read > 0) {
R

ec
ei

ve

 // Reading the service queue in order to synchronize sequence

 // number. If reading is successful, srvq = 0 (false). Otherwise,

 // it equals to -1 (true).

 while (srvq) {

 if (srvq) {

 srvq = Queue_ITD_dequeue(ITD_queues[1], &itd_pkg);

 if ((!srvq) && (itd_pkg.iter_cnt <= iter_cnt)) srvq = -1;

 } // end if (srvq)

 } // end while (srvq)

 // Store local copy of the counters and reset the reading flag

 iter_cnt = itd_pkg.iter_cnt;

 lcl_seq_num = itd_pkg.pkg_id;

 srvq = -1;

 // Reading memory value from the memory buffer. If reading is

 // successful, memq = 0 (false). Otherwise, it equals to -1

 // (true).

 while (memq) {

 if (memq) {

 memq = Queue_tn1_memory_dequeue(tn1_memory_queue, &tn1_memory);

 if ((!memq)&&(tn1_memory.pkg_id < itd_pkg.iter_cnt)) memq = -1;

 } // if (memq)

 } // while (memq)

 // Resetting the reading flag and

 // storing local copy of the memory value

 memq = -1;

 rtDW_tn1 = tn1_memory.rtDW_tn1;

 // Reading inputs from a file

 …

C
o
m

p
u

te

 // Computing a function according to the model

 Task_n1_Func(pP, pA, pB, &rtB_tn1, &rtDW_tn1, &rtp_tn1);

 // Updating local memory variable

 Task_n1_Update(pP, pA, pB, &rtB_tn1, &rtDW_tn1);

33

S
en

d

 // Each 6th sample is sent for further processing

 if (iter_cnt % RATIO == 0) {

 // Updating data to be send

 result.pP = rtB_tn1.ZeroOrderHold2;

 result.pA = rtB_tn1.ZeroOrderHold;

 result.pB = rtB_tn1.ZeroOrderHold1;

 // Providing packet id

 result.pkg_id = lcl_seq_num;

 // Sending computed data according to ACG in Fig. 2. tnNq equals

 // to 0 (false), if successful and -1 (true), otherwise

 while (qcnt < FT_PKG_NUM) {

 // to task with id = 2

 if (tn2q[qcnt])

 tn2q[qcnt] = Queue_tn0_enqueue(tn0_queues[0], result);

 // to task with id = 3

 if (tn3q[qcnt])

 tn3q[qcnt] = Queue_tn0_enqueue(tn0_queues[1], result);

 // to task with id = 5

 if (tn5q[qcnt])

 tn5q[qcnt] = Queue_tn0_enqueue(tn0_queues[2], result);

 // to task with id = 6

 if (tn6q[qcnt])

 tn6q[qcnt] = Queue_tn0_enqueue(tn0_queues[3], result);

 // Increase packet counter in order to send duplicates,

 // if the main packets have been sent successfully

 if (!(tn2q[qcnt] || tn3q[qcnt] || tn5q[qcnt] || tn6q[qcnt]))

 qcnt++;

 } // end while (qcnt < FT_PKG_NUM)

 // Reset all the sending flags

 qcnt = 0;

 for (short i = 0; i < FT_PKG_NUM; i++)

 tn2q[i] = tn3q[i] = tn5q[i] = tn6q[i] = -1;

 // Updating sequence number to be sent to the service buffer

 itd_pkg.seq_num++;

 } // end if (iter_cnt % RATIO == 0)

 // Updating iteration counter to be sent to the buffer

 itd_pkg.iter_cnt++;

 // Updating memory variable to be sent to the buffer

 tn0_memory.pkg_id = itd_pkg.iter_cnt;

 tn0_memory.rtDW_tn0 = rtDW_tn0;

 // Running loop for updating self-buffers

 for (int i = 0; i < FT_PKG_NUM; i++) {

 // Sending service packet with new sequence number

 Queue_ITD_enqueue(ITD_queues[1], itd_pkg);

 // Sending new memory value to the buffer

 Queue_tn0_memory_enqueue(tn0_memory_queue, tn0_memory);

 } // end for (int i = 0; i < FT_PKG_NUM; i++)

 } // while (t1inp_read > 0)

F
in

a
li

ze

 // Finalizing the thread

 finalize:

 …

 return NULL;

}

34

Appendix E

The main task that initializes the environment and maps tasks to cores

/**

 * The main task that sets up the environment, creates threads and maps them to

 * the platform cores. When the job is complete the main task releases resources

*/

// Defining global variables

// Simulating faults

bool fault[TASKS_NUM];

// Condition to terminate all the tasks

bool terminate[TASKS_NUM+1];

// Condition to run the worker tasks and the agent task

bool run[TASKS_NUM+1];

// Thread ID assigned by OS

pthread_t tid[TASKS_NUM+1];

// Tasks IDs in terms of PID

pid_t tpid[TASKS_NUM+1];

// Addresses of threads

unsigned long th_funcs[TASKS_NUM];

/**

 * Initialize CPUs to be used by the application

 *

 * @param A set of available CPUs

 * @return A set of CPUs to be used by application

 */

cpu_set_t initializeCPUset(cpu_set_t* cpus) {

 // The returned result

 cpu_set_t result = *cpus;

 // Checking if there are CPUs available

 if (tmc_cpus_get_my_affinity(&result) != 0)

 tmc_task_die("THREAD MAIN: 'tmc_cpus_get_my_affinity' has failed.\n");

 // Determining the number of available CPUs

 size_t count = tmc_cpus_count(&result);

 // If the number is not enough, terminate application

 if (count < CPUS_NUM)

 tmc_task_die("THREAD MAIN: Insufficient CPUs available\n");

 // Initializing CPUs to be used by the application

 // Clearing structures

 cpu_set_t u_cpus;

 tmc_cpus_clear(&u_cpus);

 // Filtering CPUs to be used by the application from all available CPUs

 for (unsigned int i = 0; i < CPUS_NUM;i++) {

 unsigned int cpu = tmc_cpus_find_nth_cpu(&result, i);

 tmc_cpus_add_cpu(&u_cpus, cpu);

 } // end for (unsigned int i = 0; i < CPUS_NUM;i++)

 // Preparing the result

 tmc_cpus_clear(&result);

 tmc_cpus_add_cpus(&result,&u_cpus);

35

 // Returning the set of the CPUs to be used by the application

 return result;

} // end cpu_set_t initializeCPUset(cpu_set_t* cpus)

/**

 * The function returns locations of tasks according to the mapping function

 *

 * @param id - Task id

 * @return Location of the task according to the mapping.

 * Otherwise, returns -1

 */

int returnCoreByTask(int id) {

 switch (id) {

 case 0: return 25;

 case 1: return 18;

 case 2: return 2;

 case 3: return 1;

 case 4: return 9;

 case 5: return 10;

 case 6: return 17;

 case 7: return 26;

 case 8: return 34;

 } // end switch (id)

 return -1;

} // end int returnCoreByTask(int id)

// Initialize working environment

void initEnv() {

 // Initializing tids and tpids

 for (int i = 0; i < TASKS_NUM+1; i++) tid[i] = tpid[i] = 0;

 // Initializing running, termination and fault simulation signals

 for (int i = 0; i < TASKS_NUM+1; i++)

 run[i] = terminate[i] = fault[i] = false;

 // Initialize array of functions

 ...

 /* Creating and initializing memory queues */

 // for task with id = 1

 // Creating memory FIFO buffer

 Task_n1_memory_queue = memalign(MEM_ALIGN, sizeof(*Task_n1_memory_queue));

 assert (Task_n1_memory_queue != NULL);

 Queue_Task_n1_memory_init(Task_n1_memory_queue);

 // Declaring and initializing memory value to be sent to the buffer

 Task_n1_memory Task_n1_memory;

 rtP_Task_n1 rtp_n1;

 Init_Task_n1 (&rtp_n1);

 Task_n1_Init(&Task_n1_memory.rtDW_n1, &rtp_n1);

 // Providing initial packet id

 Task_n1_memory.pkg_id = 0;

 // Sending initial packets to the memory buffer

 for (int i = 0; i < FT_PKG_NUM; i++)

 Queue_Task_n1_memory_enqueue(Task_n1_memory_queue, Task_n1_memory);

 // similarly, for task with id = 4

36

 // Creating memory FIFO buffer

 Task_n4_memory_queue = memalign(MEM_ALIGN, sizeof(*Task_n4_memory_queue));

 assert (Task_n4_memory_queue != NULL);

 Queue_Task_n4_memory_init(Task_n4_memory_queue);

 // Declaring and initializing memory value to be sent to the buffer

 Task_n4_memory Task_n4_memory;

 rtP_Task_n4 rtP_n4;

 Task_n4_Init_Structure(&rtP_n4);

 Task_n4_Init(Task_n4_memory.Memory_PreviousInput,&rtP_n4);

 // Providing initial packet id

 Task_n4_memory.pkg_id = 0;

 // Sending initial packets to the memory buffer

 for (int i = 0; i < FT_PKG_NUM; i++)

 Queue_Task_n4_memory_enqueue(Task_n4_memory_queue, Task_n4_memory);

 // finally, for task with id = 8

 // Creating memory FIFO buffer

 Task_n8_memory_queue = memalign(MEM_ALIGN, sizeof(*Task_n8_memory_queue));

 assert (Task_n8_memory_queue != NULL);

 Queue_Task_n8_memory_init(Task_n8_memory_queue);

 // Declaring and initializing memory value to be sent to the buffer

 Task_n8_memory Task_n8_memory;

 rtP_Task_n8 rtp_n8;

 Task_n8_Init_Structure(&rtp_n8);

 Task_n8_Init(Task_n8_memory.Memory_PreviousInput,&rtp_n8);

 // Providing initial packet id

 Task_n8_memory.pkg_id = 0;

 // Sending initial packets to the memory buffer

 for (int i = 0; i < FT_PKG_NUM; i++)

 Queue_Task_n8_memory_enqueue(Task_n8_memory_queue, Task_n8_memory);

 // Creating FIFO service buffers for synchronizing sequence numbers provided

 // by the source tasks

 // Providing initial values

 ITD_data itd_pkg;

 itd_pkg.pkg_id = itd_pkg.iter_cnt = 0;

 for (int i = 0; i < INIT_TASKS_NUM; i++) {

 // Creating FIFO service buffer

 ITD_queues[i] = memalign(MEM_ALIGN, sizeof(*ITD_queues[i]));

 assert (ITD_queues[i] != NULL);

 Queue_ITD_init(ITD_queues[i]);

 // Sending initial packets to the service buffer

 for (int j = 0; j < FT_PKG_NUM; j++)

 Queue_ITD_enqueue(ITD_queues[i], itd_pkg);

 } // end for (int i = 0; i < INIT_TASKS_NUM; i++)

 // Creating communication buffers

 Task_n2_Init_FIFOs();

 Task_n3_Init_FIFOs();

 Task_n4_Init_FIFOs();

 Task_n5_Init_FIFOs();

 Task_n6_Init_FIFOs();

 Task_n7_Init_FIFOs();

 Task_n8_Init_FIFOs();

37

} // end void initEnv()

// Create the agent and worker threads

void createThreads() {

 // Creating the cluster agent thread

 // Specifying thread parameters

 cla_data cla_args;

 cla_args.th_id = TASKS_NUM;

 // Number of tasks in the task graph

 cla_args.task_num = TASKS_NUM;

 // Number of columns in the platform

 cla_args.col_num = tmc_cpus_grid_width();

 // Creating the agent thread

 if (pthread_create(&tid[TASKS_NUM], NULL, Cluster_agent, (void *)&cla_args))

 tmc_task_die("THREAD MAIN: creating cluster agent has failed\n");

 // Attributes of threads

 pthread_attr_t thread_attr [TASKS_NUM];

 // Creating worker threads

 for (int i = 0; i < TASKS_NUM; i++) {

 if (pthread_create(&tid[i],

 &thread_attr[i], (void *)th_funcs[i], (void *)i))

 tmc_task_die("THREAD MAIN: creating thread #%d has failed\n", i);

 } // end for (int i = 0; i < TASKS_NUM; i++)

} // end void createThreads()

// Mapping threads to specific tiles according to the mapping function

void mapThreads() {

 // Mapping worker threads

 for (int i = 0; i < TASKS_NUM; i++) {

 // Waiting for a valid thread pid

 while (tpid[i] == 0){}

 // Mapping a corresponding task to a core

 if (tmc_cpus_set_task_cpu(returnCoreByTask(i), tpid[i]) < 0)

 tmc_task_die("THREAD MAIN: mapping of task %d has failed\n",i);

 } // end for (int i = 0; i < TASKS_NUM; i++)

 // Mapping the cluster agent thread

 if (tmc_cpus_set_task_cpu(16, tpid[TASKS_NUM]) < 0)

 tmc_task_die("THREAD MAIN: mapping of the cluster agent has failed");

} // end void mapThreads()

// Waiting for the threads to complete their tasks

void waitForThreads() {

 // Waiting for the source tasks to finish

 for (int i = 0; i < INIT_TASKS_NUM; i++) pthread_join(tid[i], NULL);

 // Terminating other than the source tasks

 for (int i = TASKS_NUM; i > -1; i--) terminate[i] = true;

 // Waiting for the regular tasks finalize

 for (int i = INIT_TASKS_NUM; i < TASKS_NUM; i++) pthread_join(tid[i], NULL);

} // end void waitForThreads()

/* The main task */

int main (int argc, char* argv[]) {

38

 // Initializing resources (CPUs)

 cpu_set_t cpus;

 cpus = initializeCPUset(&cpus);

 // Opening files containing input data

 ...

 // Initializing working environment

 initEnv();

 // Creating the cluster agent and worker threads

 createThreads();

 // Mapping threads to specific cores according to the mapping function

 mapThreads();

 // Mapping the main task to a specific CPU

 if (tmc_cpus_set_my_cpu(8) < 0)

 tmc_task_die("THREAD MAIN: mapping has failed");

 // When the configuration phase is complete, run the threads

 for (int i = TASKS_NUM; i >= 0; i--) run[i] = true;

 // and run the agent thread

 run[TASKS_NUM] = true;

 // Waiting for the threads to complete their tasks

 waitForThreads();

 // Finalizing the application

 return 0;

} // end int main (int argc, char* argv[])

ISBN 978-952-12-3066-0

ISSN 1239-1891

Joukahaisenkatu 3-5 A, 20520, Turku, Finalnd | www.tucs.fi

University of Turku

Faculty of Mathematics and Natural Sciences

 Department of Information Technology

 Department of Mathematics

Turku School of Economics

 Institute of Information Systems Sciences

Åbo Akademi University

 Department of Computer Science

 Institute for Advanced Management Systems Research

