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Abstract 

We propose a design approach to integrating correct-by-construction formal modeling 
with hardware implementations in VHDL. Formal modeling is performed within the 
Event-B framework that supports the refinement approach, i.e., stepwise unfolding of 
system properties in a correct-by-construction manner. After an implementable 
deterministic model of a hardware system is derived, we apply an additional refinement 
step in order to introduce hardware library components in the form of functions. We 
show the mapping between these functions and corresponding library components such 
that a structural, i.e., component-based, VHDL description is derived. The application 
of functions binds unrestricted data types and substitutes regular operations with 
function calls. The approach is presented through examples that illustrate the additional 
refinement step and the code generation. We show the advantages in terms of occupied 
area and performance of the descriptions that incorporate hardware library components. 
In addition, we show generation of test cases from a formal model, which facilitates 
conformance or online testing. 

 

Keywords: automated refinement, code generation, design flow, Event-B, formal 
methods, library components, structural VHDL, test cases generation 
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1 Introduction 

Due to advances in Very-Large-Scale-Integration technology, designers can create 
increasingly complex systems on a single chip enabling energy-efficient execution of 
applications. These systems usually consist of a number of various components such 
that these components interconnected with each other constitute the functionality of the 
system. However, as complexity of a system and the number of components grow, it is 
rather infeasible to perform exhaustive testing in order to guarantee correct behavior of 
the system. 

One of the appropriate approaches for developing correct systems is provided by 
formal methods. The application of formal methods can be categorized into two 
techniques. The model-checking [1] technique focuses on extracting a formal model 
from an implementation and checking some properties on this model. These techniques 
have been successfully employed (e.g., [2]) to identify errors that were undetected 
during normal design process. Modification and re-checking of the implementation 
should then be applied until the required integrity level is achieved. 

Another technique to guarantee the correct behavior of a system is offered by a 
stepwise formal development. The formal modeling is performed following the 
refinement approach, i.e., unfolding system properties in a stepwise and correct-by-
construction manner. Therefore, the derived formal model (specification) of the system 
is proved to be correct w.r.t. its functional requirements introduced as invariants. The 
utility of this approach can be further enhanced by automated code generation. 

For the work in this paper, we utilize the latter approach and use the Event-B 
formalism [3] as the main framework for formal development. This formalism supports 
the refinement approach and has adequate tool support – the Rodin platform [4]. This 
platform is open source software offering the opportunity for an extension of its 
functionality in the form of plug-ins. Since code generation is a natural step for formal 
design flow, there are plug-ins that allow one to derive code in software languages such 
as C, Java, etc. [5]. However, due to the fact that hardware description languages 
(HDLs) differ in semantics and syntax from software languages, the same methods and 
techniques cannot be directly and completely applied to hardware design and code 
generation. Hence, we aim at facilitating the process of HDL description generation 
from formal models.  

The target HDL is the VHSIC Hardware Description Language (VHDL). This 
language is standardized [6] and widely used in hardware design for systems based on 
field-programmable-gate-array or application-specific integrated-circuits technologies. 
VHDL supports the notion of library components allowing the designers to develop a 
system in a structural, i.e., component-based, manner and to derive possibly optimized 
code in terms of area and performance. 
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In this paper, we propose a design flow that integrates correct-by-construction 
formal modeling with hardware implementations in VHDL. We show the application of 
an additional refinement step to a deterministic implementable model. This refinement 
step serves as the middleware between a component-based formal model and its 
structural VHDL code. At this refinement step, we introduce VHDL (library) 
components as Event-B functions. We present a subset of library components and show 
the interconnection between them. The formal library can be further extended with the 
components used during the design. Additionally, we present the generation of test 
cases from the formal model using ProB animator and model-checker [7]. These test 
cases allow for automating the behavioral comparison between the formal model and 
the generated code or they can be deployed for online testing of the implementation [8].  

To support our approach, we have developed a prototype of a plug-in [27] that 
automates the additional refinement step and allows one to generate a structural VHDL 
description in an automated manner. In addition, we have created another plug-in [27] 
to provide test cases generation. 

2 Related Work 

There exist several formalisms that provide specification and verification of hardware 
systems such as Signal [9], Esterel [10], ForSyDe [11] and others. Signal is dedicated to 
data-flow applications domain while Esterel is for control-flow ones. ForSyDe 
represents the design methodology targeting at covering both domains. The 
commonality of these languages is that they are all based on the perfect synchrony 
hypothesis. This hypothesis assumes a zero delay between consuming inputs and 
producing outputs. In addition, only Signal and ForSyDe support the notion of 
refinement. Refinement in Signal relies on checking if simulation of inputs and outputs 
preserves flow-equivalence (model checking) [12]. Refinement in ForSyDe stands for 
the mapping one process network onto another one restricting these networks to have 
the same inputs and outputs [11]. Moreover, these transformations have to be performed 
according to the predefined library. 

BlueSpec [13] has been proposed as another solution to formal hardware 
verification and code generation. The language represents an extension of 
SystemVerilog and has a sound semantics allowing one to verify certain properties. It 
also supports design by refinement offering a possibility of integrating automated 
reasoning into the design flow [14]. However, automated verification of system 
correctness is provided by external theorem provers and/or model checkers such as PVS 
[14] and SPIN [25]. 

Evans [15] describes the mapping of VHDL to B and Communicating Sequential 
Processes (CSP) methods. The author proposes to derive a B model from VHDL and 
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formalize requirements with CSP. This approach uses a model-checking technique that 
requires modification and re-checking of the implementation until the desired integrity 
level is achieved. 

In contrast to these approaches, we propose to use the Event-B formalism, which 
provides data and superposition refinement [16]. These types of refinement allow for 
stepwise unfolding of system functionality without restricting the model to have the 
same number of variables in refinements. Furthermore, one can postulate vital 
properties in terms of invariants for every refinement step. Following this approach, the 
discharging (proving) proof obligations serves as the guarantee that each refinement 
step preserves invariants and that concrete refinement step sustains their abstract 
counterparts. After the required model is derived and proved to be correct, a structural 
VHDL description is generated. 

Another approach to deriving synchronous hardware systems proposed by 
Seceleanu [17] relies on Action Systems. The author describes the approach to 
modeling a synchronous system as read/write operations, where a combinational 
(asynchronous) circuit that consists of logic gates is followed by a synchronous 
component, namely a D-flip-flop, which operates on the clock signal. In addition, the 
author points out the mapping of such modeling to a behavioral VHDL description, 
where all operations are at one level of code, i.e., the description without components. 
Despite the fact that the Action Systems framework is similar to the Event-B formalism, 
it has a different underlying structure, which makes it infeasible to completely apply 
this approach to Event-B models. Furthermore, in contrast to this approach, we propose 
to derive component-based models and generate structural VHDL descriptions with 
library components. 

Hallerstede and Zimmermann [18] proposed an approach to VHDL code generation 
from formal B models. The authors describe the mapping between B models and VHDL 
code through a middleware language B0, which allows one to generate code without 
components. This approach is adopted by AtelierB tool and supported by industrial 
partners [19]. Since Event-B is a descendant of B method that allows us to model 
reactive systems and has a different underlying structure, it is not straightforward how 
to apply this approach to Event-B models. Furthermore, we consider a component-based 
design flow, where components are injected into a formal model in the form of 
functions. This design flow allows for generating a structural VHDL description from 
such a model. 

A similar approach to VHDL code generation has been proposed by Ostroumov and 
Tsiopoulos [20]. The authors suggest utilizing the conditional statement ifififif condition 

thenthenthenthen action endendendend ifififif in the process clause. This guarantees conformance of sequential 
VHDL behavior to the behavior of its formal counterpart enabling generation of a 
behavioral (i.e., without components) VHDL description from an implementable model 
following the usual proof-based design. We adopt and vastly extend the approach of 



 

4 

[20]. However, in contrast to this approach, we propose to apply an additional 
refinement step in order to derive a component-based model and, consequently, a 
structural VHDL description. The correctness of the additional refinement step is 
established through the proof obligations of the Event-B formal framework. 

A BHDL tool has been proposed for digital circuit design [26]. The tool converts a 
VHDL description into B specification with two machines: an abstract that represents a 
VHDL entity and an implementation that corresponds to the architecture. Then, these 
two machines are verified using the B engine and the VHDL comments are interpreted 
as invariant properties. In contrast to this approach, we derive an implementable 
deterministic Event-B model following the usual refinement-based development. Then, 
components are injected into the model so that a structural VHDL description can be 
generated. 

3 VHDL Description 

3.1 VHSIC Hardware Description Language 
VHDL, a standardized hardware description language [6], is widely used in hardware 
design and is supported by many Computer Aided Design tools (e.g., [22]). A VHDL 
description consists of two basic elements: an entity and an architecture. Every entity 
has a name and contains two clauses: generic that determines parameters for this entity 
and port that specifies inputs and outputs of this entity (an interface). The inputs and the 
outputs are distinguished by the keywords in and out, respectively. 

The architecture attached to some entity has a name and a body that describes the 
behavior (the function) of a hardware component. Inside the architecture, a designer can 
introduce internal signals and other (e.g., library) components using the keyword 
component (Fig. 1). 

A component is simply a predefined entity supplied with some architecture. The 
component entity has generic parameters that have to be instantiated using the keywords 
generic map. The connection between components is specified by the keywords port 
map. The keywords generic map and port map constitute the architecture body along 
with the process clause. The execution of the process is determined by a list of signals, 
namely the sensitivity list. In the process clause, we utilize the conditional statement ifififif 

condition thenthenthenthen action endendendend ifififif. If the condition holds, the action is executed. 

The VHDL action in the process is an assignment to a signal of the form s <= E, 

where s is an internal or output signal and E is a constant or an expression over the input 
and/or internal signals. Every such an assignment is not instant. In other words, every 
signal has a buffer and the actual assignment takes place when the whole process 
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completes its execution. Hence, all the signals involved in a process are updated 
simultaneously. 

 

Figure 1: VHDL entity and architecture 

3.2 Hardware Library Components 
Library components allow the designers to tackle complexity of a system facilitating 
faster design. Let us review a subset of library components available in Quartus-II 
software by Altera [22]. A small subset of them is presented in Table 1, where the 
components LPM_DIVIDE(DIVIDER) and LPM_DIVIDE(MODULO) differ in the output they 

produce and the abbreviations ALB, AEB etc. of the LPM_COMPARE component stand for 

A less than B, A equals to B etc., respectively. However, the library of formal 
components is not limited to the components presented in Table 1 and can be further 
extended since every library component has a unique definition. 

The inputs and the outputs of the library components described here are bits or 
arrays of bits represented by STD_LOGIC and STD_LOGIC_VECTOR VHDL types, 

respectively. The type STD_LOGIC_VECTOR denotes a set of signals (a bus) whose 
number is determined by some constant (parameter defined in the generic clause). For 
the sake of brevity, we exemplify the mapping between a formal model and a structural 
code by the library component that performs the addition operation (Table 1, 
LPM_ADD_SUB(ADDER)). The others are interpreted in a similar manner. 

The component has three parameters: LPM_WIDTH, LPM_DIRECTION and 

LPM_REPRESENTATION. LPM_WIDTH specifies the number of bits (the width) of the 

inputs and the output. LPM_DIRECTION determines the type of this component. If it 
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equals to ADD, the components is an adder. LPM_REPRESENTATION specifies the type of 
addition performed: signed or unsigned. 

The adder operates on two inputs: the input port DATAA and the input port DATAB. 

It returns the result of addition of the two inputs to the output port RESULT as well as the 

carry flag to the output COUT. The input ports and the output port RESULT are of type 

STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0) while the carry flag is of type 

STD_LOGIC. 

Table 1: A subset of library components 

Components Generic Inputs Outputs Operation 

LPM_ADD_SUB 

(ADDER) 

LPM_WIDTH, 

LPM_DIRECTION = “ADD”, 

LPM_REPRESENTATION = 

“UNSIGNED” 

DATAA, 

DATAB 

RESULT, 

COUT 

RESULT=(DATAA+DATAB)(LPM_WIDTH-1..0), 

COUT=(DATAA+DATAB)(LPM_WIDTH) 

LPM_ADD_SUB 

(SUBTRACTOR) 

LPM_WIDTH, 

LPM_DIRECTION = “SUB”, 

LPM_REPRESENTATION = 

“UNSIGNED” 

DATAA, 

DATAB 
RESULT 

RESULT =  

(DATAA - DATAB)(LPM_WIDTH-1..0) 

LPM_MULT 

LPM_WIDTHA, LPM_WIDTHB,  

LPM_WIDTHP, 

LPM_REPRESENTATION = 

“UNSIGNED” 

DATAA, 

DATAB 
RESULT RESULT = (DATAA * DATAB) 

LPM_DIVIDE 

(DIVIDER) 

LPM_WIDTHN, LPM_WIDTHD, 

LPM_NREPRESENTATION = 

“UNSIGNED”, 

LPM_DREPRESENTATION = 

“UNSIGNED” 

NUMER, 

DENOM 
QUOTIENT QUOTIENT = DATAA ÷ DATAB 

LPM_DIVIDE 

(MODULO) 

LPM_WIDTHN, LPM_WIDTHD, 

LPM_NREPRESENTATION = 

“UNSIGNED”, 

LPM_DREPRESENTATION = 

“UNSIGNED” 

NUMER, 

DENOM 
REMAIN REMAIN = DATAA % DATAB 

LPM_COMPARE 

LPM_WIDTH, 

LPM_REPRESENTATION = 

“UNSIGNED” 

DATAA, 

DATAB 

AGB, 

AGEB, 

AEB, 

ANEB, 

ALB, 

ALEB 

AGB = bool(DATAA > DATAB), 

AGEB = bool(DATAA ≥ DATAB), 

AEB = bool(DATAA = DATAB), 

ANEB = bool(DATAA ≠ DATAB), 

ALB = bool(DATAA < DATAB),  

ALEB = bool(DATAA ≤ DATAB),  

 
In the next section, we formalize library components as functions within Event-B to 

achieve correct-by-construction design flow. We show the one-to-one correspondence 
between formal and informal definitions of library components presented in Table 1. 

4 Event-B Modeling 

4.1 The Event-B Formalism 
The Event-B formalism [3] allows designers to develop models in a correct-by-
construction manner. A specification within Event-B consists of two main elements: a 
context and a machine. The context contains static data such as sets, constants, generic 
theorems and axioms. The machine models the dynamic part, which includes state 
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variables, theorems, system properties that must always hold (invariants) and events that 
modify the state variables. The context can be extended by another context and the 
machine can be refined by another machine. Moreover, the machine can refer to the data 
defined in a context, if this machine sees this context. 

An event within the Event-B framework has the following structure: 

e ≙ anyanyanyany x wherewherewherewhere g thenthenthenthen a endendendend, 

where x is a list of local variables, g stands for the guard and a represents an action of 

the event e, respectively. The guard is a conjunction of predicates that determine the 
execution of the action. If the guard holds, the action is fired. 

The action represents a composition of parallel assignments (denoted by ||) that 
modify state variables. There are three types of assignments in Event-B: deterministic 
(denoted by :=), non-deterministic from a set (denoted by :∈) and non-deterministic 

specified by a predicate (denoted by :|). 

Each event in Event-B is viewed as a before-after predicate (BAe = BA(v, v’)) [3] that 

links the values of the variables before (v) and after (v’) the execution of the event e. 
This scheme allows us to prove the correctness (consistency) of the model w.r.t. 
postulated invariants by discharging proof obligations (POs). In particular, every 
predicate (i.e., an invariant, a theorem, a guard or an action) has to be well-defined [21], 
i.e., sound. Each event, in its turn, has to preserve postulated invariants [3, 21]: 

 Inv ∧ ge ⇒ [BAe]Inv, (INV) 

where Inv is a model invariant whilst ge and BAe are the guard and the before-after 

predicate of event e, respectively. The expression [BAe]Inv stands for a substitution in 

the invariant Inv with the before-after predicate BAe. 
An Event-B model of a system is created in a stepwise manner following the 

refinement approach. At every refinement step, one adds details towards an 
implementable model. While refining the model, new variables, invariants, theorems 
and events can be added. However, the overall behavior of a more concrete model must 
conform to the overall behavior of its abstraction. This fact is guaranteed through 
discharging POs guard strengthening (GRD) and action simulation (SIM) [3, 21]: 

 Inv ∧ Invr ∧ gr ⇒ g, (GRD) 
 Inv ∧ Invr ∧ BAer ⇒ BAe, (SIM) 

where structures with the sub-script r represent refined versions. 
To ease proving effort when discharging the above POs, one can postulate and 

prove theorems. Depending on the Event-B element (a context and/or a machine) where 
a theorem is stated, corresponding POs (THMc for a context and THMm for a machine, 
respectively) have to be discharged: 

 A ⇒ ThC, (THMc) 
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 A ∧ I ⇒ ThM, (THMm) 

where A is a set of axioms defined in a context, I is a set of model invariants, ThC is a 

theorem postulated in a context whilst ThM is a theorem introduced to a machine. 
The Event-B tool support – the Rodin platform [4] – automatically generates and 

attempts to discharge the POs described above. The tool usually achieves high-level of 
automation (usually over 80%), sometimes requiring user assistance through an 
interactive prover. 

4.2 Formalization of Library Components 
To be able to prove that Event-B formalization conforms to the definitions of hardware 
library components shown above, we define a function that converts a non-negative 
decimal number into its binary image. This function binds infinite data types (e.g., 
naturals) to be suitable for hardware implementation since hardware bit images cannot 
be infinite. 

Definition 1: A bijective function conv(C, d) = kb converts a non-negative decimal 

number into its binary image. The parameter C ∈ ℕ1 determines the upper bound (i.e., 

the width) on which the function operates. The parameter d ∈ 0..2^C-1 represents a 

non-negative decimal number within the range 0..2^C-1, where 2^C stands for 2 to the 

power of C. The function returns a binary image of the number d, namely kb ∈ {x | x ∈ 

{0,1}* ∧ W(x) = C}, where W(x) stands for the number of bits (the width) of the binary 

number kb. The function is defined recursively as follows: 

 

where x...yb is a binary number (e.g., 010b) whose length (i.e., the number of bits) is 

determined by the constant C and n +b m is a binary sum defined as 0b +b 0b = 0b, 0b +b 

1b = 1b, 1b +b 0b = 1b, 1b +b 1b = 10b. 

Example 1. Suppose C equals to 3. Then, any non-negative decimal number from the 

set 0..2^3-1 (i.e., 0..7) can be represented as a binary number from 000 to 111: 

conv(3,0) = 000b; 

conv(3,5) = conv(3,4) +b 001b = conv(3,3) +b 001b +b 001b = conv(3,2) +b 001b +b 

001b +b 001b = conv(3,1) +b 001b +b 001b +b 001b +b 001b = conv(3,0) +b 001b +b 001b 

+b 001b +b 001b +b 001b = 101b. 

End of example. 

The formalization of library components is performed by using functions applied to 

an Event-B context. A function f in a context is a constant that has at least two axioms. 
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The first axiom defines the type of the function, i.e., the type of its arguments (T) and 

returning result (T’): 

T1 × ... × Tn → T’1 × ... × T’m, 

where T1 × ... × Tn is the Cartesian product, i.e., the set of all the pairs formed from the 

types T1 to Tn.  
The second axiom specifies the result returned by the function f:  

∀xi . xi ∈ Ti ⇒ f(x1↦...↦xn)=Exp(x1,...,xn), 

where i ∈ 1..n and n is the number of arguments that the function f takes (determined by 

its type). The symbol ↦ represents an ordered pair and allows one to specify a number 

of arguments for a function. The function f produces the result defined by the expression 

Exp over xi.  

Table 2: Components as Event-B functions 

Function Constant(s) Axioms 

add_ 

unsigned 

add_unsigned_ 

width 

add_unsigned ∈ 0..2^add_unsigned_width-1 × 0..2^add_unsigned_width-1 →  

0..2^(add_unsigned_width+1)-1 

∀dataa, datab . dataa ∈ 0..2^add_unsigned_width−1 ∧ 

datab ∈ 0..2^add_unsigned_width−1 ⇒  

add_unsigned(dataa↦datab) = dataa + datab 

sub_ 

unsigned 

sub_unsigned_ 

width 

sub_unsigned ∈ 0..2^sub_unsigned_width−1 × 0..2^sub_unsigned_width−1 →  

0..2^sub_unsigned_width−1 

∀dataa, datab . dataa ∈ 0..2^sub_unsigned_width−1 ∧  

datab ∈ 0..2^sub_unsigned_width−1 ⇒ 

(dataa ≥ datab ⇒ sub_unsigned(dataa↦datab) = dataa − datab) ∧  

(dataa < datab ⇒ sub_unsigned(dataa↦datab) = 0) 

mult_ 

unsigned 

mult_unsigned_ 

width_a 

mult_unsigned_ 

width_b 

mult_unsigned ∈ 0..2^mult_unsigned_width_a−1 × 0..2^mult_unsigned_width_b−1 → 

0..2^(mult_unsigned_width_a+mult_unsigned_width_b)−1 

∀dataa, datab . dataa ∈ 0..2^mult_unsigned_width_a−1 ∧ 

datab ∈ 0..2^mult_unsigned_width_b−1 ⇒  

mult_unsigned(dataa↦datab) = dataa∗datab 

div_ 

unsigned 

div_unsigned_ 

width_n 

div_unsigned_ 

width_d 

div_unsigned ∈ 0..2^div_unsigned_width_n−1 × 1..2^div_unsigned_width_d−1 → 

0..2^div_unsigned_width_n−1 

∀dataa, datab . dataa ∈ 0..2^div_unsigned_width_n−1 ∧ 

datab ∈ 1..2^div_unsigned_width_d−1 ⇒  

div_unsigned(dataa↦datab) = (dataa ÷ datab) 

mod_ 

unsigned 

mod_unsigned_ 

width_n 

mod_unsigned_ 

width_d 

mod_unsigned ∈ 0..2^mod_unsigned_width_n−1 × 1..2^mod_unsigned_width_d−1 → 

0..2^mod_unsigned_width_d−1 

∀dataa, datab . dataa ∈ 0..2^mod_unsigned_width_n−1 ∧  

datab ∈ 1..2^mod_unsigned_width_d−1 ⇒  

mod_unsigned(dataa↦datab) = (dataa mod datab) 

comp_ 

unsigned 

comp_ 

unsigned_width 

comp_unsigned ∈ 0..2^comp_unsigned_width−1 × 0..2^comp_unsigned_width−1 →  

BOOL × BOOL × BOOL × BOOL × BOOL × BOOL 

∀dataa,datab . dataa∈0..(2^comp_unsigned_width−1) ∧  

datab∈0..(2^comp_unsigned_width−1) ⇒  

comp_unsigned(dataa↦datab)= 

bool(dataa > datab)↦bool(dataa ≥ datab)↦bool(dataa = datab)↦ 

bool(dataa ≠ datab)↦bool(dataa < datab)↦bool(dataa ≤ datab) 
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Following the approach of introducing functions into an Event-B context, we define 
a formal library of presented hardware components as shown in Table 2. For instance, 
let us consider the function add_unsigned in Table 2 that formalizes the VHDL adder 

component (Table 1, LPM_ADD_SUB (ADDER)) within Event-B. The type of this function 

is determined by the first axiom, where add_unsigned_width ∈ ℕ1 is the width. The 
returning result is specified by the second axiom that models the addition operation of 
two non-negative numbers. 

Theorem (ADD): add_unsigned conforms to LPM_ADD_SUB, where 

add_unsigned_width = LPM_WIDTH and the parameters LPM_DIRECTION and 

LPM_REPRESENTATION of LPM_ADD_SUB equal to ADD and UNSIGNED, respectively 
(ensured by the code generation algorithm described in the next section). 
Proof:  

1. The function add_unsigned operates on the same input values in decimal as the 

library component LPM_ADD_SUB in binary: 

∀inp . inp ∈ 0..(2^add_unsigned_width)-1 ⇒ 

(∃inpb . inpb = conv(add_unsigned_width,inp), 

where inp represents a decimal input to the function while inpb is a binary image 

of inp supplied as an input to the component. 

2. The result of the function add_unsigned ranges from 0 to 

2^(add_unsigned_width+1)-1, i.e., one bit more than the width of the inputs. 
Hence, the function returns the result as well as the carry flag which corresponds 
to the value on the outputs RESULT and COUT of the component: 

∀res . res ∈ 0..2^(add_unsigned_width+1)-1 ⇒ 

(∃COUT, RESULT . COUT + RESULT = conv(add_unsigned_width+1, res)), 

where res represents the result of the function whereas COUT + RESULT is 

concatenation of the outputs COUT and RESULT of the component. Clearly, the 
overflow will never occur. 

Example 2. Suppose add_unsigned_width = LPM_WIDTH = 3, the input ranges of 

the function and the component are 0..7 and 000..111, respectively, while the 

result ranges are 0..15 and 0000..1111, respectively. The leftmost (the most 

significant) bit of LPM_ADD_SUB represents the carry flag. 
End of example. 

3. Finally, the definition of the function add_unsigned models the addition 

operation of two inputs, namely dataa and datab, i.e., the function of the adder 
component. 
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Similarly, we can reason about other functions that specify other library 
components (Table 2) □. 

While modeling a system in Event-B, one has to discharge POs (INV), (GRD) and 
(SIM) to show correctness of the system specification (Section 4.1). To ease 
discharging of these POs, we postulated and proved (discharged PO (THMc)) the 
following theorems along with the definitions of functions in a context: 

 ∀n . n∈ℕ ⇒ 0 < 2^n, (ThC1) 
 ∀x,y . x∈ℕ ∧ y∈ℕ ∧ x < y ⇒ 2^x < 2^y, (ThC2) 
 ∀n . n∈ℕ ⇒ 2∗2^n = 2^(n+1). (ThC3) 

Theorem (ThC1) states that 2 to the power of some natural number is a positive 
number. In other words, the set of values starting from 0 and ending in 2 to the power of 
some constant is not empty. Hence, the functions formalizing VHDL library 
components are well-defined on these values. Theorem (ThC2) shows the order relation 
between numbers whose powers are in the order relation as well. Theorem (ThC3) 
postulates inductiveness of 2 to the power of some constant. 

5 The Design Flow and Code Generation Algorithm 

The use of Event-B as a starting point in the design flow of hardware systems facilitates 
correct-by-construction development w.r.t. postulated properties and requirements. 
Code generation in an automated fashion enhances the utility of the approach reducing 
testing effort at later design phases. Hence, we propose the design flow shown in Fig. 2.  

 

Figure 2: The design flow 

An implementable deterministic model is derived following usual refinement-based 
development. Then, we apply an additional refinement step that serves as the 
middleware between a component-based formal model and structural VHDL 
description. The correctness of this refinement step is established by proving POs 
(INV), (GRD) and (SIM) using theorems of types (THMc) and (THMm) (Section 4). The 
Rodin platform [4] generates these POs and attempts to prove them automatically. The 
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algorithmic representation of the code generation utilizing the additional refinement step 
is as follows: 

1. Refine an implementable model by extending the most definite context (if any) 
and refining the most concrete machine of the model. 

2. Instantiate necessary functions to the newly created context by specifying the set 
of values they operate with (their width). This set is bounded by the 
corresponding constants. The necessary functions to be used are determined by 
operations used in the machine actions. 

3. Restrict the types of the state variables according to the specified constants and 
functions where these variables are involved.  

4. Replace regular operations in actions with calls to the corresponding functions. 
5. To generate code, interpret each function in the context as a corresponding 

library component in VHDL according to the defined mapping. 
6. Interpret the type of a variable which has been restricted by some constant as 

STD_LOGIC_VECTOR in terms of VHDL types. The length (the width) number is 
determined by the corresponding constant. 

7. For every component instantiation, introduce an internal VHDL signal 
connected to the component output(s) in order to allow for chaining of diverse 
components. 

To support the proposed design flow, we have developed a prototype of a plug-in 
that automates the additional refinement step and allows one to generate a structural 
VHDL description in an automated manner. The plug-in implements the algorithm 
described above and operates as follows. Firstly, it extends the most definite context of 
an Event-B project, if any, by copying theorems (ThC1)-(ThC3) to it. Secondly, the 
plug-in traverses the most concrete machine of the project. Each time it sees a regular 
operation that can be substituted with function call, the plug-in instantiates a 
corresponding function available in the library. A designer specifies the width of a 
function being instantiated. Thirdly, it refines the most concrete machine and replaces 
each regular operation with a function call. For instance, z := add_unsigned(x↦y) 

replaces z := x+y. Fourthly, for every variable involved in such an action, the plug-in 
generates a type invariant (PO (INV) in Section 4) in order to bind the values according 
to the instantiated function. Finally, it applies theorems (ThM, see PO (THMm) in 
Section 4) of the form f(x↦y)=x op y to the machine, where x and y are the operands and 

f and op are the corresponding function and operation, respectively. For instance, if the 

function call add_unsigned(x↦y) replaces the expression x+y, then the theorem for this 

substitution is add_unsigned(x↦y) = x+y. These theorems allow for proving correctness 
of the additional refinement step. Hence, the behavior of the model is proved consistent. 

A specification may contain several identical operations, e.g., two or more addition 
operations etc. In this case, for every function the name is formed from the function 
name, e.g., add_unsigned, and the suffix _n, where n is a number that starts from 0 and 
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is increased whenever another function definition is instantiated, e.g., add_0_unsigned, 

add_1_unsigned. Therefore, each function determines one library component such that 
the one-to-one mapping between formal model and VHDL code is feasible. 

6 Experimental Results 

Let us examine a couple of examples showing the application of our method to 
modeling within the Event-B framework and generating structural VHDL code. The 
examples show a sequential composition of components using different modeling styles 
in Event-B. Furthermore, we show test cases generation allowing one to perform 
conformance testing between the model and the generated code or to deploy online 
testing. 

6.1 Component Chaining in Separate Events 
This example illustrates the use of library components such that the result computed in 
one event is used as an input for the computations in another event (Fig. 3).  

 
invariantsinvariantsinvariantsinvariants    

  Voltage_I ∈ ℕ ∧ Current_I ∈ ℕ1 ∧  

  Resistance ∈ ℕ ∧ Inputs_Read ∈ BOOL ∧ 

  (Temp_Read = TRUE ⇒  

Resistance = Voltage_I ÷ Current_I) ∧ 

  // Gluing invariant with a mode abstract  

  // model 

  (Inputs_Read = TRUE ∧ Temp_Read = TRUE ⇒  

Temp_I = Resistance) 

eventseventseventsevents    

... 

Resist_Comp refinesrefinesrefinesrefines Temp_Read ≙≙≙≙ 

wherewherewherewhere  Temp_Read = FALSE ∧  

  Inputs_Read = TRUE ∧ Current_I ≠ 0 

withwithwithwith  Temp = Voltage_I ÷ Current_I  

  Then Resistance ≔ Voltage_I ÷ Current_I || 

  Temp_Read ≔ TRUE 

endendendend 

 

Compare refinesrefinesrefinesrefines Compare ≙≙≙≙ 

wherewherewherewhere  Temp_Read = TRUE ∧  

  Inputs_Read = TRUE 

thenthenthenthen Temp_Read ≔ FALSE || 

  Inputs_Read ≔ FALSE || 

  Result_O ≔ bool(Resistance ≥ Temp_Threshold) 

eeeendndndnd 

invariantsinvariantsinvariantsinvariants    

  Voltage_I ∈ 0‥2^div_0_unsigned_width_n−1 ∧ 

  Current_I ∈ 1‥2^div_0_unsigned_width_d−1 ∧ 

  Resistance ∈ 0‥2^div_0_unsigned_width_n−1 ∧ 

theoremtheoremtheoremtheorem 

  div_0_unsigned(Voltage_I↦Current_I)=Voltage_I÷Current_I 

… 

eventseventseventsevents    

... 

Resist_Comp refinesrefinesrefinesrefines Temp_Read ≙≙≙≙ 

wherewherewherewhere  Temp_Read = FALSE ∧ 

  Inputs_Read = TRUE ∧ Current_I ≠ 0 

thenthenthenthen    

  Resistance ≔ div_0_unsigned(Voltage_I↦Current_I) || 

  Temp_Read ≔ TRUE 

endendendend 

 

Compare    refinesrefinesrefinesrefines Compare ≙≙≙≙    

wherewherewherewhere  Temp_Read = TRUE ∧ Inputs_Read = TRUE  

thenthenthenthen  Temp_Read ≔ FALSE || 

  Inputs_Read ≔ FALSE || 

  Result_O :∣ ∃agb,aeb,aneb,alb,aleb .  

    comp_0_unsigned(Resistance↦Temp_Threshold)= 

    agb↦Result_O'↦aeb↦aneb↦alb↦aleb 

endendendend 

Figure 3: Component chaining in separate events 
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Here, we model the calculation of temperature using Ohm’s law (event 
Resist_Comp), where temperature is proportional to resistance (variable Resistance). 
Then, the obtained value is compared to some threshold and the comparison result is 
promoted further (event Compare). An instance of this example is aerospace designs 
domain (e.g., [18, 21]) where the temperature sensor represents a high-quality resistor 
with a platinum or golden thread.  

For this model, the Rodin platform generated 57 POs of which 51 were proven 
automatically. Three POs of type (THMc) with the proofs were automatically derived 
for the context theorems (ThC1)-(ThC3) (Section 4) by the plug-in. One PO of type 
(INV) has been proved interactively using the theorem (ThC3). One well-definedness 
PO has been discharged for a theorem of type (THMm) generated by the plug-in and 
introduced into the machine. The remaining POs of type (SIM) has been proved using 
theorems (THMm) generated by the plug-in.  

We generated VHDL descriptions with and without library components from this 
model (see Appendix A for the description with library components). We then 
synthesized each description using Quartus-II [20]. The tool analyzed them and 
provided the information about occupied area and performance. The number of logic 
elements (LE) measures the area. The worst-case setup time (Tsu) and the worst-case 
hold time (Th) illustrate the performance of this example. The synthesis results are 
summarized in Table 3. They show the advantages and possible optimizations in terms 
of area (2,7%) and performance (13,7%) of  the implementation with library 
components. 

Table 3: Synthesis results for state holding implementations 

LE, qt. LE, % Tsu, ns Tsu, % Th, ns Th, % 
w/ lib w/o lib  w/ lib w/o lib  w/ lib w/o lib  

36 37 2,7 9.975 11.562 13,7 2.262 2.215 -2% 

6.2 Replacing Infix Operators with Prefix Function Calls  
This example illustrates the model, where a single event produces the result using 
different operators (Fig. 4). The computation of the result proceeds as follows (event 
Result). The variables Input1_I and Input2_I are multiplied, their result is summed up 

with the variable Input3_I and this sum is then divided by Input1_I. The order in which 
the operations take place specify the chain of the corresponding hardware library 
components. 

For this model, the Rodin platform generated 53 POs of which 49 were proven 
automatically. Three POs of type (THMc) with the proofs were automatically copied for 
the context theorems (ThC1)-(ThC3) (Section 4) by the plug-in. They have been used to 
discharge the only proof obligation of type (INV) interactively.  
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invariantsinvariantsinvariantsinvariants    

  Input1_I ∈ ℕ1 ∧ Input2_I ∈ ℕ ∧ 

  Input3_I ∈ ℕ ∧ Result_O ∈ ℕ ∧  

  Read_Write ∈ BOOL ∧ 

  Read_Write = FALSE ⇒  

  Result_O = (Input1_I ∗ Input2_I + Input3_I) ÷ 

Input1_I 

eventseventseventsevents 

... 

Result   ≙    

whewhewhewherererere Read_Write = TRUE 

thenthenthenthen  Read_Write ≔ FALSE || 

  Result_O≔(Input1_I∗Input2_I+Input3_I)÷Input1_I 

endendendend 

invariantsinvariantsinvariantsinvariants 

  Input1_I ∈ 0‥2^mult_0_unsigned_width_a−1 ∧ 

  Input2_I ∈ 0‥2^mult_0_unsigned_width_b−1 ∧ 

  Input3_I ∈ 0‥2^add_0_unsigned_width−1 ∧ 

  Result_O ∈ 0‥2^div_0_unsigned_width_n−1 ∧ 

theoremtheoremtheoremtheorem 

  mult_0_unsigned(Input1_I↦Input2_I)=Input1_I∗Input2_I 

… 

eventseventseventsevents 

... 

Result refinesrefinesrefinesrefines Result ≙ 

whewhewhewherererere Read_Write = TRUE 

thenthenthenthen  Read_Write ≔ FALSE || 

  Result_O≔div_0_unsigned(add_0_unsigned( 

    mult_0_unsigned(Input1_I↦Input2_I)↦Input3_I)↦ 

    Input1_I) 

eeeendndndnd 

Figure 4: Replacing infix operators with prefix function calls 

Analogously to the previous example, we generated VHDL descriptions with and 
without library components from this model (see Appendix B for the description with 
library components). Then, we used Quartus-II [20] to synthesize each description and 
acquire information about area and performance. The worst-case time required to 
propagate the value on the input pin to the output pin (W-C Tpd) reflects the 
performance metric for this example. Table 4 summarizes the synthesis results, which 
show the advantages in terms of area (12,5%) and performance (15,4%) of the 
description with library components. 

Table 4: Synthesis results for nested function calls 

LE, qt. LE, % W-C Tpd, ns W-C tpd, % 
w/ lib w/o lib  w/ lib w/o lib  

28 32 12,5 14,71 17,38 15,4 

6.3 Test Cases Generation 
To automate conformance testing using an Event-B formal model as a so-called golden 
reference, we implemented another prototype of the plug-in that simulates the model 
and generates test cases. The model simulation is performed using ProB animator and 
model checker [7]. A user can specify the number of simulations to be executed, i.e., the 
number of test cases to be generated affecting the test coverage. The test cases are of the 
TCL format supported by ModelSim simulation environment [24] that allows designers 
to simulate an implementation and obtain values on the signals. Let us show several 
examples of test cases generated from the models presented above. 

The test cases for the example shown in Fig. 3 (Section 6.1) are the following: 

force Current_I 'd6; force Voltage_I 'd3, 
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force Current_I 'd11; force Voltage_I 'd7, 
force Current_I 'd1; force Voltage_I 'd8, 

where force is a command that forces (drives) a value on the signal and 'dx is a 

conversion of a decimal number x into its binary image. 
The simulation results of the model and the code for these test cases are identical as 

shown in Table 5. 

Table 5: Simulation results of the model and the code 

Event-B model VHDL code 
Result_O: 0, Current_I: 6, Temp_Read: 0, 

Resistance: 0, Voltage_I: 3, Inputs_Read: 0, ; 

Result_O: 0, Current_I: 11, Temp_Read: 0, 

Resistance: 0, Voltage_I: 7, Inputs_Read: 0, ; 

Result_O: 1, Current_I: 1, Temp_Read: 0,  

Resistance: 8, Voltage_I: 8, Inputs_Read: 0, ; 

Result_O: 0, Current_I: 6, Temp_Read: 0,  

Resistance: 0, Voltage_I: 3, Inputs_Read: 0, ; 

Result_O: 0, Current_I: 11, Temp_Read: 0, 

Resistance: 0, Voltage_I: 7, Inputs_Read: 0, ; 

Result_O: 1, Current_I: 1, Temp_Read: 0,  

Resistance: 8, Voltage_I: 8, Inputs_Read: 0, ; 

 
The test cases for the example shown in Fig. 4 (Section 6.2) are as follows: 

force Input3_I 'd13; force Input2_I 'd0; force Input1_I 'd2, 
force Input3_I 'd1; force Input2_I 'd1; force Input1_I 'd2. 

The simulation results of the model and the code for these test cases are identical as 
well (Table 6). 

Table 6: Simulation results of the model and the code 

Event-B model VHDL code 
Result_O: 6, Input3_I: 13, Read_Write: 0,  

Input2_I: 0, Input1_I: 2 ; 

Result_O: 1, Input3_I: 1, Read_Write: 0,  

Input2_I: 1, Input1_I: 2 

Result_O: 6, Input3_I: 13, Read_Write: 0,  

Input2_I: 0, Input1_I: 2 ; 

Result_O: 6, Input3_I: 13, Read_Write: 0,  

Input2_I: 0, Input1_I: 2 

7 Conclusion 

We have presented a design flow integrating the formal development of a hardware 
system within the Event-B framework with structural, i.e., component-based VHDL 
implementation. To support the proposed approach, we have developed a prototype of a 
plug-in that automates the additional refinement step and generation of structural VHDL 
description. We believe that the application of formal methods at early stages of the 
design flow with automated code generation can reduce testing effort at later design 
phases. In addition, we have shown experimental results that illustrate optimization 
provided by the code with library components (2,5% and 12,5% in area and 13,7% as 
well as 15,4% in performance). 
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The formal library of hardware components is not limited to the components 
presented in this paper and can clearly be extended. Hence, we will consider the 
formalization of other hardware components that are often used in hardware design to 
enhance correct-by-construction development of diverse hardware systems. 

A subset of components presented in this paper is considered to be combinational, 
i.e., these components are clockless. However, there are combinatorial components that 
depend on the clock signal. Hence, another direction of our future work is to extend the 
approach to support modeling a system that contains clocked components. This will 
allow a designer to derive a time-aware model and generate synchronous code from this 
model. 
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Appendix A  

Component Chaining in Separate Events 

LIBRARYLIBRARYLIBRARYLIBRARY IEEE; 

LIBRARYLIBRARYLIBRARYLIBRARY LPM; 

USEUSEUSEUSE IEEE.STD_LOGIC_1164.ALL; 

USEUSEUSEUSE LPM.LPM_COMPONENTS.ALL; 

USEUSEUSEUSE IEEE.NUMERIC_STD.ALL; 

 

ENTITYENTITYENTITYENTITY Separate_Events ISISISIS 

 GENERICGENERICGENERICGENERIC 

 ( 

  Temp_Threshold : NATURALNATURALNATURALNATURAL := 80; 

  div_0_unsigned_width_n : NATURALNATURALNATURALNATURAL := 8; 

  div_0_unsigned_width_d : NATURALNATURALNATURALNATURAL := 8; 

  compare_0_unsigned_width : NATURALNATURALNATURALNATURAL := 8 

 ); 

 PORTPORTPORTPORT 

 ( 

  --Input ports 

  Voltage_I : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(div_0_unsigned_width_n-1 DOWNTODOWNTODOWNTODOWNTO 0) :=  

   STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(0, div_0_unsigned_width_n)); 

  Current_I : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(div_0_unsigned_width_d-1 DOWNTODOWNTODOWNTODOWNTO 0) :=  

   STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(10, div_0_unsigned_width_d)); 

 

  --Output ports 

  Result_O : OUTOUTOUTOUT STD_LOGICSTD_LOGICSTD_LOGICSTD_LOGIC :='0' 

 ); 

ENDENDENDEND Separate_Events; 

 

ARCHITECTUREARCHITECTUREARCHITECTUREARCHITECTURE a OFOFOFOF Separate_Events ISISISIS 

 

-- Components declaration 

componentcomponentcomponentcomponent LPM_DIVIDE 

 GENERICGENERICGENERICGENERIC( 

  LPM_WIDTHN : NATURALNATURALNATURALNATURAL; 

  LPM_WIDTHD : NATURALNATURALNATURALNATURAL; 

  LPM_NREPRESENTATION : STRINGSTRINGSTRINGSTRING; 

  LPM_DREPRESENTATION : STRINGSTRINGSTRINGSTRING 

 ); 

 PORTPORTPORTPORT( 

  NUMER : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHN-1 DOWNTODOWNTODOWNTODOWNTO 0); 

  DENOM : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHD-1 DOWNTODOWNTODOWNTODOWNTO 0); 
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  QUOTIENT : OUTOUTOUTOUT STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHN-1 DOWNTODOWNTODOWNTODOWNTO 0); 

  REMAIN : OUTOUTOUTOUT STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHD-1 DOWNTODOWNTODOWNTODOWNTO 0) 

 ); 

END componentEND componentEND componentEND component; 

 

componentcomponentcomponentcomponent LPM_COMPARE 

 GENERICGENERICGENERICGENERIC( 

  LPM_WIDTH : NATURALNATURALNATURALNATURAL; 

  LPM_REPRESENTATION : STRINGSTRINGSTRINGSTRING 

 ); 

 PORTPORTPORTPORT( 

  DATAA : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(compare_0_unsigned_width-1 DOWNTODOWNTODOWNTODOWNTO 0); 

  DATAB : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(compare_0_unsigned_width-1 DOWNTODOWNTODOWNTODOWNTO 0); 

  AGB : OUT STD_LOGICOUT STD_LOGICOUT STD_LOGICOUT STD_LOGIC; 

  AGEB : OUT STD_LOGICOUT STD_LOGICOUT STD_LOGICOUT STD_LOGIC; 

  AEB : OUT STD_LOGICOUT STD_LOGICOUT STD_LOGICOUT STD_LOGIC; 

  ANEB : OUT STD_LOGICOUT STD_LOGICOUT STD_LOGICOUT STD_LOGIC; 

  ALB : OUT STD_LOGICOUT STD_LOGICOUT STD_LOGICOUT STD_LOGIC; 

  ALEB : OUT STD_LOGICOUT STD_LOGICOUT STD_LOGICOUT STD_LOGIC 

 ); 

ENDENDENDEND componentcomponentcomponentcomponent; 

 

-- Internal signals declaration 

SIGNALSIGNALSIGNALSIGNAL div_0_unsigned_res : STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(div_0_unsigned_width_n-1 DOWNTODOWNTODOWNTODOWNTO 0); 

SIGNALSIGNALSIGNALSIGNAL compare_0_res : STD_LOGICSTD_LOGICSTD_LOGICSTD_LOGIC; 

 

SIGNALSIGNALSIGNALSIGNAL Resistance : STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(div_0_unsigned_width_n-1 DOWNTODOWNTODOWNTODOWNTO 0) :=  

 STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(0, div_0_unsigned_width_n)); 

SIGNALSIGNALSIGNALSIGNAL Inputs_Read : STD_LOGICSTD_LOGICSTD_LOGICSTD_LOGIC := '0'; 

SIGNALSIGNALSIGNALSIGNAL Temp_Read : STD_LOGICSTD_LOGICSTD_LOGICSTD_LOGIC := '0'; 

 

BEGINBEGINBEGINBEGIN 

 div_0_unsigned: LPM_DIVIDE 

 GENERIC MAPGENERIC MAPGENERIC MAPGENERIC MAP (LPM_WIDTHN => div_0_unsigned_width_n,  

  LPM_WIDTHD => div_0_unsigned_width_d, 

  LPM_NREPRESENTATION => "UNSIGNED",  

  LPM_DREPRESENTATION => "UNSIGNED")  

 PORT MAPPORT MAPPORT MAPPORT MAP (NUMER => Voltage_I, 

  DENOM => Current_I, 

  QUOTIENT => div_0_unsigned_res); 

  

 compare_0_unsigned: LPM_COMPARE 

 GENERIC MAPGENERIC MAPGENERIC MAPGENERIC MAP (LPM_WIDTH => compare_0_unsigned_width,  

  LPM_REPRESENTATION => "UNSIGNED")  

 PORT MAPPORT MAPPORT MAPPORT MAP (DATAA => Resistance, 

  DATAB => STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(Temp_Threshold, 

   compare_0_unsigned_width)),  

  AGEB => compare_0_res); 
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 M1_Components_library: 

 PROCESSPROCESSPROCESSPROCESS (Voltage_I,Current_I,Resistance,Inputs_Read,Temp_Read, 

  div_0_unsigned_res,compare_0_res) IS BEGINIS BEGINIS BEGINIS BEGIN 

 

 Read_Inputs: 

 IFIFIFIF (Temp_Read = '0') andandandand (Inputs_Read = '0') 

 THENTHENTHENTHEN  

  Inputs_Read <= '1'; 

 END IFEND IFEND IFEND IF; 

 

 Resist_Comp: 

 IFIFIFIF (Temp_Read = '0') andandandand (Inputs_Read = '1') andandandand  

  (notnotnotnot (Current_I =  

  STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(0,div_0_unsigned_width_n)))) 

 THENTHENTHENTHEN  

  Resistance <= div_0_unsigned_res; 

  Temp_Read <= '1'; 

 END IFEND IFEND IFEND IF; 

 

 Compare: 

 IFIFIFIF (Temp_Read = '1') andandandand (Inputs_Read = '1') 

 THENTHENTHENTHEN  

  Temp_Read <= '0'; 

  Result_O <= compare_0_res; 

  Inputs_Read <= '0'; 

 END IFEND IFEND IFEND IF; 

 END PROCESSEND PROCESSEND PROCESSEND PROCESS; 

ENDENDENDEND a; 
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Appendix B 

Replacing Infix Operators with Calls of Functions 

LIBRARYLIBRARYLIBRARYLIBRARY IEEE; 

LIBRARYLIBRARYLIBRARYLIBRARY LPM; 

USEUSEUSEUSE IEEE.STD_LOGIC_1164.ALL; 

USEUSEUSEUSE LPM.LPM_COMPONENTS.ALL; 

USEUSEUSEUSE IEEE.NUMERIC_STD.ALL; 

 

ENTITYENTITYENTITYENTITY Infix_Operators_vs_Function_Calls ISISISIS 

 GENERICGENERICGENERICGENERIC 

 ( 

  mult_0_unsigned_width_a : NATURALNATURALNATURALNATURAL :=  2; 

  mult_0_unsigned_width_b : NATURALNATURALNATURALNATURAL :=  2; 

  add_0_unsigned_width : NATURALNATURALNATURALNATURAL :=  4; 

  div_0_unsigned_width_n : NATURALNATURALNATURALNATURAL :=  5; 

  div_0_unsigned_width_d : NATURALNATURALNATURALNATURAL :=  2 

 ); 

 PORTPORTPORTPORT 

 ( 

  --Input ports 

  Input1_I : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(mult_0_unsigned_width_a-1    DOWNTODOWNTODOWNTODOWNTO 0) := 

   STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(1, mult_0_unsigned_width_a)); 

  Input2_I : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(mult_0_unsigned_width_b-1    DOWNTODOWNTODOWNTODOWNTO 0) := 

   STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(0, mult_0_unsigned_width_b)); 

  Input3_I : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(add_0_unsigned_width-1    DOWNTODOWNTODOWNTODOWNTO 0) := 

   STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(0, add_0_unsigned_width)); 

 

  --Output ports 

  Result_O : OUTOUTOUTOUT STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(div_0_unsigned_width_n-1    DOWNTODOWNTODOWNTODOWNTO 0) := 

   STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(0, div_0_unsigned_width_n)) 

 ); 

ENDENDENDEND Infix_Operators_vs_Function_Calls; 

 

ARCHITECTUREARCHITECTUREARCHITECTUREARCHITECTURE a OFOFOFOF Infix_Operators_vs_Function_Calls ISISISIS 

componentcomponentcomponentcomponent LPM_MULT 

 GENERICGENERICGENERICGENERIC( 

  LPM_WIDTHA : NATURALNATURALNATURALNATURAL; 

  LPM_WIDTHB : NATURALNATURALNATURALNATURAL; 

  LPM_WIDTHP : NATURALNATURALNATURALNATURAL; 

  LPM_REPRESENTATION : STRINGSTRINGSTRINGSTRING 

 ); 

 PORTPORTPORTPORT( 
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  DATAA : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHA-1 DOWNTODOWNTODOWNTODOWNTO 0); 

  DATAB : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHB-1 DOWNTODOWNTODOWNTODOWNTO 0); 

  RESULT : OUTOUTOUTOUT STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHP-1 DOWNTODOWNTODOWNTODOWNTO 0) 

 ); 

ENDENDENDEND componentcomponentcomponentcomponent; 

 

componentcomponentcomponentcomponent LPM_ADD_SUB 

 GENERICGENERICGENERICGENERIC( 

  LPM_WIDTH : NATURALNATURALNATURALNATURAL; 

  LPM_DIRECTION : STRINGSTRINGSTRINGSTRING; 

  LPM_REPRESENTATION : STRINGSTRINGSTRINGSTRING 

 ); 

 PORTPORTPORTPORT( 

  DATAA : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTODOWNTODOWNTODOWNTO 0); 

  DATAB : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTODOWNTODOWNTODOWNTO 0); 

  RESULT : OUTOUTOUTOUT STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTODOWNTODOWNTODOWNTO 0); 

  COUT : OUTOUTOUTOUT STD_LOGICSTD_LOGICSTD_LOGICSTD_LOGIC 

 ); 

END componentEND componentEND componentEND component; 

 

componentcomponentcomponentcomponent LPM_DIVIDE 

 GENERICGENERICGENERICGENERIC( 

  LPM_WIDTHN : NATURALNATURALNATURALNATURAL; 

  LPM_WIDTHD : NATURALNATURALNATURALNATURAL; 

  LPM_NREPRESENTATION : STRINGSTRINGSTRINGSTRING; 

  LPM_DREPRESENTATION : STRINGSTRINGSTRINGSTRING 

 ); 

 PORTPORTPORTPORT( 

  NUMER : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHN-1 DOWNTODOWNTODOWNTODOWNTO 0); 

  DENOM : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHD-1 DOWNTODOWNTODOWNTODOWNTO 0); 

  QUOTIENT : OUTOUTOUTOUT STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHN-1 DOWNTODOWNTODOWNTODOWNTO 0); 

  REMAIN : OUTOUTOUTOUT STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHD-1 DOWNTODOWNTODOWNTODOWNTO 0) 

 ); 

ENDENDENDEND componentcomponentcomponentcomponent; 

 

SIGNALSIGNALSIGNALSIGNAL mult_0_unsigned_res : STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR((mult_0_unsigned_width_a+ 

  mult_0_unsigned_width_b)-1 DOWNTODOWNTODOWNTODOWNTO 0); 

SIGNALSIGNALSIGNALSIGNAL add_0_unsigned_res : STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(add_0_unsigned_width DOWNTODOWNTODOWNTODOWNTO 0); 

SIGNALSIGNALSIGNALSIGNAL div_0_unsigned_res : STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(div_0_unsigned_width_n-1 DOWNTODOWNTODOWNTODOWNTO 0); 

SIGNALSIGNALSIGNALSIGNAL Read_Write : STD_LOGICSTD_LOGICSTD_LOGICSTD_LOGIC := '0'; 

 

BEGINBEGINBEGINBEGIN 

 mult_0_unsigned: : : : LPM_MULT 

 GENERIC MAPGENERIC MAPGENERIC MAPGENERIC MAP (LPM_WIDTHA => mult_0_unsigned_width_a,  

  LPM_WIDTHB => mult_0_unsigned_width_b,  

  LPM_WIDTHP => (mult_0_unsigned_width_a+mult_0_unsigned_width_b),  

  LPM_REPRESENTATION => "UNSIGNED") 

 PORT MAPPORT MAPPORT MAPPORT MAP (DATAA => Input1_I,  
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  DATAB => Input2_I,  

  RESULT => mult_0_unsigned_res); 

  

 add_0_unsigned: LPM_ADD_SUB 

 GENERIC MAPGENERIC MAPGENERIC MAPGENERIC MAP (LPM_WIDTH => add_0_unsigned_width,  

  LPM_DIRECTION => "ADD", 

  LPM_REPRESENTATION => "UNSIGNED") 

 PORT MAPPORT MAPPORT MAPPORT MAP (DATAA => mult_0_unsigned_res,  

  DATAB => Input3_I,  

  RESULT => add_0_unsigned_res(add_0_unsigned_width-1 DOWNTODOWNTODOWNTODOWNTO 0),  

  COUT => add_0_unsigned_res(add_0_unsigned_width)); 

  

 div_0_unsigned: LPM_DIVIDE 

 GENERIC MAPGENERIC MAPGENERIC MAPGENERIC MAP (LPM_WIDTHN => div_0_unsigned_width_n,  

  LPM_WIDTHD => div_0_unsigned_width_d,  

  LPM_NREPRESENTATION => "UNSIGNED",  

  LPM_DREPRESENTATION => "UNSIGNED")  

 PORT MAPPORT MAPPORT MAPPORT MAP (NUMER => add_0_unsigned_res, 

  DENOM => Input1_I,  

  QUOTIENT => div_0_unsigned_res); 

  

 Component_test_library: 

 PROCESSPROCESSPROCESSPROCESS (Input1_I,Input2_I,Input3_I,Read_Write) IS BEGINIS BEGINIS BEGINIS BEGIN 

 

 Read: 

 IFIFIFIF (Read_Write = '0') 

 THENTHENTHENTHEN  

  Read_Write <= '1'; 

 END IFEND IFEND IFEND IF; 

 

 Result: 

 IFIFIFIF (Read_Write = '1') 

 THENTHENTHENTHEN  

  Result_O <= div_0_unsigned_res; 

  Read_Write <= '0'; 

 END IFEND IFEND IFEND IF; 

 

 END PROCESSEND PROCESSEND PROCESSEND PROCESS; 

ENDENDENDEND a; 
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