Sergey Ostroumov | Leonidas Tsiopo! | Juha Plosila
Kaisa Sere

Generation of Structural VHD
Code with Library' Componen
from Formal Ever-B Models

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Repc
No 1073, March 2013

“

Generation of Structural VHDL Code with Libre
Components from FormEvent-B Models

Sergey Ostroumov

TUCS —Turku Centrefor Computer Science

Abo Akademi University, Department of Informatioedhnologie
Joukahaisenkatu 3-A, 20520 Turku, Finlar

Ser gey. Ost rounov@bo. fi

Leonidas Tsiopoulc

Abo AkademiUniversity, Department of Information Technolog
Joukahaisenkatu 8-A, 20520 Turku, Finlar
Leoni das. Tsi opoul os@bo. fi

Juha Plosila

University of Turku, Department of Information Tedtogy
Joukahaisenkatu 3B, 20014 Turku, Finlar
Juha. Pl osi |l a@it u. fi

Kaisa Sere

Abo Akademi University, Department of Informatioedhnologie
Joukahaisenkatu 8-A, 20520 Turku, Finlar
Kai sa. Sere@bo. fi

TUCS Technical Report
No 1073, March 2013

Abstract

We propose a design approach to integrating cebmgcionstruction formal modeling
with hardware implementations in VHDL. Formal madglis performed within the
Event-B framework that supports the refinement apph, i.e., stepwise unfolding of
system properties in a correct-by-construction neanmfter an implementable
deterministic model of a hardware system is derivezlapply an additional refinement
step in order to introduce hardware library commosien the form of functions. We
show the mapping between these functions and qmnekng library components such
that a structural, i.e., component-based, VHDL dpson is derived. The application
of functions binds unrestricted data types and t#ubss regular operations with
function calls. The approach is presented througtmples that illustrate the additional
refinement step and the code generation. We shevadliantages in terms of occupied
area and performance of the descriptions that porate hardware library components.
In addition, we show generation of test cases feoformal model, which facilitates
conformance or online testing.

Keywords. automated refinement, code generation, design, flewent-B, formal
methods, library components, structural VHDL, tstes generation

TUCSLaboratory
Distributed Systems Laboratory

1 Introduction

Due to advances in Very-Large-Scale-Integratiorhrietogy, designers can create
increasingly complex systems on a single chip engl#nergy-efficient execution of
applications. These systems usually consist of raben of various components such
that these components interconnected with eaclr otrestitute the functionality of the
system. However, as complexity of a system andchtimber of components grow, it is
rather infeasible to perform exhaustive testingrider to guarantee correct behavior of
the system.

One of the appropriate approaches for developimgecbsystems is provided by
formal methods. The application of formal methods doe categorized into two
techniques. The model-checking [1] technique fosuse extracting a formal model
from an implementation and checking some propediethis model. These techniques
have been successfully employed (e.g., [2]) to tilererrors that were undetected
during normal design process. Modification and eeking of the implementation
should then be applied until the required integetyel is achieved.

Another technique to guarantee the correct behadiaa system is offered by a
stepwise formal development. The formal modeling performed following the
refinement approach, i.e., unfolding system progerin a stepwise and correct-by-
construction manner. Therefore, the derived formatlel (specification) of the system
is proved to be correct w.r.t. its functional regunents introduced as invariants. The
utility of this approach can be further enhancedbtomated code generation.

For the work in this paper, we utilize the lattggpeoach and use the Event-B
formalism [3] as the main framework for formal deyenent. This formalism supports
the refinement approach and has adequate tool guppgbe Rodin platform [4]. This
platform is open source software offering the oppaty for an extension of its
functionality in the form of plug-ins. Since codengration is a natural step for formal
design flow, there are plug-ins that allow one ¢oivk code in software languages such
as C, Java, etc. [5]. However, due to the fact tretdware description languages
(HDLs) differ in semantics and syntax from softwéaeguages, the same methods and
technigues cannot be directly and completely agpte hardware design and code
generation. Hence, we aim at facilitating the psscef HDL description generation
from formal models.

The target HDL is the VHSIC Hardware Descriptionngaage (VHDL). This
language is standardized [6] and widely used iml\ware design for systems based on
field-programmable-gate-array or application-speciftegrated-circuits technologies.
VHDL supports the notion of library components waliog the designers to develop a
system in a structural, i.e., component-based, eraand to derive possibly optimized
code in terms of area and performance.

In this paper, we propose a design flow that irgegg correct-by-construction
formal modeling with hardware implementations in MH We show the application of
an additional refinement step to a deterministipleamentable model. This refinement
step serves as the middleware between a compoaeattbformal model and its
structural VHDL code. At this refinement step, wetroduce VHDL (library)
components as Event-B functions. We present a sobsibrary components and show
the interconnection between them. The formal Ifp@n be further extended with the
components used during the design. Additionally, prvesent the generation of test
cases from the formal model using ProB animator @odel-checker [7]. These test
cases allow for automating the behavioral comparisetween the formal model and
the generated code or they can be deployed fonetdisting of the implementation [8].

To support our approach, we have developed a pp®odf a plug-in [27] that
automates the additional refinement step and allmwesto generate a structural VHDL
description in an automated manner. In additionhaee created another plug-in [27]
to provide test cases generation.

2 Related Work

There exist several formalisms that provide speaiion and verification of hardware
systems such as Signal [9], Esterel [10], ForSyI1g &nd others. Signal is dedicated to
data-flow applications domain while Esterel is foontrol-flow ones. ForSyDe
represents the design methodology targeting at rcwyeboth domains. The
commonality of these languages is that they arébadled on the perfect synchrony
hypothesis. This hypothesis assumes a zero delawebe consuming inputs and
producing outputs. In addition, only Signal and $be support the notion of
refinement. Refinement in Signal relies on checkirgmulation of inputs and outputs
preserves flow-equivalence (model checking) [12¥fiRement in ForSyDe stands for
the mapping one process network onto another staateng these networks to have
the same inputs and outputs [11]. Moreover, thesetormations have to be performed
according to the predefined library.

BlueSpec [13] has been proposed as another solutorformal hardware
verification and code generation. The language essts an extension of
SystemVerilog and has a sound semantics allowirggtonverify certain properties. It
also supports design by refinement offering a fil#yi of integrating automated
reasoning into the design flow [14]. However, audbea verification of system
correctness is provided by external theorem proaedéor model checkers such as PVS
[14] and SPIN [25].

Evans [15] describes the mapping of VHDL to B armhthunicating Sequential
Processes (CSP) methods. The author proposesit@ @B model from VHDL and

formalize requirements with CSP. This approach asesdel-checking technique that
requires modification and re-checking of the impdetation until the desired integrity
level is achieved.

In contrast to these approaches, we propose tdhesEvent-B formalism, which
provides data and superposition refinement [16psEhtypes of refinement allow for
stepwise unfolding of system functionality withawstricting the model to have the
same number of variables in refinements. Furtheemame can postulate vital
properties in terms of invariants for every refir@rstep. Following this approach, the
discharging (proving) proof obligations serves las guarantee that each refinement
step preserves invariants and that concrete re@nerstep sustains their abstract
counterparts. After the required model is derivad proved to be correct, a structural
VHDL description is generated.

Another approach to deriving synchronous hardwaystesns proposed by
Seceleanu [17] relies on Action Systems. The autthescribes the approach to
modeling a synchronous system as read/write opesgtiwhere a combinational
(asynchronous) circuit that consists of logic gatesfollowed by a synchronous
component, namely a D-flip-flop, which operatestba clock signal. In addition, the
author points out the mapping of such modeling toehavioral VHDL description,
where all operations are at one level of code, ke description without components.
Despite the fact that the Action Systems framewsdimilar to the Event-B formalism,
it has a different underlying structure, which makeinfeasible to completely apply
this approach to Event-B models. Furthermore, mtrast to this approach, we propose
to derive component-based models and generatetwsld/HDL descriptions with
library components.

Hallerstede and Zimmermann [18] proposed an apprta®HDL code generation
from formal B models. The authors describe the rmppetween B models and VHDL
code through a middleware language BO, which allows to generate code without
components. This approach is adopted by Ateliedd &md supported by industrial
partners [19]. Since Event-B is a descendant of &hod that allows us to model
reactive systems and has a different underlyingctire, it is not straightforward how
to apply this approach to Event-B models. Furtheenae consider a component-based
design flow, where components are injected intooam&él model in the form of
functions. This design flow allows for generatingteuctural VHDL description from
such a model.

A similar approach to VHDL code generation has be®posed by Ostroumov and
Tsiopoulos [20]. The authors suggest utilizing dunditional statemenif condition
then action end if in the process clause. This guarantees conformahsequential
VHDL behavior to the behavior of its formal coumgart enabling generation of a
behavioral (i.e., without components) VHDL desadptfrom an implementable model
following the usual proof-based design. We adomt aastly extend the approach of

[20]. However, in contrast to this approach, we pose to apply an additional
refinement step in order to derive a componentdasedel and, consequently, a
structural VHDL description. The correctness of theditional refinement step is
established through the proof obligations of ther#\B formal framework.

A BHDL tool has been proposed for digital circudsign [26]. The tool converts a
VHDL description into B specification with two maales: an abstract that represents a
VHDL entity and an implementation that correspotmghe architecture. Then, these
two machines are verified using the B engine ard\HDL comments are interpreted
as invariant properties. In contrast to this apgnoave derive an implementable
deterministic Event-B model following the usualineinent-based development. Then,
components are injected into the model so thatwuetsiral VHDL description can be
generated.

3 VHDL Description

3.1 VHSIC Hardware Description Language

VHDL, a standardized hardware description langu&jeis widely used in hardware
design and is supported by many Computer Aidedddetiols (e.g., [22]). A VHDL
description consists of two basic elementseaiity and anarchitecture. Every entity
has a name and contains two claugeseric that determines parameters for this entity
andport that specifies inputs and outputs of this entty ihterface). The inputs and the
outputs are distinguished by the keywondandout, respectively.

The architecture attached to some entity has a reamdea body that describes the
behavior (the function) of a hardware componerdid@ the architecture, a designer can
introduce internal signals and other (e.g., libyacpmponents using the keyword
component (Fig. 1).

A component is simply a predefined entity suppheith some architecture. The
component entity has generic parameters that ltalve instantiated using the keywords
generic map. The connection between components is specifiethbykeywordsport
map. The keywords generic map and port map constitutearchitecture body along
with the process clause. The execution of the process is deterntayedl list of signals,
namely thesensitivity list. In the process clause, we utilize the conditi@tatemenif
condition then action end if. If the condition holds, the action is executed.

The VHDL action in the process is an assignmerd signal of the forns <= E,
wheres is an internal or output signal aBds a constant or an expression over the input
and/or internal signals. Every such an assignngenbt instant. In other words, every
signal has a buffer and the actual assignment tpkese when the whole process

completes its execution. Hence, all the signalslred in a process are updated
simultaneously.

entity £ntityis

generic (--Parameters);

port (--/nputs : in std_logic/std_logic_vector,
--Outputs : out std_logic/std_logic_vector);

end £ntity;

architecture arch of Entityis
-- Definitions of internal signals
signal <signal_name> : <signal_type> := <initial_value>;
-- Definitions of components
component <component_name>
generic (<component_parameters>);
port (<component_interface>);
end component;
begin
-- Statements
<component_label> : <component_name>
generic map(<component_parameters_instantiation>)
port map(<component_interface_mapping>);

<process_label>:
process (<sensitivity_list>) is begin
if (<condition>) then <action>;
end if;
end process;
end arch;

Figure 1: VHDL entity and architecture

3.2 HardwareLibrary Components

Library components allow the designers to tacklmplexity of a system facilitating
faster design. Let us review a subset of libraryngonents available in Quartus-Ii
software by Altera [22]. A small subset of thempiesented in Table 1, where the
component$PM_DIVIDE(DIVIDER) andLPM_DIVIDE(MODULO) differ in the output they
produce and the abbreviatioAsB, AEB etc. of theLPM_COMPARE component stand for
A less thanB, A equals toB etc., respectively. However, the library of formal
components is not limited to the components presemt Table 1 and can be further
extended since every library component has a urdeftiaition.

The inputs and the outputs of the library compametdscribed here are bits or
arrays of bits represented I8TD_LOGIC and STD_LOGIC_VECTOR VHDL types,
respectively. The typ&TD_LOGIC_VECTOR denotes a set of signals (a bus) whose
number is determined by some constant (paramefaredein the generic clause). For
the sake of brevity, we exemplify the mapping be&tmvea formal model and a structural
code by the library component that performs the iteofd operation (Table 1,
LPM_ADD_SUB(ADDER)). The others are interpreted in a similar manner.

The component has three parametet®M_WIDTH, LPM_DIRECTION and
LPM_REPRESENTATION. LPM_WIDTH specifies the number of bits (the width) of the
inputs and the outputPM_DIRECTION determines the type of this component. If it

equals toADD, the components is an addegtM_REPRESENTATION specifies the type of
addition performed: signed or unsigned.

The adder operates on two inputs: the input PAMAA and the input porDATAB.
It returns the result of addition of the two inptashe output poRESULT as well as the
carry flag to the outputOUT. The input ports and the output p8ASULT are of type
STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0) while the carry flag is of type
STD_LOGIC.

Table 1: A subset of library components

Components Generic Inputs Outputs Operation
LPM_WIDTH,
LPM_ADD_SUB LPM_DIRECTION = "ADD", DATAA, RESULT, RESULT=(DATAA+DATAB)(LPM_WIDTH-1..0),
(ADDER) LPM_REPRESENTATION = DATAB couTt COUT=(DATAA+DATAB)(LPM_WIDTH)
"UNSIGNED"
LPM_WIDTH,
LPM_ADD_SUB LPM_DIRECTION = “SUB", DATAA, RESULT RESULT =
(SUBTRACTOR) LPM_REPRESENTATION = DATAB (DATAA - DATAB)(LPM_WIDTH-1..0)
"UNSIGNED"
LPM_WIDTHA, LPM_WIDTHB,
LPM_WIDTHP, DATAA, B R
LPM_MULT LPM_REPRESENTATION = DATAB RESULT RESULT = (DATAA * DATAB)
"UNSIGNED"
LPM_WIDTHN, LPM_WIDTHD,
LPM_NREPRESENTATION =
L?SAI\‘/?[%IR[;E "UNSIGNED", SEIZAOE& QUOTIENT QUOTIENT = DATAA + DATAB
LPM_DREPRESENTATION =
"UNSIGNED"
LPM_WIDTHN, LPM_WIDTHD,
LPM_NREPRESENTATION =
L(i/l'vlo-ga/LIOD)E “UNSIGNED", g;\'}AOE& REMAIN REMAIN = DATAA % DATAB
LPM_DREPRESENTATION =
"UNSIGNED"
AGB, AGB = bool(DATAA > DATAB),
AGEB, AGEB = bool(DATAA > DATAB),
LPM_WIDTH
z . DATAA, AEB, AEB = bool(DATAA = DATAB),
LPM_COMPARE LPM-R,,ESEE?(EZE/SPON N DATAB ANEB, ANEB = bool(DATAA # DATAB),
ALB, ALB = bool(DATAA < DATAB),
ALEB ALEB = bool(DATAA < DATAB),

In the next section, we formalize library composest functions within Event-B to
achieve correct-by-construction design flow. Wevslibe one-to-one correspondence
between formal and informal definitions of libraxgmponents presented in Table 1.

4 Event-B Modeling

4.1 TheEvent-B Formalism

The Event-B formalism [3] allows designers to depelmodels in a correct-by-
construction manner. A specification within Event@nsists of two main elements: a
context and amachine. The context contains static data such as setstaats, generic
theorems and axioms. The machine models the dynpaniz which includes state

variables, theorems, system properties that mustysl hold (invariants) and events that
modify the state variables. The context can beneldd by another context and the
machine can be refined by another machine. Morediwemachine can refer to the data
defined in a context, if this machine sees thigexn

An event within the Event-B framework has the faliog structure:

e 2 any x where g then a end,

wherex is a list of local variablegy stands for the guard amdrepresents an action of
the evente, respectively. The guard is a conjunction of praths that determine the
execution of the action. If the guard holds, thiosacis fired.

The action represents a composition of paralleigassents (denoted bj}) that
modify state variables. There are three types sigaments in Event-B: deterministic
(denoted by:=), non-deterministic from a set (denoted @&y and non-deterministic
specified by a predicate (denoted:py

Each event in Event-B is viewed as a before-aftedipate BA. = BA(v, v')) [3] that
links the values of the variables befowg &nd after (') the execution of the event
This scheme allows us to prove the correctnesssistemcy) of the model w.r.t.
postulated invariants by discharging proof obligasi (POs). In particular, every
predicate (i.e., an invariant, a theorem, a guamhcaction) has to be well-defined [21],
l.e., sound. Each event, in its turn, has to puespostulated invariants [3, 21]:

Inv A ge = [BA]Inv, (INV)

wherelnv is a model invariant whilstj. and BA. are the guard and the before-after
predicate of eveng, respectively. The expressigBA.]Inv stands for a substitution in
the invarianinv with the before-after predicaba..

An Event-B model of a system is created in a stepwnanner following the
refinement approach. At every refinement step, @ugs details towards an
implementable model. While refining the model, neariables, invariants, theorems
and events can be added. However, the overall bmhaiva more concrete model must
conform to the overall behavior of its abstractidmis fact is guaranteed through
discharging POs guard strengthening (GRD) andmasiimulation (SIM) [3, 21]:

Inv Alnv, A g, = g, (GRD)
Inv A Inv, A BA., = BA,, (SIM)
where structures with the sub-scripepresent refined versions.

To ease proving effort when discharging the abo@s,PFone can postulate and
prove theorems. Depending on the Event-B elemecorigext and/or a machine) where
a theorem is stated, corresponding POs (THM a context and THM for a machine,
respectively) have to be discharged:

A = ThC, (THM,)

A Al=ThM, (THMpm)

whereA is a set of axioms defined in a contaxs a set of model invariantshC is a
theorem postulated in a context whiletM is a theorem introduced to a machine.

The Event-B tool support — the Rodin platform [4hutomatically generates and
attempts to discharge the POs described abovetobheisually achieves high-level of
automation (usually over 80%), sometimes requirumer assistance through an
interactive prover.

4.2 Formalization of Library Components

To be able to prove that Event-B formalization @onfs to the definitions of hardware

library components shown above, we define a functlmat converts a non-negative
decimal number into its binary image. This functibimds infinite data types (e.g.,

naturals) to be suitable for hardware implementatimce hardware bit images cannot
be infinite.

Definition 1. A bijective functionconv(C, d) = k, converts a non-negative decimal
number into its binary image. The parametex N1 determines the upper bound (i.e.,
the width) on which the function operates. The pei®rd € 0.27C-1 represents a
non-negative decimal number within the raf®g2~C-1, where2~C stands for to the
power ofC. The function returns a binary image of the nunmharamelyk, € {x | x
{0,1}* A W(x) = C}, whereW(x) stands for the number of bits (the width) of thedny
numberk,. The function is defined recursively as follows:

0.0, ifd=0
conv(C,d) = {
conv(C,d-1) +, 0..1,, ifd > 0,

wherex...yp IS a binary number (e.g010,) whose length (i.e., the number of bits) is
determined by the consta@itandn +, m is a binary sum defined as +, 0, = 0,, 0, +p
1b = 1b, 1b +p Ob = 1b, 1b +p 1b = 1Ob

Example 1. SupposeC equals ta3. Then, any non-negative decimal number from the
set0..273-1 (i.e.,0..7) can be represented as a binary number f@drto 111:

conv(3,0) = 000y;

conv(3,5) = conv(3,4) +, 001, = conv(3,3) +, 001, +, 001, = conv(3,2) +, 001, +p
001, +, 001, = conv(3,1) +, 001, +, 001, +, 001, +, 001, = conv(3,0) +, 001, +, 001,
+p 001, +, 001, +, 001, = 101,.
End of example.

The formalization of library components is perfodr®y using functions applied to
an Event-B context. A functiohin a context is a constant that has at least kianss.

The first axiom defines the type of the functiam,,ithe type of its argumen® @nd
returning resultT):

Tix .. xTha-=>T1x..xTh,
whereT; x ...
typesT; to T,..

The second axiom specifies the result returnedheyunctionf:

x T, is the Cartesian product, i.e., the set of allghies formed from the

V. x € Ti = f(xgm...=X,) =EXp(Xy,... Xn),

wherei € 1..n andn is the number of arguments that the funcfitakes (determined by

its type). The symbob represents an ordered pair and allows one tofgpeaumber

of arguments for a function. The functibproduces the result defined by the expression
Exp overxi.

Table 2: Components as Event-B functions

Function Constant(s) Axioms
add_unsigned € 0..2”*add_unsigned_width-1 x 0..2”add_unsigned_width-1 —
. 0..2”(add_unsigned_width+1)-1
unas(ijgdr;ed add‘:v?;aned‘ Vdataa, datab . dataa € 0.27add_unsigned_width-1 A
datab € 0..2”add_unsigned_width-1 =
add_unsigned(dataa—datab) = dataa + datab
sub_unsigned € 0..2”sub_unsigned_width-1 x 0..2~sub_unsigned_width-1 —
0..2”7sub_unsigned_width-1
sub_ sub_unsigned_ Vdataa, datab . dataa € 0.2”sub_unsigned_width-1 A
unsigned width datab € 0.2”sub_unsigned_width-1 =
(dataa > datab = sub_unsigned(dataa—datab) = dataa — datab) A
(dataa < datab = sub_unsigned(dataa—datab) = 0)
mult_unsigned mult_unsigned € 0..2"mult_gnsigned_width_a—l X O..2"muIt_Aunsigned_width_b—l -
mult vT/idth a - 0..2”(mult_unsigned_width_a+mult_unsigned_width_b)-1
unsign_ed mult unsig_;ned Vdataa, datab . dataa € 0.2~mult_unsigned_width_a-1 A
\A_/idth b - datab € 0.2~ mult_unsigned_width_b-1 =
- mult_unsigned(dataa—datab) = dataa*datab
. . div_unsigned € 0..27div_unsigned_width_n-1 x 1.22div_unsigned_width_d-1 —
div_unsigned_ o : .
div width n 0.2 d|v_un5|gneq_W|dth_n—1 .
unsigaed div unsig_ned Vdataa, datab . dataa € O..2fd|v_un5|'gned_W|dth_n—l A
:Nidth d - datab € 1..2”div_unsigned_width_d-1 =
- div_unsigned(dataa—datab) = (dataa + datab)
. mod_unsigned € 0..2"mod_unsigned_width_n-1 x 1.2~mod_unsigned_width_d-1 —
mod_unsigned_ A . .
mod width n 0.2 mod_un5|gned_W|dth_d—1 .
unsign_ed mod unsizgned Vdataa, datab . dataa € 0..2Amod_un5|gned_W|dth_n—1 A
v;idth d - datab € 1..2"mod_unsigned_width_d-1 =
- mod_unsigned(dataa—datab) = (dataa mod datab)
comp_unsigned € 0.2”comp_unsigned_width-1 x 0..2”comp_unsigned_width-1 —
BOOL x BOOL x BOOL x BOOL x BOOL x BOOL
- comp Vdataa,datab . dataaeO..(Z’\comp_unsigned_width—1) A
unsigned unsigned_width databe0..(2"comp_unsigned_width-1) =

comp_unsigned(dataa—datab)=
bool(dataa > datab)~bool(dataa > datab)~bool(dataa = datab)~
bool(dataa # datab)—bool(dataa < datab)—bool(dataa < datab)

Following the approach of introducing functionsoisin Event-B context, we define
a formal library of presented hardware componestsheown in Table 2. For instance,
let us consider the functioadd_unsigned in Table 2 that formalizes the VHDL adder
component (Table 1PM_ADD_SUB (ADDER)) within Event-B. The type of this function
Is determined by the first axiom, whesdd_unsigned_width € N1 is the width. The
returning result is specified by the second axibat tnodels the addition operation of
two non-negative numbers.

Theorem (ADD): add_unsigned conforms to LPM_ADD_SUB, where
add_unsigned_width = LPM_WIDTH and the parameterdPM_DIRECTION and
LPM_REPRESENTATION of LPM_ADD_SUB equal toADD and UNSIGNED, respectively
(ensured by the code generation algorithm desciibdte next section).

Proof

1. The functionadd_unsigned operates on the same input values in decimales th

library componentPM_ADD_SUB in binary:

Vinp . inp € 0..(27add_unsigned_width)-1 =
(Jinpy . inpy, = conv(add_unsigned_width,inp),

whereinp represents a decimal input to the function whikg is a binary image
of inp supplied as an input to the component.

2. The result of the function add_unsigned ranges from 0 to
2/~ (add_unsigned_width+1)-1, i.e., one bit more than the width of the inputs.
Hence, the function returns the result as welhasctarry flag which corresponds
to the value on the outpuR&SULT andCOUT of the component:

Vres . res € 0.2 (add_unsigned_width+1)-1 =
(3COUT, RESULT . COUT + RESULT = conv(add_unsigned_width+1, res)),

where res represents the result of the function wher€&dJT + RESULT is

concatenation of the outpu@UT and RESULT of the component. Clearly, the
overflow will never occur.

Example 2. Supposeadd_unsigned_width = LPM_WIDTH = 3, the input ranges of
the function and the component a@¢/ and 000.111, respectively, while the
result ranges ar@®.15 and 0000.1111, respectively. The leftmost (the most
significant) bit ofLPM_ADD_SUB represents the carry flag.

End of example.

3. Finally, the definition of the functioradd_unsigned models the addition

operation of two inputs, nametiataa anddatab, i.e., the function of the adder
component.

10

Similarly, we can reason about other functions tlsgecify other library
components (Table 2).

While modeling a system in Event-B, one has toldisge POs (INV), (GRD) and
(SIM) to show correctness of the system specificat(Section 4.1). To ease
discharging of these POs, we postulated and prqdestharged PO (THM) the
following theorems along with the definitions ohfttions in a context:

Vn.neN =0 < 2/n, (ThCy)
Vxy.xeN AyeN A x <y = 27x < 27y, (ThG)
Vn.neN = 2+«2An = 27 (n+1). (ThG)

Theorem (Th@) states that 2 to the power of some natural nunger positive
number. In other words, the set of values staifftiogn O and ending in 2 to the power of
some constant is not empty. Hence, the functionsndbzing VHDL library
components are well-defined on these values. The¢f&G) shows the order relation
between numbers whose powers are in the orderaelas well. Theorem (Th{L
postulates inductiveness of 2 to the power of soomstant.

5 The Design Flow and Code Generation Algorithm

The use of Event-B as a starting point in the defigv of hardware systems facilitates
correct-by-construction development w.r.t. postdatproperties and requirements.
Code generation in an automated fashion enhaneegtitity of the approach reducing
testing effort at later design phases. Hence, wpqgse the design flow shown in Fig. 2.

Refinement 7 blementable Refinement
n n+1
mode/
(deterministic)

Automated
VHDL code
generation

VHDL code
with library
components

Implementable
model with
functions

Model Test cases Code
simulation "l simulation

‘MOdeJ Conformance Code
results™\online testin results

Figure 2: The design flow

An implementable deterministic model is deriveddaing usual refinement-based
development. Then, we apply an additional refinemstep that serves as the
middleware between a component-based formal model atructural VHDL
description. The correctness of this refinemenp st established by proving POs
(INV), (GRD) and (SIM) using theorems of types (Tk)Mnd (THM,) (Section 4). The
Rodin platform [4] generates these POs and attetogtsove them automatically. The

11

algorithmic representation of the code generatidizing the additional refinement step
is as follows:

1. Refine an implementable model by extending the rdefihite context (if any)
and refining the most concrete machine of the model

2. Instantiate necessary functions to the newly cceabamtext by specifying the set
of values they operate with (their width). This set bounded by the
corresponding constants. The necessary functioh® tased are determined by
operations used in the machine actions.

3. Restrict the types of the state variables accortbniipe specified constants and
functions where these variables are involved.

4. Replace regular operations in actions with callhécorresponding functions.

5. To generate code, interpret each function in thetecd as a corresponding
library component in VHDL according to the definedpping.

6. Interpret the type of a variable which has beenricted by some constant as
STD_LOGIC_VECTOR in terms of VHDL types. The length (the width) noen is
determined by the corresponding constant.

7. For every component instantiation, introduce anerimal VHDL signal
connected to the component output(s) in order lewafor chaining of diverse
components.

To support the proposed design flow, we have deeela prototype of a plug-in
that automates the additional refinement step dlogvs& one to generate a structural
VHDL description in an automated manner. The plugmplements the algorithm
described above and operates as follows. Firgtgxtends the most definite context of
an Event-B project, if any, by copying theorems GI)R(ThCs) to it. Secondly, the
plug-in traverses the most concrete machine optbgect. Each time it sees a regular
operation that can be substituted with functionl, cthe plug-in instantiates a
corresponding function available in the library. d&signer specifies the width of a
function being instantiated. Thirdly, it refinesetimost concrete machine and replaces
each regular operation with a function call. Fostamce,z := add_unsigned(x~y)
replaces := x+y. Fourthly, for every variable involved in such action, the plug-in
generates a type invariant (PO (INV) in Sectiom4drder to bind the values according
to the instantiated function. Finally, it applidsebrems (ThM, see PO (THM in
Section 4) of the form(x~y)=x op y to the machine, wheseandy are the operands and
f andop are the corresponding function and operation,eesgely. For instance, if the
function calladd_unsigned(x~y) replaces the expressiamy, then the theorem for this
substitution isadd_unsigned(x~y) = x+y. These theorems allow for proving correctness
of the additional refinement step. Hence, the biinanf the model is proved consistent.

A specification may contain several identical opierss, e.g., two or more addition
operations etc. In this case, for every functioa ttame is formed from the function
name, e.g.add_unsigned, and the suffixn, wheren is a number that starts frobnand

12

is increased whenever another function definit®mstantiated, e.gadd_0_unsigned,
add_1_unsigned. Therefore, each function determines one librampgonent such that
the one-to-one mapping between formal model and Vie@e is feasible.

6 Experimental Results

Let us examine a couple of examples showing thdicapien of our method to
modeling within the Event-B framework and genemtsiructural VHDL code. The
examples show a sequential composition of compsngsihg different modeling styles
in Event-B. Furthermore, we show test cases gdoarallowing one to perform
conformance testing between the model and the gttkicode or to deploy online

testing.

6.1 Component Chainingin Separate Events

This example illustrates the use of library compuasesuch that the result computed in

one event is used as an input for the computatioasother event (Fig. 3).

invariants
Voltage I € N A Current_I € N1 A
Resistance € N A Inputs_Read € BOOL A
(Temp_Read = TRUE =
Resistance = Voltage_I + Current_I) A
// Gluing invariant with a mode abstract
// model
(Inputs_Read = TRUE A Temp_Read = TRUE =
Temp_I = Resistance)
events

Resist_Comp refines Temp_Read 2

where Temp_Read = FALSE A
Inputs_Read = TRUE A Current I # 0

with Temp = Voltage_I + Current_I
Then Resistance = Voltage_I + Current_I ||
Temp_Read = TRUE

end

Compare refines Compare 2
where Temp_Read = TRUE A
Inputs_Read = TRUE
then Temp_Read = FALSE ||
Inputs_Read = FALSE ||
Result_O = bool(Resistance > Temp_Threshold)
end

invariants
Voltage_I € 0..2Adiv_0_unsigned_width_n-1 A
Current_I € 1..27div_0_unsigned_width_d-1 A
Resistance € 0..27div_0_unsigned_width_n-1 A
theorem
div_0_unsigned(Voltage_I+~Current_I)=Voltage_I+Current_I

events

Resist_Comp refines Temp_Read 2

where Temp_Read = FALSE A
Inputs_Read = TRUE A Current I # 0

then
Resistance = div_0_unsigned(Voltage_I~Current_]) ||
Temp_Read = TRUE

end

Compare refines Compare 2
where Temp_Read = TRUE A Inputs_Read = TRUE
then Temp_Read = FALSE ||
Inputs_Read = FALSE ||
Result_O :I Jagb,aeb,aneb,alb,aleb .
comp_0_unsigned(Resistance—Temp_Threshold)=
agb~Result_O'~aeb+aneb~alb~aleb
end

Figure 3: Component chaining in separate events

13

Here, we model the calculation of temperature usf@gm’s law (event
Resist_Comp), where temperature is proportional to resistafwa@iable Resistance).
Then, the obtained value is compared to some thleésind the comparison result is
promoted further (evenfompare). An instance of this example is aerospace designs
domain (e.g., [18, 21]) where the temperature Seregwesents a high-quality resistor
with a platinum or golden thread.

For this model, the Rodin platform generated 57 BOwhich 51 were proven
automatically. Three POs of type (THMwith the proofs were automatically derived
for the context theorems (ThS(ThGCs) (Section 4) by the plug-in. One PO of type
(INV) has been proved interactively using the tleeor(ThG). One well-definedness
PO has been discharged for a theorem of type (JH&knerated by the plug-in and
introduced into the machine. The remaining POsypé t(SIM) has been proved using
theorems (THM,) generated by the plug-in.

We generated VHDL descriptions with and withoutdty components from this
model (see Appendix A for the description with #iby components). We then
synthesized each description using Quartus-Il [2Z}e tool analyzed them and
provided the information about occupied area amfiopeance. The number of logic
elements (LE) measures the area. The worst-casp sgte (Tsu) and the worst-case
hold time (Th) illustrate the performance of thieample. The synthesis results are
summarized in Table 3. They show the advantagegassible optimizations in terms
of area (2,7%) and performance (13,7%) of the emantation with library
components.

Table 3: Synthesis results for state holding im@etations

LE, qt. LE, % Tsu, ns Tsu, % Th, ns Th, %
w/ lib | wiolib w/ lib | wiolib w/ lib | wiolib
36 37 2,7 9.975 11.562 13,7 2.262 2.215 -2%

6.2 Replacing Infix Operatorswith Prefix Function Calls

This example illustrates the model, where a sirelent produces the result using
different operators (Fig. 4). The computation o tiesult proceeds as follows (event
Result). The variablednputl_I andInput2_I are multiplied, their result is summed up
with the variabldnput3_I and this sum is then divided byputl_I. The order in which
the operations take place specify the chain of dbeesponding hardware library
components.

For this model, the Rodin platform generated 53 BOwhich 49 were proven
automatically. Three POs of type (THMwvith the proofs were automatically copied for
the context theorems (TRE(ThCs) (Section 4) by the plug-in. They have been used t
discharge the only proof obligation of type (INWiteractively.

14

invariants invariants

Inputl I € N1 A Input2I1e N A Inputl_I € 0..2"mult_0_unsigned_width_a-1 A
Input3_I € N A Result_ O e N A Input2_I € 0..2"mult_0_unsigned_width_b-1 A
Read_Write € BOOL A Input3_I € 0..27add_0_unsigned_width-1 A

Read_Write = FALSE = Result_O € 0..2Adiv_0_unsigned_width_n-1 A

Result_O = (Inputl_I * Input2_I + Input3_]) + | theorem
Inputl_I mult_0_unsigned(Inputl_I~Input2_I)=Inputl_I*Input2_I

events

events

Result 2

where Read_Write = TRUE Result refines Result 2

then Read_Write = FALSE || where Read_Write = TRUE

Result_O:=(Inputl_I*Input2_I+Input3_I)+Inputl_I then Read_Write = FALSE ||

end Result_O:=div_0_unsigned(add_0_unsigned(
mult_0_unsigned(Inputl_I~Input2_I)~Input3_I)~
Inputl_I)

end

Figure 4: Replacing infix operators with prefix fition calls

Analogously to the previous example, we generatedDV descriptions with and
without library components from this model (see Apgix B for the description with
library components). Then, we used Quartus-Il {@20$ynthesize each description and
acquire information about area and performance. Woest-case time required to
propagate the value on the input pin to the output (W-C Tpd) reflects the
performance metric for this example. Table 4 sunmearthe synthesis results, which
show the advantages in terms of area (12,5%) amtbrpeance (15,4%) of the
description with library components.

Table 4: Synthesis results for nested functiorscall

LE, qgt. LE, % W-C Tpd, ns W-C tpd, %
w/ lib | wlolib w/ lib | wiolib
28 32 12,5 14,71 17,38 15,4

6.3 Test Cases Generation

To automate conformance testing using an EventrBdbmodel as a so-called golden
reference, we implemented another prototype ofpilng-in that simulates the model
and generates test cases. The model simulatioerisrmed using ProB animator and
model checker [7]. A user can specify the numbesimiulations to be executed, i.e., the
number of test cases to be generated affectintpit€overage. The test cases are of the
TCL format supported by ModelSim simulation enviment [24] that allows designers
to simulate an implementation and obtain valueghensignals. Let us show several
examples of test cases generated from the modedsmed above.
The test cases for the example shown in Fig. 3ti@e6.1) are the following:

force Current_I 'd6; force Voltage_I 'd3,

15

force Current_I 'd11; force Voltage_I 'd7,

force Current_I 'd1; force Voltage_I 'd8,
where force is a command that forces (drives) a value on igeat and'dx is a
conversion of a decimal numbemto its binary image.

The simulation results of the model and the codeHese test cases are identical as
shown in Table 5.

Table 5: Simulation results of the model and thageco

Event-B model
Result_O: 0, Current_I: 6, Temp_Read: 0,

VHDL code
Result_O: 0, Current_I: 6, Temp_Read: 0,

Resistance: 0, Voltage_I: 3, Inputs_Read: O, ;
Result_O: 0, Current_I: 11, Temp_Read: 0,
Resistance: 0, Voltage_I: 7, Inputs_Read: O, ;
Result_O: 1, Current_I: 1, Temp_Read: 0,
Resistance: 8, Voltage_I: 8, Inputs_Read: 0, ;

Resistance: 0, Voltage_I: 3, Inputs_Read: O, ;
Result_O: 0, Current_I: 11, Temp_Read: 0,
Resistance: 0, Voltage_I: 7, Inputs_Read: O, ;

Result_O: 1, Current_I: 1, Temp_Read: 0,
Resistance: 8, Voltage_I: 8, Inputs_Read: 0, ;

The test cases for the example shown in Fig. 4ti@e6.2) are as follows:

force Input3_I 'd13; force Input2_1 'dO; force Inputl_I'd2,
force Input3_I 'd1; force Input2_I 'd1; force Inputl_I 'd2.

The simulation results of the model and the codéHese test cases are identical as
well (Table 6).

Table 6: Simulation results of the model and théeco

Event-B model
Result_O: 6, Input3_I: 13, Read_Write: O,
Input2 I: 0, Inputl I: 2;
Result_O: 1, Input3_I: 1, Read_Write: 0,
Input2 I: 1, Inputl I: 2

VHDL code
Result_O: 6, Input3_I: 13, Read_Write: 0,
Input2 I: 0, Inputl [: 2;
Result_O: 6, Input3_I: 13, Read_Write: 0,
Input2 I: 0, Inputl I: 2

7 Conclusion

We have presented a design flow integrating then&érdevelopment of a hardware
system within the Event-B framework with structyraé., component-based VHDL
implementation. To support the proposed approaehhave developed a prototype of a
plug-in that automates the additional refinemeep stnd generation of structural VHDL
description. We believe that the application ofnial methods at early stages of the
design flow with automated code generation can aedesting effort at later design
phases. In addition, we have shown experimentallteeshat illustrate optimization
provided by the code with library components (2,886 12,5% in area and 13,7% as
well as 15,4% in performance).

16

The formal library of hardware components is naohited to the components
presented in this paper and can clearly be extendedce, we will consider the
formalization of other hardware components thatadten used in hardware design to
enhance correct-by-construction development ofrdevbardware systems.

A subset of components presented in this papesrisidered to be combinational,
i.e., these components are clockless. Howevere thier combinatorial components that
depend on the clock signal. Hence, another dinecifaour future work is to extend the
approach to support modeling a system that conteitked components. This will
allow a designer to derive a time-aware model artegate synchronous code from this
model.

8 Acknowledgement

This work is supported by Academy of Finland and fResearch Institute of Abo
Akademi University. In addition, the authors wolike to thank Adjunct Prof. Marina
Walden for the fruitful discussions and valuabledieack.

17

References

[1]
[2]
[3]

[4]
[5]

[6]
[7]

[8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

E. Clarke, Model Checking, Cambridge: The MIT Pre&92.

A. Roychoudhury, T. Mitra, S.R. Karri, Using Formichniques to Debug the
AMBA System-on-Chip Bus Protocol, Design, Automatiand Test in Europe
conference (DATE), IEEE, pp. 828-833, 2003.

J.-R. Abrial, Modeling in Event-B. System and Sdafter Engineering,
Cambridge: Cambridge University Press, 2010.

The Rodin platform. Available: http://sourceforget/projects/rodin-b-sharp/

S. Wright, Automatic Generation of C from Event\Bprkshop on Integration
of Model-based Formal Methods and Tools, 20094p. 1

IEEE Standard VHDL Language Reference Manual, IEBE5, 2008.

M. Leuschel, M. Butler, ProB: A Model Checker for Broc. FME, Springer,
vol. 2805, 2003, p. 855-874.

K. Kohno, N. Matsumoto, A new verification methodgy for complex pipeline
behavior, Design Automation Conference, IEEE, d%-821, 2001.

A. Benveniste, P. Le Guernic, Hybrid Dynamical &ys$¢ Theory and the Signal
Language, IEEE Transactions on Automatic Contr¢bB51990, p. 535-546.

D. Potop-Butucaru, R. de Simone, Optimizations Faster Execution Of
Esterel programs, Proc. of MEMOCODE conference320f. 227-236.

I. Sander, A. Jantsch, System Modelling and Transtional Design
Refinement in ForSyDe, Transactions on Computeedibesign of Integrated
Circuits and Systems, IEEE, Vol. 23, 2004, pp. 27-3

J. Talpin, P. Guernic, S. Shukla, R. Gupta, F. @ouPolychrony for Formal
Refinement Checking in a System-Level Design Methagly, Application of
Concurrency to System Design (ACSD), IEEE, pp. 920®3.

BlueSpec Documentation. Available:
http://www.ece.ucsb.edu/its/bluespec/index.html.

D. Richards, D. Lester, A monadic approach to aatech reasoning for
BlueSpec SystemVerilog, Innovations System Softwangineering, Springer-
Verlag, pp. 85-95, 2011.

N. Evans, Integrating Formal Methods with InformBigital Hardware
Development, Proc. of AVoCS, 2010, p. 16.

R. J. R. Back, K. Sere, “Superposition RefinemehtReactive Systems”,
Formal Aspects of Computing, Springer, Vol. 8, 1995. 324-346.

T. Seceleanu, Systematic Design of Synchronougd)iGircuits, Turku: TUCS
Dissertations, Turku Centre for Computer Scien66,12

18

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Hallerstede, Y. Zimmermann, “Circuit Design bgfiRement in Event-B”,
FDL, pp. 624-637, 2004.

M. Benveniste, A «Correct by Construction» Reaidiigital Circuit, RIAB
Workshop, FMWeek, 2009. Available: http://www.bmatihcom/pdf/riab/st-
marc-benvenisteproved-realistic-circuit-handout.pdf

S. Ostroumov, L. Tsiopoulos, VHDL Code Generatioonf Formal Event-B
Models. IEEE Digital System Design, 14th Euromi€@onference, Oulu, 2011,
pp. 127-134.

K. Robinson. (2011, June, 28). System Modelling &s@ning using Event-B.
Available: http://www.cse.unsw.edu.au/~cs9116/PDHFdf

Quartus-Il software. Avaliable:
http://www.altera.com/products/software/quartus«ib-edition/qts-we-
index.html

B. Nuckolls, Practical Low Resistance Measureme2i®4. Available:
www.aeroelectric.com/articles/LowOhmsAdapter_3.pdf

ModelSim for Altera. Available:
http://www.altera.com/products/software/quartusrotelsim/qts-modelsim-
index.html

G. Singh, E. Shukla, Verifying Compiler bsed Refitrent of Bluespec
Specifications using the SPIN model Checker, 15tierhational SPIN
Workshop, Springer, pp. 250-269, 2008.

A. Aljer, P. Devienne, S. Tison, BHDL: Circuit dgsiin B, Conference on
Application of Concurrency to System Design, IEBR, 1-2, 2003.

Event-B to VHDL. Available: http://eventb-to-vhd.t

19

Appendix A

Component Chaining in Separate Events

LIBRARY IEEE;

LIBRARY LPM;

USE IEEE.STD_LOGIC_1164.ALL;
USE LPM.LPM_COMPONENTS.ALL;
USE IEEE.NUMERIC_STD.ALL;

ENTITY Separate_Events IS

GENERIC

(
Temp_Threshold : NATURAL := 80;
div_0_unsigned_width_n : NATURAL := §;
div_0_unsigned_width_d : NATURAL := 8;
compare_0_unsigned_width : NATURAL := 8

)i

PORT

--Input ports

Voltage_I: IN STD_LOGIC_VECTOR(div_0_unsigned_width_n-1 DOWNTO 0) :=
STD_LOGIC_VECTOR(TO_UNSIGNED(O, div_0_unsigned_width_n));

Current_I: IN STD_LOGIC_VECTOR(div_0_unsigned_width_d-1 DOWNTO 0) :=
STD_LOGIC_VECTOR(TO_UNSIGNED(10, div_0_unsigned_width_d));

--Output ports
Result_O : OUT STD_LOGIC :='0'
)i
END Separate_Events;

ARCHITECTURE a OF Separate_Events IS

-- Components declaration
component LPM_DIVIDE
GENERIC(
LPM_WIDTHN : NATURAL;
LPM_WIDTHD : NATURAL;
LPM_NREPRESENTATION : STRING;
LPM_DREPRESENTATION : STRING
);
PORT(
NUMER : IN STD_LOGIC_VECTOR(LPM_WIDTHN-1 DOWNTO 0);
DENOM : IN STD_LOGIC_VECTOR(LPM_WIDTHD-1 DOWNTO 0);

20

QUOTIENT : OUT STD_LOGIC_VECTOR(LPM_WIDTHN-1 DOWNTO 0);
REMAIN : OUT STD_LOGIC_VECTOR(LPM_WIDTHD-1 DOWNTO 0)

)

END component;

component LPM_COMPARE

GENERIC(
LPM_WIDTH : NATURAL;
LPM_REPRESENTATION : STRING
)i
PORT(
DATAA : IN STD_LOGIC_VECTOR(compare_0_unsigned_width-1 DOWNTO 0);
DATAB : IN STD_LOGIC_VECTOR(compare_0_unsigned_width-1 DOWNTO 0);
AGB : OUT STD_LOGIC;
AGEB : OUT STD_LOGIC;
AEB : OUT STD_LOGIC;
ANEB : OUT STD_LOGIC;
ALB : OUT STD_LOGIC;
ALEB : OUT STD_LOGIC
)i

END component;

-- Internal signals declaration
SIGNAL div_0_unsigned_res : STD_LOGIC_VECTOR(div_0_unsigned_width_n-1 DOWNTO 0);
SIGNAL compare_0_res : STD_LOGIC;

SIGNAL Resistance : STD_LOGIC_VECTOR(div_0_unsigned_width_n-1 DOWNTO 0) :=

STD_LOGIC_VECTOR(TO_UNSIGNED(O, div_0_unsigned_width_n));

SIGNAL Inputs_Read : STD_LOGIC := '0};
SIGNAL Temp_Read : STD_LOGIC := '0";

BEGIN

div_0_unsigned: LPM_DIVIDE

GENERIC MAP (LPM_WIDTHN => div_0_unsigned_width_n,
LPM_WIDTHD => div_0_unsigned_width_d,
LPM_NREPRESENTATION => "UNSIGNED",
LPM_DREPRESENTATION => "UNSIGNED")

PORT MAP (NUMER => Voltage_],
DENOM => Current_],
QUOTIENT => div_0_unsigned_res);

compare_0_unsigned: LPM_COMPARE
GENERIC MAP (LPM_WIDTH => compare_0_unsigned_width,
LPM_REPRESENTATION => "UNSIGNED")
PORT MAP (DATAA => Resistance,
DATAB => STD_LOGIC_VECTOR(TO_UNSIGNED(Temp_Threshold,
compare_0_unsigned_width)),
AGEB => compare_0_res);

21

END a;

M1_Components_library:
PROCESS (Voltage_I,Current_I,Resistance Inputs_Read, Temp_Read,
div_0_unsigned_res,compare_0_res) IS BEGIN

Read_Inputs:
IF (Temp_Read = '0") and (Inputs_Read = '0")
THEN
Inputs_Read <="1";
END IF;

Resist_Comp:
IF (Temp_Read = '0") and (Inputs_Read = '1') and
(not (Current_I =
STD_LOGIC_VECTOR(TO_UNSIGNED(0,div_0_unsigned_width_n))))
THEN
Resistance <= div_0_unsigned_res;
Temp_Read <="1
END IF;

Compare:
IF (Temp_Read = '1") and (Inputs_Read = '1")
THEN
Temp_Read <= "0}
Result_O <= compare_0_res;
Inputs_Read <='0";
END IF;
END PROCESS;

22

Appendix B

Replacing Infix Operators with Calls of Functions

LIBRARY IEEE;

LIBRARY LPM;

USE IEEE.STD_LOGIC_1164.ALL;
USE LPM.LPM_COMPONENTS.ALL;
USE IEEE.NUMERIC_STD.ALL;

ENTITY Infix_Operators_vs_Function_Calls IS

GENERIC

(
mult_0_unsigned_width_a : NATURAL := 2;
mult_0_unsigned_width_b : NATURAL := 2;
add_0_unsigned_width : NATURAL := 4;
div_0_unsigned_width_n : NATURAL := 5;
div_0_unsigned_width_d : NATURAL := 2

)
PORT

--Input ports

Inputl_I:IN STD_LOGIC_VECTOR(mult_0_unsigned_width_a-1 DOWNTO 0) :=
STD_LOGIC_VECTOR(TO_UNSIGNED(1, mult_0_unsigned_width_a));

Input2_1:IN STD_LOGIC_VECTOR(mult_0_unsigned_width_b-1 DOWNTO 0) :=
STD_LOGIC_VECTOR(TO_UNSIGNED(0, mult_0_unsigned_width_b));

Input3_1:IN STD_LOGIC_VECTOR(add_0_unsigned_width-1 DOWNTO 0) :=
STD_LOGIC_VECTOR(TO_UNSIGNED(0, add_0_unsigned_width));

--Output ports
Result_O : OUT STD_LOGIC_VECTOR(div_0_unsigned_width_n-1 DOWNTO 0) :=
STD_LOGIC_VECTOR(TO_UNSIGNED(O, div_0_unsigned_width_n))
)i

END Infix_Operators_vs_Function_Calls;

ARCHITECTURE a OF Infix_Operators_vs_Function_Calls IS
component LPM_MULT
GENERIC(
LPM_WIDTHA : NATURAL;
LPM_WIDTHB : NATURAL,;
LPM_WIDTHP : NATURAL;
LPM_REPRESENTATION : STRING
)i
PORT(

23

DATAA : IN STD_LOGIC_VECTOR(LPM_WIDTHA-1 DOWNTO 0);
DATAB : IN STD_LOGIC_VECTOR(LPM_WIDTHB-1 DOWNTO 0);
RESULT : OUT STD_LOGIC_VECTOR(LPM_WIDTHP-1 DOWNTO 0)
)i
END component;

component LPM_ADD_SUB
GENERIC(
LPM_WIDTH : NATURAL;
LPM_DIRECTION : STRING;
LPM_REPRESENTATION : STRING
)i
PORT(
DATAA : IN STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0);
DATAB : IN STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0);
RESULT : OUT STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0);
COUT : OUT STD_LOGIC
)i
END component;

component LPM_DIVIDE
GENERIC(
LPM_WIDTHN : NATURAL;
LPM_WIDTHD : NATURAL;
LPM_NREPRESENTATION : STRING;
LPM_DREPRESENTATION : STRING
)i
PORT(
NUMER : IN STD_LOGIC_VECTOR(LPM_WIDTHN-1 DOWNTO 0);
DENOM : IN STD_LOGIC_VECTOR(LPM_WIDTHD-1 DOWNTO 0);
QUOTIENT : OUT STD_LOGIC_VECTOR(LPM_WIDTHN-1 DOWNTO 0);
REMAIN : OUT STD_LOGIC_VECTOR(LPM_WIDTHD-1 DOWNTO 0)
)i
END component;

SIGNAL mult_0_unsigned_res : STD_LOGIC_VECTOR((mult_0_unsigned_width_a+
mult_0_unsigned_width_b)-1 DOWNTO 0);

SIGNAL add_0_unsigned_res : STD_LOGIC_VECTOR(add_0_unsigned_width DOWNTO 0);

SIGNAL div_0_unsigned_res : STD_LOGIC_VECTOR(div_0_unsigned_width_n-1 DOWNTO 0);

SIGNAL Read_Write : STD_LOGIC := '0};

BEGIN
mult_0_unsigned: LPM_MULT
GENERIC MAP (LPM_WIDTHA => mult_0_unsigned_width_a,
LPM_WIDTHB => mult_0_unsigned_width_b,
LPM_WIDTHP => (mult_0_unsigned_width_a+mult_0_unsigned_width_b),
LPM_REPRESENTATION => "UNSIGNED")
PORT MAP (DATAA => Inputl_],

24

END a;

DATAB => Input2],
RESULT => mult_0_unsigned_res);

add_0_unsigned: LPM_ADD_SUB
GENERIC MAP (LPM_WIDTH => add_0_unsigned_width,
LPM_DIRECTION => "ADD",
LPM_REPRESENTATION => "UNSIGNED")
PORT MAP (DATAA => mult_0_unsigned_res,
DATAB => Input3],
RESULT => add_0_unsigned_res(add_0_unsigned_width-1 DOWNTO 0),
COUT => add_0_unsigned_res(add_0_unsigned_width));

div_0_unsigned: LPM_DIVIDE

GENERIC MAP (LPM_WIDTHN => div_0_unsigned_width_n,
LPM_WIDTHD => div_0_unsigned_width_d,
LPM_NREPRESENTATION => "UNSIGNED",
LPM_DREPRESENTATION => "UNSIGNED")

PORT MAP (NUMER => add_0_unsigned_res,
DENOM => Inputl_],
QUOTIENT => div_0_unsigned_res);

Component_test_library:
PROCESS (Inputl_IInput2_LInput3_l,Read_Write) IS BEGIN

Read:
IF (Read_Write = '0")
THEN
Read_Write <= "1";
END IF;
Result:
IF (Read_Write = '1")
THEN
Result_O <= div_0_unsigned_res;
Read_Write <= '0";
END IF;

END PROCESS;

25

TURKU

CENTRE for

COMPUTER

SCIENCE

Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku
s\\ m é Faculty of Mathematics and Natural Sciences
= § e Department of Informatlo_n Technology
2 ‘\\\ e Department of Mathematics
Turku School of Economics
e |nstitute of Information Systems Sciences

Abo Akademi University
e Department of Computer Science
e |Institute for Advanced Management Systems Research

ISBN 978-952-12-2869-8
ISSN 1239-1891

