

Tur ku Cent re Computer Science

TUCS Technical Report

Author One | Author Two
Author Four | Author Five

Title of the Technical Report

Sergey Ostroumov | Leonidas Tsiopoulos
Kaisa Sere

Generation of Structural VHDL
Code with Library Components
from Formal Event

Tur ku Cent re Computer Sciencefor

TUCS Technical Report
No 1073, March 2013

Author One | Author Two | Author Three
Author Four | Author Five

Title of the Technical Report

Sergey Ostroumov | Leonidas Tsiopoulos | Juha Plosila |

Generation of Structural VHDL
Code with Library Components
from Formal Event-B Models

| Author Three

Title of the Technical Report

| Juha Plosila |

Generation of Structural VHDL
Code with Library Components

B Models

Tur ku Cent re Computer Sciencefor

Author One | Author Two | Author Three
Author Four | Author Five

Title of the Technical Report Generation of Structural

VHDL Code with Library

Components from Formal

Event-B Models

TUCS Technical Report

No 1073, March 2013

Generation of Structural VHDL Code with Library
Components from Formal

Sergey Ostroumov
TUCS – Turku Centre
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
Sergey.Ostroumov@abo.fi

Leonidas Tsiopoulos
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
Leonidas.Tsiopoulos@abo.fi

Juha Plosila
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, 20014 Turku, Finland
Juha.Plosila@utu.fi

Kaisa Sere
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
Kaisa.Sere@abo.fi

Generation of Structural VHDL Code with Library
Components from Formal Event-B Models

Turku Centre for Computer Science
Åbo Akademi University, Department of Information Technologies

5 A, 20520 Turku, Finland
Sergey.Ostroumov@abo.fi

Leonidas Tsiopoulos
University, Department of Information Technologies

5 A, 20520 Turku, Finland
Leonidas.Tsiopoulos@abo.fi

University of Turku, Department of Information Technology
5 B, 20014 Turku, Finland

Juha.Plosila@utu.fi

Åbo Akademi University, Department of Information Technologies
5 A, 20520 Turku, Finland

Kaisa.Sere@abo.fi

Generation of Structural VHDL Code with Library

Abstract

We propose a design approach to integrating correct-by-construction formal modeling
with hardware implementations in VHDL. Formal modeling is performed within the
Event-B framework that supports the refinement approach, i.e., stepwise unfolding of
system properties in a correct-by-construction manner. After an implementable
deterministic model of a hardware system is derived, we apply an additional refinement
step in order to introduce hardware library components in the form of functions. We
show the mapping between these functions and corresponding library components such
that a structural, i.e., component-based, VHDL description is derived. The application
of functions binds unrestricted data types and substitutes regular operations with
function calls. The approach is presented through examples that illustrate the additional
refinement step and the code generation. We show the advantages in terms of occupied
area and performance of the descriptions that incorporate hardware library components.
In addition, we show generation of test cases from a formal model, which facilitates
conformance or online testing.

Keywords: automated refinement, code generation, design flow, Event-B, formal
methods, library components, structural VHDL, test cases generation

TUCS Laboratory
Distributed Systems Laboratory

1

1 Introduction

Due to advances in Very-Large-Scale-Integration technology, designers can create
increasingly complex systems on a single chip enabling energy-efficient execution of
applications. These systems usually consist of a number of various components such
that these components interconnected with each other constitute the functionality of the
system. However, as complexity of a system and the number of components grow, it is
rather infeasible to perform exhaustive testing in order to guarantee correct behavior of
the system.

One of the appropriate approaches for developing correct systems is provided by
formal methods. The application of formal methods can be categorized into two
techniques. The model-checking [1] technique focuses on extracting a formal model
from an implementation and checking some properties on this model. These techniques
have been successfully employed (e.g., [2]) to identify errors that were undetected
during normal design process. Modification and re-checking of the implementation
should then be applied until the required integrity level is achieved.

Another technique to guarantee the correct behavior of a system is offered by a
stepwise formal development. The formal modeling is performed following the
refinement approach, i.e., unfolding system properties in a stepwise and correct-by-
construction manner. Therefore, the derived formal model (specification) of the system
is proved to be correct w.r.t. its functional requirements introduced as invariants. The
utility of this approach can be further enhanced by automated code generation.

For the work in this paper, we utilize the latter approach and use the Event-B
formalism [3] as the main framework for formal development. This formalism supports
the refinement approach and has adequate tool support – the Rodin platform [4]. This
platform is open source software offering the opportunity for an extension of its
functionality in the form of plug-ins. Since code generation is a natural step for formal
design flow, there are plug-ins that allow one to derive code in software languages such
as C, Java, etc. [5]. However, due to the fact that hardware description languages
(HDLs) differ in semantics and syntax from software languages, the same methods and
techniques cannot be directly and completely applied to hardware design and code
generation. Hence, we aim at facilitating the process of HDL description generation
from formal models.

The target HDL is the VHSIC Hardware Description Language (VHDL). This
language is standardized [6] and widely used in hardware design for systems based on
field-programmable-gate-array or application-specific integrated-circuits technologies.
VHDL supports the notion of library components allowing the designers to develop a
system in a structural, i.e., component-based, manner and to derive possibly optimized
code in terms of area and performance.

2

In this paper, we propose a design flow that integrates correct-by-construction
formal modeling with hardware implementations in VHDL. We show the application of
an additional refinement step to a deterministic implementable model. This refinement
step serves as the middleware between a component-based formal model and its
structural VHDL code. At this refinement step, we introduce VHDL (library)
components as Event-B functions. We present a subset of library components and show
the interconnection between them. The formal library can be further extended with the
components used during the design. Additionally, we present the generation of test
cases from the formal model using ProB animator and model-checker [7]. These test
cases allow for automating the behavioral comparison between the formal model and
the generated code or they can be deployed for online testing of the implementation [8].

To support our approach, we have developed a prototype of a plug-in [27] that
automates the additional refinement step and allows one to generate a structural VHDL
description in an automated manner. In addition, we have created another plug-in [27]
to provide test cases generation.

2 Related Work

There exist several formalisms that provide specification and verification of hardware
systems such as Signal [9], Esterel [10], ForSyDe [11] and others. Signal is dedicated to
data-flow applications domain while Esterel is for control-flow ones. ForSyDe
represents the design methodology targeting at covering both domains. The
commonality of these languages is that they are all based on the perfect synchrony
hypothesis. This hypothesis assumes a zero delay between consuming inputs and
producing outputs. In addition, only Signal and ForSyDe support the notion of
refinement. Refinement in Signal relies on checking if simulation of inputs and outputs
preserves flow-equivalence (model checking) [12]. Refinement in ForSyDe stands for
the mapping one process network onto another one restricting these networks to have
the same inputs and outputs [11]. Moreover, these transformations have to be performed
according to the predefined library.

BlueSpec [13] has been proposed as another solution to formal hardware
verification and code generation. The language represents an extension of
SystemVerilog and has a sound semantics allowing one to verify certain properties. It
also supports design by refinement offering a possibility of integrating automated
reasoning into the design flow [14]. However, automated verification of system
correctness is provided by external theorem provers and/or model checkers such as PVS
[14] and SPIN [25].

Evans [15] describes the mapping of VHDL to B and Communicating Sequential
Processes (CSP) methods. The author proposes to derive a B model from VHDL and

3

formalize requirements with CSP. This approach uses a model-checking technique that
requires modification and re-checking of the implementation until the desired integrity
level is achieved.

In contrast to these approaches, we propose to use the Event-B formalism, which
provides data and superposition refinement [16]. These types of refinement allow for
stepwise unfolding of system functionality without restricting the model to have the
same number of variables in refinements. Furthermore, one can postulate vital
properties in terms of invariants for every refinement step. Following this approach, the
discharging (proving) proof obligations serves as the guarantee that each refinement
step preserves invariants and that concrete refinement step sustains their abstract
counterparts. After the required model is derived and proved to be correct, a structural
VHDL description is generated.

Another approach to deriving synchronous hardware systems proposed by
Seceleanu [17] relies on Action Systems. The author describes the approach to
modeling a synchronous system as read/write operations, where a combinational
(asynchronous) circuit that consists of logic gates is followed by a synchronous
component, namely a D-flip-flop, which operates on the clock signal. In addition, the
author points out the mapping of such modeling to a behavioral VHDL description,
where all operations are at one level of code, i.e., the description without components.
Despite the fact that the Action Systems framework is similar to the Event-B formalism,
it has a different underlying structure, which makes it infeasible to completely apply
this approach to Event-B models. Furthermore, in contrast to this approach, we propose
to derive component-based models and generate structural VHDL descriptions with
library components.

Hallerstede and Zimmermann [18] proposed an approach to VHDL code generation
from formal B models. The authors describe the mapping between B models and VHDL
code through a middleware language B0, which allows one to generate code without
components. This approach is adopted by AtelierB tool and supported by industrial
partners [19]. Since Event-B is a descendant of B method that allows us to model
reactive systems and has a different underlying structure, it is not straightforward how
to apply this approach to Event-B models. Furthermore, we consider a component-based
design flow, where components are injected into a formal model in the form of
functions. This design flow allows for generating a structural VHDL description from
such a model.

A similar approach to VHDL code generation has been proposed by Ostroumov and
Tsiopoulos [20]. The authors suggest utilizing the conditional statement ifififif condition

thenthenthenthen action endendendend ifififif in the process clause. This guarantees conformance of sequential
VHDL behavior to the behavior of its formal counterpart enabling generation of a
behavioral (i.e., without components) VHDL description from an implementable model
following the usual proof-based design. We adopt and vastly extend the approach of

4

[20]. However, in contrast to this approach, we propose to apply an additional
refinement step in order to derive a component-based model and, consequently, a
structural VHDL description. The correctness of the additional refinement step is
established through the proof obligations of the Event-B formal framework.

A BHDL tool has been proposed for digital circuit design [26]. The tool converts a
VHDL description into B specification with two machines: an abstract that represents a
VHDL entity and an implementation that corresponds to the architecture. Then, these
two machines are verified using the B engine and the VHDL comments are interpreted
as invariant properties. In contrast to this approach, we derive an implementable
deterministic Event-B model following the usual refinement-based development. Then,
components are injected into the model so that a structural VHDL description can be
generated.

3 VHDL Description

3.1 VHSIC Hardware Description Language
VHDL, a standardized hardware description language [6], is widely used in hardware
design and is supported by many Computer Aided Design tools (e.g., [22]). A VHDL
description consists of two basic elements: an entity and an architecture. Every entity
has a name and contains two clauses: generic that determines parameters for this entity
and port that specifies inputs and outputs of this entity (an interface). The inputs and the
outputs are distinguished by the keywords in and out, respectively.

The architecture attached to some entity has a name and a body that describes the
behavior (the function) of a hardware component. Inside the architecture, a designer can
introduce internal signals and other (e.g., library) components using the keyword
component (Fig. 1).

A component is simply a predefined entity supplied with some architecture. The
component entity has generic parameters that have to be instantiated using the keywords
generic map. The connection between components is specified by the keywords port
map. The keywords generic map and port map constitute the architecture body along
with the process clause. The execution of the process is determined by a list of signals,
namely the sensitivity list. In the process clause, we utilize the conditional statement ifififif

condition thenthenthenthen action endendendend ifififif. If the condition holds, the action is executed.

The VHDL action in the process is an assignment to a signal of the form s <= E,

where s is an internal or output signal and E is a constant or an expression over the input
and/or internal signals. Every such an assignment is not instant. In other words, every
signal has a buffer and the actual assignment takes place when the whole process

5

completes its execution. Hence, all the signals involved in a process are updated
simultaneously.

Figure 1: VHDL entity and architecture

3.2 Hardware Library Components
Library components allow the designers to tackle complexity of a system facilitating
faster design. Let us review a subset of library components available in Quartus-II
software by Altera [22]. A small subset of them is presented in Table 1, where the
components LPM_DIVIDE(DIVIDER) and LPM_DIVIDE(MODULO) differ in the output they

produce and the abbreviations ALB, AEB etc. of the LPM_COMPARE component stand for

A less than B, A equals to B etc., respectively. However, the library of formal
components is not limited to the components presented in Table 1 and can be further
extended since every library component has a unique definition.

The inputs and the outputs of the library components described here are bits or
arrays of bits represented by STD_LOGIC and STD_LOGIC_VECTOR VHDL types,

respectively. The type STD_LOGIC_VECTOR denotes a set of signals (a bus) whose
number is determined by some constant (parameter defined in the generic clause). For
the sake of brevity, we exemplify the mapping between a formal model and a structural
code by the library component that performs the addition operation (Table 1,
LPM_ADD_SUB(ADDER)). The others are interpreted in a similar manner.

The component has three parameters: LPM_WIDTH, LPM_DIRECTION and

LPM_REPRESENTATION. LPM_WIDTH specifies the number of bits (the width) of the

inputs and the output. LPM_DIRECTION determines the type of this component. If it

6

equals to ADD, the components is an adder. LPM_REPRESENTATION specifies the type of
addition performed: signed or unsigned.

The adder operates on two inputs: the input port DATAA and the input port DATAB.

It returns the result of addition of the two inputs to the output port RESULT as well as the

carry flag to the output COUT. The input ports and the output port RESULT are of type

STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0) while the carry flag is of type

STD_LOGIC.

Table 1: A subset of library components

Components Generic Inputs Outputs Operation

LPM_ADD_SUB

(ADDER)

LPM_WIDTH,

LPM_DIRECTION = “ADD”,

LPM_REPRESENTATION =

“UNSIGNED”

DATAA,

DATAB

RESULT,

COUT

RESULT=(DATAA+DATAB)(LPM_WIDTH-1..0),

COUT=(DATAA+DATAB)(LPM_WIDTH)

LPM_ADD_SUB

(SUBTRACTOR)

LPM_WIDTH,

LPM_DIRECTION = “SUB”,

LPM_REPRESENTATION =

“UNSIGNED”

DATAA,

DATAB
RESULT

RESULT =

(DATAA - DATAB)(LPM_WIDTH-1..0)

LPM_MULT

LPM_WIDTHA, LPM_WIDTHB,

LPM_WIDTHP,

LPM_REPRESENTATION =

“UNSIGNED”

DATAA,

DATAB
RESULT RESULT = (DATAA * DATAB)

LPM_DIVIDE

(DIVIDER)

LPM_WIDTHN, LPM_WIDTHD,

LPM_NREPRESENTATION =

“UNSIGNED”,

LPM_DREPRESENTATION =

“UNSIGNED”

NUMER,

DENOM
QUOTIENT QUOTIENT = DATAA ÷ DATAB

LPM_DIVIDE

(MODULO)

LPM_WIDTHN, LPM_WIDTHD,

LPM_NREPRESENTATION =

“UNSIGNED”,

LPM_DREPRESENTATION =

“UNSIGNED”

NUMER,

DENOM
REMAIN REMAIN = DATAA % DATAB

LPM_COMPARE

LPM_WIDTH,

LPM_REPRESENTATION =

“UNSIGNED”

DATAA,

DATAB

AGB,

AGEB,

AEB,

ANEB,

ALB,

ALEB

AGB = bool(DATAA > DATAB),

AGEB = bool(DATAA ≥ DATAB),

AEB = bool(DATAA = DATAB),

ANEB = bool(DATAA ≠ DATAB),

ALB = bool(DATAA < DATAB),

ALEB = bool(DATAA ≤ DATAB),

In the next section, we formalize library components as functions within Event-B to

achieve correct-by-construction design flow. We show the one-to-one correspondence
between formal and informal definitions of library components presented in Table 1.

4 Event-B Modeling

4.1 The Event-B Formalism
The Event-B formalism [3] allows designers to develop models in a correct-by-
construction manner. A specification within Event-B consists of two main elements: a
context and a machine. The context contains static data such as sets, constants, generic
theorems and axioms. The machine models the dynamic part, which includes state

7

variables, theorems, system properties that must always hold (invariants) and events that
modify the state variables. The context can be extended by another context and the
machine can be refined by another machine. Moreover, the machine can refer to the data
defined in a context, if this machine sees this context.

An event within the Event-B framework has the following structure:

e ≙ anyanyanyany x wherewherewherewhere g thenthenthenthen a endendendend,

where x is a list of local variables, g stands for the guard and a represents an action of

the event e, respectively. The guard is a conjunction of predicates that determine the
execution of the action. If the guard holds, the action is fired.

The action represents a composition of parallel assignments (denoted by ||) that
modify state variables. There are three types of assignments in Event-B: deterministic
(denoted by :=), non-deterministic from a set (denoted by :∈) and non-deterministic

specified by a predicate (denoted by :|).

Each event in Event-B is viewed as a before-after predicate (BAe = BA(v, v’)) [3] that

links the values of the variables before (v) and after (v’) the execution of the event e.
This scheme allows us to prove the correctness (consistency) of the model w.r.t.
postulated invariants by discharging proof obligations (POs). In particular, every
predicate (i.e., an invariant, a theorem, a guard or an action) has to be well-defined [21],
i.e., sound. Each event, in its turn, has to preserve postulated invariants [3, 21]:

 Inv ∧ ge ⇒ [BAe]Inv, (INV)

where Inv is a model invariant whilst ge and BAe are the guard and the before-after

predicate of event e, respectively. The expression [BAe]Inv stands for a substitution in

the invariant Inv with the before-after predicate BAe.
An Event-B model of a system is created in a stepwise manner following the

refinement approach. At every refinement step, one adds details towards an
implementable model. While refining the model, new variables, invariants, theorems
and events can be added. However, the overall behavior of a more concrete model must
conform to the overall behavior of its abstraction. This fact is guaranteed through
discharging POs guard strengthening (GRD) and action simulation (SIM) [3, 21]:

 Inv ∧ Invr ∧ gr ⇒ g, (GRD)
 Inv ∧ Invr ∧ BAer ⇒ BAe, (SIM)

where structures with the sub-script r represent refined versions.
To ease proving effort when discharging the above POs, one can postulate and

prove theorems. Depending on the Event-B element (a context and/or a machine) where
a theorem is stated, corresponding POs (THMc for a context and THMm for a machine,
respectively) have to be discharged:

 A ⇒ ThC, (THMc)

8

 A ∧ I ⇒ ThM, (THMm)

where A is a set of axioms defined in a context, I is a set of model invariants, ThC is a

theorem postulated in a context whilst ThM is a theorem introduced to a machine.
The Event-B tool support – the Rodin platform [4] – automatically generates and

attempts to discharge the POs described above. The tool usually achieves high-level of
automation (usually over 80%), sometimes requiring user assistance through an
interactive prover.

4.2 Formalization of Library Components
To be able to prove that Event-B formalization conforms to the definitions of hardware
library components shown above, we define a function that converts a non-negative
decimal number into its binary image. This function binds infinite data types (e.g.,
naturals) to be suitable for hardware implementation since hardware bit images cannot
be infinite.

Definition 1: A bijective function conv(C, d) = kb converts a non-negative decimal

number into its binary image. The parameter C ∈ ℕ1 determines the upper bound (i.e.,

the width) on which the function operates. The parameter d ∈ 0..2^C-1 represents a

non-negative decimal number within the range 0..2^C-1, where 2^C stands for 2 to the

power of C. The function returns a binary image of the number d, namely kb ∈ {x | x ∈

{0,1}* ∧ W(x) = C}, where W(x) stands for the number of bits (the width) of the binary

number kb. The function is defined recursively as follows:

where x...yb is a binary number (e.g., 010b) whose length (i.e., the number of bits) is

determined by the constant C and n +b m is a binary sum defined as 0b +b 0b = 0b, 0b +b

1b = 1b, 1b +b 0b = 1b, 1b +b 1b = 10b.

Example 1. Suppose C equals to 3. Then, any non-negative decimal number from the

set 0..2^3-1 (i.e., 0..7) can be represented as a binary number from 000 to 111:

conv(3,0) = 000b;

conv(3,5) = conv(3,4) +b 001b = conv(3,3) +b 001b +b 001b = conv(3,2) +b 001b +b

001b +b 001b = conv(3,1) +b 001b +b 001b +b 001b +b 001b = conv(3,0) +b 001b +b 001b

+b 001b +b 001b +b 001b = 101b.

End of example.

The formalization of library components is performed by using functions applied to

an Event-B context. A function f in a context is a constant that has at least two axioms.

9

The first axiom defines the type of the function, i.e., the type of its arguments (T) and

returning result (T’):

T1 × ... × Tn → T’1 × ... × T’m,

where T1 × ... × Tn is the Cartesian product, i.e., the set of all the pairs formed from the

types T1 to Tn.
The second axiom specifies the result returned by the function f:

∀xi . xi ∈ Ti ⇒ f(x1↦...↦xn)=Exp(x1,...,xn),

where i ∈ 1..n and n is the number of arguments that the function f takes (determined by

its type). The symbol ↦ represents an ordered pair and allows one to specify a number

of arguments for a function. The function f produces the result defined by the expression

Exp over xi.

Table 2: Components as Event-B functions

Function Constant(s) Axioms

add_

unsigned

add_unsigned_

width

add_unsigned ∈ 0..2^add_unsigned_width-1 × 0..2^add_unsigned_width-1 →

0..2^(add_unsigned_width+1)-1

∀dataa, datab . dataa ∈ 0..2^add_unsigned_width−1 ∧

datab ∈ 0..2^add_unsigned_width−1 ⇒

add_unsigned(dataa↦datab) = dataa + datab

sub_

unsigned

sub_unsigned_

width

sub_unsigned ∈ 0..2^sub_unsigned_width−1 × 0..2^sub_unsigned_width−1 →

0..2^sub_unsigned_width−1

∀dataa, datab . dataa ∈ 0..2^sub_unsigned_width−1 ∧

datab ∈ 0..2^sub_unsigned_width−1 ⇒

(dataa ≥ datab ⇒ sub_unsigned(dataa↦datab) = dataa − datab) ∧

(dataa < datab ⇒ sub_unsigned(dataa↦datab) = 0)

mult_

unsigned

mult_unsigned_

width_a

mult_unsigned_

width_b

mult_unsigned ∈ 0..2^mult_unsigned_width_a−1 × 0..2^mult_unsigned_width_b−1 →

0..2^(mult_unsigned_width_a+mult_unsigned_width_b)−1

∀dataa, datab . dataa ∈ 0..2^mult_unsigned_width_a−1 ∧

datab ∈ 0..2^mult_unsigned_width_b−1 ⇒

mult_unsigned(dataa↦datab) = dataa∗datab

div_

unsigned

div_unsigned_

width_n

div_unsigned_

width_d

div_unsigned ∈ 0..2^div_unsigned_width_n−1 × 1..2^div_unsigned_width_d−1 →

0..2^div_unsigned_width_n−1

∀dataa, datab . dataa ∈ 0..2^div_unsigned_width_n−1 ∧

datab ∈ 1..2^div_unsigned_width_d−1 ⇒

div_unsigned(dataa↦datab) = (dataa ÷ datab)

mod_

unsigned

mod_unsigned_

width_n

mod_unsigned_

width_d

mod_unsigned ∈ 0..2^mod_unsigned_width_n−1 × 1..2^mod_unsigned_width_d−1 →

0..2^mod_unsigned_width_d−1

∀dataa, datab . dataa ∈ 0..2^mod_unsigned_width_n−1 ∧

datab ∈ 1..2^mod_unsigned_width_d−1 ⇒

mod_unsigned(dataa↦datab) = (dataa mod datab)

comp_

unsigned

comp_

unsigned_width

comp_unsigned ∈ 0..2^comp_unsigned_width−1 × 0..2^comp_unsigned_width−1 →

BOOL × BOOL × BOOL × BOOL × BOOL × BOOL

∀dataa,datab . dataa∈0..(2^comp_unsigned_width−1) ∧

datab∈0..(2^comp_unsigned_width−1) ⇒

comp_unsigned(dataa↦datab)=

bool(dataa > datab)↦bool(dataa ≥ datab)↦bool(dataa = datab)↦

bool(dataa ≠ datab)↦bool(dataa < datab)↦bool(dataa ≤ datab)

10

Following the approach of introducing functions into an Event-B context, we define
a formal library of presented hardware components as shown in Table 2. For instance,
let us consider the function add_unsigned in Table 2 that formalizes the VHDL adder

component (Table 1, LPM_ADD_SUB (ADDER)) within Event-B. The type of this function

is determined by the first axiom, where add_unsigned_width ∈ ℕ1 is the width. The
returning result is specified by the second axiom that models the addition operation of
two non-negative numbers.

Theorem (ADD): add_unsigned conforms to LPM_ADD_SUB, where

add_unsigned_width = LPM_WIDTH and the parameters LPM_DIRECTION and

LPM_REPRESENTATION of LPM_ADD_SUB equal to ADD and UNSIGNED, respectively
(ensured by the code generation algorithm described in the next section).
Proof:

1. The function add_unsigned operates on the same input values in decimal as the

library component LPM_ADD_SUB in binary:

∀inp . inp ∈ 0..(2^add_unsigned_width)-1 ⇒

(∃inpb . inpb = conv(add_unsigned_width,inp),

where inp represents a decimal input to the function while inpb is a binary image

of inp supplied as an input to the component.

2. The result of the function add_unsigned ranges from 0 to

2^(add_unsigned_width+1)-1, i.e., one bit more than the width of the inputs.
Hence, the function returns the result as well as the carry flag which corresponds
to the value on the outputs RESULT and COUT of the component:

∀res . res ∈ 0..2^(add_unsigned_width+1)-1 ⇒

(∃COUT, RESULT . COUT + RESULT = conv(add_unsigned_width+1, res)),

where res represents the result of the function whereas COUT + RESULT is

concatenation of the outputs COUT and RESULT of the component. Clearly, the
overflow will never occur.

Example 2. Suppose add_unsigned_width = LPM_WIDTH = 3, the input ranges of

the function and the component are 0..7 and 000..111, respectively, while the

result ranges are 0..15 and 0000..1111, respectively. The leftmost (the most

significant) bit of LPM_ADD_SUB represents the carry flag.
End of example.

3. Finally, the definition of the function add_unsigned models the addition

operation of two inputs, namely dataa and datab, i.e., the function of the adder
component.

11

Similarly, we can reason about other functions that specify other library
components (Table 2) □.

While modeling a system in Event-B, one has to discharge POs (INV), (GRD) and
(SIM) to show correctness of the system specification (Section 4.1). To ease
discharging of these POs, we postulated and proved (discharged PO (THMc)) the
following theorems along with the definitions of functions in a context:

 ∀n . n∈ℕ ⇒ 0 < 2^n, (ThC1)
 ∀x,y . x∈ℕ ∧ y∈ℕ ∧ x < y ⇒ 2^x < 2^y, (ThC2)
 ∀n . n∈ℕ ⇒ 2∗2^n = 2^(n+1). (ThC3)

Theorem (ThC1) states that 2 to the power of some natural number is a positive
number. In other words, the set of values starting from 0 and ending in 2 to the power of
some constant is not empty. Hence, the functions formalizing VHDL library
components are well-defined on these values. Theorem (ThC2) shows the order relation
between numbers whose powers are in the order relation as well. Theorem (ThC3)
postulates inductiveness of 2 to the power of some constant.

5 The Design Flow and Code Generation Algorithm

The use of Event-B as a starting point in the design flow of hardware systems facilitates
correct-by-construction development w.r.t. postulated properties and requirements.
Code generation in an automated fashion enhances the utility of the approach reducing
testing effort at later design phases. Hence, we propose the design flow shown in Fig. 2.

Figure 2: The design flow

An implementable deterministic model is derived following usual refinement-based
development. Then, we apply an additional refinement step that serves as the
middleware between a component-based formal model and structural VHDL
description. The correctness of this refinement step is established by proving POs
(INV), (GRD) and (SIM) using theorems of types (THMc) and (THMm) (Section 4). The
Rodin platform [4] generates these POs and attempts to prove them automatically. The

12

algorithmic representation of the code generation utilizing the additional refinement step
is as follows:

1. Refine an implementable model by extending the most definite context (if any)
and refining the most concrete machine of the model.

2. Instantiate necessary functions to the newly created context by specifying the set
of values they operate with (their width). This set is bounded by the
corresponding constants. The necessary functions to be used are determined by
operations used in the machine actions.

3. Restrict the types of the state variables according to the specified constants and
functions where these variables are involved.

4. Replace regular operations in actions with calls to the corresponding functions.
5. To generate code, interpret each function in the context as a corresponding

library component in VHDL according to the defined mapping.
6. Interpret the type of a variable which has been restricted by some constant as

STD_LOGIC_VECTOR in terms of VHDL types. The length (the width) number is
determined by the corresponding constant.

7. For every component instantiation, introduce an internal VHDL signal
connected to the component output(s) in order to allow for chaining of diverse
components.

To support the proposed design flow, we have developed a prototype of a plug-in
that automates the additional refinement step and allows one to generate a structural
VHDL description in an automated manner. The plug-in implements the algorithm
described above and operates as follows. Firstly, it extends the most definite context of
an Event-B project, if any, by copying theorems (ThC1)-(ThC3) to it. Secondly, the
plug-in traverses the most concrete machine of the project. Each time it sees a regular
operation that can be substituted with function call, the plug-in instantiates a
corresponding function available in the library. A designer specifies the width of a
function being instantiated. Thirdly, it refines the most concrete machine and replaces
each regular operation with a function call. For instance, z := add_unsigned(x↦y)

replaces z := x+y. Fourthly, for every variable involved in such an action, the plug-in
generates a type invariant (PO (INV) in Section 4) in order to bind the values according
to the instantiated function. Finally, it applies theorems (ThM, see PO (THMm) in
Section 4) of the form f(x↦y)=x op y to the machine, where x and y are the operands and

f and op are the corresponding function and operation, respectively. For instance, if the

function call add_unsigned(x↦y) replaces the expression x+y, then the theorem for this

substitution is add_unsigned(x↦y) = x+y. These theorems allow for proving correctness
of the additional refinement step. Hence, the behavior of the model is proved consistent.

A specification may contain several identical operations, e.g., two or more addition
operations etc. In this case, for every function the name is formed from the function
name, e.g., add_unsigned, and the suffix _n, where n is a number that starts from 0 and

13

is increased whenever another function definition is instantiated, e.g., add_0_unsigned,

add_1_unsigned. Therefore, each function determines one library component such that
the one-to-one mapping between formal model and VHDL code is feasible.

6 Experimental Results

Let us examine a couple of examples showing the application of our method to
modeling within the Event-B framework and generating structural VHDL code. The
examples show a sequential composition of components using different modeling styles
in Event-B. Furthermore, we show test cases generation allowing one to perform
conformance testing between the model and the generated code or to deploy online
testing.

6.1 Component Chaining in Separate Events
This example illustrates the use of library components such that the result computed in
one event is used as an input for the computations in another event (Fig. 3).

invariantsinvariantsinvariantsinvariants

 Voltage_I ∈ ℕ ∧ Current_I ∈ ℕ1 ∧

 Resistance ∈ ℕ ∧ Inputs_Read ∈ BOOL ∧

 (Temp_Read = TRUE ⇒

Resistance = Voltage_I ÷ Current_I) ∧

 // Gluing invariant with a mode abstract

 // model

 (Inputs_Read = TRUE ∧ Temp_Read = TRUE ⇒

Temp_I = Resistance)

eventseventseventsevents

...

Resist_Comp refinesrefinesrefinesrefines Temp_Read ≙≙≙≙

wherewherewherewhere Temp_Read = FALSE ∧

 Inputs_Read = TRUE ∧ Current_I ≠ 0

withwithwithwith Temp = Voltage_I ÷ Current_I

 Then Resistance ≔ Voltage_I ÷ Current_I ||

 Temp_Read ≔ TRUE

endendendend

Compare refinesrefinesrefinesrefines Compare ≙≙≙≙

wherewherewherewhere Temp_Read = TRUE ∧

 Inputs_Read = TRUE

thenthenthenthen Temp_Read ≔ FALSE ||

 Inputs_Read ≔ FALSE ||

 Result_O ≔ bool(Resistance ≥ Temp_Threshold)

eeeendndndnd

invariantsinvariantsinvariantsinvariants

 Voltage_I ∈ 0‥2^div_0_unsigned_width_n−1 ∧

 Current_I ∈ 1‥2^div_0_unsigned_width_d−1 ∧

 Resistance ∈ 0‥2^div_0_unsigned_width_n−1 ∧

theoremtheoremtheoremtheorem

 div_0_unsigned(Voltage_I↦Current_I)=Voltage_I÷Current_I

…

eventseventseventsevents

...

Resist_Comp refinesrefinesrefinesrefines Temp_Read ≙≙≙≙

wherewherewherewhere Temp_Read = FALSE ∧

 Inputs_Read = TRUE ∧ Current_I ≠ 0

thenthenthenthen

 Resistance ≔ div_0_unsigned(Voltage_I↦Current_I) ||

 Temp_Read ≔ TRUE

endendendend

Compare refinesrefinesrefinesrefines Compare ≙≙≙≙

wherewherewherewhere Temp_Read = TRUE ∧ Inputs_Read = TRUE

thenthenthenthen Temp_Read ≔ FALSE ||

 Inputs_Read ≔ FALSE ||

 Result_O :∣ ∃agb,aeb,aneb,alb,aleb .

 comp_0_unsigned(Resistance↦Temp_Threshold)=

 agb↦Result_O'↦aeb↦aneb↦alb↦aleb

endendendend

Figure 3: Component chaining in separate events

14

Here, we model the calculation of temperature using Ohm’s law (event
Resist_Comp), where temperature is proportional to resistance (variable Resistance).
Then, the obtained value is compared to some threshold and the comparison result is
promoted further (event Compare). An instance of this example is aerospace designs
domain (e.g., [18, 21]) where the temperature sensor represents a high-quality resistor
with a platinum or golden thread.

For this model, the Rodin platform generated 57 POs of which 51 were proven
automatically. Three POs of type (THMc) with the proofs were automatically derived
for the context theorems (ThC1)-(ThC3) (Section 4) by the plug-in. One PO of type
(INV) has been proved interactively using the theorem (ThC3). One well-definedness
PO has been discharged for a theorem of type (THMm) generated by the plug-in and
introduced into the machine. The remaining POs of type (SIM) has been proved using
theorems (THMm) generated by the plug-in.

We generated VHDL descriptions with and without library components from this
model (see Appendix A for the description with library components). We then
synthesized each description using Quartus-II [20]. The tool analyzed them and
provided the information about occupied area and performance. The number of logic
elements (LE) measures the area. The worst-case setup time (Tsu) and the worst-case
hold time (Th) illustrate the performance of this example. The synthesis results are
summarized in Table 3. They show the advantages and possible optimizations in terms
of area (2,7%) and performance (13,7%) of the implementation with library
components.

Table 3: Synthesis results for state holding implementations

LE, qt. LE, % Tsu, ns Tsu, % Th, ns Th, %
w/ lib w/o lib w/ lib w/o lib w/ lib w/o lib

36 37 2,7 9.975 11.562 13,7 2.262 2.215 -2%

6.2 Replacing Infix Operators with Prefix Function Calls
This example illustrates the model, where a single event produces the result using
different operators (Fig. 4). The computation of the result proceeds as follows (event
Result). The variables Input1_I and Input2_I are multiplied, their result is summed up

with the variable Input3_I and this sum is then divided by Input1_I. The order in which
the operations take place specify the chain of the corresponding hardware library
components.

For this model, the Rodin platform generated 53 POs of which 49 were proven
automatically. Three POs of type (THMc) with the proofs were automatically copied for
the context theorems (ThC1)-(ThC3) (Section 4) by the plug-in. They have been used to
discharge the only proof obligation of type (INV) interactively.

15

invariantsinvariantsinvariantsinvariants

 Input1_I ∈ ℕ1 ∧ Input2_I ∈ ℕ ∧

 Input3_I ∈ ℕ ∧ Result_O ∈ ℕ ∧

 Read_Write ∈ BOOL ∧

 Read_Write = FALSE ⇒

 Result_O = (Input1_I ∗ Input2_I + Input3_I) ÷

Input1_I

eventseventseventsevents

...

Result ≙

whewhewhewherererere Read_Write = TRUE

thenthenthenthen Read_Write ≔ FALSE ||

 Result_O≔(Input1_I∗Input2_I+Input3_I)÷Input1_I

endendendend

invariantsinvariantsinvariantsinvariants

 Input1_I ∈ 0‥2^mult_0_unsigned_width_a−1 ∧

 Input2_I ∈ 0‥2^mult_0_unsigned_width_b−1 ∧

 Input3_I ∈ 0‥2^add_0_unsigned_width−1 ∧

 Result_O ∈ 0‥2^div_0_unsigned_width_n−1 ∧

theoremtheoremtheoremtheorem

 mult_0_unsigned(Input1_I↦Input2_I)=Input1_I∗Input2_I

…

eventseventseventsevents

...

Result refinesrefinesrefinesrefines Result ≙

whewhewhewherererere Read_Write = TRUE

thenthenthenthen Read_Write ≔ FALSE ||

 Result_O≔div_0_unsigned(add_0_unsigned(

 mult_0_unsigned(Input1_I↦Input2_I)↦Input3_I)↦

 Input1_I)

eeeendndndnd

Figure 4: Replacing infix operators with prefix function calls

Analogously to the previous example, we generated VHDL descriptions with and
without library components from this model (see Appendix B for the description with
library components). Then, we used Quartus-II [20] to synthesize each description and
acquire information about area and performance. The worst-case time required to
propagate the value on the input pin to the output pin (W-C Tpd) reflects the
performance metric for this example. Table 4 summarizes the synthesis results, which
show the advantages in terms of area (12,5%) and performance (15,4%) of the
description with library components.

Table 4: Synthesis results for nested function calls

LE, qt. LE, % W-C Tpd, ns W-C tpd, %
w/ lib w/o lib w/ lib w/o lib

28 32 12,5 14,71 17,38 15,4

6.3 Test Cases Generation
To automate conformance testing using an Event-B formal model as a so-called golden
reference, we implemented another prototype of the plug-in that simulates the model
and generates test cases. The model simulation is performed using ProB animator and
model checker [7]. A user can specify the number of simulations to be executed, i.e., the
number of test cases to be generated affecting the test coverage. The test cases are of the
TCL format supported by ModelSim simulation environment [24] that allows designers
to simulate an implementation and obtain values on the signals. Let us show several
examples of test cases generated from the models presented above.

The test cases for the example shown in Fig. 3 (Section 6.1) are the following:

force Current_I 'd6; force Voltage_I 'd3,

16

force Current_I 'd11; force Voltage_I 'd7,
force Current_I 'd1; force Voltage_I 'd8,

where force is a command that forces (drives) a value on the signal and 'dx is a

conversion of a decimal number x into its binary image.
The simulation results of the model and the code for these test cases are identical as

shown in Table 5.

Table 5: Simulation results of the model and the code

Event-B model VHDL code
Result_O: 0, Current_I: 6, Temp_Read: 0,

Resistance: 0, Voltage_I: 3, Inputs_Read: 0, ;

Result_O: 0, Current_I: 11, Temp_Read: 0,

Resistance: 0, Voltage_I: 7, Inputs_Read: 0, ;

Result_O: 1, Current_I: 1, Temp_Read: 0,

Resistance: 8, Voltage_I: 8, Inputs_Read: 0, ;

Result_O: 0, Current_I: 6, Temp_Read: 0,

Resistance: 0, Voltage_I: 3, Inputs_Read: 0, ;

Result_O: 0, Current_I: 11, Temp_Read: 0,

Resistance: 0, Voltage_I: 7, Inputs_Read: 0, ;

Result_O: 1, Current_I: 1, Temp_Read: 0,

Resistance: 8, Voltage_I: 8, Inputs_Read: 0, ;

The test cases for the example shown in Fig. 4 (Section 6.2) are as follows:

force Input3_I 'd13; force Input2_I 'd0; force Input1_I 'd2,
force Input3_I 'd1; force Input2_I 'd1; force Input1_I 'd2.

The simulation results of the model and the code for these test cases are identical as
well (Table 6).

Table 6: Simulation results of the model and the code

Event-B model VHDL code
Result_O: 6, Input3_I: 13, Read_Write: 0,

Input2_I: 0, Input1_I: 2 ;

Result_O: 1, Input3_I: 1, Read_Write: 0,

Input2_I: 1, Input1_I: 2

Result_O: 6, Input3_I: 13, Read_Write: 0,

Input2_I: 0, Input1_I: 2 ;

Result_O: 6, Input3_I: 13, Read_Write: 0,

Input2_I: 0, Input1_I: 2

7 Conclusion

We have presented a design flow integrating the formal development of a hardware
system within the Event-B framework with structural, i.e., component-based VHDL
implementation. To support the proposed approach, we have developed a prototype of a
plug-in that automates the additional refinement step and generation of structural VHDL
description. We believe that the application of formal methods at early stages of the
design flow with automated code generation can reduce testing effort at later design
phases. In addition, we have shown experimental results that illustrate optimization
provided by the code with library components (2,5% and 12,5% in area and 13,7% as
well as 15,4% in performance).

17

The formal library of hardware components is not limited to the components
presented in this paper and can clearly be extended. Hence, we will consider the
formalization of other hardware components that are often used in hardware design to
enhance correct-by-construction development of diverse hardware systems.

A subset of components presented in this paper is considered to be combinational,
i.e., these components are clockless. However, there are combinatorial components that
depend on the clock signal. Hence, another direction of our future work is to extend the
approach to support modeling a system that contains clocked components. This will
allow a designer to derive a time-aware model and generate synchronous code from this
model.

8 Acknowledgement

This work is supported by Academy of Finland and the Research Institute of Åbo
Akademi University. In addition, the authors would like to thank Adjunct Prof. Marina
Walden for the fruitful discussions and valuable feedback.

18

References

[1] E. Clarke, Model Checking, Cambridge: The MIT Press, 2002.

[2] A. Roychoudhury, T. Mitra, S.R. Karri, Using Formal Techniques to Debug the
AMBA System-on-Chip Bus Protocol, Design, Automation and Test in Europe
conference (DATE), IEEE, pp. 828-833, 2003.

[3] J.-R. Abrial, Modeling in Event-B. System and Software Engineering,
Cambridge: Cambridge University Press, 2010.

[4] The Rodin platform. Available: http://sourceforge.net/projects/rodin-b-sharp/

[5] S. Wright, Automatic Generation of C from Event-B, Workshop on Integration
of Model-based Formal Methods and Tools, 2009, p. 14.

[6] IEEE Standard VHDL Language Reference Manual, IEEE 1076, 2008.

[7] M. Leuschel, M. Butler, ProB: A Model Checker for B, Proc. FME, Springer,
vol. 2805, 2003, p. 855-874.

[8] K. Kohno, N. Matsumoto, A new verification methodology for complex pipeline
behavior, Design Automation Conference, IEEE, pp. 816-821, 2001.

[9] A. Benveniste, P. Le Guernic, Hybrid Dynamical Systems Theory and the Signal
Language, IEEE Transactions on Automatic Control 35(5), 1990, p. 535-546.

[10] D. Potop-Butucaru, R. de Simone, Optimizations For Faster Execution Of
Esterel programs, Proc. of MEMOCODE conference, 2003, pp. 227-236.

[11] I. Sander, A. Jantsch, System Modelling and Transformational Design
Refinement in ForSyDe, Transactions on Computer Aided Design of Integrated
Circuits and Systems, IEEE, Vol. 23, 2004, pp. 17-32.

[12] J. Talpin, P. Guernic, S. Shukla, R. Gupta, F. Doucet, Polychrony for Formal
Refinement Checking in a System-Level Design Methodology, Application of
Concurrency to System Design (ACSD), IEEE, pp. 9-19, 2003.

[13] BlueSpec Documentation. Available:
http://www.ece.ucsb.edu/its/bluespec/index.html.

[14] D. Richards, D. Lester, A monadic approach to automated reasoning for
BlueSpec SystemVerilog, Innovations System Software Engineering, Springer-
Verlag, pp. 85-95, 2011.

[15] N. Evans, Integrating Formal Methods with Informal Digital Hardware
Development, Proc. of AVoCS, 2010, p. 16.

[16] R. J. R. Back, K. Sere, “Superposition Refinement of Reactive Systems”,
Formal Aspects of Computing, Springer, Vol. 8, 1995, pp. 324-346.

[17] T. Seceleanu, Systematic Design of Synchronous Digital Circuits, Turku: TUCS
Dissertations, Turku Centre for Computer Science, 2001.

19

[18] S. Hallerstede, Y. Zimmermann, “Circuit Design by Refinement in Event-B”,
FDL, pp. 624-637, 2004.

[19] M. Benveniste, A «Correct by Construction» Realistic Digital Circuit, RIAB
Workshop, FMWeek, 2009. Available: http://www.bmethod.com/pdf/riab/st-
marc-benvenisteproved-realistic-circuit-handout.pdf

[20] S. Ostroumov, L. Tsiopoulos, VHDL Code Generation from Formal Event-B
Models. IEEE Digital System Design, 14th Euromicro Conference, Oulu, 2011,
pp. 127-134.

[21] K. Robinson. (2011, June, 28). System Modelling & Designing using Event-B.
Available: http://www.cse.unsw.edu.au/~cs9116/PDF/SMD.pdf

[22] Quartus-II software. Avaliable:
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-
index.html

[23] B. Nuckolls, Practical Low Resistance Measurements, 2004. Available:
www.aeroelectric.com/articles/LowOhmsAdapter_3.pdf

[24] ModelSim for Altera. Available:
http://www.altera.com/products/software/quartus-ii/modelsim/qts-modelsim-
index.html

[25] G. Singh, E. Shukla, Verifying Compiler bsed Refinement of Bluespec
Specifications using the SPIN model Checker, 15th International SPIN
Workshop, Springer, pp. 250-269, 2008.

[26] A. Aljer, P. Devienne, S. Tison, BHDL: Circuit design in B, Conference on
Application of Concurrency to System Design, IEEE, pp. 1-2, 2003.

[27] Event-B to VHDL. Available: http://eventb-to-vhdl.tk

20

Appendix A

Component Chaining in Separate Events

LIBRARYLIBRARYLIBRARYLIBRARY IEEE;

LIBRARYLIBRARYLIBRARYLIBRARY LPM;

USEUSEUSEUSE IEEE.STD_LOGIC_1164.ALL;

USEUSEUSEUSE LPM.LPM_COMPONENTS.ALL;

USEUSEUSEUSE IEEE.NUMERIC_STD.ALL;

ENTITYENTITYENTITYENTITY Separate_Events ISISISIS

 GENERICGENERICGENERICGENERIC

 (

 Temp_Threshold : NATURALNATURALNATURALNATURAL := 80;

 div_0_unsigned_width_n : NATURALNATURALNATURALNATURAL := 8;

 div_0_unsigned_width_d : NATURALNATURALNATURALNATURAL := 8;

 compare_0_unsigned_width : NATURALNATURALNATURALNATURAL := 8

);

 PORTPORTPORTPORT

 (

 --Input ports

 Voltage_I : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(div_0_unsigned_width_n-1 DOWNTODOWNTODOWNTODOWNTO 0) :=

 STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(0, div_0_unsigned_width_n));

 Current_I : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(div_0_unsigned_width_d-1 DOWNTODOWNTODOWNTODOWNTO 0) :=

 STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(10, div_0_unsigned_width_d));

 --Output ports

 Result_O : OUTOUTOUTOUT STD_LOGICSTD_LOGICSTD_LOGICSTD_LOGIC :='0'

);

ENDENDENDEND Separate_Events;

ARCHITECTUREARCHITECTUREARCHITECTUREARCHITECTURE a OFOFOFOF Separate_Events ISISISIS

-- Components declaration

componentcomponentcomponentcomponent LPM_DIVIDE

 GENERICGENERICGENERICGENERIC(

 LPM_WIDTHN : NATURALNATURALNATURALNATURAL;

 LPM_WIDTHD : NATURALNATURALNATURALNATURAL;

 LPM_NREPRESENTATION : STRINGSTRINGSTRINGSTRING;

 LPM_DREPRESENTATION : STRINGSTRINGSTRINGSTRING

);

 PORTPORTPORTPORT(

 NUMER : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHN-1 DOWNTODOWNTODOWNTODOWNTO 0);

 DENOM : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHD-1 DOWNTODOWNTODOWNTODOWNTO 0);

21

 QUOTIENT : OUTOUTOUTOUT STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHN-1 DOWNTODOWNTODOWNTODOWNTO 0);

 REMAIN : OUTOUTOUTOUT STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHD-1 DOWNTODOWNTODOWNTODOWNTO 0)

);

END componentEND componentEND componentEND component;

componentcomponentcomponentcomponent LPM_COMPARE

 GENERICGENERICGENERICGENERIC(

 LPM_WIDTH : NATURALNATURALNATURALNATURAL;

 LPM_REPRESENTATION : STRINGSTRINGSTRINGSTRING

);

 PORTPORTPORTPORT(

 DATAA : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(compare_0_unsigned_width-1 DOWNTODOWNTODOWNTODOWNTO 0);

 DATAB : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(compare_0_unsigned_width-1 DOWNTODOWNTODOWNTODOWNTO 0);

 AGB : OUT STD_LOGICOUT STD_LOGICOUT STD_LOGICOUT STD_LOGIC;

 AGEB : OUT STD_LOGICOUT STD_LOGICOUT STD_LOGICOUT STD_LOGIC;

 AEB : OUT STD_LOGICOUT STD_LOGICOUT STD_LOGICOUT STD_LOGIC;

 ANEB : OUT STD_LOGICOUT STD_LOGICOUT STD_LOGICOUT STD_LOGIC;

 ALB : OUT STD_LOGICOUT STD_LOGICOUT STD_LOGICOUT STD_LOGIC;

 ALEB : OUT STD_LOGICOUT STD_LOGICOUT STD_LOGICOUT STD_LOGIC

);

ENDENDENDEND componentcomponentcomponentcomponent;

-- Internal signals declaration

SIGNALSIGNALSIGNALSIGNAL div_0_unsigned_res : STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(div_0_unsigned_width_n-1 DOWNTODOWNTODOWNTODOWNTO 0);

SIGNALSIGNALSIGNALSIGNAL compare_0_res : STD_LOGICSTD_LOGICSTD_LOGICSTD_LOGIC;

SIGNALSIGNALSIGNALSIGNAL Resistance : STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(div_0_unsigned_width_n-1 DOWNTODOWNTODOWNTODOWNTO 0) :=

 STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(0, div_0_unsigned_width_n));

SIGNALSIGNALSIGNALSIGNAL Inputs_Read : STD_LOGICSTD_LOGICSTD_LOGICSTD_LOGIC := '0';

SIGNALSIGNALSIGNALSIGNAL Temp_Read : STD_LOGICSTD_LOGICSTD_LOGICSTD_LOGIC := '0';

BEGINBEGINBEGINBEGIN

 div_0_unsigned: LPM_DIVIDE

 GENERIC MAPGENERIC MAPGENERIC MAPGENERIC MAP (LPM_WIDTHN => div_0_unsigned_width_n,

 LPM_WIDTHD => div_0_unsigned_width_d,

 LPM_NREPRESENTATION => "UNSIGNED",

 LPM_DREPRESENTATION => "UNSIGNED")

 PORT MAPPORT MAPPORT MAPPORT MAP (NUMER => Voltage_I,

 DENOM => Current_I,

 QUOTIENT => div_0_unsigned_res);

 compare_0_unsigned: LPM_COMPARE

 GENERIC MAPGENERIC MAPGENERIC MAPGENERIC MAP (LPM_WIDTH => compare_0_unsigned_width,

 LPM_REPRESENTATION => "UNSIGNED")

 PORT MAPPORT MAPPORT MAPPORT MAP (DATAA => Resistance,

 DATAB => STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(Temp_Threshold,

 compare_0_unsigned_width)),

 AGEB => compare_0_res);

22

 M1_Components_library:

 PROCESSPROCESSPROCESSPROCESS (Voltage_I,Current_I,Resistance,Inputs_Read,Temp_Read,

 div_0_unsigned_res,compare_0_res) IS BEGINIS BEGINIS BEGINIS BEGIN

 Read_Inputs:

 IFIFIFIF (Temp_Read = '0') andandandand (Inputs_Read = '0')

 THENTHENTHENTHEN

 Inputs_Read <= '1';

 END IFEND IFEND IFEND IF;

 Resist_Comp:

 IFIFIFIF (Temp_Read = '0') andandandand (Inputs_Read = '1') andandandand

 (notnotnotnot (Current_I =

 STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(0,div_0_unsigned_width_n))))

 THENTHENTHENTHEN

 Resistance <= div_0_unsigned_res;

 Temp_Read <= '1';

 END IFEND IFEND IFEND IF;

 Compare:

 IFIFIFIF (Temp_Read = '1') andandandand (Inputs_Read = '1')

 THENTHENTHENTHEN

 Temp_Read <= '0';

 Result_O <= compare_0_res;

 Inputs_Read <= '0';

 END IFEND IFEND IFEND IF;

 END PROCESSEND PROCESSEND PROCESSEND PROCESS;

ENDENDENDEND a;

23

Appendix B

Replacing Infix Operators with Calls of Functions

LIBRARYLIBRARYLIBRARYLIBRARY IEEE;

LIBRARYLIBRARYLIBRARYLIBRARY LPM;

USEUSEUSEUSE IEEE.STD_LOGIC_1164.ALL;

USEUSEUSEUSE LPM.LPM_COMPONENTS.ALL;

USEUSEUSEUSE IEEE.NUMERIC_STD.ALL;

ENTITYENTITYENTITYENTITY Infix_Operators_vs_Function_Calls ISISISIS

 GENERICGENERICGENERICGENERIC

 (

 mult_0_unsigned_width_a : NATURALNATURALNATURALNATURAL := 2;

 mult_0_unsigned_width_b : NATURALNATURALNATURALNATURAL := 2;

 add_0_unsigned_width : NATURALNATURALNATURALNATURAL := 4;

 div_0_unsigned_width_n : NATURALNATURALNATURALNATURAL := 5;

 div_0_unsigned_width_d : NATURALNATURALNATURALNATURAL := 2

);

 PORTPORTPORTPORT

 (

 --Input ports

 Input1_I : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(mult_0_unsigned_width_a-1 DOWNTODOWNTODOWNTODOWNTO 0) :=

 STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(1, mult_0_unsigned_width_a));

 Input2_I : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(mult_0_unsigned_width_b-1 DOWNTODOWNTODOWNTODOWNTO 0) :=

 STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(0, mult_0_unsigned_width_b));

 Input3_I : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(add_0_unsigned_width-1 DOWNTODOWNTODOWNTODOWNTO 0) :=

 STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(0, add_0_unsigned_width));

 --Output ports

 Result_O : OUTOUTOUTOUT STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(div_0_unsigned_width_n-1 DOWNTODOWNTODOWNTODOWNTO 0) :=

 STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(TO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNEDTO_UNSIGNED(0, div_0_unsigned_width_n))

);

ENDENDENDEND Infix_Operators_vs_Function_Calls;

ARCHITECTUREARCHITECTUREARCHITECTUREARCHITECTURE a OFOFOFOF Infix_Operators_vs_Function_Calls ISISISIS

componentcomponentcomponentcomponent LPM_MULT

 GENERICGENERICGENERICGENERIC(

 LPM_WIDTHA : NATURALNATURALNATURALNATURAL;

 LPM_WIDTHB : NATURALNATURALNATURALNATURAL;

 LPM_WIDTHP : NATURALNATURALNATURALNATURAL;

 LPM_REPRESENTATION : STRINGSTRINGSTRINGSTRING

);

 PORTPORTPORTPORT(

24

 DATAA : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHA-1 DOWNTODOWNTODOWNTODOWNTO 0);

 DATAB : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHB-1 DOWNTODOWNTODOWNTODOWNTO 0);

 RESULT : OUTOUTOUTOUT STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHP-1 DOWNTODOWNTODOWNTODOWNTO 0)

);

ENDENDENDEND componentcomponentcomponentcomponent;

componentcomponentcomponentcomponent LPM_ADD_SUB

 GENERICGENERICGENERICGENERIC(

 LPM_WIDTH : NATURALNATURALNATURALNATURAL;

 LPM_DIRECTION : STRINGSTRINGSTRINGSTRING;

 LPM_REPRESENTATION : STRINGSTRINGSTRINGSTRING

);

 PORTPORTPORTPORT(

 DATAA : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTODOWNTODOWNTODOWNTO 0);

 DATAB : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTODOWNTODOWNTODOWNTO 0);

 RESULT : OUTOUTOUTOUT STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTODOWNTODOWNTODOWNTO 0);

 COUT : OUTOUTOUTOUT STD_LOGICSTD_LOGICSTD_LOGICSTD_LOGIC

);

END componentEND componentEND componentEND component;

componentcomponentcomponentcomponent LPM_DIVIDE

 GENERICGENERICGENERICGENERIC(

 LPM_WIDTHN : NATURALNATURALNATURALNATURAL;

 LPM_WIDTHD : NATURALNATURALNATURALNATURAL;

 LPM_NREPRESENTATION : STRINGSTRINGSTRINGSTRING;

 LPM_DREPRESENTATION : STRINGSTRINGSTRINGSTRING

);

 PORTPORTPORTPORT(

 NUMER : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHN-1 DOWNTODOWNTODOWNTODOWNTO 0);

 DENOM : ININININ STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHD-1 DOWNTODOWNTODOWNTODOWNTO 0);

 QUOTIENT : OUTOUTOUTOUT STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHN-1 DOWNTODOWNTODOWNTODOWNTO 0);

 REMAIN : OUTOUTOUTOUT STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(LPM_WIDTHD-1 DOWNTODOWNTODOWNTODOWNTO 0)

);

ENDENDENDEND componentcomponentcomponentcomponent;

SIGNALSIGNALSIGNALSIGNAL mult_0_unsigned_res : STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR((mult_0_unsigned_width_a+

 mult_0_unsigned_width_b)-1 DOWNTODOWNTODOWNTODOWNTO 0);

SIGNALSIGNALSIGNALSIGNAL add_0_unsigned_res : STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(add_0_unsigned_width DOWNTODOWNTODOWNTODOWNTO 0);

SIGNALSIGNALSIGNALSIGNAL div_0_unsigned_res : STD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTORSTD_LOGIC_VECTOR(div_0_unsigned_width_n-1 DOWNTODOWNTODOWNTODOWNTO 0);

SIGNALSIGNALSIGNALSIGNAL Read_Write : STD_LOGICSTD_LOGICSTD_LOGICSTD_LOGIC := '0';

BEGINBEGINBEGINBEGIN

 mult_0_unsigned: : : : LPM_MULT

 GENERIC MAPGENERIC MAPGENERIC MAPGENERIC MAP (LPM_WIDTHA => mult_0_unsigned_width_a,

 LPM_WIDTHB => mult_0_unsigned_width_b,

 LPM_WIDTHP => (mult_0_unsigned_width_a+mult_0_unsigned_width_b),

 LPM_REPRESENTATION => "UNSIGNED")

 PORT MAPPORT MAPPORT MAPPORT MAP (DATAA => Input1_I,

25

 DATAB => Input2_I,

 RESULT => mult_0_unsigned_res);

 add_0_unsigned: LPM_ADD_SUB

 GENERIC MAPGENERIC MAPGENERIC MAPGENERIC MAP (LPM_WIDTH => add_0_unsigned_width,

 LPM_DIRECTION => "ADD",

 LPM_REPRESENTATION => "UNSIGNED")

 PORT MAPPORT MAPPORT MAPPORT MAP (DATAA => mult_0_unsigned_res,

 DATAB => Input3_I,

 RESULT => add_0_unsigned_res(add_0_unsigned_width-1 DOWNTODOWNTODOWNTODOWNTO 0),

 COUT => add_0_unsigned_res(add_0_unsigned_width));

 div_0_unsigned: LPM_DIVIDE

 GENERIC MAPGENERIC MAPGENERIC MAPGENERIC MAP (LPM_WIDTHN => div_0_unsigned_width_n,

 LPM_WIDTHD => div_0_unsigned_width_d,

 LPM_NREPRESENTATION => "UNSIGNED",

 LPM_DREPRESENTATION => "UNSIGNED")

 PORT MAPPORT MAPPORT MAPPORT MAP (NUMER => add_0_unsigned_res,

 DENOM => Input1_I,

 QUOTIENT => div_0_unsigned_res);

 Component_test_library:

 PROCESSPROCESSPROCESSPROCESS (Input1_I,Input2_I,Input3_I,Read_Write) IS BEGINIS BEGINIS BEGINIS BEGIN

 Read:

 IFIFIFIF (Read_Write = '0')

 THENTHENTHENTHEN

 Read_Write <= '1';

 END IFEND IFEND IFEND IF;

 Result:

 IFIFIFIF (Read_Write = '1')

 THENTHENTHENTHEN

 Result_O <= div_0_unsigned_res;

 Read_Write <= '0';

 END IFEND IFEND IFEND IF;

 END PROCESSEND PROCESSEND PROCESSEND PROCESS;

ENDENDENDEND a;

ISBN 978-952-12-2869-8
ISSN 1239-1891

