

Tur ku Cent re Computer Sciencefor

TUCS Technical Report
No 1148, November 2015

Author One | Author Two | Author Three Author Four |
Author Five

Title of the Technical Report

Sergey Ostroumov | Marina Waldén

Facilitating Formal Event-B
Development by Visual
Component-based Design

Facilitating Formal Event-B Development
by Visual Component-based Design

Sergey Ostroumov

TUCS – Turku Centre for Computer Science
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5A, 20520, Turku, Finland
Sergey.Ostroumov@abo.fi

Marina Waldén
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5A, 20520, Turku, Finland
Marina.Walden@abo.fi

TUCS Technical Report
No 1148, November 2015

Abstract

Due to the ever increasing complexity and criticality of modern systems, their
correctness has to be evidently shown. This can be achieved by the use of formal
methods such as Event-B. The development in Event-B follows the refinement
approach, in which the specification is created top-down starting from a non-
deterministic model and ending in a precise implementable one. The specification
process is supported by theorem proving, so that one can guarantee correctness of the
specification with respect to postulated properties called invariants. On the other hand,
the formal modelling is limited in terms of reusability and bottom-up scalability. In
addition, the formal Event-B specification of a system requires background knowledge,
which prevents a fruitful communication between the developer and the customer.

This paper presents an approach that aims to facilitate scalability and reusability of
formal development in Event-B as well as to enhance communication between the
developer and the customer. The approach relies on the component-based design, where
each component has a specific graphical representation. We present a set of the
refinement patterns which support scalability and provide the connectivity
(composition) between the components following the refinement approach. Our goal is
to merge the top-down (refinement) and bottom-up (component-based development)
approaches in order to improve rigorous Event-B specifications by visual
representation. Eventually, the developers obtain the specification of a system that
consists of two layers: logical and visual. The logical layer is fully based on the Event-B
mathematical engine which gives the correctness proof. The visual layer is added on top
of the logical layer, which gives a graphical representation of the Event-B specification.

Keywords: Event-B, Visual Design, Human-Machine Interface, Components Library,
Formal Components, Refinement Patterns

TUCS Laboratory
RITES – Resilient IT Infrastructures

Distributed Systems Laboratory
Integrated Design of Quality Systems group

The work was done within the Advices project funded by Academy of Finland, grant
No. 266373.

Contents
1. Introduction ... 2
2. Preliminaries: Event-B .. 2

2.1. Event-B Model Structure ... 2
2.2. Event-B Proof Mechanism .. 3
2.3. Refinement in Event-B .. 4

3. Composition of Components ... 4
3.1. Refinement Pattern for Introducing a Connector ... 5
3.2. Refinement Pattern for Introducing a Destination (Generic) Component ... 7
3.3. Refinement Pattern: Generic Component into a Set of Specific Ones .. 9
3.4. Refinement Pattern for the Introduction of Several Parallel Components without
Introducing the Generic One ... 12
3.5. Summary .. 14

4. Case study .. 14
4.1. Abstract specification: instantiation of the general electro-valve .. 15
4.2. First refinement: adding a connection to electro-valves controlling doors and gears 17
4.3. Third refinement: refinement of the generic component into valves ... 18
4.4. Fourth refinement: introduction of connections between the electro-valves and
cylinders of doors .. 20
4.5. Fifth refinement: introduction of cylinders without generic component ... 22
4.6. Case study summary .. 24

5. Related Work ... 25
6. Conclusion and future work .. 27
Appendix A ... 29
Appendix B .. 30
Appendix C .. 32
Appendix D ... 34
Appendix E .. 36
Appendix F .. 38
Appendix G ... 39
Appendix H ... 41
Appendix I ... 46
Appendix J ... 48

2

1. Introduction
Event-B [1] is a formal method that allows designers to build systems in such a manner that the

correctness of the development process is supported by mathematical proofs. The development process
proceeds in a top-down fashion starting from an abstract (usually non-deterministic) specification. This
specification is then refined by stepwise unfolding the details about the system until the implementable level
is reached. The process of transforming an abstract specification into an implementable one via a number of
correctness preserving steps is known as refinement [2]. This mechanism allows the developers to build
systems in a stepwise and correct-by-construction manner.

The specification (or the model) of a system in Event-B captures the functional behaviour as well as the
essential properties that must hold (invariants). The refinement approach helps the designers to deal with the
system requirements in a stepwise manner, which makes the correctness proof along the development easier.
However, as more details are added to the system specification, it becomes complex and hard to manage,
which limits the scalability of this approach. Moreover, the more details present in the specification, the
harder it is to convince the stake holders about the fact that the system specification takes into account the
necessary requirements and correctly specifies them.

To address these problems and facilitate easier system design and communication between the consumer
and the developers, we propose an approach to component-based design within Event-B. This approach aims
to combine top-down refinement and bottom-up component-based development approaches in order to
provide a high level of scalability when designing complex systems in a rigorous manner. The approach
relies on the formal library of parameterized visual components (see [22]), where components are added to
the specification by the use of the “drag-and-drop” mechanism. We present a set of the refinement patterns
that enable seamless integration of the components into a system. The development of the system is then
reduced to manipulations with symbols whilst the correctness proof is supported by the underlying Event-B
engine. The visual design eases the development effort, improves scalability and reusability as well as
facilitates a fruitful communication between the developer and the customer.

The remainder of the paper is organized as follows. The next section describes the notation of Event-B
and proof obligations that provide the correctness proof. Section 3 presents our approach to composition of
the instantiated library components through refinement patterns. Section 4 illustrates the application of the
proposed approach by the use of a case study from the avionics domain. Section 5 gives an overview on the
existing visualisation approaches for the Event-B formalism. Finally, Section 6 concludes the paper the
outlines the directions of the future work.

2. Preliminaries: Event-B
The Event-B formalism [1] offers several advantages. First, it allows us to build system level models.

Second, it supports the refinement approach such that a model is built top-down in a correct-by-construction
manner. Third, the development follows rigorous rules with mathematical proofs of correctness of models.
Last but not least, it has a mature tool support extensible in the form of plug-ins, namely the Rodin platform
[18]. Let us now describe the structure and notation of Event-B.

2.1. Event-B Model Structure
A specification in Event-B consists of contexts and machines. The relationship between them is shown in

Figure 1. A context can be extended by another context whilst a machine can be refined by another machine.
Moreover, a machine can refer to the contents of the context (to “see”).

3

extends refines

sees
machine
variables
invariants
theorems
variant
events

context
sets
constants
axioms
theorems

sees
machine
variables
invariants
theorems
variant
events

context
sets
constants
axioms
theorems

Figure 1. Event-B contexts and machines: contents and relationship [1]

A context specifies static structures such as data types in terms of sets, constants, properties given as a set
of axioms. One can also postulate and prove theorems that ease proving effort during the model
development.

A machine models the behaviour of a system. The machine includes state variables, theorems, invariants,
a variant and guarded transitions (events). The invariants represent constraining predicates that define types
of the state variables as well as essential properties of the system. The overall system invariant is defined as
the conjunction of these predicates.

A variant is a natural number or a finite set. It is required to show the termination of certain events that
can be executed several times in a row, e.g., modelling a loop.

An event describes a transition from a state to a state. The syntax of the event is as follows:

E = ANY x WHERE g THEN a END

where x is a list of event local variables. The guard g stands for a conjunction of predicates over the state
variables and the local variables. The action a describes a collection of assignments to the state variables.

We can observe that an event models a guarded transition. When the guard g holds, the transition can take
place. In case several guards hold simultaneously, any of the enabled transitions can be chosen for execution
non-deterministically. If none of the guards holds, there is a deadlock.

When a transition takes place, the action a is performed. The action a is a composition of the assignments
to the state variables executed simultaneously and denoted as ||. An assignment can be either deterministic or
non-deterministic. A deterministic assignment is defined as v := E(w), where v is a list of state variables, E is a
list of expressions over some set of state variables w. A non-deterministic assignment is specified as v :| Q(w,
v’), where Q(w, v’) is a predicate over some state variables w and a new value v’ of variable v. The variable v
obtains such a value v’ that Q(w, v’) holds.

2.2. Event-B Proof Mechanism
These denotations allow for describing semantics of Event-B in terms of before-after predicates (BA)

[19]. Essentially, a transition is a BA that establishes a relationship between the model state before (v) and
after (v’) the execution of an event. Hence, the correctness of the model is verified by checking if the events
preserve the invariants (INV) and are feasible to execute (FIS) in case the event action is non-deterministic:

 Inv ∧ ge ⇒ [BAe]Inv (INV)
 Inv ∧ ge ⇒ ∃v’ . BAe (FIS)
where Inv is a model invariant, ge and BAe are the guard and the before-after predicate of the event e,
respectively. The expression [BAe]Inv stands for the substitution in the invariant Inv according to BAe.

In addition, deadlock freedom of the specification may be corroborated. A deadlock free specification
stands for the case where there exists at least one event that can be executed. To achieve this, one needs to

4

postulate a machine theorem that includes the guards of all the events connected with disjunction and show
that the proof obligation (DLF) [1] is preserved:

 ∀S, C, V . A ∧ I ⇒ Vn
i=1 gi (DLF)

where n is the number of events and gi is the guard of the i-th event. The structures S, C and A represent sets,
a collection of constants and axioms introduced into a context, respectively. The structures V and I stand for
a set of state variables and a set of invariants of a machine, respectively.

2.3. Refinement in Event-B
Since the specification development in Event-B follows the refinement approach, one has to prove that

the more concrete (refined) events simulate their abstract counterparts. To show this, the refined events must
preserve the guard strengthening (GRD) and action simulation (SIM) proof obligations [20] as well:

 ∀S, C, Sr, Cr, V, Vr, x, xr . A ∧ Ar ∧ I ∧ Ir ∧ gr ⇒ g (GRD)
 ∀S, C, Sr, Cr, V, Vr, x, xr . A ∧ Ar ∧ I ∧ Ir ∧ BAer ⇒ BAe (SIM)
where all letters with subscript “r” stand for the refined versions of the aforementioned structures.

To prove that new events executed several times in a row terminate, one also has to show that these
events are consistent with a variant. In particular, these events have to preserve either of the following proof
obligations depending on whether the variant is a natural number (VAR_N) or a finite set (VAR_S) [20]:

 ∀S, C, V . A ∧ I ⇒ Var ∈ ℕ ∧ [BAe]Var < Var (VAR_N)
 ∀S, C, V . A ∧ I ⇒ finite(Var) ∧ card([BAe]Var) < card(Var) (VAR_S)
where Var is a variant that denotes a numeric expression or a finite set of values. The expressions finite(Var)
and card(Var) specify finitness and cardinality of the set variant, respectively.

In case the model needs to be deadlock free, one can show the relative deadlock freedom, i.e., all concrete
events should not deadlock more frequently than the abstract ones. Therefore, the disjunction of the abstract
guards should imply the disjunction of the concrete guards (proof obligation (DLFR)) [1]:

 ∀S, C, V . A ∧ I ∧ Ir ∧ Vn
i=1 gi ⇒ Vm

j=1 grj (DLFR)

where m is the number of concrete events and gj is the guard of the j-th event.
The Rodin platform [18], a tool support for Event-B, automatically generates and attempts to discharge

(prove) the necessary proof obligations. The best practices encompass the development of the specification
in such a manner that 90-95% of the proof obligations are discharged automatically. However, the tool
sometimes requires the user assistance provided via the interactive prover. Typically, the claims that are
difficult for the automatic prover to discharge require case distinction and/or data substitution.

3. Composition of Components
We rely on the formal library of visual components described in [22]. Whenever needed, a designer picks

and instantiates the necessary components to form a system. However, these components have to be
connected in order to fulfil the requirements and perform the mission. We now present the connection
patterns that enable the composition of the instantiated components into a system through refinement.

The overall components composition approach is shown in Figure 2. The idea behind this composition is
that the model of the system consolidates the interfaces of the necessary components and the connections
between them. The functional events that comprise the bodies of the components are left in separate
machines included into the system specification. This mechanism provides the structure of the system model.

5

System specification (merge machine)

Component
body

(functionality
events)

Component
interface

(environement
events)

Component
body

(functionality
events)

Component
interface

(environement
events)

Component_1

Component_i

...

Component
body

(functionality
events)

Component
interface

(environement
events)

Component
body

(functionality
events)

Component
interface

(environement
events)

Component_k

Component_l

...

Connectors

Includes Includes

Figure 2. Overall composition diagram

The components are connected using connectors (Figure 3, a)). A simple connector is a variable that is
updated by one component and is read by another one. Once the source component (Component_i in Figure
3, a)) has produced a new value and this value has been promoted to the connector, this component can read
the new input and produce the new output. Once the value on the connector is updated, the destination
component (Component_k in Figure 3, a)) can read it and produce the output. Therefore, the source and the
destination components can work in parallel, even though they are connected sequentially (i.e., the source
component affects the output of the destination component) (Figure 3, b)).

Component
body

(functionality
events)

Component
interface

(environement
events)

Component_i

Component
body

(functionality
events)

Component
interface

(environement
events)

Component_k
Connector

Component_i

Component_k
Connector

Read
inputs

Update
outputs

Read
inputs

Update
outputs

Simultaneous
transitions

a) b)

Figure 3. Sequential connection of the components: a) structure, b) automata

3.1. Refinement Pattern for Introducing a Connector
The connection between the components is performed in a stepwise manner by refinement. This eases the

proof effort and allows us to ensure the correct behaviour of the composed machine. The first step in
connecting the components is to introduce a connector after the source component is specified (Figure 4). As
described above, the source and the destination components are connected sequentially, such that the update
of the output of the source component affects the input of the destination component.

Component
body

(functionality
events)

Component
interface

(environement
events)

Component_i

Connector

Figure 4. A source component with a connector

6

The complete pattern for introducing a connector can be found in Appendix A. From now on, we will use
the following convention in naming Event-B elements and labels: name_<i_>Sn_<j>, where name is the
name of an element, i_ and j are the optional numerations and S ∈ {C,M,r}, C – context, M – machine, r or R –
refinement, n is the number of a refinement step.

To introduce this behaviour, we start by defining a set which we call the control set (Listing 1). This set
provides the mechanism to advance between the source component, connector and the destination
component as shown below.

Listing 1. The control set for the connector pattern
context System_Connection_Cn-1 extends Component_i_Cn-2
constants
 SYSTEM_CONTROL_Rn-1
axioms
 SYSTEM_CONTROL_Rn-1 = {0,1,2}
end

In the simplest case, the connector can be modelled with a single variable. Hence, the composition

machine embodies the variables derived from the source component and at least two new ones. These are the
control (system_control_rn-1) and the connector (system_connection_Component_i_Component_k_rn-1) as shown in
Listing 2. Additionally, the composition machine has a variant to prove the convergence of the event that
models the value update on the connector variable. The convergent event decreases the value of the control
variable from 1 to 0, i.e., the variant is decreased.

Listing 2. The connector and control variables
machine System_Connection_Mn-1 refines Component_i_Mn-2 sees System_Connection_Cn-1
variables …
 system_control_rn-1
 system_connection_Component_i_Component_k_rn-1
invariants
 system_control_rn-1 ∈ SYSTEM_CONTROL_Rn-1 ∧
 system_connection_Component_i_Component_k_rn-1 ∈ <COMPONENT_i_OUTPUT_TYPE>
variant system_control_rn-1

The initial values of the control and the connector variables are zero and some initial value derived from

the source component, respectively. Listing 3 summarizes the initialization of these variables.

Listing 3. Initialization of the connector and control variables
 event INITIALISATION extends INITIALISATION
 then
 system_control_rn-1 ≔ 0 || system_connection_Component_i_Component_k_rn-1 ≔ <INIT_VALUE>
 end

The environmental event of the source component is refined considering the aforementioned control flow

(Listing 4). That is, the component can read the new input when its current output value has been promoted
to the connector (system_control_rn-1 = 0).

Listing 4. Refinement of the environment event of the component i
 event Component_i_environment refines Component_i_environment
 where
 … ∧ // Other guards derived from the component i
 system_control_rn-1 = 0
 then
 … || // Other actions derived from the component i

7

 system_control_rn-1 ≔ 1
 end

The value of the connector is updated when the source component has produced the output

(<Component_i_mode> = 0 in Listing 5). The mode of the component can also be of the Boolean type, if there
are two alternating modes, in which case 0  FALSE, 1  TRUE. Notice that this event is convergent with,
since it must terminate and return the control to the source component. The convergence is proved on the
basis of the control variable (system_control_rn-1) whose value is changed from 1 to 0, i.e., is decreased.

Listing 5. The connector event
 convergent event system_connection_Component_i_Component_k
 where
 system_control_rn-1 = 1 ∧
 // We need to be sure that the component i has updated its outputs
 <Component_i_mode> = 0 // the component mode can also be of Boolean type (0  FALSE, 1  TRUE)
 then
 system_control_rn-1 ≔ 0 || system_connection_Component_i_Component_k_rn-1 ≔ <Component_i_Output>
 end

3.2. Refinement Pattern for Introducing a Destination (Generic) Component
After introducing the connector, the destination component can be added to the system using the

refinement approach, so that we can obtain the model as shown in Figure 3. We will illustrate this by an
example of the addition of the generic component. As in the previous pattern, we start with the introduction
of the control set into the context (Listing 6). Since a component can have parameters, they are also
instantiated and introduced into this context as will be shown in the case study section. The complete pattern
can be found in Appendix B.

Listing 6. The control set for the component k pattern
context Component_k_Parameters_Cn extends System_Connection_Cn-1
constants
 SYSTEM_CONTROL_Rn
axioms
 ... // Parameters of component k, if any
 SYSTEM_CONTROL_Rn = {0,1,2}
end

From now on, we omit the data related to the generic component per se and only focus on the parts that

change according to the proposed pattern. Similarly to the previous pattern, the pattern for introducing a
destination (generic) component also has a variant. Due to the refinement relation, the control variable
cannot be modified. Thus, it has to be replaced with a new control variable, namely system_control_rn (Listing
7), which simulates the old control variable according to the gluing invariants system_control_rn-1 = 1 ⇔
system_control_rn = 1 and system_control_rn-1 = 0 ⇔ system_control_rn = 0 ∨ system_control_rn = 2.

Listing 7. The variables and the properties of the component introduction pattern
machine Component_k_Mn refines System_Connection_Mn-1 sees Component_k_Parameters_Cn
variables …
 system_connection_Component_i_Component_k_rn-1
 system_control_rn-1
 GenericComponent_k_I
 GenericComponent_k_O
 GenericComponent_k_mode
 GenericComponent_k_IOrelation
 system_control_rn

8

invariants
 ... ∧ // The types and the properties of the generic component
 system_control_rn ∈ SYSTEM_CONTROL_Rn ∧ (system_control_rn-1 = 1 ⇔ system_control_rn = 1) ∧
 (system_control_rn-1 = 0 ⇔ system_control_rn = 0 ∨ system_control_rn = 2)
variant system_control_rn

At the beginning, all the variables receive the aforementioned initial values. The environment event of the

component i and the event modelling the connection between component i and component k are refined by
simply replacing the old control variable with the new one as shown in Listing 8 and Listing 9, respectively.
The other guards and actions remain unchanged.

Listing 8. Refinement of the component i environment event
 event Component_i_environment refines Component_i_environment
 where
 … // Other guards derived from the component i
 system_control_rn-1 = 0 ∧ system_control_rn = 0
 then
 … // Other actions derived from the component i
 system_control_rn-1 ≔ 1 || system_control_rn ≔ 1
 end

Listing 9. Refinement of the connection event
 event system_connection_Component_i_Component_k refines system_connection_Component_i_Component_k
 where
 <Component_i_mode> = 0 ∧ system_control_rn = 1
 then
 system_connection_Component_i_Component_k_rn-1 ≔ <Component_i_Output_Value> || system_control_rn ≔ 2
 end

The guard of the environment event of the destination generic component (Listing 10) that is being

introduced is strengthened by checking the control variable if the component can read the input
(system_control_rn = 2). Once the component reads the input, it returns the control back, so that the new
iteration of reading the input and updating the output can take place (system_control_rn ≔ 0). Notice that this is
event is convergent, i.e., it must terminate and return the control to the source component.

Listing 10. Introduction of the environment event the generic component k
 convergent event GenericComponent_k_environment
 where
 GenericComponent_k_mode = 0 ∧ system_control_rn = 2
 then
 GenericComponent_k_mode ≔ 1 || GenericComponent_k_I ≔ <SET_OF_OUTPUT_VALUES_OF_COMPONENT_i> ||
 system_control_rn ≔ 0
 end

9

Component
body

(functionality
events)

Component
interface

(environement
events)

Component_i
Component

body
(functionality

events)

Component
interface

(environement
events)

Generic_Component_k

Connector

Component
body

(functionality
events)

Component
interface

(environement
events)

Component_i

Component
body

(functionality
events)

Component
interface

(environement
events)

Specific_Component_0

Connector

Component
body

(functionality
events)

Component
interface

(environement
events)

Specific_Component_j

...

Connector

Figure 5. Refinement of a generic component into a set of specific components

3.3. Refinement Pattern: Generic Component into a Set of Specific Ones
Once the design decisions are made and the components that need to be placed instead of the generic one

are known, the generic component can be refined into a set of specific ones. We assume that the specific
components work independently of each other (i.e., there are no connection between them), but they are
sequentially connected to the source component i (Figure 5). The complete pattern can be found in Appendix
C. Notice that the same pattern can be applied in case when different components that refine the generic one
are connected to different source components.

The first step when refining the generic component into a collection of specific ones is to specify a set of
the specific components that are to replace the generic one. We define the set of the specific components
(COMPONENTS_Rn+1) by using the keyword partition (Listing 11). This context also embodies the instantiated
parameters of the specific components.

Listing 11. Introduction of the set of specific components
context Specific_Components_Parameters_Cn+1 extends Component_k_Parameters_Cn
sets
 COMPONENTS_Rn+1
constants ...
 component_0_rn+1 ...
 component_j_rn+1
axioms
 ... // Other parameters of the components
 partition(COMPONENTS_Rn+1, {component_0_rn+1 }, ..., {component_j_rn+1})
end

Due to the fact that each specific component being introduced has a definite set of inputs and outputs as

well as a relation between them, they replace the generic input, output and relation, respectively (Listing 12).
To allow a component to read the input once per each iteration, we use a special variable, namely
components_read_rn+1, which maps a component label to 0 or 1. The value 0 means that the component has not
read the input yet whilst the value 1 stands the opposite case. Moreover, each component requires its own
connector to read the input from the source component. Thus, these variables are data refined.

Listing 12. State variables of the refined machine

10

machine Specific_Components_Mn refines Mn-1_Component_k sees Specific_Components_Parameters_Cn
variables ...
 GenericComponent_k_I
 GenericComponent_k_O
 GenericComponent_k_IOrelation
 system_connection_Component_i_Component_k_rn-1
 GenericComponent_k_mode
 system_connection_i_0_rn+1
 ... // Similar connectors to other components
 system _connection_i_j_rn+1
 components_read_rn+1
invariants
 ... // The properties of the specific components
 components_read_rn+1 ∈ COMPONENTS_Rn+1 → 0..1 ∧
 system_connection_i_0_rn+1 ∈ <COMPONENT_0_INPUT_TYPE> ∧
 system_connection_i_j_rn+1 ∈ <COMPONENT_j_INPUT_TYPE>

To simplify the refinement, we assume that all the input values of the generic component are a union of

the input values of the specific components. The output value of the generic component is a union of the
output values of the specific component. Finally, the generic relation is simply a Cartesian product of these
two sets (Listing 13). The mode of the generic component after reading the input is equivalent to the case
when all the specific components have read their inputs (system_control_rn = 0 ∧ GenericComponent_k_mode = 1
⇒ components_read_rn+1[COMPONENTS_Rn+1] = {0}). The generic connector is also split into a collection of
specific connectors for each specific component (e.g., system_connection_Component_i_Component_k_rn-1 =
system_connection_i_0_rn+1). Clearly, the environment events of the newly introduced components have to
terminate, so that the source component can read the new input and update its outputs and, consequently, the
value present on the connector. To support this, we provide a variant as shown in Listing 13.

Listing 13. Properties of the refinement of the generic component

 GenericComponent_k_I ⊆ Um
i=0INPUT_TYPE i ∧ GenericComponent_k_O ⊆ Um

i=0OUTPUT_TYPE i ∧

 GenericComponent_k_IOrelation ⊆ Um
i=0INPUT_TYPE i × Um

i=0OUTPUT_TYPE i ∧
 (system_control_rn = 0 ∧ GenericComponent_k_mode = 1 ⇒ components_read_rn+1[COMPONENTS_Rn+1] = {0}) ∧
 system_connection_Component_i_Component_k_rn-1 = system_connection_i_0_rn+1 ∧
 system_connection_Component_i_Component_k_rn-1 = system_connection_i_j_rn+1 ∧
variant card(COMPONENTS_Rn+1) – components_read_rn+1(component_0_rn+1) – ... –

components_read_rn+1(component_j_rn+1)

The newly introduced data structures affect the initialisation (Listing 14). Particularly, we need to provide

witnesses for the disappearing generic input, output and relation. The other variables are initialised as usual.

Listing 14. Initialisation: witnesses for the disappearing variables
 event INITIALISATION
 with

 GenericComponent_k_I' = Um
i=0INPUT_TYPE i ∧ GenericComponent_k_O' = Um

i=0OUTPUT_TYPE i ∧

 GenericComponent_k_IOrelation' = Um
i=0INPUT_TYPE i × Um

i=0OUTPUT_TYPE i
 then
 ... // Initialization of other state variables from previous refinements
 system_connection_i_0_rn+1 ≔ <INIT_VALUE> || system_connection_i_j_rn+1 ≔ <INIT_VALUE> ||
 components_read_rn+1 ≔ COMPONENTS_Rn+1 × {0}
 end

11

The environment event of component i is not affected by this refinement and, therefore, remains
unchanged. On the other hand, the event modelling the update of the connector is refined considering the fact
that there is a collection of connectors for each component (Listing 15).

Listing 15. Refinement of the connection event
 event system_connection_i_0j refines system_connection_Component_i_Component_k
 where
 <Component_i_mode> = 0 ∧ system_control_rn = 1
 then
 system_control_rn ≔ 2 || system_connection_i_0_rn+1 ≔ <Component_i_Output> ||
 system_connection_i_j_rn+1 ≔ <Component_i_Output>
 end

Next, we introduce all the environment events of the instantiated components as every component has to

update its inputs according to the output of the source component. The environment events of the newly
introduced specific components are augmented with the guards that take into account the control mechanism
and restrict the number of inputs read to 1 per iteration (components_read_rn+1(component_0_rn+1) = 0 in Listing
16 and components_read_rn+1(component_j_rn+1) = 0 in Listing 17). The inputs of these components receive the
value from the corresponding connectors (e.g., component_0_I_0 ≔ system_connection_i_0_rn+1). If a component
has other inputs, they can also be updated here.

Listing 16. Environment event of the specific component 0
 convergent event Component_0_environment
 where
 component_0_mode = 0 ∧ system_control_rn = 2 ∧ components_read_rn+1(component_0_rn+1) = 0
 then
 component_0_mode ≔1 || components_read_rn+1(component_0_rn+1) ≔ 1 ||
 component_0_I_0 ≔ system_connection_i_0_rn+1 || ... // Update of the other inputs not connected to component i
 end

Listing 17. Environment event of the specific component j
 convergent event Component_j_environment
 where
 component_j_mode = 0 ∧ system_control_rn = 2 ∧ components_read_rn+1(component_j_rn+1) = 0
 then
 component_j_mode ≔ 1 || components_read_rn+1(component_j_rn+1) ≔ 1 ||
 component_j_I_0 ≔ system_connection_i_j_rn+1 || ... // Update of the other inputs not connected to component i
 end

Once all the components have read the input, all the control variables are reset as shown in Listing 18.

When the control variables are set to the initial values, a new iteration can start.

Listing 18. Reset of the control variables to allow a new iteration
 event GenericComponent_k_environment refines GenericComponent_k_environment
 where
 GenericComponent_k_mode = 0 ∧ system_control_rn = 2 ∧ components_read_rn+1[COMPONENTS_Rn+1] = {1}
 then
 GenericComponent_k_mode ≔ 1 || system_control_rn ≔ 0 || components_read_rn+1 ≔ COMPONENTS_Rn+1 × {0}
 end

12

Component
body

(functionality
events)

Component
interface

(environement
events)

Component_i

Component
body

(functionality
events)

Component
interface

(environement
events)

Specific_Component_0

Connector

Component
body

(functionality
events)

Component
interface

(environement
events)

Specific_Component_j

...

Refinement n-1 Refinement n Refinement n+1

Figure 6. Introduction of specific components without adding the generic one

3.4. Refinement Pattern for the Introduction of Several Parallel Components
without Introducing the Generic One

In some cases, when the developer knows which components need to be introduced at a refinement step,
the developer can avoid the refinement with the generic component. Instead, one can refine the specification
of the system, so that the necessary components are introduced directly (Figure 6). In this case, we propose
the following pattern whose complete model can be found in Appendix D. Similarly to the pattern presented
above, we start by specifying the set of the components to be introduced in the refinement (Listing 19).

Listing 19. Introduction of the components list
context Specific_components_Cn extends System_connection_Cn-1
sets
 COMPONENTS_Rn
constants
 SYSTEM_CONTROL_Rn
 component_0_rn
 component_j_rn
 ... // Parameters of the components and component_q_rn , where q ∈ {0,...,j}
axioms
 SYSTEM_CONTROL_Rn = {0,1,2} ∧ partition(COMPONENTS_Rn, {component_0_rn}, ..., {component_j_rn})
 ... // Definitions of the components
end

Similarly as in the pattern described in Section 3.3, we use a special variable (components_read_rn) to

restrict reading of the inputs by the components once per iteration. Additionally, each component needs its
own connector to read the input from, which refines the generic connector introduced earlier. Listing 20
summarizes the state variables and their data types.

Listing 20. Refinement state variables and their data types
machine Specific_Components_Mn refines System_Connection_Mn-1 sees Specific_components_Cn
variables
 system_control_rn
 components_read_rn
 system_connection_i_0_rn
 system_connection_i_j_rn
 ... // State variables of the components and other connectors
invariants
 ... // Properties of the components
 components_read_rn ∈ COMPONENTS_Rn → 0..1 ∧ system_control_rn ∈ SYSTEM_CONTROL_Rn ∧
 system_connection_i_0_rn ∈ <COMPONENT_0_INPUT_TYPE> ∧ /* system_connection_i_q_rn , where q ∈ {0,...,j} */ ∧
 system_connection_i_j_rn ∈ <COMPONENT_j_INPUT_TYPE>

13

The main properties of this refinement include the properties of the components being added to the
specification as well as the gluing invariants shown in Listing 21. This refinement also contains a variant to
show the termination of the environment events of the components being introduced.

Listing 21. Properties of the refinement without the generic component
 system_connection_i_k_rn-1 = system_connection_i_0_rn ∧ system_connection_i_k_rn-1 = system_connection_i_j_rn ∧
 (system_control_rn-1 = 1 ⇔ system_control_rn = 1) ∧
 (system_control_rn-1 = 0 ⇔ system_control_rn = 0 ∨ system_control_rn = 2)
variant card(COMPONENTS_Rn) − components_read_rn(component_0_rn) − ... − components_read_rn(component_j_rn)

Initially, the control variables are set to 0 in order to allow the execution from the source component. The

connector variables are assigned some initial values according to their data types (Listing 22).

Listing 22. Initialisation of the control and connector variables
 event INITIALISATION
 then
 ...
 system_control_rn ≔ 0 || components_read_rn ≔ COMPONENTS_Rn × {0} ||
 system_connection_i_0_rn ≔ <INIT_VALUE> || system_connection_i_j_rn ≔ <INIT_VALUE>
 end

The environment event of the source component i is refined considering the newly introduced control

variables. Listing 23 illustrates the guards and actions after this refinement.

Listing 23. Refinement of the environment event of the source component i
 event Component_i_environment refines Component_i_environment
 where
 <Component_i_mode> = 0 ∧ system_control_rn = 0
 then
 <Component_i_mode> ≔ 1 || system_control_rn ≔ 1
 ... // Read the new input
 end

Similarly as in the pattern described in Section 3.3, the generic connector is refined, so that each

component is connected to its own connector. Listing 24 illustrates the refinement of the connection event.
Notice that the special variable components_read_rn is also reset in this event to allow the components to read
the input at a new iteration.

Listing 24. Properties of the refinement without the generic component
 event system_connection_i_0...j refines system_connection_Component_i_Component_k
 where
 <Component_i_mode> = 0 ∧ system_control_rn = 1
 then
 system_control_rn ≔ 2 || components_read_rn ≔ COMPONENTS_Rn × {0} ||
 system_connection_i_0_rn ≔ <Component_i_Output> || system_connection_i_j_rn ≔ <Component_i_Output>
 end

Next, we introduce all the environment events of the instantiated components as every component has to

update its inputs according to the output of the source component. Listing 25 and Listing 26 show examples
of the environment events of the components 0 and j, respectively. Notice that there can be several
environment events, i.e., component_q_environment, where q ∈ 0..j. Since the components work in parallel and
they do not refine the generic component, we need guards to limit their execution and properly establish the
control flow. The guard components_read_rn(component_0_rn) = 0 in Listing 25 enable the component to read

14

the inputs once per each iteration. Next, we determine if all the components except for the current one have
read the inputs (components_read_rn[COMPONENTS_Rn∖ {component_0_rn}] = {1}). In this case the control can be
returned to the source component (⇒ system_control_rn_new = 0). Otherwise, the control remains unchanged
(¬components_read_rn[COMPONENTS_Rn∖{component_0_rn}] = {1} ⇒ system_control_rn_new = 2).

Listing 25. Environment event of the component 0
 convergent event component_0_environment
 any system_control_rn_new
 where
 <Component_0_mode> = 0 ∧ system_control_rn = 2 ∧ components_read_rn(component_0_rn) = 0 ∧
 (components_read_rn[COMPONENTS_Rn∖{component_0_rn}] = {1} ⇒ system_control_rn_new = 0) ∧
 (¬components_read_rn[COMPONENTS_Rn∖{component_0_rn}] = {1} ⇒ system_control_rn_new = 2)
 then
 <Component_0_mode> ≔ 1 || <Component_0_input> ≔ system_connection_i_0_rn ||
 system_control_rn ≔ system_control_rn_new || components_read_rn(component_0_rn) ≔ 1 ||
 ... /* Update the other inputs of the component 0, if any */
 end

Listing 26. Environment event of the component j
 convergent event component_j_environment
 any system_control_rn_new
 where
 <Component_j_mode> = 0 ∧ system_control_rn = 2 ∧ components_read_rn(component_j_rn) = 0 ∧
 (components_read_rn[COMPONENTS_Rn∖{component_j_rn}] = {1} ⇒ system_control_rn_new = 0) ∧
 (¬components_read_rn[COMPONENTS_Rn∖{component_j_rn}] = {1} ⇒ system_control_rn_new = 2)
 then
 <Component_j_mode> ≔ 1 || <Component_j_input> ≔ system_connection_i_j_rn ||
 system_control_rn ≔ system_control_rn_new || components_read_rn(component_j_rn) ≔ 1 ||
 ... // Update the other inputs of the component j, if any
 end

3.5. Summary
The proposed patterns facilitate seamless integration between the components in a systematic fashion and

ease the proving effort. The patterns allow the designers to introduce and connect components in a natural
way and follow the refinement approach, so that the correctness of the system specification can be shown
using the usual POs. In addition, the patterns 3.2 with 3.3 vs. 3.4 illustrate different approaches of the
component-based system modelling depending on the design decisions made during the system development.
The system development is then a combination of top-down (refinement) and bottom-up (components)
approaches, where the developer manipulates (introduces) the components in the “drag-and-drop” fashion by
manipulating visual symbols instead of text (see [22]). Notice that the visual layer is on top of the formal
layer and it does not restrict a developer to add more properties to the model, if needed.

4. Case study
Let us demonstrate the proposed approach using the landing gear case study whose detailed description

can be found in the proceedings of the ABZ workshop [21]. The system consists of a digital controller and a
few actuators. The function of the system is to operate the landing gears and associated doors. Depending on
the reactions from the pilot, the digital controller manipulates the mechanical part. The mechanical part, in its
turn, consists of front, left and right landing sets. Each set includes a door, a landing gear and hydraulic
cylinders that are attached to and move the corresponding doors and gears.

15

The architecture of the system is shown in Figure 7. The general electro-valve provides hydraulic power
to the specific electro-valves from the aircraft hydraulic system. There are 4 specific electro-valves which set
the pressure to the cylinders opening/closing the doors as well as to the cylinders extending/retracting the
gears. Clearly, the position of the piston of a cylinder coincides with the position of the corresponding
controlling component. For instance, if the front door cylinder is extended, the front door is open.

Figure 7. Architecture of the landing gear system [21]

We develop the part that consists of the general electro-valve, the specific electro-valves and the cylinders
that manipulate the doors and gears. We start by introducing the general electro-valve which serves as the
source component and proceed from top-left to bottom-right. Although the architecture of the system is
known a priori, we will show the use of the generic component as if some parts were unknown during the
refinement.

We first number the electro-valves for doors and gears from 0 to 3 from top to bottom, respectively, and
cylinders from 0 to 5 from left-top to right-bottom, respectively. The refinement strategy for the development
of the system is as follows. We will first instantiate the formal library component, namely the valve (see
Section 4.2 in [22]), into the general electro-valve. Then, we will use the pattern described in Section 3.1 to
introduce a connector between the general electro-valve and the specific electro-valves. However, instead of
instantiating these valves directly, we will add the generic component to show the application of the pattern
from Section 3.2 and of the model presented in Section 4.6 in [22]. Then, we will refine the derived model
by replacing the generic component with specific electro-valves according to the pattern described in Section
3.3. Finally, we will illustrate the application of the refinement pattern without the generic component
(Section 3.4) by adding a set of cylinders to the system specification.

4.1. Abstract specification: instantiation of the general electro-valve
As mentioned above, we start the development of the landing gear from the introduction of the general

electro-valve. Consequently, pick the library component electro-valve (see [22]) and instantiate it into the
general electro-valve by “dragging-and-dropping” its visual symbol (Figure 8) into the system specification.
The instantiation stands for providing the precise values for the parameters and specifying the name. The
name of the component is augmented with a sequence number (e.g., GEV_0, where GEV is the name and _0 is
the sequence number) as the specification can contain several components of the same kind. This number
helps to distinguish between these components.

16

GEV_0

Figure 8. Abstract specification of the landing gear system

The partial description of the formal specification behind the visual representation is given below. The
complete instantiated model including the environment and functional events for the illustration purpose can
be found in Appendix E.

The values of the parameters that the developer has to provide depend on the component. For instance,
Listing 27 illustrates the instantiation of the parameters of the general electro-valve. Particularly, we provide
the values for the maximum diameter of the valve (GEV_0_diameter_max_val) which essentially defines the
power of the flow and for the rate with which the valve opens and closes (GEV_0_rate). Some axioms of a
parameterized component can become theorems (e.g., theorem GEV_0_rate ≤ GEV_0_diameter_max_val −
GEV_0_diameter_min_val which is the axiom evalve_rate ≤ evalve_diameter_max_val − evalve_diameter_min_val from
Section 4.2 in [22]) in order to support the welldefinedness of the instantiation.

Listing 27. General electro-valve instantiated parameters
context GEV_0_Parameters_C0
constants
 GEV_0_diameter_min_val
 GEV_0_diameter_max_val
 GEV_0_CONTROL
 GEV_0_rate
axioms
 GEV_0_diameter_min_val = 0 // If position of a valve is at minimum, the valve is fully closed (0% open)
 GEV_0_diameter_max_val = 10 // On contrary, maximum means that the valve is fully open (100% open)
 GEV_0_CONTROL = {−1,0,1} // -1 - closing, 0 - OFF, 1 - opening
 GEV_0_rate = GEV_0_diameter_max_val // The rate showing how fast the valve opens
 theorem GEV_0_rate ≤ GEV_0_diameter_max_val − GEV_0_diameter_min_val
end

The instantiation also affects the machine of the component. Particularly, the state variables and the labels

of the invariants, guards and actions have the same name with the sequence number as has been provided by
the developer. For instance, the control and flow inputs of the general electro-valve are named GEV_0_control_I
and GEV_0_flow_I, respectively. Similarly, the other variables specifying the output(s) (GEV_0_flow_O) and the
internal state (position of the gate GEV_0_position and the mode GEV_0_mode) acquire the instantiated names.
The properties of the component are added to the system specification in order to guarantee the correct
operation of the component within the system. One can also have the deadlock freedom theorem to show that
the component does not terminate. However, since this theorem is present in the library of components and
there might be a need to show partial deadlock freedom at some refinement step, we omit it when the
component is instantiated (Listing 28).

Listing 28. General electro-valve instantiated variables and properties
machine GEV_0_Behaviour_M0 sees GEV_0_Parameters_C0
variables
 GEV_0_control_I
 GEV_0_flow_I
 GEV_0_flow_O
 GEV_0_mode
 GEV_0_position
invariants

17

 GEV_0_control_I ∈ GEV_0_CONTROL ∧ GEV_0_mode ∈ 0..1 ∧
 GEV_0_flow_I ∈ GEV_0_diameter_min_val‥GEV_0_diameter_max_val ∧
 GEV_0_flow_O ∈ GEV_0_diameter_min_val‥GEV_0_diameter_max_val ∧
 GEV_0_position ∈ GEV_0_diameter_min_val‥GEV_0_diameter_max_val ∧
 GEV_0_flow_O ≤ GEV_0_position ∧ (GEV_0_mode = 0 ⇒ GEV_0_flow_O ≤ GEV_0_flow_I)

At this moment, the system specification is as illustrated in Figure 8. The behaviour of the instantiated

general electro-valve is the same as the parameterized elector-valve present in the library (see Section 4.2 in
[22]). The instantiated component differs only in the precise values for the parameters and the names of the
corresponding data structures due to the aforementioned instantiation process. Therefore, we omit the events
modelling the behaviour.

4.2. First refinement: adding a connection to electro-valves controlling doors
and gears

To develop the system further, we apply the refinement pattern presented in Section 3.1. This allows us to
obtain the specification shown in Figure 9. The connector enables the introduction of the destination
component in the subsequent refinement step.

GEV_0

system_GEV_EVs_
connection_r1

Figure 9. The general electro-valve with the connector

We start this refinement by defining a set of control values to be able to specify the order in which the
execution will take place (Listing 29). Notice that the subscript numbering in the pattern is now transformed
into specific numbers due to the naming conventions in the Rodin tool (e.g., Rn-1 => R1).

Listing 29. Control set for the connection between the general electro-valve and the other valves
context GEV_0_Electrovalves_Connection_C1 extends GEV_0_Parameters_C0
constants SYSTEM_CONTROL_R1
axioms
 SYSTEM_CONTROL_R1 = {0,1,2}
end

Since we specify a connector and a control mechanism between the read of inputs by the general electro-
valve and the update on the connector at this refinement step, we need to show that the newly introduced
events terminate. Hence, we use a numeric variant (the value of the control variable system_control_r1 whose
value is decreased by the convergent events) as shown in Listing 30.

Listing 30. First refinement of the system: variables and properties
machine GEV_0_Electrovalves_Connection_M1 refines GEV_0_Behaviour_M0 sees GEV_0_Electrovalves_Connection_C1
variables
 ... // The variables derived from the GEV model
 system_control_r1
 system_GEV_0_EVs_connection_r1
invariants
 system_control_r1 ∈ SYSTEM_CONTROL_R1 ∧
 system_GEV_0_EVs_connection_r1 ∈ GEV_0_diameter_min_val‥GEV_0_diameter_max_val
variant system_control_r1

18

Initially, the control variable is set to 0, so that the general electro-valve can start the execution sequence
by reading its inputs. The value assigned to the connector is the minimum possible flow (Listing 31).

Listing 31. First refinement of the system: initialisation
 event INITIALISATION extends INITIALISATION
 then
 system_control_r1 ≔ 0 || system_GEV_0_EVs_connection_r1 ≔ GEV_0_diameter_min_val
 end

The control mechanism described in Section 3 affects the read of the inputs by the general electro-valve.

Particularly, the guard of the environment event is strengthened (system_control_r1 = 0) and the set of actions
is extended (system_control_r1 ≔ 1) following the pattern in Section 3.1 as illustrated in Listing 32.

Listing 32. First refinement of the system: modification of the general electro-valve environment event
 event GEV_0_environment refines GEV_0_environment
 where
 GEV_0_mode = 0 ∧ system_control_r1 = 0
 then
 system_control_r1 ≔ 1 || GEV_0_mode ≔ 1 || GEV_0_control_I :∈ GEV_0_CONTROL ||
 GEV_0_flow_I :∈ GEV_0_diameter_min_val‥GEV_0_diameter_max_val
 end

Finally, we introduce an event (Listing 33) that models the connection between the general electro-valve

and the specific electro-valves to be added in the later refinement steps. This event is as shown in pattern
described in Section 3.1. Notice that this event is convergent and decreases the control variable
system_control_r1 (i.e., the variant) from 1 to 0.

Listing 33. First refinement of the system: Introduction of event modelling connection
 convergent event system_connection_GEV_0_EVs
 where
 GEV_0_mode = 0 ∧ system_control_r1 = 1
 then
 system_control_r1 ≔ 0 || system_GEV_0_EVs_connection_r1 ≔ GEV_0_flow_O
 end

The second refinement step where we add the generic component as the destination follows the pattern

presented in Section 3.2. We simply “drag-and-drop” the generic component from the formal library (see
[22]) to the system specification. The overall graphical representation of the specification after two
refinement steps is illustrated in Figure 10. The complete model of this refinement can be found in Appendix
G. Due to obviousness of this refinement, we omit it and show the third refinement step.

GEV_0

system_GEV_EVs_
connection_r1

GenericCo
mponent_0

Figure 10. Graphical representation of the landing gear system after two refinements

4.3. Third refinement: refinement of the generic component into valves
In this refinement step, we derive the specification illustrated in Figure 11. The machine refinement of the

generic component into a set of valves proceeds according to the pattern presented in Section 3.3 and the

19

aforementioned instantiation rules. Thus, we only show the extra structures that can be used to make the
proof of the refinement relation stronger (the complete model can be found in Appendix H).

GEV_0

system_GEV_EVs_
connection_r3_0

evalve_0

evalve_1

evalve_2

evalve_3

system_GEV_EVs_
connection_r3_1

system_GEV_EVs_
connection_r3_2

system_GEV_EVs_
connection_r3_3

Figure 11. Landing gear system after three refinement steps

The context of this refinement step contains the set of the specific electro-valves, as well as exact values
for their parameters (e.g., maximum diameter of electro-valve 0, evalve_0_diameter_max_val) as shown in
Listing 34. In addition to the pattern data structures, we provide the theorems to show the compatibility
between the general electro-valve and the specific electro-valves (e.g., theorem evalve_0_diameter_max_val =
GEV_0_diameter_max_val). That is, all the valves should have the same diameters in order to be properly
connected.

Listing 34. Instantiation of the parameters of the valves
context Electrovalves_Doors_Gears_C3 extends Electrovalves_Doors_Gears_Generic_C2
sets COMPONENTS_R3
constants evalve_0_r3
 evalve_1_r3
 evalve_2_r3
 evalve_3_r3
 evalve_0_diameter_min_val
 evalve_0_diameter_max_val
 evalve_0_CONTROL
 evalve_0_rate
 ... // Parameters of other valves
axioms
 partition(COMPONENTS_R3, {evalve_0_r3}, {evalve_1_r3}, {evalve_2_r3}, {evalve_3_r3}) ∧
 evalve_0_diameter_min_val = 0 ∧ evalve_0_diameter_max_val = 10 ∧ evalve_0_CONTROL = {−1,0,1} ∧
 evalve_0_rate = evalve_0_diameter_max_val ∧
 theorem evalve_0_rate ≤ evalve_0_diameter_max_val − evalve_0_diameter_min_val ∧
 ... /* Definitions of other valves */ ∧
 theorem evalve_0_diameter_max_val = GEV_0_diameter_max_val ∧
 theorem evalve_1_diameter_max_val = GEV_0_diameter_max_val ∧
 theorem evalve_2_diameter_max_val = GEV_0_diameter_max_val ∧
 theorem evalve_3_diameter_max_val = GEV_0_diameter_max_val
end

20

4.4. Fourth refinement: introduction of connections between the electro-
valves and cylinders of doors

Once we have derived the specification shown in Figure 11, we can proceed with adding connectors and
the cylinders. A cylinder requires two connections (see Section 4.3 in [22]): one for the head and the other
one for the cap (Figure 7). The flows of these connections are controlled by the corresponding valves. For
instance, the cylinders 0 to 2 operate according to the flow of the valves 0 and 1. Hence, we continue the
development, so that we derive the specification whose graphical representation is shown in Figure 12.

system_connection_EVs_Doors_r4_headGEV_0

system_GEV_EVs_
connection_r3_0

evalve_0

evalve_1

evalve_2

evalve_3

system_GEV_EVs_
connection_r3_1

system_GEV_EVs_
connection_r3_2

system_GEV_EVs_
connection_r3_3

system_connection_EVs_Doors_r4_cap

Figure 12. Visualisation of the landing gear specification after four refinements

Certainly, each connection can be introduced in separate refinement steps. However, since these steps are
simple, we apply the connector pattern (Section 3.2) twice at the same step (see Appendix I for complete
formal description). Therefore, we have two control sets for each connection (Listing 35).

Listing 35. Control sets for heads and caps of the cylinders
context EVs_Doors_Connection_C4 extends Electrovalves_Doors_Gears_C3
constants
 SYSTEM_CONTROL_R4_CAP
 SYSTEM_CONTROL_R4_HEAD
axioms
 SYSTEM_CONTROL_R4_CAP = {0,1,2} ∧ SYSTEM_CONTROL_R4_HEAD = {0,1,2}
end

Since the connection pattern is applied twice, we also need two connectors and two control variables. One

control variable (system_control_r4_cap) determines the execution sequence between valve 0 and a connector
for the caps of cylinders 0 to 2 (system_connection_EVs_Doors_r4_cap). The other control variable
(system_control_r4_head) imposes the execution order between valve 1 and a connector for the heads of the
same cylinders (system_connection_EVs_Doors_r4_head). Notice that a variant is a sum of the control values due
to the fact that the pattern for introducing a connector has been applied twice (Listing 36).

21

Listing 36. Introduction of the connectors for heads and caps
machine M4_EVs_Doors_Connection refines M3_Electrovalves_Doors_Gears sees C4_EVs_Doors_Connection
variables ...
 system_connection_EVs_Doors_r4_cap
 system_connection_EVs_Doors_r4_head
 system_control_r4_cap
 system_control_r4_head
invariants
 system_control_r4_cap ∈ SYSTEM_CONTROL_R4_CAP ∧ system_control_r4_head ∈ SYSTEM_CONTROL_R4_HEAD ∧
 system_connection_EVs_Doors_r4_cap ∈ evalve_0_diameter_min_val‥evalve_0_diameter_max_val ∧
 system_connection_EVs_Doors_r4_head ∈ evalve_1_diameter_min_val‥evalve_1_diameter_max_val
variant system_control_r4_cap + system_control_r4_head

Initially, the control variables are assigned the value 0, so that the execution sequence can start with the

valves and proceed to the connectors. The values on the connectors are the minimums of the flows from the
valves.

We now show the events that have been affected by the application of the pattern. Particularly, the
environment events of valve 0 and valve 1 are refined considering the control variables as shown in Listing
37 and Listing 38, respectively.

Listing 37. Refinement of valve 0 environment event
 event evalve_0_environment extends evalve_0_environment
 where
 system_control_r4_cap = 0
 then
 system_control_r4_cap ≔ 1
 end

Listing 38. Refinement of valve 1 environment event
 event evalve_1_environment extends evalve_1_environment
 where
 system_control_r4_head = 0
 then
 system_control_r4_head ≔ 1
 end

In addition to these events, there are two newly introduced ones. These new events model the connections

between valves 0 to 1 and the caps and heads of cylinders 0 to 2. Particularly, Listing 39 illustrates the value
update of the connector for the caps whereas Listing 40 presents the value update of the connector for the
heads. Notice that these events are convergent and each event decreases a corresponding control variable
from 1 to 0.

Listing 39. Connection event between valve 0 and caps of the cylinders
 convergent event system_connection_EVs_Doors_cap
 where evalve_0_mode = 0 ∧ system_control_r4_cap = 1
 then system_control_r4_cap ≔ 0 || system_connection_EVs_Doors_r4_cap ≔ evalve_0_flow_O
 end

Listing 40. Connection event between valve 1 and head of the cylinders
 convergent event system_connection_EVs_Doors_head
 where evalve_1_mode = 0 ∧ system_control_r4_head = 1
 then system_control_r4_head ≔ 0 || system_connection_EVs_Doors_r4_head ≔ evalve_1_flow_O
 end

22

4.5. Fifth refinement: introduction of cylinders without generic component
After the connectors are present in the system, we can extend the specification of the system with the

cylinders 0 to 2. We add them at the same step as they operate simultaneously according to the flows from
valves 0 and 1. The system derived to this point whose complete specification can be found in Appendix J is
visualised in Figure 13.

system_connection_EVs_Doors_r6_head_

GEV_0

system_GEV_EVs_
connection_r3_0

evalve_0

evalve_1

evalve_2

evalve_3

system_GEV_EVs_
connection_r3_1

system_GEV_EVs_
connection_r3_2

system_GEV_EVs_
connection_r3_3

system_connection_EVs_Doors_r6_cap_

cylinder_0 cylinder_1 cylinder_2

0 1 2

0 1 2

Figure 13. Landing gear system after five refinement steps

According to the pattern for introducing components without the generic one, the context of this
refinement contains the set of cylinders. It also includes the parameters of the cylinders instantiated with
specific values (e.g., the maximum diameter of the inputs of cylinder 0 cylinder_0_input_diameter_max_val). In
addition, there are theorems (e.g., theorem cylinder_0_input_diameter_max_val = evalve_0_diameter_max_val) to
show that the cylinders are compatible with the valves (Listing 41).

Listing 41. Definitions of the cylinders 0 to 2
context Cylinders_Doors_C5 extends EVs_Doors_Connection_C4
sets COMPONENTS_R5
constants
 SYSTEM_CONTROL_R5_CAP
 SYSTEM_CONTROL_R5_HEAD
 cylinder_0_r5
 cylinder_1_r5
 cylinder_2_r5
 cylinder_0_input_diameter_min_val
 cylinder_0_input_diameter_max_val
 cylinder_0_cap_pos
 cylinder_0_head_pos
 ... // Parameters of other cylinders
axioms
 SYSTEM_CONTROL_R5_CAP = {0,1,2} ∧ SYSTEM_CONTROL_R5_HEAD = {0,1,2} ∧
 partition(COMPONENTS_R5, {cylinder_0_r5}, {cylinder_1_r5}, {cylinder_2_r5}) ∧
 // 0 stands for no liquid flowing into the cylinder (0% open)
 cylinder_0_input_diameter_min_val = 0 ∧
 // 100 stands for maximum velocity the piston can move inside the cylinder (100% open)

23

 cylinder_0_input_diameter_max_val = 10 ∧
 cylinder_0_cap_pos = 0 ∧ cylinder_0_head_pos ∈ ℕ1 ∧
 ... /* Parameters of other cylinders */ ∧
 theorem cylinder_0_input_diameter_max_val = evalve_0_diameter_max_val ∧
 theorem cylinder_1_input_diameter_max_val = evalve_0_diameter_max_val ∧
 theorem cylinder_2_input_diameter_max_val = evalve_0_diameter_max_val
end

The machine refinement follows the pattern presented in Section 3.4. Particularly, each cylinder has a

couple of its own connectors: one for the cap (e.g., system_connection_EVs_Doors_r5_cap_0) and the other one
for the head (e.g., system_connection_EVs_Doors_r5_head). There are two control variables that provide the
execution sequence between the valve 0 and caps (system_control_r5_cap) as well as between valve 1 and
heads (system_control_r5_head) of the cylinders. These variables data refine the old control variables, namely
system_control_r4_cap and system_control_r4_head, respectively. Finally, the variable cylinders_read_r5 is
introduced to manage the reads of the inputs by the cylinders (Listing 42).

Listing 42. Application of the pattern from Section 3.4
machine M5_Cylinders_Doors refines M4_EVs_Doors_Connection sees C5_Cylinders_Doors
variables
 system_connection_EVs_Doors_r5_cap_0
 system_connection_EVs_Doors_r5_head
 system_control_r5_cap
 system_control_r5_head
 cylinders_read_r5
 cylinder_0_piston_position_O
 cylinder_0_flow_cap_I
 cylinder_0_flow_head_I
 cylinder_0_mode
 ... // Variables of the cylinders and other connectors
invariants
 // The mode and the current position of the piston in the cylinder
 cylinder_0_mode ∈ 0..1 ∧ cylinder_0_piston_position_O ∈ cylinder_0_cap_pos‥cylinder_0_head_pos ∧
 // Input to move the piston to the right
 cylinder_0_flow_cap_I ∈ cylinder_0_input_diameter_min_val‥cylinder_0_input_diameter_max_val ∧
 // Input to move the piston to the left
 cylinder_0_flow_head_I ∈ cylinder_0_input_diameter_min_val‥cylinder_0_input_diameter_max_val ∧
 system_connection_EVs_Doors_r5_cap_0 ∈ cylinder_0_input_diameter_min_val‥cylinder_0_input_diameter_max_val ∧
 system_connection_EVs_Doors_r5_head_0 ∈ cylinder_0_input_diameter_min_val‥cylinder_0_input_diameter_max_val ∧
 system_connection_EVs_Doors_r4_cap = system_connection_EVs_Doors_r5_cap_0 ∧ ... ∧
 system_connection_EVs_Doors_r4_head = system_connection_EVs_Doors_r5_head_0 ∧ ... ∧
 (system_control_r4_cap = 0 ⇔ system_control_r5_cap = 0 ∨ system_control_r5_cap = 2)
 (system_control_r4_cap = 1 ⇔ system_control_r5_cap = 1) ∧
 (system_control_r4_head = 1 ⇔ system_control_r5_head = 1) ∧
 (system_control_r4_head = 0 ⇔ system_control_r5_head = 0 ∨ system_control_r5_head = 2) ∧
 cylinders_read_r5 ∈ COMPONENTS_R5 → 0‥1
variant card(COMPONENTS_R5) − cylinders_read_r5(cylinder_0_r5) − cylinders_read_r5(cylinder_1_r5) –

cylinders_read_r5(cylinder_2_r5)

The pattern affects the refinement of the environment events of the valves. For instance, Listing 43 shows

the refinement of the environment event of valve 0 which controls the flow of liquid to the caps of the
cylinders using the variable system_control_r5_cap. The environment event of valve 1 is refined similarly (see
Appendix J for the details).

24

Listing 43. Refinement of valve 0 environment event
 event evalve_0_environment refines evalve_0_environment
 where
 evalve_0_mode = 0 ∧ system_control_r2 = 2 ∧ valves_read_r3(evalve_0_r3) = 0 ∧ system_control_r5_cap = 0
 then
 evalve_0_mode ≔ 1 || evalve_0_control_I :∈ evalve_0_CONTROL || system_control_r5_cap ≔ 1 ||
 evalve_0_flow_I ≔ system_GEV_0_EVs_connection_r3_0 || valves_read_r3(evalve_0_r3) ≔ 1
 end

The connection events update the connectors (e.g., system_connection_EVs_Doors_r5_cap_0 ≔ evalve_0_flow_O)

as well as reset the control variable cylinders_read_r5 (cylinders_read_r5 ≔ COMPONENTS_R5 × {0}). An example of
the connection event for caps is shown in Listing 44.

Listing 44. Refinement of the connection event between valve 0 and caps of cylinders 0 to 2
 event system_connection_EVs_Doors_cap refines system_connection_EVs_Doors_cap
 where
 evalve_0_mode = 0 ∧ system_control_r5_cap = 1
 then
 system_control_r5_cap ≔ 2 || cylinders_read_r5 ≔ COMPONENTS_R5 × {0} ||
 system_connection_EVs_Doors_r5_cap_0 ≔ evalve_0_flow_O ||
 system_connection_EVs_Doors_r5_cap_1 ≔ evalve_0_flow_O ||
 system_connection_EVs_Doors_r5_cap_2 ≔ evalve_0_flow_O
 end

Finally, we introduce the environment events of the cylinders considering the pattern. Listing 45

illustrates an environment event of cylinder 0. Since the cylinder operates only after both inputs are read, the
guards contain the check of the both control variables (system_control_r5_cap = 2 ∧ system_control_r5_head = 2).
The new values for the control variables are also computed simultaneously (e.g.,
cylinders_read_r5[COMPONENTS_R5∖{cylinder_0_r5}] = {1} ⇒ system_control_cap_new_r5 = 0 ∧
system_control_head_new_r5 = 0). The environment events of the other cylinders are added in the same manner.

Listing 45. Introduction of the environment event of cylinder 0
 convergent event cylinder_0_environment
 any system_control_cap_new_r5 system_control_head_new_r5
 where
 cylinder_0_mode = 0 ∧ system_control_r5_cap = 2 ∧ system_control_r5_head = 2 ∧
 (cylinders_read_r5[COMPONENTS_R5∖{cylinder_0_r5}] = {1} ⇒ system_control_cap_new_r5 = 0 ∧

system_control_head_new_r5 = 0) ∧
 (¬cylinders_read_r5[COMPONENTS_R5∖{cylinder_0_r5}] = {1} ⇒ system_control_cap_new_r5 = 2 ∧

system_control_head_new_r5 = 2) ∧
 cylinders_read_r5(cylinder_0_r5) = 0
 then
 cylinder_0_mode ≔ 1 || cylinder_0_flow_cap_I ≔ system_connection_EVs_Doors_r5_cap_0 ||
 cylinder_0_flow_head_I ≔ system_connection_EVs_Doors_r5_head_0 ||
 system_control_r5_cap ≔ system_control_cap_new_r5 || system_control_r5_head ≔ system_control_head_new_r5 ||
 cylinders_read_r5(cylinder_0_r5) ≔ 1
 end

4.6. Case study summary
The system development proceeds in the similar manner by applying the corresponding patterns when

necessary until all the components are introduced. We completely developed the part of the case study
comprised the valves and the cylinders by applying different patterns in the proposed manner. The summary
of the proof statistics for the case study is shown in Table 1. Most proof obligations were proven by the tool.

25

A large number of the manual proof obligations were derived from the specifications of the components and
can be simply copied from the library by the tool. Notice that the second group of cylinders (3 to 5) has been
introduced by using the generic component in between. This is just to exemplify the scalability and
reusability of our approach.

Table 1. Case study proof statistics

Ref. n/n Name Total POs Auto
0 General electro-valve 24 21
1 Connection between general electro-valve and the other valves 7 7
2 Generic component for electro-valves of doors and gears 44 43
3 Electro-valves of doors and gears 142 125
4 Connection between electro-valves of doors and cylinders of doors 14 14
5 Cylinders of doors 87 84
6 Connection between electro-valves of gears and cylinders of gears 14 13
7 Generic component for cylinders of gears 59 57
8 Cylinders of gears 68 55
 Summary 459 419

5. Related Work
BMotionStudio has been proposed as an approach to visual simulation of the Event-B models [3][4]. The

idea behind BMotionStudio is that the designer creates a domain specific image and links the model to it
using a gluing code written in JavaScripts. The simulation is based on the ProB animator and model checker
[5], so that whenever the model is executed the corresponding graphical element reacts on the changes. The
BMotionStudio tool also supports interaction with the user, i.e., a user can provide an input through visual
elements instead of manipulating the model directly.

Instead of visualizing the execution of the already developed model, we propose to build Event-B model
in a visual manner. We rely on the formal library of parameterized visual components available at the
developer’s disposal. The development of the specification is then a process of the instantiation of the
necessary components and the connection of them into a system. That is, the developer does not need to
redraw the graphical representation but to simply reuse (instantiate) the components. Eventually, the designer
obtains a graphical representation of the system whilst its specification is in fact written in Event-B with
correctness proof. Certainly, our approach can be complemented by the BMotionStudio in order to obtain
visualisation of the model execution.

Snook and Butler [6] have proposed an approach to merge visual UML [7] that lacks formal precise
semantics with B [8] that requires significant effort in training to overcome the mathematical barrier. This
approach has then been extended to Event-B and called iUML-B [9]. The authors define semantics of UML
by translating it to Event-B. The use of UML-B profile provides specialisation of UML entities to support
refinement. The authors also present the tools that automatically generate an Event-B model from a UML
one.

In contrast to using UML as visualisation tool, we aim to enhance scalability of the Event-B development
by utilising visual components from a formal library (see [22] for examples). The aim is to facilitate the
rigorous development process by visual design, where the developers pick the necessary components,
instantiate them and connect according to the refinement pattern proposed in this paper. The system
specification is then a visual model that comprises a composition of the instantiated versions of these
components. Nevertheless, we target automated generation of the necessary data structures and Event-B
elements whenever our approach is applied.

26

Edmunds, Waldén and Snook have proposed an approach towards component-based reuse for Event-B
[10]. The proposed approach is based on an extension to iUML-B class diagrams [9] and an extension to the
shared-event composition technique proposed in [11]. The authors propose a notation for the local
parameters of events in order to facilitate event composition when connecting components. The notation is to
reveal communicating parameters that form the interfaces of the events to synchronize. The authors consider
composition invariants that specify the properties about the composition. A composition machine then
includes the constituent machines. In addition, the authors propose to apply design-by-contract [12] in order
to ensure correct connection, i.e., that the values of the corresponding inputs and outputs are within the
allowable range.

In contrast to the approach described in [10], we consider components as parameterised (generic) Event-B
specifications, each of which is assigned a specific visual symbol. The designer is then instantiates the
necessary components and connects them into a system by the use of the proposed refinement patterns. Our
goal is to facilitate rigorous development in Event-B by visual design, i.e., to improve human-machine
interface and communication between the developer and the customer. We aim to provide the developers
with “drag-and-drop” approach, where the components are picked from the library, instantiated and
connected into a system in a graphical fashion. Nevertheless, we propose to use the inclusion mechanism
similarly to [10], so that the instantiated specifications of the components are included into a system
specification. We may also adopt the design-by-contract approach in order to stronger support the proper
connectivity between the components.

An approach to a component-based formal design within Event-B has been proposed by Ostroumov,
Tsiopoulos, Plosila and Sere [13]. The aim of this work is the generation of a structural VHDL [14]
description from a formal model. The authors present a one-to-one mapping of formal functions defined in
an Event-B context and library components derived from VHDL. Using this mapping, the authors rely on an
additional refinement step, in which regular operations are replaced with function calls. This allows for
automated generation of structural VHDL descriptions.

In contrast to this approach, we propose an approach to systems development in Event-B in a visual
manner. This approach is not limited to VHDL descriptions and allows the designers to utilize various
components from different application domains. We present the refinement patterns to enable composition of
the necessary components into a system in a visual systematic manner, so that the developers can build the
system in a “drag-and-drop” manner.

A modularization mechanism to support scalability of Event-B modelling has been proposed by Iliasov et
al. [15]. The authors consider sequential systems whose functionality is distributed among several
components. The authors propose to extend the language of Event-B with (atomic) operation calls and
introduce the notion of modules (i.e., components) which contain groups of callable operations. The modules
can have internal and external states and invariants that express properties on these states. According to the
authors, their approach can be seen as a special type of the A-style decomposition approach proposed by
Abrial [16]. The goal is to split a monolithic model into sub-models, each of which can be further developed
separately in parallel. However, once all the modules contain the necessary level of detail, they can be
composed back into a system. The composition mechanism is supported by the corresponding proofs.

Instead of extending the Event-B language and decomposing the system into components and composing
it back out of modules, we propose to utilize a formal library of predefined parameterized components, each
of which has a corresponding visual symbol. The components form a system and can be connected
sequentially; however, they can process the input data in parallel. We show the refinement patterns which
provide the connection mechanism between the components following the refinement approach. That is, we
propose to merge top-down and bottom-up development approaches in order to enhance scalability of
rigorous development in Event-B. Our goal is to enable graphical system development in Event-B whilst
preserving its advantages in terms of the rigour and correctness proof mechanism.

27

6. Conclusion and future work
We proposed a systematic approach to the visual system development in Event-B. We rely on the formal

library of parameterized visual components, out of which the developer can pick and instantiate the
necessary components according to the requirements. These components are connected using the proposed
composition approach and a set of the refinement patterns. They enable seamless composition (integration)
of various components into a system, where the visual layer is built on top of the formal one. The visual
layer facilitates scalability and reusability by merging the top-down (refinement) and bottom-up
(components) approaches. The approach is also flexible, so that the developer can add more properties using
the usual Event-B approach, if needed.

During the system development, one has to show that the connection between the components is feasible
and well-defined. This can be done by applying the design-by-contract mechanism [12] that was mentioned
earlier. Thus, one direction of our future work is to investigate this issue.

Due to the systematic nature of the proposed approach, it can be implemented in the form of tool, namely
a plug-in to the Rodin platform. This will ease the use of the components and composition refinement
patterns. Therefore, another future direction is towards tool development.

Acknowledgment
The authors would like to thank Dr. Marta Olszewska and Dr. Andrew Edmunds for the fruitful

discussions on the topic of this paper.

References
[1] J.-R. Abrial, Modeling in Event-B: System and Software Engineering. Cambridge: Cambridge University

Press, 2010.

[2] R. J. Back and J. Wright, Refinement Calculus: A Systematic Introduction, Springer-Verlag, 1998.

[3] L. Ladenberger, J. Bendisposto, M. Leuschel, Visualising Event-B Models with B-Motion Studio, Proceedings
of Formal Methods for Industrial Critical Systems (FMICS), LNCS: Springer Berlin Heidelberg, pp. 202-204,
2009.

[4] BMotion Studio for ProB Handbook, 2015. Available: http://nightly.cobra.cs.uni-
duesseldorf.de/bmotion/bmotion-prob-handbook/nightly/html/index.html. Visualising Event-B Models
with B-Motion Studio

[5] M. Leuschel, M. Butler, ProB: A Model Checker for B, Proc. FME, Springer, vol. 2805, 2003, p. 855-874.

[6] C. Snook, M. Butler, UML-B: Formal Modeling and Design Aided by UML, ACM Transactions on Software
Engineering and Methodology, Vol. 15(1), pp. 92–122, 2006.

[7] G. Booch, I. Jacobson, J. Rumbaugh, The unified modeling language – a reference manual, 2nd edition,
Addison-Wesley, p. 721, 2004.

[8] S. Schneider, The B-method: An Introduction, Basingstoke: Palgrave, p. 370, 2001.

[9] C. Snook, M. Butler, UML-B and Event-B: an integration of languages and tools, Proceedings of IASTED
International Conference on Software Engineering, pp. 12, 2008.

[10] A. Edmunds, M. Waldén, C. Snook, Towards Component-based Reuse for Event-B, Proceedings of 27th
Nordic Workshop on Programming Theory, Reykjavik University, Iceland pp. 3, 2015.

[11] R. Silva, Supporting Development of Event-B Models, PhD thesis, University of Southampton, 2012.

[12] B. Meyer, Design by Contract: The Eiffel Method, In TOOLS (26), IEEE, p. 446, 1998.

http://link.springer.com/book/10.1007/978-3-642-04570-7
http://nightly.cobra.cs.uni-duesseldorf.de/bmotion/bmotion-prob-handbook/nightly/html/index.html
http://nightly.cobra.cs.uni-duesseldorf.de/bmotion/bmotion-prob-handbook/nightly/html/index.html

28

[13] S. Ostroumov, L. Tsiopoulos, J. Plosila, K. Sere, Generation of Structural VHDL Code with Library
Components From Formal Event-B Models, In Proceedings of Euromicro Conference on Digital System
Design, IEEE Conference Publishing Services (CPS), pp. 111-118, 2013.

[14] IEEE Standard VHDL Language Reference Manual, IEEE 1076, 2008.

[15] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. Ilic, T. Latvala, Supporting Reuse
in Event B Development: Modularisation Approach, In Proceedings of Abstract State Machines, Alloy, B, and
Z (ABZ), pp. 17, 2010.

[16] Event Model Decomposition, J.-R. Abrial, 2009. Available: http://wiki.event-
b.org/images/Event_Model_Decomposition-1.3.pdf.

[17] M. Butler, E. Sekerinski, K. Sere, An Action System Approach to the Steam Boiler Problem, Formal Methods
For Industrial Applications, Vol. 1165, LNCS: Springer-Verlag, pp. 129-148, 1996.

[18] RODIN, 2014. Available: http://sourceforge.net/projects/rodin-b-sharp/.
[19] C. Métayer, J.-R. Abrial, L. Voisin, Deliverables, Rigorous Open Development Environment for Complex

Systems, 2005. Available: http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf.
[20] K. Robinson, System Modelling & Designing using Event-B, 2010. Available: http://wiki.event-

b.org/images/SM%26D-KAR.pdf.
[21] ABZ 2014: The Landing Gear Case Study, Communications in Computer and Information Science 433, Edited

by F. Boniol, V. Wiels, Y. A. Ameur, K.-D. Schewe, Springer, pp. 171, 2014.

[22] S. Ostroumov, M. Waldén, Formal Library of Visual Components, TUCS Technical Report Series, No. 1147,
pp. 34, 2015.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4772740&contentType=Standards&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_Publication_Number%3A4772738%29
http://wiki.event-b.org/images/Event_Model_Decomposition-1.3.pdf
http://wiki.event-b.org/images/Event_Model_Decomposition-1.3.pdf
http://sourceforge.net/projects/rodin-b-sharp/
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://wiki.event-b.org/images/SM%26D-KAR.pdf
http://wiki.event-b.org/images/SM%26D-KAR.pdf

29

Appendix A

The complete model of the connector pattern

context System_Connection_Cn-1 extends Component_i_Cn-2
constants SYSTEM_CONTROL_Rn-1
axioms
 @system_axm_rn-1_0 SYSTEM_CONTROL_Rn-1 = {0,1,2}
end

machine System_Connection_Mn-1 refines Component_i_Mn-2 sees System_Connection_Cn-1
variables …
 system_control_rn-1
 system_connection_Component_i_Component_k_rn-1
invariants
 @system_control_rn-1 system_control_rn-1 ∈ SYSTEM_CONTROL_Rn-1
 @system_connection_Component_i_Component_k_rn-1
 system_connection_Component_i_Component_k_rn-1 ∈ <COMPONENT_i_OUTPUT_TYPE>
variant system_control_rn-1
events
 event INITIALISATION
 extends INITIALISATION
 then
 @system_act_rn-1_0 system_control_rn-1 ≔ 0
 @system_act_rn-1_1 system_connection_Component_i_Component_k_rn-1 ≔ <INIT_VALUE>
 end

 event Component_i_environment
 refines Component_i_environment
 where
 … // Other guards derived from the component i
 @system_grd_rn-1_0 system_control_rn-1 = 0
 then
 … // Other actions derived from the component i
 @system_act_rn-1_0 system_control_rn-1 ≔ 1
 end

 convergent event system_connection_Component_i_Component_k
 where
 @system_grd_rn-1_0 system_control_rn-1 = 1
 // We need to be sure that the component i has updated its outputs
 // The component mode can also be of Boolean type (0  FALSE, 1  TRUE), if there are only two alternating modes
 @system_grd_rn-1_1 <Component_i_mode> = 0
 then
 @system_act_rn-1_0 system_control_rn-1 ≔ 0
 @system_act_rn-1_1 system_connection_Component_i_Component_k_rn-1 ≔ <Component_i_Output>
 end
 …
end

30

Appendix B

The complete model of the component introduction pattern

context Component_k_Parameters_Cn extends System_Connection_Cn-1
constants SYSTEM_CONTROL_Rn
axioms
 ... // Parameters of component k, if any
 @system_axm_rn_0 SYSTEM_CONTROL_Rn = {0,1,2}
end

machine Component_k_Mn refines System_Connection_Mn-1 sees Component_k_Parameters_Cn
variables …
 system_connection_Component_i_Component_k_rn-1
 system_control_rn-1
 GenericComponent_k_I
 GenericComponent_k_O
 GenericComponent_k_mode
 GenericComponent_k_IOrelation
 system_control_rn
invariants
 ... // The types and the properties of the generic component
 @system_control_rn_0 system_control_rn ∈ SYSTEM_CONTROL_Rn
 @system_glueinv_rn_1 system_control_rn-1 = 0 ⇔ system_control_rn = 0 ∨ system_control_rn = 2
 @system_glueinv_rn_2 system_control_rn-1 = 1 ⇔ system_control_rn = 1
variant system_control_rn
events
 event INITIALISATION
 then
 …
 @system_act_rn-1_1 system_connection_Component_i_Component_k_rn-1 ≔ <INIT_VALUE>
 @GenericComponent_act_0 GenericComponent_k_mode ≔ 0
 @GenericComponent_act_1 GenericComponent_k_I, GenericComponent_k_O, GenericComponent_k_IOrelation :∣
 GenericComponent_I' ∈ {i ∣ i ∈ ℙ1(ℤ) ∧ finite(i)} ∧
 GenericComponent_O' ∈ {o ∣ o ∈ ℙ1(ℤ) ∧ finite(o)} ∧
 GenericComponent_IOrelation' ∈ GenericComponent_I' ↔ GenericComponent_O' ∧
 dom(GenericComponent_IOrelation') = GenericComponent_I' ∧
 ran(GenericComponent_IOrelation') = GenericComponent_O'
 @system_act_rn_0 system_control_rn ≔ 0
 end

 event Component_i_environment refines Component_i_environment
 where
 … // Other guards derived from the component i
 @system_grd_rn-1_0 system_control_rn-1 = 0
 @system_grd_rn_0 system_control_rn = 0
 then
 … // Other actions derived from the component i
 @system_act_rn-1_0 system_control_rn-1 ≔ 1
 @system_act_rn_0 system_control_rn ≔ 1
 end

 event system_connection_Component_i_Component_k refines system_connection_Component_i_Component_k
 where

31

 @system_grd_rn-1_1 <Component_i_mode> = 0
 @system_grd_rn_0 system_control_rn = 1
 then
 @system_act_rn-1_1 system_connection_Component_i_Component_k_rn-1 ≔ <Component_i_Output_Value>
 @system_act_rn_0 system_control_rn ≔ 2

 convergent event GenericComponent_k_environment
 where
 @grd_0 GenericComponent_k_mode = 0
 @system_grd_rn_0 system_control_rn = 2
 then
 @act_0 GenericComponent_k_mode ≔ 1
 @act_1 GenericComponent_k_I ≔ <SET_OF_OUTPUT_VALUES_OF_COMPONENT_i>
 @system_act_rn_0 system_control_rn ≔ 0
 end
 …
end

32

Appendix C

Refinement pattern: Generic component into a set of specific ones

context Specific_Components_Parameters_Cn+1 extends Component_k_Parameters_Cn
sets COMPONENTS_Rn+1
constants ...
 component_0_rn+1
 ... //
 component_j_rn+1
axioms
 ... // Other parameters of the components
 @system_components_set_rn+1 partition(COMPONENTS_Rn+1, {component_0_rn+1 }, ..., {component_j_rn+1})
end

machine Specific_Components_Mn+1 refines Component_k_Mn sees Specific_Components_Parameters_Cn+1
variables ...
 GenericComponent_k_I
 GenericComponent_k_O
 GenericComponent_k_IOrelation
 system_connection_Component_i_Component_k_rn-1
 GenericComponent_k_mode
 system_connection_i_0_rn+1
 ... // Similar connectors to other components
 system _connection_i_j_rn+1
 components_read_rn+1
invariants
 ... // The properties of the specific components
 @system_connection_i_0_rn+1_0 system_connection_i_0_rn+1 ∈ <COMPONENT_0_INPUT_TYPE>
 @system_connection_i_j_rn+1_1 system_connection_i_j_rn+1 ∈ <COMPONENT_j_INPUT_TYPE>
 @system_components_read_rn+1_2 components_read_rn+1 ∈ COMPONENTS_Rn+1 → 0..1

 @system_glueinv_rn+1_10 GenericComponent_k_I ⊆ Um
i=0INPUT_TYPE i

 @system_glueinv_rn+1_11 GenericComponent_k_O ⊆ Um
i=0OUTPUT_TYPE i

 @system_glueinv_rn+1_12 GenericComponent_k_IOrelation ⊆ Um
i=0INPUT_TYPE i × Um

i=0OUTPUT_TYPE i
 @system_inv_rn+1_13 system_control_rn = 0 ∧ GenericComponent_k_mode = 1 ⇒

components_read_rn+1 [COMPONENTS_Rn+1] = {0}
 @system_connection_i_0_rn+1_14 system_connection_Component_i_Component_k_rn-1 = system_connection_i_0_rn+1
 @system_connection_i_j_rn+1_15 system_connection_Component_i_Component_k_rn-1 = system_connection_i_j_rn+1
 @system_inv_rn+1_9 system_control_rn = 0 ∧ GenericComponent_k_mode = 1 ⇒

components_read_rn+1[COMPONENTS_Rn+1] = {0}
variant card(COMPONENTS_Rn+1) – components_read_rn+1(component_0_rn+1) – ... –

components_read_rn+1(component_j_rn+1)
events
 event INITIALISATION
 with

 @GenericComponent_k_I' GenericComponent_k_I' = Um
i=0INPUT_TYPE i

 @GenericComponent_k_O' GenericComponent_k_O' = Um
i=0OUTPUT_TYPE i

 @GenericComponent_k_IOrelation' GenericComponent_k_IOrelation' = Um
i=0INPUT_TYPE i × Um

i=0OUTPUT_TYPE i
 then

33

 ... // Initialization of other state variables from previous refinements
 @system_act_rn+1_0 system_connection_i_0_rn+1 ≔ <INIT_VALUE>
 @system_act_rn+1_j system_connection_i_j_rn+1 ≔ <INIT_VALUE>
 @system_components_read_rn+1 components_read_rn+1 ≔ COMPONENTS_Rn+1 × {0}
 end

 event system_connection_i_0j refines system_connection_Component_i_Component_k
 where
 @system_grd_rn-1_1 <Component_i_mode> = 0
 @system_grd_rn_0 system_control_rn = 1
 then
 @system_act_rn_0 system_control_rn ≔ 2
 @system_act_rn+1_0 system_connection_i_0_rn+1 ≔ <Component_i_Output>
 @system_act_rn+1_j system_connection_i_j_rn+1 ≔ <Component_i_Output>
 end

 convergent event Component_0_environment
 where
 @grd0_0 component_0_mode = 0
 @system_grd_rn+1_0 system_control_rn = 2
 @system_components_read_grd_rn+1 components_read_rn+1(component_0_rn+1) = 0
 then
 @act0_0 component_0_mode ≔ 1
 @act0_1 component_0_I_0 ≔ system_connection_i_0_rn+1
 ... // Update of the other inputs not connected to component i, if any
 @system_components_read_act_rn+1 components_read_rn+1(component_0_rn+1) ≔ 1
 end

 convergent event Component_j_environment
 where
 @grd0_0 component_j_mode = 0
 @system_grd_rn+1_0 system_control_rn = 2
 @system_components_read_grd_rn+1 components_read_rn+1(component_j_rn+1) = 0
 then
 @act0_0 component_j_mode ≔ 1
 @act0_1 component_j_I_0 ≔ system_connection_i_j_rn+1
 ... // Update of the other inputs not connected to component i, if any
 @system_components_read_act_rn+1 components_read_rn+1(component_j_rn+1) ≔ 1
 end

 event GenericComponent_k_environment refines GenericComponent_k_environment
 where
 @grd0_0 GenericComponent_k_mode = 0
 @system_grd_rn_0 system_control_rn = 2
 @system_grd_rn+1_0 components_read_rn+1[COMPONENTS_Rn+1] = {1}
 then
 @act0_0 GenericComponent_k_mode ≔ 1
 @system_act_rn_0 system_control_rn ≔ 0
 @system_act_rn+1_0 components_read_rn+1 ≔ COMPONENTS_Rn+1 × {0}
 end

34

Appendix D

Refinement pattern: introduction of specific components without generic one

context Specific_components_Cn extends System_connection_Cn-1
sets COMPONENTS_Rn
constants
 SYSTEM_CONTROL_Rn
 component_0_rn

 ... // Other components: component_q_rn , q ∈ 0..j
 component_j_rn
 ... // Parameters of the components
axioms
 @system_axm_rn_1 SYSTEM_CONTROL_Rn = {0,1,2}
 @system_evalve_set partition(COMPONENTS_Rn, {component_0_rn}, ..., {component_j_rn})
 ... // Definitions of the components
end

machine Specific_Components_Mn refines System_Connection_Mn-1 sees Specific_components_Cn
variables
 system_control_rn
 components_read_rn
 system_connection_i_0_rn
 system_connection_i_j_rn
 ... // State variables of the components and other connectors
invariants
 ... // Properties of the components
 @system_components_read_rn_0 components_read_rn ∈ COMPONENTS_Rn → 0..1
 @system_control_rn_1 system_control_rn ∈ SYSTEM_CONTROL_Rn
 @system_connection_i_0_rn_2 system_connection_i_0_rn ∈ <COMPONENT_0_INPUT_TYPE>
 @system_connection_i_j_rn_3 system_connection_i_j_rn ∈ <COMPONENT_j_INPUT_TYPE>
 @system_glueinv_rn_4 system_connection_i_k_rn-1 = system_connection_i_0_rn
 @system_glueinv_rn_5 system_connection_i_k_rn-1 = system_connection_i_j_rn
 @system_glueinv_rn_6 system_control_rn-1 = 0 ⇔ system_control_rn = 0 ∨ system_control_rn = 2
 @system_glueinv_rn_7 system_control_rn-1 = 1 ⇔ system_control_rn = 1
variant card(COMPONENTS_Rn) − components_read_rn(component_0_rn) − ... − components_read_rn(component_j_rn)
events
 event INITIALISATION
 then
 ...
 @system_act_rn_0 system_control_rn ≔ 0
 @system_act_rn_1 components_read_rn ≔ COMPONENTS_Rn × {0}
 @system_act_rn_2 system_connection_i_0_rn ≔ <INIT_VALUE>
 ... // Initialization of other connectors
 @system_act_rn_3 system_connection_i_j_rn ≔ <INIT_VALUE>
 end

 event Component_i_environment refines Component_i_environment
 where
 @grd0_0 <Component_i_mode> = 0
 @system_grd_rn_0 system_control_rn = 0
 then
 @act0_0 <Component_i_mode> ≔ 1
 @system_act_rn_0 system_control_rn ≔ 1

35

 ... // Read the new input
 end

 event system_connection_i_0...j refines system_connection_Component_i_Component_k
 where
 @system_grd_rn-1_0 <Component_i_mode> = 0
 @system_grd_rn_0 system_control_rn = 1
 then
 @system_act_rn_0 system_control_rn ≔ 2
 @system_act_rn_1 components_read_rn ≔ COMPONENTS_Rn × {0}
 @system_act_rn_2 system_connection_i_0_rn ≔ <Component_i_Output>
 @system_act_rn_3 system_connection_i_j_rn ≔ <Component_i_Output>
 end

 convergent event component_0_environment
 any system_control_rn_new
 where
 @grd0_0 <Component_0_mode> = 0
 @system_grd_rn_0 system_control_rn = 2
 @system_grd_rn_1 components_read_rn[COMPONENTS_Rn∖{component_0_rn}] = {1} ⇒ system_control_rn_new = 0
 @system_grd_rn_2 ¬components_read_rn[COMPONENTS_Rn∖{component_0_rn}] = {1} ⇒ system_control_rn_new = 2
 @system_grd_rn_3 components_read_rn(component_0_rn) = 0
 then
 @act0_0 <Component_0_mode> ≔ 1
 @act0_1 <Component_0_input> ≔ system_connection_i_0_rn
 ... // Update the other inputs of the component 0, if any
 @system_act_rn_0 system_control_rn ≔ system_control_rn_new
 @system_act_rn_1 components_read_rn(component_0_rn) ≔ 1
 end

 convergent event component_j_environment
 any system_control_rn_new
 where
 @grd0_0 <Component_j_mode> = 0
 @system_grd_rn_0 system_control_rn = 2
 @system_grd_rn_1 components_read_rn[COMPONENTS_Rn∖{component_j_rn}] = {1} ⇒ system_control_rn_new = 0
 @system_grd_rn_2 ¬components_read_rn[COMPONENTS_Rn∖{component_j_rn}] = {1} ⇒ system_control_rn_new = 2
 @system_grd_rn_3 components_read_rn(component_j_rn) = 0
 then
 @act0_0 <Component_j_mode> ≔ 1
 @act0_1 <Component_j_input> ≔ system_connection_i_j_rn
 ... // Update the other inputs of the component j, if any
 @system_act_rn_0 system_control_rn ≔ system_control_rn_new
 @system_act_rn_2 components_read_rn(component_j_rn) ≔ 1
 end
end

36

Appendix E

The complete model of the general electro-valve after instantiation

context GEV_0_Parameters_C0
constants
 GEV_0_diameter_min_val
 GEV_0_diameter_max_val
 GEV_0_CONTROL
 GEV_0_rate
axioms
 @GEV_0_axm0_0 GEV_0_diameter_min_val = 0 // If position of a valve is at minimum, the valve is fully closed (0% open)
 @GEV_0_axm0_1 GEV_0_diameter_max_val = 10 // On contrary, maximum is when the valve is fully open (100% open)
 @GEV_0_axm0_2 GEV_0_CONTROL = {−1,0,1} // -1 - closing, 0 - OFF, 1 - opening
 @GEV_0_axm0_3 GEV_0_rate = GEV_0_diameter_max_val // The rate showing how fast the valve opens
 theorem @GEV_0_axm0_4 GEV_0_rate ≤ GEV_0_diameter_max_val − GEV_0_diameter_min_val
end

machine GEV_0_Behaviour_M0 sees GEV_0_Parameters_C0
variables
 GEV_0_control_I
 GEV_0_flow_I
 GEV_0_flow_O
 GEV_0_mode
 GEV_0_position
invariants
 // Control for the valve: -1 - close, 0 - OFF, 1 - open
 @GEV_0_inv0_0 GEV_0_control_I ∈ GEV_0_CONTROL
 // The flow of fluid coming into the valve
 @GEV_0_inv0_1 GEV_0_flow_I ∈ GEV_0_diameter_min_val‥GEV_0_diameter_max_val
 // The flow of fluid coming from the valve
 @GEV_0_inv0_2 GEV_0_flow_O ∈ GEV_0_diameter_min_val‥GEV_0_diameter_max_val
 // To obtain a deterministic behaviour of the component, we use an internal variable that specifies the mode
 @GEV_0_inv0_3 GEV_0_mode ∈ 0..1
 // The current state of the plunger in the valve
 @GEV_0_inv0_4 GEV_0_position ∈ GEV_0_diameter_min_val‥GEV_0_diameter_max_val
 // The output flow cannot be stronger than the input flow
 @GEV_0_inv0_10 GEV_0_mode = 0 ⇒ GEV_0_flow_O ≤ GEV_0_flow_I
 // The output flow cannot be larger than the opening of the valve
 @GEV_0_inv0_11 GEV_0_flow_O ≤ GEV_0_position
events
 event INITIALISATION // Initially, the valve is closed
 then
 @GEV_0_act0_0 GEV_0_control_I ≔ 0
 @GEV_0_act0_1 GEV_0_flow_I :∈ GEV_0_diameter_min_val‥GEV_0_diameter_max_val
 @GEV_0_act0_2 GEV_0_flow_O ≔ GEV_0_diameter_min_val
 @GEV_0_act0_3 GEV_0_mode ≔ 0
 @GEV_0_act0_4 GEV_0_position ≔ GEV_0_diameter_min_val
 end

 event GEV_0_environment // This is the interface with the external world
 where
 @grd0_0 GEV_0_mode = 0
 then

37

 @act0_0 GEV_0_mode ≔ 1
 @act0_1 GEV_0_control_I :∈ GEV_0_CONTROL
 @act0_2 GEV_0_flow_I :∈ GEV_0_diameter_min_val‥GEV_0_diameter_max_val
 end

 event GEV_0_opening // While the command is open, the valve should be opening with some rate
 any GEV_0_flow_O_new
 where
 @grd0_0 GEV_0_control_I = 1 // If the command is to open the valve
 @grd0_1 GEV_0_position + GEV_0_rate ≤ GEV_0_diameter_max_val // and it is not completely open
 @grd0_2 GEV_0_mode = 1
 // The valve opens and allows the flow to go through with some rate
 @grd0_3 GEV_0_position + GEV_0_rate < GEV_0_flow_I ⇒ GEV_0_flow_O_new = GEV_0_position + GEV_0_rate
 // but the output flow cannot be stronger than the input one, even if the valve is completely open
 @grd0_4 GEV_0_position + GEV_0_rate ≥ GEV_0_flow_I ⇒ GEV_0_flow_O_new = GEV_0_flow_I
 then
 @act0_0 GEV_0_flow_O ≔ GEV_0_flow_O_new
 @act0_1 GEV_0_mode ≔ 0
 @act0_2 GEV_0_position ≔ GEV_0_position + GEV_0_rate
 end

 event GEV_0_closing // While the command is close, the valve should be closing with some rate
 any GEV_0_flow_O_new
 where
 @grd0_0 GEV_0_control_I = −1 // If the command is to close the valve
 @grd0_1 GEV_0_position – GEV_0_rate ≥ GEV_0_diameter_min_val // and the valve is not completely closed yet
 @grd0_2 GEV_0_mode = 1
 // The valve closes and decreases the flow with some rate
 @grd0_3 GEV_0_position – GEV_0_rate ≤ GEV_0_flow_I ⇒ GEV_0_flow_O_new = GEV_0_position – GEV_0_rate
 @grd0_4 GEV_0_position – GEV_0_rate > GEV_0_flow_I ⇒ GEV_0_flow_O_new = GEV_0_flow_I
 // but if it is open more than the input flow is, the output flow should be updated accordingly
 then
 @act0_0 GEV_0_flow_O ≔ GEV_0_flow_O_new
 @act0_1 GEV_0_mode ≔ 0
 @act0_2 GEV_0_position ≔ GEV_0_position – GEV_0_rate
 end

 // If the command is neither close nor open, or it is not possible to open or close the valve anymore, just stop
 event GEV_0_stop
 any GEV_0_flow_O_new
 where
 @grd0_0 GEV_0_control_I = 0 ∨
 (GEV_0_position – GEV_0_rate < GEV_0_diameter_min_val ∧ GEV_0_control_I = −1) ∨
 (GEV_0_position + GEV_0_rate > GEV_0_diameter_max_val ∧ GEV_0_control_I = 1)
 @grd0_1 GEV_0_mode = 1
 @grd0_2 GEV_0_flow_I < GEV_0_flow_O ⇒ GEV_0_flow_O_new = GEV_0_flow_I
 @grd0_3 GEV_0_flow_I ≥ GEV_0_flow_O ⇒ GEV_0_flow_O_new = GEV_0_flow_O
 then
 @act0_0 GEV_0_mode ≔ 0
 @act0_1 GEV_0_flow_O ≔ GEV_0_flow_O_new
 end
end

38

Appendix F

General electro-valve with a connector

context GEV_0_Electrovalves_Connection_C1 extends GEV_0_Parameters_C0
constants SYSTEM_CONTROL_R1
axioms
 @system_axm_r1_0 SYSTEM_CONTROL_R1 = {0,1,2}
end

machine GEV_0_Electrovalves_Connection_M1 refines GEV_0_Behaviour_M0 sees GEV_0_Electrovalves_Connection_C1
variables
 ... // The variables derived from the GEV model
 system_control_r1
 system_GEV_0_EVs_connection_r1
invariants
 @system_control_r1 system_control_r1 ∈ SYSTEM_CONTROL_R1
 @system_connection_GEV_0_EVs_r1 system_GEV_0_EVs_connection_r1 ∈

GEV_0_diameter_min_val‥GEV_0_diameter_max_val
variant system_control_r1
events
 event INITIALISATION extends INITIALISATION
 then
 @system_control_r1 system_control_r1 ≔ 0
 @system_connection_GEV_0_EVs_r1 system_GEV_0_EVs_connection_r1 ≔ GEV_0_diameter_min_val
 end

 event GEV_0_environment refines GEV_0_environment
 where
 @grd0_0 GEV_0_mode = 0
 @system_grd_r1_0 system_control_r1 = 0
 then
 @act0_0 GEV_0_mode ≔ 1
 @act0_1 GEV_0_control_I :∈ GEV_0_CONTROL
 @act0_2 GEV_0_flow_I :∈ GEV_0_diameter_min_val‥GEV_0_diameter_max_val
 @system_act_r1_0 system_control_r1 ≔ 1
 end

 convergent event system_connection_GEV_0_EVs
 where
 @system_grd_r1_0 GEV_0_mode = 0
 @system_grd_r1_1 system_control_r1 = 1
 then
 @system_act_r1_0 system_control_r1 ≔ 0
 @system_act_r1_1 system_GEV_0_EVs_connection_r1 ≔ GEV_0_flow_O
 end
 ...
end

39

Appendix G

General electro-valve connected with the generic component

context Electrovalves_Doors_Gears_Generic_C2 extends GEV_0_Electrovalves_Connection_C1
constants SYSTEM_CONTROL_R2
axioms
 @system_axm_r2_0 SYSTEM_CONTROL_R2 = {0,1,2}
end

machine Electrovalves_Doors_Gears_Generic_M2 refines GEV_0_Electrovalves_Connection_M1
sees Electrovalves_Doors_Gears_Generic_C2
variables
 ... // Other variables derived from previous refinements
 GenericComponent_0_I
 GenericComponent_0_O
 GenericComponent_0_mode
 GenericComponent_0_IOrelation
 system_control_r2
invariants
 theorem @GenericComponent_thm0_0 ∀ps,s·ps ∈ ℙ1(ℤ) ∧ finite(ps) ∧ s ∈ ℙ(ps) ∧ card(s) = card(ps) ⇒ s = ps
 @GenericComponent_0_inv0_0 GenericComponent_0_I ∈ ℙ1(ℤ)
 @GenericComponent_0_inv0_1 GenericComponent_0_O ∈ ℙ1(ℤ)
 @GenericComponent_0_inv0_2 GenericComponent_0_mode ∈ 0‥1
 @GenericComponent_0_inv0_3 GenericComponent_0_IOrelation ∈ GenericComponent_0_I ↔ GenericComponent_0_O
 @GenericComponent_0_inv0_10 finite(GenericComponent_0_I) ∧ finite(GenericComponent_0_O)
 @GenericComponent_0_inv0_11 dom(GenericComponent_0_IOrelation) = GenericComponent_0_I
 @GenericComponent_0_inv0_12 ran(GenericComponent_0_IOrelation) = GenericComponent_0_O
 @GenericComponent_0_inv0_13 GenericComponent_0_mode = 0 ⇒ GenericComponent_0_O =

GenericComponent_0_IOrelation[GenericComponent_0_I]
 @system_control_inv_r2_0 system_control_r2 ∈ SYSTEM_CONTROL_R2
 @system_glueinv_r2_1 system_control_r1 = 0 ⇔ system_control_r2 = 0 ∨ system_control_r2 = 2
 @system_glueinv_r2_2 system_control_r1 = 1 ⇔ system_control_r2 = 1
 @system_conn_inv_r2_3 GenericComponent_0_I = GEV_0_diameter_min_val‥GEV_0_diameter_max_val
variant system_control_r2
events
 event INITIALISATION
 then
 ... // Initialisation of the variables derived from the previous refinements
 @GenericComponent_0_act0_0 GenericComponent_0_mode ≔ 0
 @GenericComponent_0_act0_1 GenericComponent_0_I, GenericComponent_0_O, GenericComponent_0_IOrelation :∣
 GenericComponent_0_I' = GEV_0_diameter_min_val‥GEV_0_diameter_max_val ∧
 GenericComponent_0_IOrelation' ∈ GenericComponent_0_I' ↔ GenericComponent_0_O' ∧
 dom(GenericComponent_0_IOrelation') = GenericComponent_0_I' ∧
 ran(GenericComponent_0_IOrelation') = GenericComponent_0_O'
 @system_control_r2_0 system_control_r2 ≔ 0
 @system_connection_GEV_0_EVs_r1_1 system_GEV_0_EVs_connection_r1 ≔ GEV_0_diameter_min_val
 end

 event GEV_0_environment refines GEV_0_environment
 where
 @grd0_0 GEV_0_mode = 0
 @system_grd_r1_0 system_control_r2 = 0
 then

40

 @act0_0 GEV_0_mode ≔ 1
 @act0_1 GEV_0_control_I :∈ GEV_0_CONTROL
 @act0_2 GEV_0_flow_I :∈ GEV_0_diameter_min_val‥GEV_0_diameter_max_val
 @system_act_r1_0 system_control_r2 ≔ 1
 end

 event system_connection_GEV_0_EVs refines system_connection_GEV_0_EVs
 where
 @system_grd_r1_0 GEV_0_mode = 0
 @system_grd_r2_0 system_control_r2 = 1
 then
 @system_act_r1_0 system_GEV_0_EVs_connection_r1 ≔ GEV_0_flow_O
 @system_act_r2_0 system_control_r2 ≔ 2
 end

 convergent event GenericComponent_0_environment
 where
 @grd0_0 GenericComponent_0_mode = 0
 @system_grd_r2_0 system_control_r2 = 2
 then
 @act0_0 GenericComponent_0_mode ≔ 1
 @act0_1 GenericComponent_0_I ≔ GEV_0_diameter_min_val‥GEV_0_diameter_max_val //
{system_GEV_0_EVs_connection_r1}
 @system_act_r2_0 system_control_r2 ≔ 0
 end
 ...
end

41

Appendix H

General electro-valve connected with the specific electro-valves that refine the
generic component

context Electrovalves_Doors_Gears_C3 extends Electrovalves_Doors_Gears_Generic_C2
sets
 COMPONENTS_R3
constants
 evalve_0_r3 evalve_1_r3 evalve_2_r3 evalve_3_r3
 evalve_0_diameter_min_val
 evalve_0_diameter_max_val
 evalve_0_CONTROL
 evalve_0_rate
 ... // Parameters of other valves
axioms
 // If position of a valve is at minimum, the valve is fully closed (0% open)
 @evalve_0_axm_0 evalve_0_diameter_min_val = 0
 // On contrary, maximum means that the valve is fully open (100% open)
 @evalve_0_axm_1 evalve_0_diameter_max_val = 10
 @evalve_0_axm_2 evalve_0_CONTROL = {−1,0,1} // -1 - closing, 0 - OFF, 1 - opening
 @evalve_0_axm_3 evalve_0_rate = evalve_0_diameter_max_val // The rate showing how fast the valve opens
 // The rate showing how fast the valve opens or closes. If it equals 100, the valve is simply open/close.
 theorem @evalve_0_axm_4 evalve_0_rate ≤ evalve_0_diameter_max_val − evalve_0_diameter_min_val
 @evalve_1_axm_0 evalve_1_diameter_min_val = 0
 @evalve_1_axm_1 evalve_1_diameter_max_val = 10
 @evalve_1_axm_2 evalve_1_CONTROL = {−1,0,1}
 @evalve_1_axm_3 evalve_1_rate = evalve_1_diameter_max_val
 theorem @evalve_1_axm_4 evalve_1_rate ≤ evalve_1_diameter_max_val − evalve_1_diameter_min_val
 @evalve_2_axm_0 evalve_2_diameter_min_val = 0
 @evalve_2_axm_1 evalve_2_diameter_max_val = 10
 @evalve_2_axm_2 evalve_2_CONTROL = {−1,0,1}
 @evalve_2_axm_3 evalve_2_rate = evalve_2_diameter_max_val
 theorem @evalve_2_axm_4 evalve_2_rate ≤ evalve_2_diameter_max_val − evalve_2_diameter_min_val
 @evalve_3_axm_0 evalve_3_diameter_min_val = 0
 @evalve_3_axm_1 evalve_3_diameter_max_val = 10
 @evalve_3_axm_2 evalve_3_CONTROL = {−1,0,1}
 @evalve_3_axm_3 evalve_3_rate = evalve_3_diameter_max_val
 theorem @evalve_3_axm_4 evalve_3_rate ≤ evalve_3_diameter_max_val − evalve_3_diameter_min_val
 // Theorems to support the connectivity between the valves
 theorem @system_thm_r3_0 evalve_0_diameter_max_val = GEV_0_diameter_max_val
 theorem @system_thm_r3_1 evalve_1_diameter_max_val = GEV_0_diameter_max_val
 theorem @system_thm_r3_2 evalve_2_diameter_max_val = GEV_0_diameter_max_val
 theorem @system_thm_r3_3 evalve_3_diameter_max_val = GEV_0_diameter_max_val
 // Definition of the components (i.e., electro-valves) to be introduced
 @system_evalve_set partition(COMPONENTS_R3, {evalve_0_r3}, {evalve_1_r3}, {evalve_2_r3}, {eevalve_3_r3})
end

machine M3_Electrovalves_Doors_Gears refines M2_Electrovalves_Doors_Gears_Generic
sees Electrovalves_Doors_Gears_C3
variables

 GEV_0_control_I
 GEV_0_flow_I

 evalve_1_flow_I
 evalve_1_flow_O

 evalve_3_flow_I
 evalve_3_flow_O

42

 GEV_0_flow_O
 GEV_0_mode
 GEV_0_position
 evalve_0_control_I
 evalve_0_flow_I
 evalve_0_flow_O
 evalve_0_mode
 evalve_0_position
 evalve_1_control_I

 evalve_1_mode
 evalve_1_position
 evalve_2_control_I
 evalve_2_flow_I
 evalve_2_flow_O
 evalve_2_mode
 evalve_2_position
 evalve_3_control_I

 evalve_3_mode
 evalve_3_position
 system_GEV_0_EVs_connection_r3_0
 system_GEV_0_EVs_connection_r3_1
 system_GEV_0_EVs_connection_r3_2
 system_GEV_0_EVs_connection_r3_3
 GenericComponent_0_mode
 system_control_r2
 valves_read_r3

invariants
 // Control for the valve: -1 - close, 0 - OFF, 1 - open
 @evalve_0_inv0_0 evalve_0_control_I ∈ evalve_0_CONTROL
 // The flow of fluid coming into the valve
 @evalve_0_inv0_1 evalve_0_flow_I ∈ evalve_0_diameter_min_val‥evalve_0_diameter_max_val
 // The flow of fluid coming from the valve
 @evalve_0_inv0_2 evalve_0_flow_O ∈ evalve_0_diameter_min_val‥evalve_0_diameter_max_val
 // To obtain a deterministic behaviour of the component, we use an internal variable that specifies the mode
 @evalve_0_inv0_3 evalve_0_mode ∈ 0..1
 // The current state of the valve
 @evalve_0_inv0_4 evalve_0_position ∈ evalve_0_diameter_min_val‥evalve_0_diameter_max_val
 // The output flow cannot be stronger than the input flow
 @evalve_0_inv0_10 evalve_0_mode = 0 ⇒ evalve_0_flow_O ≤ evalve_0_flow_I
 // The output flow cannot be larger than the opening of the valve
 @evalve_0_inv0_11 evalve_0_flow_O ≤ evalve_0_position
 @evalve_1_inv0_0 evalve_1_control_I ∈ evalve_1_CONTROL
 @evalve_1_inv0_1 evalve_1_flow_I ∈ evalve_1_diameter_min_val‥evalve_1_diameter_max_val
 @evalve_1_inv0_2 evalve_1_flow_O ∈ evalve_1_diameter_min_val‥evalve_1_diameter_max_val
 @evalve_1_inv0_3 evalve_1_mode ∈ 0..1
 @evalve_1_inv0_4 evalve_1_position ∈ evalve_1_diameter_min_val‥evalve_1_diameter_max_val
 @evalve_1_inv0_10 evalve_1_mode = 0 ⇒ evalve_1_flow_O ≤ evalve_1_flow_I
 @evalve_1_inv0_11 evalve_1_flow_O ≤ evalve_1_position
 @evalve_2_inv0_0 evalve_2_control_I ∈ evalve_2_CONTROL
 @evalve_2_inv0_1 evalve_2_flow_I ∈ evalve_2_diameter_min_val‥evalve_2_diameter_max_val
 @evalve_2_inv0_2 evalve_2_flow_O ∈ evalve_2_diameter_min_val‥evalve_2_diameter_max_val
 @evalve_2_inv0_3 evalve_2_mode ∈ 0..1
 @evalve_2_inv0_4 evalve_2_position ∈ evalve_2_diameter_min_val‥evalve_2_diameter_max_val
 @evalve_2_inv0_10 evalve_2_mode = 0 ⇒ evalve_2_flow_O ≤ evalve_2_flow_I
 @evalve_2_inv0_11 evalve_2_flow_O ≤ evalve_2_position
 @evalve_3_inv0_0 evalve_3_control_I ∈ evalve_3_CONTROL
 @evalve_3_inv0_1 evalve_3_flow_I ∈ evalve_3_diameter_min_val‥evalve_3_diameter_max_val
 @evalve_3_inv0_2 evalve_3_flow_O ∈ evalve_3_diameter_min_val‥evalve_3_diameter_max_val
 @evalve_3_inv0_3 evalve_3_mode ∈ 0..1
 @evalve_3_inv0_4 evalve_3_position ∈ evalve_3_diameter_min_val‥evalve_3_diameter_max_val
 @evalve_3_inv0_10 evalve_3_mode = 0 ⇒ evalve_3_flow_O ≤ evalve_3_flow_I
 @evalve_3_inv0_11 evalve_3_flow_O ≤ evalve_3_position
 // Gluing invariants
 @system_glueinv_r3_0 GenericComponent_0_I ⊆
 evalve_0_diameter_min_val‥evalve_0_diameter_max_val ∪
 evalve_1_diameter_min_val‥evalve_1_diameter_max_val ∪
 evalve_2_diameter_min_val‥evalve_2_diameter_max_val ∪
 evalve_3_diameter_min_val‥evalve_3_diameter_max_val
 @system_glueinv_r3_1 GenericComponent_0_O ⊆
 evalve_0_diameter_min_val‥evalve_0_diameter_max_val ∪
 evalve_1_diameter_min_val‥evalve_1_diameter_max_val ∪
 evalve_2_diameter_min_val‥evalve_2_diameter_max_val ∪
 evalve_3_diameter_min_val‥evalve_3_diameter_max_val
 @system_glueinv_r3_2 GenericComponent_0_IOrelation ⊆
 (evalve_0_diameter_min_val‥evalve_0_diameter_max_val ∪

43

 evalve_1_diameter_min_val‥evalve_1_diameter_max_val ∪
 evalve_2_diameter_min_val‥evalve_2_diameter_max_val ∪
 evalve_3_diameter_min_val‥evalve_3_diameter_max_val) ×
 (evalve_0_diameter_min_val‥evalve_0_diameter_max_val ∪
 evalve_1_diameter_min_val‥evalve_1_diameter_max_val ∪
 evalve_2_diameter_min_val‥evalve_2_diameter_max_val ∪
 evalve_3_diameter_min_val‥evalve_3_diameter_max_val)
 @system_glueinv_r3_3 system_GEV_0_EVs_connection_r1 = system_GEV_0_EVs_connection_r3_0 ∧
 system_GEV_0_EVs_connection_r1 = system_GEV_0_EVs_connection_r3_1 ∧
 system_GEV_0_EVs_connection_r1 = system_GEV_0_EVs_connection_r3_2 ∧
 system_GEV_0_EVs_connection_r1 = system_GEV_0_EVs_connection_r3_3
 // Types of connectors
 @system_connection_GEV_0_EVs_r3_4 system_GEV_0_EVs_connection_r3_0 ∈

evalve_0_diameter_min_val‥evalve_0_diameter_max_val
 @system_connection_GEV_0_EVs_r3_5 system_GEV_0_EVs_connection_r3_1 ∈

evalve_1_diameter_min_val‥evalve_1_diameter_max_val
 @system_connection_GEV_0_EVs_r3_6 system_GEV_0_EVs_connection_r3_2 ∈

evalve_2_diameter_min_val‥evalve_2_diameter_max_val
 @system_connection_GEV_0_EVs_r3_7 system_GEV_0_EVs_connection_r3_3 ∈

evalve_3_diameter_min_val‥evalve_3_diameter_max_val
 // Restricting the number of reads per iteration
 @system_valves_worked_r3_8 valves_read_r3 ∈ COMPONENTS_R3 → 0‥1
 // “Gluing” the old and the new data
 @system_inv_r3_9 system_control_r2 = 0 ∧ GenericComponent_0_mode = 1 ⇒ valves_read_r3[COMPONENTS_R3] = {0}

variant card(COMPONENTS_R3) − valves_read_r3(evalve_0_r3) − valves_read_r3(evalve_1_r3) –

valves_read_r3(evalve_2_r3) − valves_read_r3(eevalve_3_r3)
events
 event INITIALISATION
 with
 @GenericComponent_0_I' GenericComponent_0_I' = evalve_0_diameter_min_val‥evalve_0_diameter_max_val ∪
 evalve_1_diameter_min_val‥evalve_1_diameter_max_val ∪
 evalve_2_diameter_min_val‥evalve_2_diameter_max_val ∪
 evalve_3_diameter_min_val‥evalve_3_diameter_max_val
 @GenericComponent_0_O' GenericComponent_0_O' = evalve_0_diameter_min_val‥evalve_0_diameter_max_val ∪
 evalve_1_diameter_min_val‥evalve_1_diameter_max_val ∪
 evalve_2_diameter_min_val‥evalve_2_diameter_max_val ∪
 evalve_3_diameter_min_val‥evalve_3_diameter_max_val
 @GenericComponent_0_IOrelation' GenericComponent_0_IOrelation' =
 (evalve_0_diameter_min_val‥evalve_0_diameter_max_val ∪
 evalve_1_diameter_min_val‥evalve_1_diameter_max_val ∪
 evalve_2_diameter_min_val‥evalve_2_diameter_max_val ∪
 evalve_3_diameter_min_val‥evalve_3_diameter_max_val)×
 (evalve_0_diameter_min_val‥evalve_0_diameter_max_val ∪
 evalve_1_diameter_min_val‥evalve_1_diameter_max_val ∪
 evalve_2_diameter_min_val‥evalve_2_diameter_max_val ∪
 evalve_3_diameter_min_val‥evalve_3_diameter_max_val)
 then
 @GEV_0_act0_0 GEV_0_control_I ≔ 0
 @GEV_0_act0_1 GEV_0_flow_I :∈ GEV_0_diameter_min_val‥GEV_0_diameter_max_val
 @GEV_0_act0_2 GEV_0_flow_O ≔ GEV_0_diameter_min_val
 @GEV_0_act0_3 GEV_0_mode ≔ 0
 @GEV_0_act0_4 GEV_0_position ≔ GEV_0_diameter_min_val
 @system_control_r2_0 system_control_r2 ≔ 0
 @GenericComponent_0_act0_0 GenericComponent_0_mode ≔ 0
 @evalve_0_act0_0 evalve_0_control_I ≔ 0
 @evalve_0_act0_1 evalve_0_flow_I :∈ evalve_0_diameter_min_val‥evalve_0_diameter_max_val
 @evalve_0_act0_2 evalve_0_flow_O ≔ evalve_0_diameter_min_val

44

 @evalve_0_act0_3 evalve_0_mode ≔ 0
 @evalve_0_act0_4 evalve_0_position ≔ evalve_0_diameter_min_val
 @evalve_1_act0_0 evalve_1_control_I ≔ 0
 @evalve_1_act0_1 evalve_1_flow_I :∈ evalve_1_diameter_min_val‥evalve_1_diameter_max_val
 @evalve_1_act0_2 evalve_1_flow_O ≔ evalve_1_diameter_min_val
 @evalve_1_act0_3 evalve_1_mode ≔ 0
 @evalve_1_act0_4 evalve_1_position ≔ evalve_1_diameter_min_val
 @evalve_2_act0_0 evalve_2_control_I ≔ 0
 @evalve_2_act0_1 evalve_2_flow_I :∈ evalve_2_diameter_min_val‥evalve_2_diameter_max_val
 @evalve_2_act0_2 evalve_2_flow_O ≔ evalve_2_diameter_min_val
 @evalve_2_act0_3 evalve_2_mode ≔ 0
 @evalve_2_act0_4 evalve_2_position ≔ evalve_2_diameter_min_val
 @evalve_3_act0_0 evalve_3_control_I ≔ 0
 @evalve_3_act0_1 evalve_3_flow_I :∈ evalve_3_diameter_min_val‥evalve_3_diameter_max_val
 @evalve_3_act0_2 evalve_3_flow_O ≔ evalve_3_diameter_min_val
 @evalve_3_act0_3 evalve_3_mode ≔ 0
 @evalve_3_act0_4 evalve_3_position ≔ evalve_3_diameter_min_val
 @system_act_r3_0 system_GEV_0_EVs_connection_r3_0 ≔ evalve_0_diameter_min_val
 @system_act_r3_1 system_GEV_0_EVs_connection_r3_1 ≔ evalve_1_diameter_min_val
 @system_act_r3_2 system_GEV_0_EVs_connection_r3_2 ≔ evalve_2_diameter_min_val
 @system_act_r3_3 system_GEV_0_EVs_connection_r3_3 ≔ evalve_3_diameter_min_val
 @system_valves_worked_r3_4 valves_read_r3 ≔ COMPONENTS_R3 × {0}
 end

 event GEV_0_environment extends GEV_0_environment
 end

 event system_connection_GEV_0_EVs refines system_connection_GEV_0_EVs
 where
 @system_grd_r1_0 GEV_0_mode = 0
 @system_grd_r3_0 system_control_r2 = 1
 then
 @system_act_r3_0 system_GEV_0_EVs_connection_r3_0 ≔ GEV_0_flow_O
 @system_act_r3_1 system_GEV_0_EVs_connection_r3_1 ≔ GEV_0_flow_O
 @system_act_r3_2 system_GEV_0_EVs_connection_r3_2 ≔ GEV_0_flow_O
 @system_act_r3_3 system_GEV_0_EVs_connection_r3_3 ≔ GEV_0_flow_O
 @system_act_r3_4 system_control_r2 ≔ 2
 end

 convergent event evalve_0_environment
 where
 @grd0_0 evalve_0_mode = 0
 @system_grd_r3_0 system_control_r2 = 2
 @system_evalve_0_worked_grd valves_read_r3(evalve_0_r3) = 0
 then
 @act0_0 evalve_0_mode ≔ 1
 @act0_1 evalve_0_control_I :∈ evalve_0_CONTROL
 @act0_2 evalve_0_flow_I ≔ system_GEV_0_EVs_connection_r3_0
 @system_evalve_0_worked_act valves_read_r3(evalve_0_r3) ≔ 1
 end

 convergent event evalve_1_environment
 where
 @grd0_0 evalve_1_mode = 0
 @system_grd_r3_0 system_control_r2 = 2
 @system_evalve_1_worked_grd valves_read_r3(evalve_1_r3) = 0
 then
 @act0_0 evalve_1_mode ≔ 1

45

 @act0_1 evalve_1_control_I :∈ evalve_1_CONTROL
 @act0_2 evalve_1_flow_I ≔ system_GEV_0_EVs_connection_r3_1
 @system_evalve_1_worked_act valves_read_r3(evalve_1_r3) ≔ 1
 end

 convergent event evalve_2_environment
 where
 @grd0_0 evalve_2_mode = 0
 @system_grd_r3_0 system_control_r2 = 2
 @system_evalve_0_worked_grd valves_read_r3(evalve_2_r3) = 0
 then
 @act0_0 evalve_2_mode ≔ 1
 @act0_1 evalve_2_control_I :∈ evalve_2_CONTROL
 @act0_2 evalve_2_flow_I ≔ system_GEV_0_EVs_connection_r3_2
 @system_evalve_1_worked_act valves_read_r3(evalve_2_r3) ≔ 1
 end

 convergent event evalve_3_environment
 where
 @grd0_0 evalve_3_mode = 0
 @system_grd_r3_0 system_control_r2 = 2
 @system_evalve_0_worked_grd valves_read_r3(evalve_3_r3) = 0
 then
 @act0_0 evalve_3_mode ≔ 1
 @act0_1 evalve_3_control_I :∈ evalve_3_CONTROL
 @act0_2 evalve_3_flow_I ≔ system_GEV_0_EVs_connection_r3_3
 @system_evalve_1_worked_act valves_read_r3(evalve_3_r3) ≔ 1
 end

 event GenericComponent_0_environment refines GenericComponent_0_environment
 where
 @grd0_0 GenericComponent_0_mode = 0
 @system_grd_r2_0 system_control_r2 = 2
 @system_grd_r3_0 valves_read_r3[COMPONENTS_R3] = {1}
 then
 @act0_0 GenericComponent_0_mode ≔ 1
 @system_act_r2_0 system_control_r2 ≔ 0
 @system_act_r3_0 valves_read_r3 ≔ COMPONENTS_R3 × {0}
 end
 ...
end

46

Appendix I

General-electro valve connected to the doors/gears electro-valves with connections
for the cylinders of doors

context EVs_Doors_Connection_C4 extends Electrovalves_Doors_Gears_C3
constants
 SYSTEM_CONTROL_R4_CAP
 SYSTEM_CONTROL_R4_HEAD
axioms
 @system_control_axm_r4_0 SYSTEM_CONTROL_R4_CAP = {0,1,2}
 @system_control_axm_r4_1 SYSTEM_CONTROL_R4_HEAD = {0,1,2}
end

machine EVs_Doors_Connection_M4 refines Electrovalves_Doors_Gears_M3 sees EVs_Doors_Connection_C4
variables

 GEV_0_control_I
 GEV_0_flow_I
 GEV_0_flow_O
 GEV_0_mode
 GEV_0_position
 valve_0_control_I
 valve_0_flow_I
 valve_0_flow_O
 valve_0_mode
 valve_0_position
 valve_1_control_I
 valve_1_flow_I

valve_1_flow_O
valve_1_mode
valve_1_position
valve_2_control_I
valve_2_flow_I
valve_2_flow_O
valve_2_mode
valve_2_position
valve_3_control_I
valve_3_flow_I
valve_3_flow_O
valve_3_mode

valve_3_position
system_GEV_0_EVs_connection_r3_0
system_GEV_0_EVs_connection_r3_1
system_GEV_0_EVs_connection_r3_2
system_GEV_0_EVs_connection_r3_3
GenericComponent_0_mode
system_control_r2
system_connection_EVs_Doors_r4_cap
system_connection_EVs_Doors_r4_head
system_control_r4_cap
system_control_r4_head
valves_read_r3

invariants
 // Control variables
 @system_control_inv_r4_0 system_control_r4_cap ∈ SYSTEM_CONTROL_R4_CAP
 @system_control_inv_r4_1 system_control_r4_head ∈ SYSTEM_CONTROL_R4_HEAD
 // Connection variables
 @system_connection_inv_EVs_Doors_r4_2 system_connection_EVs_Doors_r4_cap ∈

valve_0_diameter_min_val‥valve_0_diameter_max_val
 @system_connection_inv_EVs_Doors_r4_3 system_connection_EVs_Doors_r4_head ∈

valve_1_diameter_min_val‥valve_1_diameter_max_val
variant system_control_r4_cap + system_control_r4_head

events
 event INITIALISATION extends INITIALISATION
 then
 @system_act_r4_0 system_control_r4_cap ≔ 0
 @system_act_r4_1 system_control_r4_head ≔ 0
 @system_connection_act_r4_2 system_connection_EVs_Doors_r4_cap ≔ valve_0_diameter_min_val
 @system_connection_act_r4_3 system_connection_EVs_Doors_r4_head ≔ valve_1_diameter_min_val
 end

 event GEV_0_environment extends GEV_0_environment
 end

 event system_connection_GEV_0_EVs extends system_connection_GEV_0_EVs
 end

47

 event valve_0_environment extends valve_0_environment
 where
 @system_control_grd_r4_0 system_control_r4_cap = 0
 then
 @system_control_act_r4_0 system_control_r4_cap ≔ 1
 end

 event valve_1_environment extends valve_1_environment
 where
 @system_control_grd_r4_0 system_control_r4_head = 0
 then
 @system_control_act_r4_0 system_control_r4_head ≔ 1
 end

 event valve_2_environment extends valve_2_environment
 end

 event valve_3_environment extends valve_3_environment
 end

 event GenericComponent_0_environement extends GenericComponent_0_environement
 end

 convergent event system_connection_EVs_Doors_cap
 where
 @system_grd_r4_0 valve_0_mode = 0
 @system_grd_r4_1 system_control_r4_cap = 1
 then
 @system_act_r4_0 system_control_r4_cap ≔ 0
 @system_connection_act_r4_1 system_connection_EVs_Doors_r4_cap ≔ valve_0_flow_O
 end

 convergent event system_connection_EVs_Doors_head
 where
 @system_grd_r4_0 valve_1_mode = 0
 @system_grd_r4_1 system_control_r4_head = 1
 then
 @system_act_r4_0 system_control_r4_head ≔ 0
 @system_connection_act_r4_1 system_connection_EVs_Doors_r4_head ≔ valve_1_flow_O
 end
...
end

48

Appendix J

General-electro valve connected to the doors/gears electro-valves with connections
for and the cylinders for doors

context Cylinders_Doors_C5 extends EVs_Doors_Connection_C4
sets COMPONENTS_R5
constants

 cylinder_0_input_diameter_min_val
 cylinder_0_input_diameter_max_val
 cylinder_0_cap_pos
 cylinder_0_head_pos
 cylinder_1_input_diameter_min_val
 cylinder_1_input_diameter_max_val

 cylinder_1_cap_pos
 cylinder_1_head_pos
 cylinder_2_input_diameter_min_val
 cylinder_2_input_diameter_max_val
 cylinder_2_cap_pos
 cylinder_2_head_pos

 SYSTEM_CONTROL_R5_CAP
 SYSTEM_CONTROL_R5_HEAD
 cylinder_0_r5
 cylinder_1_r5
 cylinder_2_r5

axioms
 // 0 stands for no liquid flowing into the cylinder (0% open)
 @cylinder_0_axm_0 cylinder_0_input_diameter_min_val = 0
 // 100 stands for maximum velocity the piston can move inside the cylinder (100% open)
 @cylinder_0_axm_1 cylinder_0_input_diameter_max_val = 10
 @cylinder_0_axm_2 cylinder_0_cap_pos = 0
 // We do not provide any value to define the length of the cylinder, but it has to be done according to the rules
 @cylinder_0_axm_3 cylinder_0_head_pos ∈ ℕ1
 @cylinder_1_axm_0 cylinder_1_input_diameter_min_val = 0
 @cylinder_1_axm_1 cylinder_1_input_diameter_max_val = 10
 @cylinder_1_axm_2 cylinder_1_cap_pos = 0
 @cylinder_1_axm_3 cylinder_1_head_pos ∈ ℕ1
 @cylinder_2_axm_0 cylinder_2_input_diameter_min_val = 0
 @cylinder_2_axm_1 cylinder_2_input_diameter_max_val = 10
 @cylinder_2_axm_2 cylinder_2_cap_pos = 0
 @cylinder_2_axm_3 cylinder_2_head_pos ∈ ℕ1
 // Theorems to support connection conditions
 theorem @system_axm_r5_0 cylinder_0_input_diameter_max_val = valve_0_diameter_max_val
 theorem @system_axm_r5_1 cylinder_1_input_diameter_max_val = valve_0_diameter_max_val
 theorem @system_axm_r5_2 cylinder_2_input_diameter_max_val = valve_0_diameter_max_val
 // Control values
 @system_axm_r5_3 SYSTEM_CONTROL_R5_CAP = {0,1,2}
 @system_axm_r5_4 SYSTEM_CONTROL_R5_HEAD = {0,1,2}
 // Definition of the cylinders to be introduced
 @system_axm_r5_5 partition(COMPONENTS_R5, {cylinder_0_r5}, {cylinder_1_r5}, {cylinder_2_r5})
end

machine Cylinders_Doors_M5 refines EVs_Doors_Connection_M4 sees Cylinders_Doors_C5
variables

 GEV_0_control_I
 GEV_0_flow_I
 GEV_0_flow_O
 GEV_0_mode
 GEV_0_position
 valve_0_control_I
 valve_0_flow_I
 valve_0_flow_O
 valve_0_mode
valve_0_position

system_GEV_0_EVs_connection_r3_2
system_GEV_0_EVs_connection_r3_3
GenericComponent_0_mode
system_control_r2
valves_read_r3
cylinder_0_piston_position_O
cylinder_0_flow_cap_I
cylinder_0_flow_head_I
cylinder_0_mode
cylinder_1_piston_position_O

49

valve_1_control_I
valve_1_flow_I
valve_1_flow_O
valve_1_mode
valve_1_position
valve_2_control_I
valve_2_flow_I
valve_2_flow_O
 valve_2_mode
 valve_2_position
 valve_3_control_I
 valve_3_flow_I
 valve_3_flow_O
 valve_3_mode
 valve_3_position
 system_GEV_0_EVs_connection_r3_0
 system_GEV_0_EVs_connection_r3_1

cylinder_1_flow_cap_I
cylinder_1_flow_head_I
cylinder_1_mode
cylinder_2_piston_position_O
cylinder_2_flow_cap_I
cylinder_2_flow_head_I
cylinder_2_mode
system_connection_EVs_Doors_r6_cap_0
system_connection_EVs_Doors_r6_cap_1
system_connection_EVs_Doors_r6_cap_2
system_connection_EVs_Doors_r6_head_0
system_connection_EVs_Doors_r6_head_1
system_connection_EVs_Doors_r6_head_2
system_control_r5_cap
system_control_r5_head
cylinders_read_r5

invariants
 // Current position of the piston in the cylinder
 @cylinder_0_inv0_0 cylinder_0_piston_position_O ∈ cylinder_0_cap_pos‥cylinder_0_head_pos
 // Input to move the piston to the right
 @cylinder_0_inv0_1 cylinder_0_flow_cap_I ∈ cylinder_0_input_diameter_min_val‥cylinder_0_input_diameter_max_val
 // Input to move the piston to the left
 @cylinder_0_inv0_2 cylinder_0_flow_head_I ∈ cylinder_0_input_diameter_min_val‥cylinder_0_input_diameter_max_val
 @cylinder_0_inv0_3 cylinder_0_mode ∈ 0..1
 @cylinder_1_inv0_0 cylinder_1_piston_position_O ∈ cylinder_1_cap_pos‥cylinder_1_head_pos
 @cylinder_1_inv0_1 cylinder_1_flow_cap_I ∈ cylinder_1_input_diameter_min_val‥cylinder_1_input_diameter_max_val
 @cylinder_1_inv0_2 cylinder_1_flow_head_I ∈ cylinder_1_input_diameter_min_val‥cylinder_1_input_diameter_max_val
 @cylinder_1_inv0_3 cylinder_1_mode ∈ 0..1
 @cylinder_2_inv0_0 cylinder_2_piston_position_O ∈ cylinder_2_cap_pos‥cylinder_2_head_pos
 @cylinder_2_inv0_1 cylinder_2_flow_cap_I ∈ cylinder_2_input_diameter_min_val‥cylinder_2_input_diameter_max_val
 @cylinder_2_inv0_2 cylinder_2_flow_head_I ∈ cylinder_2_input_diameter_min_val‥cylinder_2_input_diameter_max_val
 @cylinder_2_inv0_3 cylinder_2_mode ∈ 0..1
 // Connectors
 @system_connection_EVs_Doors_r5_cap_0 system_connection_EVs_Doors_r6_cap_0 ∈

cylinder_0_input_diameter_min_val‥cylinder_0_input_diameter_max_val
 @system_connection_EVs_Doors_r5_cap_1 system_connection_EVs_Doors_r6_cap_1 ∈

cylinder_1_input_diameter_min_val‥cylinder_1_input_diameter_max_val
 @system_connection_EVs_Doors_r5_cap_2 system_connection_EVs_Doors_r6_cap_2 ∈

cylinder_2_input_diameter_min_val‥cylinder_2_input_diameter_max_val
 @system_connection_EVs_Doors_r5_head_3 system_connection_EVs_Doors_r6_head_0 ∈

cylinder_0_input_diameter_min_val‥cylinder_0_input_diameter_max_val
 @system_connection_EVs_Doors_r5_head_4 system_connection_EVs_Doors_r6_head_1 ∈

cylinder_1_input_diameter_min_val‥cylinder_1_input_diameter_max_val
 @system_connection_EVs_Doors_r5_head_5 system_connection_EVs_Doors_r6_head_2 ∈

cylinder_2_input_diameter_min_val‥cylinder_2_input_diameter_max_val
 // Gluing invariants
 @system_glueinv_r5_6 system_connection_EVs_Doors_r4_cap = system_connection_EVs_Doors_r6_cap_0 ∧
 system_connection_EVs_Doors_r4_cap = system_connection_EVs_Doors_r6_cap_1 ∧
 system_connection_EVs_Doors_r4_cap = system_connection_EVs_Doors_r6_cap_2
 @system_glueinv_r5_7 system_connection_EVs_Doors_r4_head = system_connection_EVs_Doors_r6_head_0 ∧
 system_connection_EVs_Doors_r4_head = system_connection_EVs_Doors_r6_head_1 ∧
 system_connection_EVs_Doors_r4_head = system_connection_EVs_Doors_r6_head_2
 @system_glueinv_r5_8 system_control_r4_cap = 0 ⇔ system_control_r5_cap = 0 ∨ system_control_r5_cap = 2
 @system_glueinv_r5_9 system_control_r4_cap = 1 ⇔ system_control_r5_cap = 1
 @system_glueinv_r5_10 system_control_r4_head = 0 ⇔ system_control_r5_head = 0 ∨ system_control_r5_head = 2
 @system_glueinv_r5_11 system_control_r4_head = 1 ⇔ system_control_r5_head = 1
 @system_cylinders_read_r5_12 cylinders_read_r5 ∈ COMPONENTS_R5 → 0‥1

50

variant card(COMPONENTS_R5) − cylinders_read_r5(cylinder_0_r5) − cylinders_read_r5(cylinder_1_r5) –
cylinders_read_r5(cylinder_2_r5)

events
 event INITIALISATION then
 @GEV_0_act0_0 GEV_0_control_I ≔ 0
 @GEV_0_act0_1 GEV_0_flow_I :∈ GEV_0_diameter_min_val‥GEV_0_diameter_max_val
 @GEV_0_act0_2 GEV_0_flow_O ≔ GEV_0_diameter_min_val
 @GEV_0_act0_3 GEV_0_mode ≔ 0
 @GEV_0_act0_4 GEV_0_position ≔ GEV_0_diameter_min_val
 @GenericComponent_act0_0 GenericComponent_0_mode ≔ 0
 @system_act_r2_0 system_control_r2 ≔ 0
 @valve_0_act0_0 valve_0_control_I ≔ 0
 @valve_0_act0_1 valve_0_flow_I :∈ valve_0_diameter_min_val‥valve_0_diameter_max_val
 @valve_0_act0_2 valve_0_flow_O ≔ valve_0_diameter_min_val
 @valve_0_act0_3 valve_0_mode ≔ 0
 @valve_0_act0_4 valve_0_position ≔ valve_0_diameter_min_val
 @valve_1_act0_0 valve_1_control_I ≔ 0
 @valve_1_act0_1 valve_1_flow_I :∈ valve_1_diameter_min_val‥valve_1_diameter_max_val
 @valve_1_act0_2 valve_1_flow_O ≔ valve_1_diameter_min_val
 @valve_1_act0_3 valve_1_mode ≔ 0
 @valve_1_act0_4 valve_1_position ≔ valve_1_diameter_min_val
 @valve_2_act0_0 valve_2_control_I ≔ 0
 @valve_2_act0_1 valve_2_flow_I :∈ valve_2_diameter_min_val‥valve_2_diameter_max_val
 @valve_2_act0_2 valve_2_flow_O ≔ valve_2_diameter_min_val
 @valve_2_act0_3 valve_2_mode ≔ 0
 @valve_2_act0_4 valve_2_position ≔ valve_2_diameter_min_val
 @valve_3_act0_0 valve_3_control_I ≔ 0
 @valve_3_act0_1 valve_3_flow_I :∈ valve_3_diameter_min_val‥valve_3_diameter_max_val
 @valve_3_act0_2 valve_3_flow_O ≔ valve_3_diameter_min_val
 @valve_3_act0_3 valve_3_mode ≔ 0
 @valve_3_act0_4 valve_3_position ≔ valve_3_diameter_min_val
 @system_act_r3_0 system_GEV_0_EVs_connection_r3_0 ≔ valve_0_diameter_min_val
 @system_act_r3_1 system_GEV_0_EVs_connection_r3_1 ≔ valve_1_diameter_min_val
 @system_act_r3_2 system_GEV_0_EVs_connection_r3_2 ≔ valve_2_diameter_min_val
 @system_act_r3_3 system_GEV_0_EVs_connection_r3_3 ≔ valve_3_diameter_min_val
 @system_valves_worked_r3_4 valves_read_r3 ≔ EVALVES × {0}
 @cylinder_0_act0_0 cylinder_0_piston_position_O :∈ cylinder_0_cap_pos‥cylinder_0_head_pos
 @cylinder_0_act0_1 cylinder_0_flow_cap_I ≔ cylinder_0_input_diameter_min_val
 @cylinder_0_act0_2 cylinder_0_flow_head_I ≔ cylinder_0_input_diameter_min_val
 @cylinder_0_act0_3 cylinder_0_mode ≔ 0
 @cylinder_1_act0_0 cylinder_1_piston_position_O :∈ cylinder_1_cap_pos‥cylinder_1_head_pos
 @cylinder_1_act0_1 cylinder_1_flow_cap_I ≔ cylinder_1_input_diameter_min_val
 @cylinder_1_act0_2 cylinder_1_flow_head_I ≔ cylinder_1_input_diameter_min_val
 @cylinder_1_act0_3 cylinder_1_mode ≔ 0
 @cylinder_2_act0_0 cylinder_2_piston_position_O :∈ cylinder_2_cap_pos‥cylinder_2_head_pos
 @cylinder_2_act0_1 cylinder_2_flow_cap_I ≔ cylinder_2_input_diameter_min_val
 @cylinder_2_act0_2 cylinder_2_flow_head_I ≔ cylinder_2_input_diameter_min_val
 @cylinder_2_act0_3 cylinder_2_mode ≔ 0
 @system_act_r5_0 system_connection_EVs_Doors_r6_cap_0 ≔ cylinder_0_input_diameter_min_val
 @system_act_r5_1 system_connection_EVs_Doors_r6_cap_1 ≔ cylinder_1_input_diameter_min_val
 @system_act_r5_2 system_connection_EVs_Doors_r6_cap_2 ≔ cylinder_2_input_diameter_min_val
 @system_act_r5_3 system_connection_EVs_Doors_r6_head_0 ≔ cylinder_0_input_diameter_min_val
 @system_act_r5_4 system_connection_EVs_Doors_r6_head_1 ≔ cylinder_1_input_diameter_min_val
 @system_act_r5_5 system_connection_EVs_Doors_r6_head_2 ≔ cylinder_2_input_diameter_min_val
 @system_act_r5_6 cylinders_read_r5 ≔ COMPONENTS_R5 × {0}
 @system_act_r5_7 system_control_r5_cap ≔ 0
 @system_act_r5_8 system_control_r5_head ≔ 0
 end

51

 event GEV_0_environment extends GEV_0_environment
 end

 event system_connection_GEV_0_EVs extends system_connection_GEV_0_EVs
 end

 event valve_0_environment refines valve_0_environment
 where
 @grd0_0 valve_0_mode = 0
 @system_grd_r3_0 system_control_r2 = 2
 @system_valve_0_worked_grd valves_read_r3(ev0_r3) = 0
 @system_control_grd_r5_0 system_control_r5_cap = 0
 then
 @act0_0 valve_0_mode ≔ 1
 @act0_1 valve_0_control_I :∈ valve_0_CONTROL
 @act0_2 valve_0_flow_I ≔ system_GEV_0_EVs_connection_r3_0
 @system_valves_read_r4_0 valves_read_r3(ev0_r3) ≔ 1
 @system_act_r5_0 system_control_r5_cap ≔ 1
 end

 event valve_1_environment refines valve_1_environment
 where
 @grd0_1 valve_1_mode = 0
 @system_grd_r3_0 system_control_r2 = 2
 @system_valve_1_worked_grd valves_read_r3(ev1_r3) = 0
 @system_control_grd_r5_0 system_control_r5_head = 0
 then
 @act0_0 valve_1_mode ≔ 1
 @act0_1 valve_1_control_I :∈ valve_1_CONTROL
 @act0_2 valve_1_flow_I ≔ system_GEV_0_EVs_connection_r3_1
 @system_valves_read_r4_0 valves_read_r3(ev1_r3) ≔ 1
 @system_act_r5_0 system_control_r5_head ≔ 1
 end

 event valve_2_environment extends valve_2_environment
 end

 event valve_3_environment extends valve_3_environment
 end

 event GenericComponent_0_environement extends GenericComponent_0_environement
 end

 event system_connection_EVs_Doors_cap refines system_connection_EVs_Doors_cap
 where
 @system_grd_r4_0 valve_0_mode = 0
 @system_grd_r5_0 system_control_r5_cap = 1
 then
 @system_act_r5_0 system_control_r5_cap ≔ 2
 @system_act_r5_1 cylinders_read_r5 ≔ COMPONENTS_R5 × {0}
 @system_connection_act_r5_2 system_connection_EVs_Doors_r6_cap_0 ≔ valve_0_flow_O
 @system_connection_act_r5_3 system_connection_EVs_Doors_r6_cap_1 ≔ valve_0_flow_O
 @system_connection_act_r5_4 system_connection_EVs_Doors_r6_cap_2 ≔ valve_0_flow_O
 end

 event system_connection_EVs_Doors_head refines system_connection_EVs_Doors_head
 where
 @system_grd_r4_0 valve_1_mode = 0

52

 @system_grd_r5_0 system_control_r5_head = 1
 then
 @system_act_r5_0 system_control_r5_head ≔ 2
 @system_act_r5_1 cylinders_read_r5 ≔ COMPONENTS_R5 × {0}
 @system_connection_act_r5_2 system_connection_EVs_Doors_r6_head_0 ≔ valve_1_flow_O
 @system_connection_act_r5_3 system_connection_EVs_Doors_r6_head_1 ≔ valve_1_flow_O
 @system_connection_act_r5_4 system_connection_EVs_Doors_r6_head_2 ≔ valve_1_flow_O
 end

 convergent event cylinder_0_environment
 any system_control_cap_new_r5 system_control_head_new_r5
 where
 @grd0_0 cylinder_0_mode = 0
 @system_control_grd_r5_0 system_control_r5_cap = 2
 @system_control_grd_r5_1 system_control_r5_head = 2
 @system_grd_r5_2 cylinders_read_r5[COMPONENTS_R5∖{cylinder_0_r5}] = {1} ⇒

system_control_cap_new_r5 = 0 ∧ system_control_head_new_r5 = 0
 @system_grd_r5_3 ¬cylinders_read_r5[COMPONENTS_R5∖{cylinder_0_r5}] = {1} ⇒

system_control_cap_new_r5 = 2 ∧ system_control_head_new_r5 = 2
 @system_grd_r5_4 cylinders_read_r5(cylinder_0_r5) = 0
 then
 @act0_0 cylinder_0_mode ≔ 1
 @act0_1 cylinder_0_flow_cap_I ≔ system_connection_EVs_Doors_r6_cap_0
 @act0_2 cylinder_0_flow_head_I ≔ system_connection_EVs_Doors_r6_head_0
 @system_act_r5_0 system_control_r5_cap ≔ system_control_cap_new_r5
 @system_act_r5_1 system_control_r5_head ≔ system_control_head_new_r5
 @system_act_r5_2 cylinders_read_r5(cylinder_0_r5) ≔ 1
 end

 convergent event cylinder_1_environment
 any system_control_cap_new_r5 system_control_head_new_r5
 where
 @grd0_0 cylinder_1_mode = 0
 @system_control_grd_r5_0 system_control_r5_cap = 2
 @system_control_grd_r5_1 system_control_r5_head = 2
 @system_grd_r5_2 cylinders_read_r5[COMPONENTS_R5∖{cylinder_1_r5}] = {1} ⇒

system_control_cap_new_r5 = 0 ∧ system_control_head_new_r5 = 0
 @system_grd_r5_3 ¬cylinders_read_r5[COMPONENTS_R5∖{cylinder_1_r5}] = {1} ⇒

system_control_cap_new_r5 = 2 ∧ system_control_head_new_r5 = 2
 @system_grd_r5_4 cylinders_read_r5(cylinder_1_r5) = 0
 then
 @act0_0 cylinder_1_mode ≔ 1
 @act0_1 cylinder_1_flow_cap_I ≔ system_connection_EVs_Doors_r6_cap_1
 @act0_2 cylinder_1_flow_head_I ≔ system_connection_EVs_Doors_r6_head_1
 @system_act_r5_0 system_control_r5_cap ≔ system_control_cap_new_r5
 @system_act_r5_1 system_control_r5_head ≔ system_control_head_new_r5
 @system_act_r5_2 cylinders_read_r5(cylinder_1_r5) ≔ 1
 end

 convergent event cylinder_2_environment
 any system_control_cap_new_r5 system_control_head_new_r5
 where
 @grd0_0 cylinder_2_mode = 0
 @system_control_grd_r5_0 system_control_r5_cap = 2
 @system_control_grd_r5_1 system_control_r5_head = 2
 @system_grd_r5_2 cylinders_read_r5[COMPONENTS_R5∖{cylinder_2_r5}] = {1} ⇒

system_control_cap_new_r5 = 0 ∧ system_control_head_new_r5 = 0
 @system_grd_r5_3 ¬cylinders_read_r5[COMPONENTS_R5∖{cylinder_2_r5}] = {1} ⇒

53

system_control_cap_new_r5 = 2 ∧ system_control_head_new_r5 = 2
 @system_grd_r5_4 cylinders_read_r5(cylinder_2_r5) = 0
 then
 @act0_0 cylinder_2_mode ≔ 1
 @act0_1 cylinder_2_flow_cap_I ≔ system_connection_EVs_Doors_r6_cap_2
 @act0_2 cylinder_2_flow_head_I ≔ system_connection_EVs_Doors_r6_head_2
 @system_act_r5_0 system_control_r5_cap ≔ system_control_cap_new_r5
 @system_act_r5_1 system_control_r5_head ≔ system_control_head_new_r5
 @system_act_r5_2 cylinders_read_r5(cylinder_2_r5) ≔ 1
 end
...
end

54

ISBN 978-952-12-3311-1
ISSN 1239-1891

Joukahaisenkatu 3-5 A, 20520, Turku, Finalnd | www.tucs.fi

University of Turku
Faculty of Mathematics and Natural Sciences
• Department of Information Technology
• Department of Mathematics

Turku School of Economics
• Institute of Information Systems Sciences

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

	1. Introduction
	2. Preliminaries: Event-B
	2.1. Event-B Model Structure
	2.2. Event-B Proof Mechanism
	2.3. Refinement in Event-B

	3. Composition of Components
	3.1. Refinement Pattern for Introducing a Connector
	3.2. Refinement Pattern for Introducing a Destination (Generic) Component
	3.3. Refinement Pattern: Generic Component into a Set of Specific Ones
	3.4. Refinement Pattern for the Introduction of Several Parallel Components without Introducing the Generic One
	3.5. Summary

	4. Case study
	4.1. Abstract specification: instantiation of the general electro-valve
	4.2. First refinement: adding a connection to electro-valves controlling doors and gears
	4.3. Third refinement: refinement of the generic component into valves
	4.4. Fourth refinement: introduction of connections between the electro-valves and cylinders of doors
	4.5. Fifth refinement: introduction of cylinders without generic component
	4.6. Case study summary

	5. Related Work
	6. Conclusion and future work
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	Appendix I
	Appendix J

