
Inna Pereverzeva | Elena Troubitsyna | Linas Laibinis

Rigorous Development of a Safe
Multi-Agent System

TUCS Technical Report
No 1004, April 2011

Rigorous Development of a Safe
Multi-Agent System

Inna Pereverzeva
Åbo Akademi University, Department of Computer Science
inna.pereverzeva@abo.fi

Elena Troubitsyna
Åbo Akademi University, Department of Computer Science
elena.troubitsyna@abo.fi

Linas Laibinis
Åbo Akademi University, Department of Computer Science
linas.laibinis@abo.fi

TUCS Technical Report

No 1004, April 2011

Abstract

It is widely recognised that system complexity poses the major threat to depend-
ability. Yet, such complex distributed systems as multi-agent systems are increas-
ingly used in critical applications. To ensure their dependability, we need pow-
erful development techniques that would allow us to master complexity inherent
to multi-agent systems and formally verify correctness of agent interactions while
performing safety-critical collaborative activities. In this paper we propose a rig-
orous approach to the development of a critical multi-agent system by refinement
in Event-B. Our approach offers the developers a scalable method for modelling
and verification of complex agent interactions and formal verification of their cor-
rectness and safety. We present a formal development of a hospital multi-agent
system and show that refinement in Event-B facilitates development of complex
dependable systems.

Keywords: Event-B, refinement, formal modelling, multi-agent systems, safety

TUCS Laboratory
Distributed Systems Laboratory

1 Introduction

Multi-agent systems (MAS) are complex decentralised distributed systems com-
posed of agents asynchronously communicating with each other. Agents are com-
puter programs acting autonomously on behalf of a person or organisation, while
coordinating their activities by communication [10]. MAS are increasingly used
in various critical application such as factories, hospitals, rescue operations in dis-
aster areas etc. However, the wide-spread use of MAS is hindered by the lack of
methods for ensuring their dependability.

In this paper we focus on studying complex agent interactions while conduct-
ing safety-critical collaborative activities. In critical MAS, incorrect execution of
these activities might have devastating consequences.

In this paper we consider a hospital MAS. We focus on modelling how main
safety-critical collaborative activities – handling emergency situations (caused by
the occurrence of sudden critical conditions of a patient) and updating patients
records. Obviously, incorrect execution of these activities might lead to patient’s
death. Hence, there is a clear need for a development method that would guarantee
correct provision of these operations.

However, ensuring correctness in a hospital MAS is a challenging issue due to
faults caused by agent disconnections, dynamic role allocation (different shifts of
medical personnel) and autonomy of the agent behaviour. To address these chal-
lenges, we need the system-level modelling approaches that would support formal
verification of correctness and facilitate discovery of restrictions that should be
imposed on a system to guarantee its safety.

In this paper we demonstrate how to develop a critical MAS by refinement in
Event-B. Event-B [2, 11] is a formal framework for developing complex systems.
The main development technique of Event-B is refinement – a process of a gradual
transformation of an abstract specification into a specification directly translatable
into an implementation. Correctness of each refinement step is verified by proofs.
The Rodin platform [12] provides the developers with an automated tool support
for constructing and verifying formal system models.

In our development we adopt a system’s approach, i.e., abstractly model the
entire system, so that the specifications of its individual components can be ob-
tained from it by decomposition. At each refinement step we introduce certain
details of complex agent interaction and prove the essential conditions associated
with them.

The formal verification process facilitates not only safety assurance but also
discovery of restrictions that should be imposed on the system behaviour to guar-
antee its safety. We believe that the formal development in Event-B offers a scal-
able technique for development and verification of complex critical MAS.

The paper is structured as follows. In Section 2 we present our formal mod-
elling framework – Event-B. In Section 3 we describe a hospital MAS and show
how to abstractly model a MAS and introduce fault tolerance by refinement. In

1

Machine M
Variables v
Invariants I
Events

Init
evt1
· · ·
evtN

−→
Context C
Carrier Sets d
Constants c
Axioms A

Figure 1: Event-B machine and context

Section 4 we show how to introduce complex collaborative agent interactions by
refinement and verify their safety. Finally, in Section 5 we overview the related
work, discuss the achieved results and outline the future work.

2 Formal Modeling and Refinement in Event B
We start by briefly describing our development framework. The Event-B for-
malism is an extension of the B Method [1], a state-based formal approach that
promotes the correct-by-construction development paradigm and formal verifica-
tion by theorem proving. Event-B is actively used within the FP7 ICT project
DEPLOY to develop dependable systems from various domains [3].

2.1 Modelling and Refinement in Event B
In Event-B, a system specification (model) is defined using the notion of an ab-
stract state machine [11]. An abstract state machine encapsulates the model state,
represented as a collection of model variables, and defines operations on this state.
Therefore, it describes the dynamic part (behaviour) of the modelled system. A
machine may also have the accompanying component, called context, which con-
tains the static part of the system. In particular, a context can include user-defined
carrier sets, constants and their properties, which are given as a list of model ax-
ioms. A general form of Event-B models is given in Figure 1.

The machine is uniquely identified by its name M . The state variables, v, are
declared in the Variables clause and initialised in the Init event. The variables
are strongly typed by the constraining predicates I given in the Invariants clause.
The invariant clause might also contain other predicates defining properties that
should be preserved during system execution.

The dynamic behaviour of the system is defined by the set of atomic events
specified in the Events clause. Generally, an event can be defined as follows:

evt =̂ any vl where g then S end

2

Action (S) BA(S)
x := E(x, y) x′ = E(x, y) ∧ y′ = y

x :∈ Set ∃z · (z ∈ Set ∧ x′ = z) ∧ y′ = y
x :| P (x, y, x′) ∃z · (P (x, z, y) ∧ x′ = z) ∧ y′ = y

Figure 2: Before-after predicates

where vl is a list of new local variables (parameters), the guard g is a state predi-
cate, and the action S is a statement (assignment). In case when vl is empty, the
event syntax becomes when g then S end. If g is always true, the syntax can be
further simplified to begin S end.

The occurrence of events represents the observable behaviour of the system.
The guard defines the conditions under which the action can be executed, i.e.,
when the event is enabled. If several events are enabled at the same time, any of
them can be chosen for execution non-deterministically. If none of the events is
enabled then the system deadlocks.

In general, the action of an event is a parallel composition of assignments.
The assignments can be either deterministic or non-deterministic. A determin-
istic assignment, x := E(x, y), has the standard syntax and meaning. A non-
deterministic assignment is denoted either as x :∈ Set, where Set is a set of
values, or x :| P (x, y, x′), where P is a predicate relating initial values of x, y to
some final value of x′. As a result of such a non-deterministic assignment, x can
get any value belonging to Set or according to P .

Event-B Semantics The semantics of an Event-B model is formulated as a col-
lection of proof obligations – logical sequents. Below we describe only the most
important proof obligations that should be verified (proved) for the initial and re-
fined models. The full list of proof obligations can be found in [2].

The semantics of Event-B actions is defined using so called before-after (BA)
predicates [2, 11]. A before-after predicate describes a relationship between the
system states before and after execution of an event, as shown in Figure 2. Here
x and y are disjoint lists (partitions) of state variables, and x′, y′ represent their
values in the after-state.

The initial Event-B model should satisfy the event feasibility and invariant
preservation properties. For each event of the model, evti, its feasibility means
that, whenever the event is enabled, its before-after predicate (BA) is well-defined,
i.e., exists some reachable after-state:

A(d, c), I(d, c, v), gi(d, c, v) ` ∃v′ ·BAi(d, c, v, v′) (FIS)

where A is model axioms, I is the model invariant, gi is the event guard, d are
model sets, c are model constants, and v, v′ are the variable values before and
after the event execution.

3

Each event evti of the initial Event-B model should also preserve the given
model invariant:

A(d, c), I(d, c, v), gi(d, c, v), BAi(d, c, v, v′) ` I(d, c, v′) (INV)

Since the initialisation event has no initial state and guard, its proof obligation is
simpler:

A(d, c), BAInit(d, c, v′) ` I(d, c, v′) (INIT)

Event-B employs a top-down refinement-based approach to system develop-
ment. Development starts from an abstract system specification that models the
most essential functional requirements. While capturing more detailed require-
ments, each refinement step typically introduces new events and variables into the
abstract specification. These new events correspond to stuttering steps that are
not visible at the abstract level. Moreover, Event-B formal development supports
data refinement, allowing us to replace some abstract variables with their concrete
counterparts. In that case, the invariant of the refined machine formally defines
the relationship between the abstract and concrete variables.

To verify correctness of a refinement step, we need to prove a number of proof
obligations for the refined model. For brevity, here we show only a few essential
ones.

Let us first introduce a shorthand H(d, c, v, w) to stand for the hypotheses
BA(d, c), I(d, c, v), I ′(d, c, v, w), where I, I ′ are respectively the abstract and
refined invariants. Then the invariant preservation property for an event evti of
the refined model can be presented as follows:

H(d, c, v, w), g′i(d, c, w), BA′
i(d, c, w, w′) ` I ′(d, c, w′) (REF INV)

where g′i is the refined guard, BA′
i is a before-after predicate of the refined event,

and v, w are respectively the abstract and concrete variables.
The event guards in the refined model can be only strengthened in a refinement

step:
H(d, c, v, w), g′i(d, c, w) ` gi(d, c, v) (REF GRD)

where gi, g
′
i are respectively the abstract and concrete guards of the event evti.

Finally, the simulation proof obligation requires to show that the ”execution”
of the refined event is not contradictory with its abstract version:

H(d, c, v, w), g′i(d, c, w), BA′
i(d, c, w, w′) ` BAi(d, c, v, v′) (REF SIM)

where BAi, BA′
i are respectively the abstract and concrete before-after predicates

of the same event evti.
The Event-B refinement process allows us to gradually introduce implemen-

tation details, while preserving functional correctness. The model verification
effort, in particular, automatic generation and proving of the required proof obli-
gations, is significantly facilitated by the Rodin platform [12]. Proof-based veri-
fication as well as reliance on abstraction and decomposition adopted in Event-B

4

offers the designers a scalable support in the development of such complex dis-
tributed systems as multi-agent systems. Next we demonstrate our approach to
formal modelling of a multi-agent system in Event-B.

3 Abstract Modelling of a Hospital MAS

3.1 A case study description

In this paper we present a formal development of a hospital MAS. The system
consists of two types of agents – patients and medical personnel (called doctors
for simplicity). The condition of each patient is monitored by the correspond-
ing medical equipment – an agent representing a patient. The doctor agents are
running on Pocket PC-based devices – Personal Digital Assistants (PDA). The
hospital provides the wireless connectivity to the doctor agents. Each doctor is
associated with one agent. From now on, we will use the terms ”patient” and
”doctor” to designate both agents and people that they represent.

The medical equipment continuously updates in the patient’s medical record
consisting of different medical measurements and detects emergencies – danger-
ous changes of critical parameters (e.g., blood pressure, pulse rate and etc.). In
case of emergency, the patient agent generates an emergency call that is communi-
cated to the doctors treating the patient. An important safety requirement imposed
on the system is that all emergencies should be promptly handled by the doctors.
In spite of its seeming simplicity, this requirement is hard to ensure. Indeed, a
MAS operates in a volatile communication environment, i.e., agents might experi-
ence temporal disconnections. Hence the design of our system should incorporate
certain fault tolerance mechanisms that would guarantee that each emergency call
is eventually handled by some doctor. Moreover, different doctors can be associ-
ated with the same patient during different shifts. Therefore, we have to ensure
that at the end of a doctor’s shift all his/her patients are handed over to another
doctor.

Another important safety requirement associated with the system is to guaran-
tee that a doctor always accesses the most recent patient record and the patient’s
data are always kept in a consistent state. We assume that the patient record is
stored at the equipment associated with her. To ensure that these requirements are
satisfied, we should regulate the access to the patient’s data. A specific delivery
of a medicine, prescription of a treatment and so on are introduced into the pa-
tient’s log by the medical personnel via their PDAs. To ensure that the data are
updated consistently we only allow the doctor to modify patient’s data when he or
she is in a close proximity to the patient. When the doctor arrives to the patient
location, the patient data become available at the doctor’s PDA and the doctor can
modify them. All the modifications are synchronised with the data stored by the
patient’s equipment. When the doctor finishes examining the patient or delivering

5

a medicine and leaves, the connection to the patient’s data is lost. Such a restric-
tion allows us to ensure that only a doctor who is in a close proximity to a patient
is allowed to modify the patient’s record. Moreover, it also ensures that the doc-
tor has the access to the freshest info about the patient. This precludes, e.g., a
possibility of delivering the medicine twice. 1

The safety-critical requirements imposed on the system should be fulfilled in
the course of complex agent interactions. Next we demonstrate how refinement
process in Event-B can facilitate modelling of intertangled agent interactions and
verification of safety properties.

3.2 Towards modelling agent interdependencies

Our abstract specification – the machine Hospital shown in Fig. 3 – is very sim-
ple. It models the behaviour of the entire hospital MAS in a highly abstract
way. We define the variable med agents – the set of active agents of the type
MEDSTAFF . The events Activate and Deactivate model joining and leaving
the hospital location by the agents. While an agent is active, it can perform certain
activities which is abstractly modelled by the event Activity.

Machine Hospital
Variables med agents
Invariants

inv1 : med agents ⊆ MEDSTAFF
Events

Initialisation b=
begin

med agents := ∅
end

Activate b=
any ma
when

ma ∈ MEDSTAFF
ma /∈ med agents

then
med agents := med agents ∪ {ma}

end
Activity b=

then
skip

end
Deactivate b=

any ma
when

ma ∈ med agents
then

med agents := med agents \ {ma}
end

Figure 3: Hospital: abstract specification

1Modeling the security requirements ensuring patient’s data integrity is outside of the scope of
this paper.

6

In our first refinement step (the excerpt from which is shown in Fig. 4) we
augment our model with representation of patients. The variable patients defines
a set of patients admitted to the hospital. Each patient arriving at the hospital is
associated with a doctor who has a primarily responsibility for treating the pa-
tient. To model the interdependence between patients and medical personnel we
introduce the variable assigned doctor, which is defined as total function asso-
ciating patients with active doctor agents. In addition, we add the new events
PatientArrival and PatientDischarge to model patient arrival and discharge
from the hospital correspondingly.

Machine Hospital1 Refines Hospital
Variables ... patients, assigned doctor, last visit, visited
Invariants

inv1 : patients ⊆ PATIENTS
inv2 : assigned doctor ∈ patients → med agents
inv3 : last visit ∈ patients 7→MEDSTAFF
inv4 : visited ⊆ patients
inv5 : last visit[visited] ⊆ med agents
inv6 : visited ⊆ dom(last visit)

Events
· · ·
PatientArrival b=

any ma, pa
when

pa ∈ PATIENTS ∧ pa /∈ patients ∧ma ∈ med agents
then

patients := patients ∪ {pa}
assigned doctor(pa) := ma

end
V isitBegin b=

Refines Activity
any ma, pa
when

ma ∈ med agents ∧ pa ∈ patients ∧ pa /∈ visited ∧ma /∈ last visit[visited]
then

last visit(pa) := ma
visited := visited ∪ {pa}

end
AgentLeaving b=

Refines Deactivate
any ma
when

ma ∈ med agents ∧ma /∈ ran(assigned doctor) ∧ma /∈ last visited[visited]
then

med agents := med agents \ {ma}
end

ReassignDoctor b=
Refines Deactivate
any ma, ma new
when

ma ∈ ran(assigned doctor) ∧ma /∈ last visited[visited]∧
ma new ∈ med agents ∧ma new 6= ma

then
med agents := med agents \ {ma}
assigned doctor := assigned doctor C− (dom(assigned doctor . {ma})×{ma new})

end
· · ·

Figure 4: Hospital: the first refinement step

7

Moreover, in the refined specification we also elaborate on the event Activity.
Essentially, the medical personnel should examine the patients and deliver the pre-
scribed medicine. We generalise these actions under the general term ”visiting a
patient”. In our refined model, we define the variable visited representing a sub-
set of patients that are currently being examined. The new variable last visited
stores for every patient the id of the last doctor agent that has visited her. The
events V isitBegin and V isitEnd refine the abstract event Activity and model
the visiting procedure.

In our abstract specification we have assumed that doctor agents can leave
the hospital at any time. However, to guarantee safety of the patients, we must
impose certain restrictions on when the doctors can actually leave the hospital.
Before a doctor agent can leave the hospital, we should reassign his/her patients
to another doctor. Moreover, we assume that the doctor cannot leave the hos-
pital in the middle of a patient visit. We split the abstract event Deactivate
into two corresponding events: AgentLeaving and ReassignDoctor. The event
AgentLeaving models leaving the location by a doctor. Here we check that the
doctor does not have any assigned patients and is not currently involved in exam-
ining a patient.

Due to a lack of space, we show only the excerpts from our formal specifica-
tions. The complete specifications can be found in the Appendix.

3.3 Introducing fault tolerance by refinement
In the specification Hospital1, while defining the events AgentLeaving and
ReassignDoctor, we have abstracted away from the reasons behind of doctor
leaving and patient reassignment. Essentially, a doctor agent might leave the loca-
tion because the doctor’s shift is over or because the agent has irrecoverably failed
and should be permanently disconnected. At the second refinement step we intro-
duce a distinction between the normal agent leaving and its disconnection due to
failure.

In a MAS, the agents often lose connection only for a short period of time. Af-
ter the connection is restored, the agent should be able to continue its operations.
Therefore, after detection a loss of connection, the location should not immedi-
ately disengage the disconnected agent but rather set a deadline before which the
agent should reconnect. If the disconnected agent restores its connection before
the deadline then it can continue its normal activities. However, if the agent fails
to do so, the location should permanently disengage the agent.

To model such a behaviour, in our next refinement step shown in Fig. 5 we in-
troduce the variable disconnected representing the subset of active agents that are
detected as disconnected. Moreover, to model the timeout mechanism, we define
the variable timer of the type {inactive, active, timeout}. Initially, for every ac-
tive agent, the timer value is set to inactive. As soon as active agent loses connec-
tion with the location, its id is added to the set disconnected and its timer value be-

8

comes active. This behaviour is specified in the new event DisconnectAgent. A
temporally disconnected agent can succeed or fail
to reconnect as modelled by the events ReconnectionSuccessful and
ReconnectionFailed respectively. If the agent reconnects before the value of
timer becomes timeout, the timer value is changed to inactive and the agent con-
tinues its activities virtually uninterrupted. Otherwise, the agent is removed from
the set of active agents.

Machine Hospital2 Refines Hospital1
Variables ... disconnected, timer
Invariants

inv1 : disconnected ⊆ med agents
inv2 : timer ∈ med agents → STATE
inv3 : ∀ma·(ma ∈ med agents ∧ timer(ma) 6= inactive⇔ma ∈ disconnected)

Events
· · ·
DisconnectAgent b=

any ma
when

ma ∈ med agents ∧ma /∈ disconnected
then

disconnected := disconnected ∪ {ma}
timer(ma) := active

end
ReconectionFailed b=

any ma
when

ma ∈ disconnected ∧ timer(ma) = active
then

timer(ma) := timeout
end

DetectFailedAgent b=
Refines ReassignDoctor
any ma, ma new
when

ma ∈ ran(assigned doctor) ∧ma /∈ last visited[visited] ∧ma new ∈ med agents∧
ma new 6= ma ∧ma ∈ disconnected ∧ timer(ma) = timeout∧
ma new /∈ disconnected ∨ (ma new ∈ disconnected ∧ timer(ma new) = active)

then
med agents := med agents \ {ma}
assigned doctor := assigned doctor C− (dom(assigned doctor . {ma})×{ma new})
disconnected := disconnected{ma}
timer := {ma}C− timer

end
DetectFailedFreeAgent b=

Refines AgentLeaving
any ma
when

ma ∈ med agents ∧ma /∈ ran(assigned doctor) ∧ma /∈ last visited[visited]∧
ma ∈ disconnected ∧ timer(ma) = timeout

then
med agents := med agents \ {ma}
disconnected := disconnected{ma}
timer := {ma}C− timer

end
· · ·

Figure 5: Hospital: the second refinement step

9

The introduction of an agent disconnection also affects the some abstract events.
To model separate case of doctor leaving the location because of the end of shift
or due to the disconnection timeout, we split the event AgentLeaving into two
events NormalAgentLeaving and DetectFailedFreeAgent. Moreover, if a
disconnected agent has the associated patients, we have to reassign them to an-
other doctor. Hence, similarly with a AgentLeaving, the event ReassignDoctor
is decomposed into two events NormalReassignDoctor and DetectFailedAgent.

4 Ensuring Correctness of Cooperative Agent Ac-
tions

4.1 Modelling emergency calls

Our next refinement step introduces abstract modelling of the emergency calls,
that are generated by patient monitoring equipment. We must ensure that each
call will be properly handled by a corresponding doctor.

We introduce the variable emergency calls, which is defined as a partial func-
tion associating the emergency calls with the patients. Moreover, we define the
variable accepted calls that establishes the correspondence between the emer-
gency calls and the doctors that answer them.

At this refinement step we abstract away from the actual implementation of
how a doctor is chosen to handle an emergency call. A detailed model of it will be
introduced at the next refinement step. Here we add new events EmergencyCall
and HandlingEmergencyCall to abstractly model occurrence of an emergency and
finding a responsible doctor to handle it. In addition, we distinguish two types of
patient visit – a regular visit (scheduled examination or delivery of a medicine)
and a visit for handling an emergency call. To model it we decompose the event
VisitBegin into the events RegularVisitBegin and EmergencyVisitBegin.

We define a system variant to ensure that the newly introduced events Emer-
gencyCall and HandlingEmergencyCall do not take the control forever. We define
the variant as follows:

card(ALARMS\dom(emergency calls))+card(ALARMS\dom(accepted calls)),

and prove that it is decreased by new events. An extract from the machine
Hospital3 is shown in Fig. 6.

4.2 Introducing a procedure to select a doctor in emergencies

In the previous refinement step we have introduced modelling of emergency calls
and non-deterministic assignment of the responsible doctors to handle them. The
goal of our next refinement step is to introduce a detailed procedure of selecting

10

Machine Hospital3 Refines Hospital2
Variables ... emergency calls, accepted calls
Invariants

inv1 : emergency calls ∈ ALARMS 7→ patients
inv2 : accepted calls ∈ ALARMS 7→med agents
inv3 : dom(accepted calls) ⊆ dom(emergency calls)

Events
· · ·
EmergencyCall b=

Status convergent
any pa, ec
when

pa ∈ patients∧ec ∈ ALARMS∧ec /∈ emergency calls∧pa /∈ ran(emergency calls)
then

emergency calls := emergency calls ∪ {ec 7→ pa}
end

HandlingEmergencyCall b=
Status convergent
any ec, ma
when

ec ∈ emergency calls ∧ ec /∈ ran(accepted calls)∧
ma ∈ med agent ∧ma /∈ disconnected

then
accepted calls := accepted calls ∪ {ec 7→ ma}

end
· · ·

Figure 6: Hospital: the third refinement step

a doctor in case of an emergency call. It follows the steps graphically depicted in
Fig. 7.

The proposed procedure can be described as follows. We start by selecting an
emergency call to answer. Then we model a loop of finding a suitable candidate
and sending a request to him/her. If the doctor rejects it then we choose the next
candidate. The procedure is repeated until we get an acceptance on the request.

Emergency
call

selected

Forward
to doctor

Accept/
Reject Accepted

Rejected

Figure 7: Procedure of choosing a doctor for a certain call

To model the described procedure, we refine the machine Hospital3 by intro-
ducing a number of new variables and events. The event ChooseCurrentCall
starts handling of a particular emergency call. The event CallFeed directs the
call to the assigned doctor, while ForwardCall forwards the call to next suitable
candidate. The events AcceptCall and RejectCall model acceptance and rejec-
tion respectively. A special event ForcedAcceptCall is needed to “force“ the last
available doctor to accept the call. To make this decision, the variable occupied is
used to accumulate the doctors that have already refused the call (for example, a
doctor is performing a surgery etc.).

We assume that the whole procedure finding a doctor for a certain emergency

11

call takes a short period of time and during this period no disconnection of agents
can occur. As a result, we strengthen the guards in the event DisconnectAgent to
disallow any disconnection while an emergency call is handled. An extract from
the machine Hospital4 is shown in Fig. 8.

Moreover, we define an additional system variant to ensure that event Reject-
Call is convergent, which means that eventually we get an acceptance from a
doctor to answer a call. The variant is card(med agents \ occupied) and it is
decreased by the event.

Machine Hospital4 Refines Hospital3
Variables ... ec handling, directed, candidate found, occupied, current call
Invariants

inv1 : ec handling ∈ BOOL
inv2 : candidate found ∈ BOOL
inv3 : directed ∈ ALARMS 7→med agents
inv4 : occupied ⊆ med agents
inv5 : dom(directed) ⊆ dom(emergency calls)
inv6 : current call ∈ ALARMS
· · ·

Events
· · ·
CallFeed b=

when
ec handling = TRUE ∧ candidate found = FALSE∧
assigned doctor(emergency calls(current call)) /∈ disconnected∧
assigned doctor(emergency calls(current call)) /∈ occupied

then
directed(current call) := assigned doctor(emergency calls(current call))
candidate found := TRUE

end
AcceptCall b=

Refines HandlingEmergencyCall
when

ec handling = TRUE ∧ candidate found = TRUE∧
current call ∈ dom(emergency calls) ∧ current call /∈ dom(accepted calls)∧
directed(current call) /∈ disconnected

with
ec: ec = current call
ma: ma = directed(current call)

then
accepted calls(current call) := directed(current call)
ec handling := FALSE
candidate found := FALSE
occupied := ∅

end
· · ·

Figure 8: Hospital: the fourth refinement step

5 Data integrity
To ensure that a patient gets the correct treatment, we should guarantee that the
medical personnel always access the most recent patient record. As we discussed
in Section 3, we allow the doctor to access and modify the patient’s data only
when he/she is in a close proximity to a patient. We implement this requirement
via the scoping mechanism [7, 8, 9]. A scope provide a shared data space for

12

a doctor and a patient. We assume that each patient agent has the scope associ-
ated with it. As soon as a doctor agent appears at a close vicinity of the patient
agent, it automatically joins the scope. While in the scope, the doctor can modify
the patient record (e.g., prescribe a new medicine, log the information about the
delivered medicine, prescribe a new procedure etc.).

To model this behaviour, we refine the abstract events RegularVisitBegin, Emer-
gencyVisitBegin, VisitEnd by the events RegularEnterScope, EmergencyEnter-
Scope, LeaveScope and add a new event ModifyRecord. The event ModifyRecord
models an update of the patient record by a doctor, when he/she is in the scope of a
patient. Thereby we ensure here that the patient record are always up-to-date. The
corresponding safety property stating that the medical personnel always access
the most recent record is formulated as the invariant (inv 7, Fig. 9).

Machine Hospital5 Refines Hospital4
Variables ... record, ma data, scopes
Invariants

inv1 : record ∈ patients→ P(DATA)
inv2 : ma data ∈ med agents 7→ P(DATA)
inv3 : scopes ∈ ScopeName 7½ med agents
inv4 : ∀ma·ma ∈ ran(scopes)⇔ma ∈ dom(ma data)
inv5 : ∀ma·ma ∈ disconnected⇒ma /∈ ran(scopes)
inv6 : ∀ma·ma ∈ ran(visited C last visit)⇒ma ∈ ran(scopes)
inv7 : ∀ma, pa·(pa 7→ ma) ∈ (visited C last visit)⇒ma data(ma) = record(pa)
inv8 : ∀pa·pa ∈ visited⇒ last visit(pa) ∈ ran(scopes)
inv9 : (visited C last visit) ∈ patients 7½ med agents

Events
· · ·
EmergencyEnterScope b=

Refines EmergencyV isitBegin
any ec, sn
when

ec ∈ dom(accepted calls) ∧ emergency calls(ec) /∈ visited∧
accepted calls(ec) /∈ last visit[visited] ∧ accepted calls(ec) /∈ disconnected∧
sn ∈ ScopeName ∧ sn /∈ dom(scopes)∧
accepted calls(ec) /∈ ran(scopes) ∧ accepted calls(ec) /∈ disconnected

then
last visit(emergency calls(ec)) := accepted calls(ec)
visited := visited ∪ {emergency calls(ec)}
emergency calls := emergency calls \ {ec 7→ emergency calls(ec)}
accepted calls := accepted calls \ {ec 7→ accepted calls(ec)}
directed := {ec}C− directed
scopes(sn) := accepted calls(ec)
ma data(accepted calls(ec)) := record(emergency calls(ec))

end
ModifyRecord b=

any ma, sn, pa, da new
when

(sn 7→ ma) ∈ scopes ∧ pa ∈ dom(last visit) ∧ last visit(pa) = ma∧
pa ∈ visited ∧ da new ∈ P(DATA) ∧ da new 6= ∅

then
ma data(ma) := da new
record(pa) := da new

end
· · ·

Figure 9: Hospital: the fifth refinement step

13

Moreover, we introduce the variable record that represents the medical history
for every patient. The variable ma data stores the data that appear on the doctor’s
PDA screen. When the doctor agent is in a close vicinity of a patient, its ma data
becomes equal to the value of the patient data. Finally, we define the variable
scopes, which is defined as a partial function associating the active scopes with the
doctors participating in them. An extract from the machine Hospital4 is shown
in Fig. 9.

6 Conclusion

In this paper we have presented a formal development of a hospital MAS. We have
focused on modelling and verification of safety for two central safety-critical ac-
tivities – handling emergencies and consistent update of patient data. Ensuring
correctness of these activities is especially challenging due to highly dynamic
nature of a hospital, volatile error-prone communication environment and au-
tonomous agent behaviour.

In our development we have explicitly modelled the fault tolerance mechanism
that ensures correct system functioning in the presence of agent disconnections.
We have verified by proofs the correctness and safety of these two activities. For-
mal verification process has not only allowed us to systematically capture complex
requirements but also facilitated derivation of the constraints that should be im-
posed on the system to guarantee its safety. Indeed, while proving convergence of
the emergency handling procedure, we had to explicitly state the assumptions that
the system must fulfil. These assumptions can be seen as a contract that should be
checked during system deployment to guarantee its safety. In our development we
have also demonstrated that the scoping mechanism provides a useful abstraction
for ensuring consistent update of the patient data.

The work presented in this paper is inspired by our previous work on mod-
elling context-aware mobile agent systems [7, 8, 9] in the CAMA framework
[6, 5]. Similarly to [7, 8, 9], we rely on the timeout mechanism to tolerate agent
disconnections and employ the scoping mechanism to provide shared data space
for patient and doctor agents. However, in this paper we have focused on mod-
elling and verification of safety properties of complex agent interactions rather
than on reasoning about general mechanisms for agent interaction with middle-
ware.

Formal modelling of MAS has been undertaken by [14, 13, 15]. The authors
have proposed an extension of the Unity framework to explicitly define such con-
cepts as mobility and context-awareness. In our approach we also have studied
the problem of ensuring access to the fresh context. However, in [14] it is solved
at the level of the matching agent attributes while in our approach we rely on the
scoping mechanism to achieve this.

A formal modelling of MAS for the health care in Z has be undertaken by

14

Gruer at al. [4]. The work has focused on specifying a multi-agent system for
a medical help system. The authors aimed at studying how to formally repre-
sent agent interactions, e.g., during negotiations. In our approach we not only
model the agent interactions but also formally prove their properties. Hence, our
approach is especially suitable for developing critical MAS systems.

In our future work we are planning to further investigate how to model adap-
tive agent behaviour that depends on the surrounding context as well as explore
different reconfiguration mechanisms.

15

References
[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge

University Press, 2005.

[2] J.-R. Abrial. Modeling in Event-B. Cambridge University Press, 2010.

[3] EU-project DEPLOY. online at http://www.deploy-project.eu/.

[4] P. Gruer, V. Hilaire, A. Koukam, and K. Cetnarowicz. A formal framework
for multi-agent systems analysis and design. In Expert Systems with Appli-
cations, volume 23, pages 349–355, 2002.

[5] A. Iliasov, V. Khomenko, M. Koutny, and A. Romanovsky. On Specifica-
tion and Verification of Location-based Fault Tolerant Mobile Systems. In
A. Romanovsky M. Butler, C. Jones and E. Troubitsyna, editors, Rigorous
Development of Complex Fault-Tolerant Systems. Springer.

[6] A. Iliasov and A. Romanovsky. CAMA: Structured Coordination Space and
Exception Propagation Mechanism for Mobile Agents. In ECOOP 2005,
Workshop on Exception Handling in Object Oriented Systems: Developing
Systems that Handle Exceptions, 2005.

[7] L. Laibinis, E. Troubitsyna, A. Iliasov, and A. Romanovsky. Rigorous De-
velopment of Fault-Tolerant Agent Systems. In A. Romanovsky M. But-
ler, C. Jones and E. Troubitsyna, editors, Rigorous Development of Complex
Fault-Tolerant Systems, volume 4157 of LNCS, pages 241–260. Springer,
2006.

[8] L. Laibinis, E. Troubitsyna, A. Iliasov, and A. Romanovsky. Formal De-
velopment of Cooperative Exception Handling for Mobile Agent Systems.
In SERENE 2008, International Workshop on Software Engineering for Re-
silient Systems, 2008.

[9] L. Laibinis, E. Troubitsyna, A. Iliasov, and A. Romanovsky. Fault Tolerant
Middleware for Agent Systems: A Refinement Approach. In EWDC 2009,
European Workshop on Dependable Computing, 2009.

[10] OMG Mobile Agents Facility (MASIF). Available at www.omg.org.

[11] Rigorous Open Development Environment for Complex Systems (RODIN).
Deliverable D7, Event-B Language, online at http://rodin.cs.ncl.ac.uk/.

[12] Rigorous Open Development Environment for Complex Systems (RODIN).
IST FP6 STREP project, online at http://rodin.cs.ncl.ac.uk/.

[13] G.-C. Roman, Ch. Julien, and J. Payton. A Formal Treatment of Context-
Awareness. In FASE’2004, volume 2984 of LNCS. Springer, 2004.

16

[14] G.-C. Roman, Ch. Julien, and J. Payton. Modeling adaptive behaviors in
Context UNITY. In Theoretical Computure Science, volume 376, pages
185–204, 2007.

[15] G.-C. Roman, P.McCann, and J. Plun. Mobile UNITY: Reasoning and Spec-
ification in Mobile Computing. In ACM Transactions of Software Engineer-
ing and Methodology, 1997.

17

Appendix
MACHINE Hospital
SEES c0
VARIABLES

med agents

INVARIANTS
inv1 : med agents ⊆ MEDSTAFF

EVENTS
Initialisation

begin
act1 : med agents := ∅

end
Event Activate =̂

any
ma

where
grd1 : ma ∈ MEDSTAFF
grd2 : ma /∈ med agents

then
act1 : med agents := med agents ∪ {ma}

end
Event Activity =̂

begin
skip

end
Event Deactivate =̂

any
ma

where
grd1 : ma ∈ med agents

then
act1 : med agents := med agents \ {ma}

end
END

18

CONTEXT c0
SETS

MEDSTAFF

AXIOMS
axm1 : MEDSTAFF 6= ∅
axm2 : finite(MEDSTAFF)

END

19

MACHINE Hospital1
REFINES Hospital
SEES c1
VARIABLES

med agents

patients

assigned doctor

last visit

visited

INVARIANTS
inv1 : patients ⊆ PATIENTS

inv2 : assigned doctor ∈ patients →med agents

inv3 : last visit ∈ patients 7→MEDSTAFF

inv4 : visited ⊆ patients

inv5 : last visit [visited] ⊆ med agents

inv6 : visited ⊆ dom(last visit)

EVENTS
Initialisation

extended
begin

act1 : med agents := ∅
act2 : patients := ∅
act3 : assigned doctor := ∅
act4 : last visit := ∅
act5 : visited := ∅

end
Event ActivateAgent =̂

extends Activate
any

ma

where
grd1 : ma ∈ MEDSTAFF

grd2 : ma /∈ med agents

then
act1 : med agents := med agents ∪ {ma}

end
Event PatientArrival =̂

any
pa

20

ma
where

grd1 : pa ∈ PATIENTS
grd2 : pa /∈ patients
grd3 : ma ∈ med agents

then
act1 : patients := patients ∪ {pa}
act2 : assigned doctor(pa) := ma

end
Event PatientDischarge =̂

any
pa

where
grd1 : pa ∈ patients
grd2 : pa /∈ visited

then
act1 : patients := patients \ {pa}
act2 : assigned doctor := {pa}C− assigned doctor
act3 : last visit := {pa}C− last visit

end
Event VisitBegin =̂

extends Activity
any

ma
pa

where
grd1 : ma ∈ med agents
grd2 : pa ∈ patients
grd3 : pa /∈ visited
grd4 : ma /∈ last visit [visited]

then
act1 : last visit(pa) := ma
act2 : visited := visited ∪ {pa}

end
Event VisitEnd =̂

extends Activity
any

pa
where

grd1 : pa ∈ visited
then

21

act1 : visited := visited \ {pa}
end

Event AgentLeaving =̂

extends Deactivate
any

ma

where
grd1 : ma ∈ med agents

grd2 : ma /∈ ran(assigned doctor)
grd3 : ma /∈ last visit [visited]

then
act1 : med agents := med agents \ {ma}

end
Event ReassignDoctor =̂

refines Deactivate
any

ma
ma new

where
grd1 : ma ∈ ran(assigned doctor)
grd2 : ma /∈ last visit [visited]
grd3 : ma new ∈ med agents
grd4 : ma 6= ma new

then
act1 : med agents := med agents \ {ma}
act2 : assigned doctor := assigned doctorC−(dom(assigned doctorB

{ma})× {ma new})
end

END

CONTEXT c1
EXTENDS c0
SETS

PATIENTS

AXIOMS
axm1 : finite(PATIENTS)

END

22

MACHINE Hospital2
REFINES Hospital1
SEES c2
VARIABLES

med agents

patients

assigned doctor

disconnected

timer

last visit

visited

INVARIANTS
inv1 : disconnected ⊆ med agents

inv2 : timer ∈ med agents → STATE

inv4 : ∀ma ·(ma ∈ med agents∧timer(ma) 6= inactive⇔ma ∈ disconnected)

EVENTS
Initialisation

extended
begin

act1 : med agents := ∅
act2 : patients := ∅
act3 : assigned doctor := ∅
act4 : last visit := ∅
act5 : visited := ∅
act6 : disconnected := ∅
act7 : timer := ∅

end
Event ActivateAgent =̂

extends ActivateAgent
any

ma

where
grd1 : ma ∈ MEDSTAFF

grd2 : ma /∈ med agents

then
act1 : med agents := med agents ∪ {ma}
act2 : timer(ma) := inactive

end
Event PatientArrival =̂

23

extends PatientArrival
any

pa

ma

where
grd1 : pa ∈ PATIENTS

grd2 : pa /∈ patients

grd3 : ma ∈ med agents

then
act1 : patients := patients ∪ {pa}
act2 : assigned doctor(pa) := ma

end
Event PatientDischarge =̂

extends PatientDischarge
any

pa

where
grd1 : pa ∈ patients

grd2 : pa /∈ visited

then
act1 : patients := patients \ {pa}
act2 : assigned doctor := {pa}C− assigned doctor

act3 : last visit := {pa}C− last visit

end
Event VisitBegin =̂

extends VisitBegin
any

ma

pa

where
grd1 : ma ∈ med agents

grd2 : pa ∈ patients

grd3 : pa /∈ visited

grd4 : ma /∈ last visit[visited]
then

act1 : last visit(pa) := ma

act2 : visited := visited ∪ {pa}
end

Event VisitEnd =̂

extends VisitEnd
any

24

pa

where
grd1 : pa ∈ visited

then
act1 : visited := visited \ {pa}

end
Event DisconnectAgent =̂

any
ma

where
grd1 : ma ∈ med agents
grd2 : ma /∈ disconnected

then
act1 : disconnected := disconnected ∪ {ma}
act2 : timer(ma) := active

end
Event ReconectionFailed =̂

any
ma

where
grd1 : ma ∈ disconnected
grd2 : timer(ma) = active

then
act1 : timer(ma) := timeout

end
Event ReconnectionSuccessful =̂

any
ma

where
grd1 : ma ∈ disconnected
grd2 : timer(ma) = active

then
act1 : timer(ma) := inactive
act2 : disconnected := disconnected \ {ma}

end
Event NormalAgentLeaving =̂

extends AgentLeaving
any

ma

where
grd1 : ma ∈ med agents

25

grd2 : ma /∈ ran(assigned doctor)
grd3 : ma /∈ last visit[visited]
grd4 : ma /∈ disconnected

then
act1 : med agents := med agents \ {ma}
act2 : timer := {ma}C− timer

end
Event NormalReassignDoctor =̂

extends ReassignDoctor
any

ma

ma new

where
grd1 : ma ∈ ran(assigned doctor)
grd2 : ma /∈ last visit[visited]
grd3 : ma new ∈ med agents

grd4 : ma 6= ma new

grd5 : ma /∈ disconnected

then
act1 : med agents := med agents \ {ma}
act2 : assigned doctor := assigned doctorC−(dom(assigned doctorB

{ma})× {ma new})
act3 : timer := {ma}C− timer

end
Event DetectFailedFreeAgent =̂

extends AgentLeaving
any

ma

where
grd1 : ma ∈ med agents

grd2 : ma /∈ ran(assigned doctor)
grd3 : ma /∈ last visit[visited]
grd4 : ma ∈ disconnected
grd5 : timer(ma) = timeout

then
act1 : med agents := med agents \ {ma}
act2 : disconnected := disconnected \ {ma}
act3 : timer := {ma}C− timer

end
Event DetectFailedAgent =̂

extends ReassignDoctor

26

any
ma

ma new

where
grd1 : ma ∈ ran(assigned doctor)
grd2 : ma /∈ last visit[visited]
grd3 : ma new ∈ med agents

grd4 : ma 6= ma new

grd5 : ma ∈ disconnected
grd6 : timer(ma) = timeout
grd7 : ma new /∈ disconnected∨(ma new ∈ disconnected∧timer(ma new) =

active)
then

act1 : med agents := med agents \ {ma}
act2 : assigned doctor := assigned doctorC−(dom(assigned doctorB

{ma})× {ma new})
act3 : disconnected := disconnected \ {ma}
act4 : timer := {ma}C− timer

end
END

CONTEXT c2
EXTENDS c1
SETS

STATE

CONSTANTS
inactive

active

timeout

AXIOMS
axm1 : partition(STATE , {inactive}, {active}, {timeout})

END

27

MACHINE Hospital3
REFINES Hospital2
SEES c3
VARIABLES

assigned doctor

disconnected

med agents

patients

timer

emergency calls

accepted calls

last visit

visited

INVARIANTS
inv1 : emergency calls ∈ ALARMS 7→ patients

inv2 : accepted calls ∈ ALARMS 7→med agents

inv3 : dom(accepted calls) ⊆ dom(emergency calls)

EVENTS
Initialisation

extended
begin

act1 : med agents := ∅
act2 : patients := ∅
act3 : assigned doctor := ∅
act4 : last visit := ∅
act5 : visited := ∅
act6 : disconnected := ∅
act7 : timer := ∅
act8 : emergency calls := ∅
act9 : accepted calls := ∅

end
Event ActivateAgent =̂

extends ActivateAgent
any

ma

where
grd1 : ma ∈ MEDSTAFF

grd2 : ma /∈ med agents

then

28

act1 : med agents := med agents ∪ {ma}
act2 : timer(ma) := inactive

end
Event PatientArrival =̂

extends PatientArrival
any

pa

ma

where
grd1 : pa ∈ PATIENTS

grd2 : pa /∈ patients

grd3 : ma ∈ med agents

then
act1 : patients := patients ∪ {pa}
act2 : assigned doctor(pa) := ma

end
Event PatientDischarge =̂

extends PatientDischarge
any

pa

where
grd1 : pa ∈ patients

grd2 : pa /∈ visited

grd3 : pa /∈ ran(emergency calls)
then

act1 : patients := patients \ {pa}
act2 : assigned doctor := {pa}C− assigned doctor

act3 : last visit := {pa}C− last visit

end
Event DisconnectAgent =̂

extends DisconnectAgent
any

ma

where
grd1 : ma ∈ med agents

grd2 : ma /∈ disconnected

then
act1 : disconnected := disconnected ∪ {ma}
act2 : timer(ma) := active

end
Event ReconnectionSuccessful =̂

29

extends ReconnectionSuccessful
any

ma

where
grd1 : ma ∈ disconnected

grd2 : timer(ma) = active

then
act1 : timer(ma) := inactive

act2 : disconnected := disconnected \ {ma}
end

Event ReconectionFailed =̂

extends ReconectionFailed
any

ma

where
grd1 : ma ∈ disconnected

grd2 : timer(ma) = active

then
act1 : timer(ma) := timeout

end
Event NormalAgentLeaving =̂

extends NormalAgentLeaving
any

ma

where
grd1 : ma ∈ med agents

grd2 : ma /∈ ran(assigned doctor)
grd3 : ma /∈ last visit[visited]
grd4 : ma /∈ disconnected

grd5 : ma /∈ ran(accepted calls)
then

act1 : med agents := med agents \ {ma}
act2 : timer := {ma}C− timer

end
Event NormalReassignDoctor =̂

extends NormalReassignDoctor
any

ma

ma new

where
grd1 : ma ∈ ran(assigned doctor)

30

grd2 : ma /∈ last visit[visited]
grd3 : ma new ∈ med agents

grd4 : ma 6= ma new

grd5 : ma /∈ disconnected

grd6 : ma /∈ ran(accepted calls)
then

act1 : med agents := med agents \ {ma}
act2 : assigned doctor := assigned doctorC−(dom(assigned doctorB

{ma})× {ma new})
act3 : timer := {ma}C− timer

end
Event DetectFailedAgent =̂

extends DetectFailedAgent
any

ma

ma new

where
grd1 : ma ∈ ran(assigned doctor)
grd2 : ma /∈ last visit[visited]
grd3 : ma new ∈ med agents

grd4 : ma 6= ma new

grd5 : ma ∈ disconnected

grd6 : timer(ma) = timeout

grd7 : ma new /∈ disconnected ∨ (ma new ∈ disconnected ∧
timer(ma new) = active)

then
act1 : med agents := med agents \ {ma}
act2 : assigned doctor := assigned doctorC−(dom(assigned doctorB

{ma})× {ma new})
act3 : disconnected := disconnected \ {ma}
act4 : timer := {ma}C− timer

act5 : accepted calls := accepted calls B− {ma}
end

Event DetectFailedFreeAgent =̂

extends DetectFailedFreeAgent
any

ma

where
grd1 : ma ∈ med agents

grd2 : ma /∈ ran(assigned doctor)
grd3 : ma /∈ last visit[visited]
grd4 : ma ∈ disconnected

31

grd5 : timer(ma) = timeout

then
act1 : med agents := med agents \ {ma}
act2 : disconnected := disconnected \ {ma}
act3 : timer := {ma}C− timer

act4 : accepted calls := accepted calls B− {ma}
end

Event EmergencyCall =̂

Status convergent
any

pa
ec

where
grd1 : pa ∈ patients
grd2 : ec ∈ ALARMS
grd3 : ec /∈ dom(emergency calls)
grd4 : pa /∈ ran(emergency calls)

then
act1 : emergency calls := emergency calls ∪ {ec 7→ pa}

end
Event HandlingEmergencyCall =̂

Status convergent
any

ec
ma

where
grd1 : ec ∈ dom(emergency calls)
grd2 : ec /∈ dom(accepted calls)
grd3 : ma ∈ med agents
grd4 : ma /∈ disconnected

then
act1 : accepted calls := accepted calls ∪ {ec 7→ ma}

end
Event EmergencyVisitBegin =̂

refines VisitBegin
any

ec
where

grd1 : ec ∈ dom(accepted calls)
grd2 : emergency calls(ec) /∈ visited
grd3 : accepted calls(ec) /∈ last visit [visited]

32

with
ma : ma = accepted calls(ec)
pa : pa = emergency calls(ec)

then
act1 : last visit(emergency calls(ec)) := accepted calls(ec)
act2 : visited := visited ∪ {emergency calls(ec)}
act3 : emergency calls := emergency calls\{ec 7→ emergency calls(ec)}
act4 : accepted calls := accepted calls\{ec 7→ accepted calls(ec)}

end
Event RegularVisitBegin =̂

extends VisitBegin
any

ma

pa

where
grd1 : ma ∈ med agents

grd2 : pa ∈ patients

grd3 : pa /∈ visited

grd4 : ma /∈ last visit[visited]
grd5 : pa /∈ ran(emergency calls)

then
act1 : last visit(pa) := ma

act2 : visited := visited ∪ {pa}
end

Event VisitEnd =̂

extends VisitEnd
any

pa

where
grd1 : pa ∈ visited

then
act1 : visited := visited \ {pa}

end
VARIANT

card(ALARMS \ dom(emergency calls)) + card(ALARMS \ dom(accepted calls))

END

33

CONTEXT c3
EXTENDS c2
SETS

ALARMS

AXIOMS
axm1 : finite(ALARMS)

END

34

MACHINE Hospital4
REFINES Hospital3
SEES c3
VARIABLES

assigned doctor

accepted calls

disconnected

emergency calls

last visit

med agents

patients

timer

visited

ec handling

directed

candidate found

occupied

current call

INVARIANTS
inv1 : ec handling ∈ BOOL

inv2 : candidate found ∈ BOOL

inv3 : directed ∈ ALARMS 7→med agents

inv4 : occupied ⊆ med agents

inv5 : dom(directed) ⊆ dom(emergency calls)

inv6 : accepted calls ⊆ directed

inv7 : current call ∈ ALARMS

inv8 : ec handling = TRUE ⇒ current call ∈ dom(emergency calls)

inv9 : candidate found = TRUE∧ec handling = TRUE⇒current call ∈
dom(directed)

inv10 : ec handling = FALSE ⇒ candidate found = FALSE

inv11 : ec handling = TRUE∧candidate found = TRUE⇒directed(current call) /∈
occupied

inv12 : ec handling = FALSE ⇒ occupied = ∅
inv13 : ec handling = TRUE ⇒ current call /∈ dom(accepted calls)

EVENTS
Initialisation

extended

35

begin
act1 : med agents := ∅
act2 : patients := ∅
act3 : assigned doctor := ∅
act4 : last visit := ∅
act5 : visited := ∅
act6 : disconnected := ∅
act7 : timer := ∅
act8 : emergency calls := ∅
act9 : accepted calls := ∅
act10 : ec handling := FALSE
act11 : candidate found := FALSE
act12 : directed := ∅
act13 : occupied := ∅
act14 : current call :∈ ALARMS

end
Event ActivateAgent =̂

extends ActivateAgent

any
ma

where
grd1 : ma ∈ MEDSTAFF

grd2 : ma /∈ med agents

then
act1 : med agents := med agents ∪ {ma}
act2 : timer(ma) := inactive

end
Event PatientArrival =̂

extends PatientArrival

any
pa

ma

where
grd1 : pa ∈ PATIENTS

grd2 : pa /∈ patients

grd3 : ma ∈ med agents

then
act1 : patients := patients ∪ {pa}
act2 : assigned doctor(pa) := ma

end
Event PatientDischarge =̂

36

extends PatientDischarge
any

pa

where
grd1 : pa ∈ patients

grd2 : pa /∈ visited

grd3 : pa /∈ ran(emergency calls)
then

act1 : patients := patients \ {pa}
act2 : assigned doctor := {pa}C− assigned doctor

act3 : last visit := {pa}C− last visit

end
Event DisconnectAgent =̂

extends DisconnectAgent
any

ma

where
grd1 : ma ∈ med agents

grd2 : ma /∈ disconnected

grd3 : ec handling = FALSE
then

act1 : disconnected := disconnected ∪ {ma}
act2 : timer(ma) := active

end
Event ReconnectionSuccessful =̂

extends ReconnectionSuccessful
any

ma

where
grd1 : ma ∈ disconnected

grd2 : timer(ma) = active

then
act1 : timer(ma) := inactive

act2 : disconnected := disconnected \ {ma}
end

Event ReconectionFailed =̂

extends ReconectionFailed
any

ma

where
grd1 : ma ∈ disconnected

37

grd2 : timer(ma) = active

then
act1 : timer(ma) := timeout

end
Event NormalAgentLeaving =̂

extends NormalAgentLeaving

any
ma

where
grd1 : ma ∈ med agents

grd2 : ma /∈ ran(assigned doctor)
grd3 : ma /∈ last visit[visited]
grd4 : ma /∈ disconnected

grd5 : ma /∈ ran(accepted calls)
grd6 : ma /∈ ran(directed)

then
act1 : med agents := med agents \ {ma}
act2 : timer := {ma}C− timer

act3 : occupied := occupied \ {ma}
end

Event NormalReassignDoctor =̂

extends NormalReassignDoctor

any
ma

ma new

where
grd1 : ma ∈ ran(assigned doctor)
grd2 : ma /∈ last visit[visited]
grd3 : ma new ∈ med agents

grd4 : ma 6= ma new

grd5 : ma /∈ disconnected

grd6 : ma /∈ ran(accepted calls)
grd7 : ma /∈ ran(directed)

then
act1 : med agents := med agents \ {ma}
act2 : assigned doctor := assigned doctorC−(dom(assigned doctorB

{ma})× {ma new})
act3 : timer := {ma}C− timer

act4 : occupied := occupied \ {ma}
end

Event DetectFailedFreeAgent =̂

38

extends DetectFailedFreeAgent
any

ma

where
grd1 : ma ∈ med agents

grd2 : ma /∈ ran(assigned doctor)
grd3 : ma /∈ last visit[visited]
grd4 : ma ∈ disconnected

grd5 : timer(ma) = timeout

grd6 : ma /∈ ran(directed)
then

act1 : med agents := med agents \ {ma}
act2 : disconnected := disconnected \ {ma}
act3 : timer := {ma}C− timer

act4 : accepted calls := accepted calls B− {ma}
act5 : occupied := occupied \ {ma}

end
Event DetectFailedAgent =̂

extends DetectFailedAgent
any

ma

ma new

where
grd1 : ma ∈ ran(assigned doctor)
grd2 : ma /∈ last visit[visited]
grd3 : ma new ∈ med agents

grd4 : ma 6= ma new

grd5 : ma ∈ disconnected

grd6 : timer(ma) = timeout

grd7 : ma new /∈ disconnected ∨ (ma new ∈ disconnected ∧
timer(ma new) = active)

grd8 : ma /∈ ran(directed)
then

act1 : med agents := med agents \ {ma}
act2 : assigned doctor := assigned doctorC−(dom(assigned doctorB

{ma})× {ma new})
act3 : disconnected := disconnected \ {ma}
act4 : timer := {ma}C− timer

act5 : accepted calls := accepted calls B− {ma}
act6 : occupied := occupied \ {ma}

end
Event EmergencyCall =̂

39

extends EmergencyCall
any

pa

ec

where
grd1 : pa ∈ patients

grd2 : ec ∈ ALARMS

grd3 : ec /∈ dom(emergency calls)
grd4 : pa /∈ ran(emergency calls)

then
act1 : emergency calls := emergency calls ∪ {ec 7→ pa}

end
Event ChooseCurrentCall =̂

any
ec

where
grd1 : ec ∈ dom(emergency calls)
grd2 : ec /∈ dom(directed)
grd3 : ec handling = FALSE

then
act1 : ec handling := TRUE
act2 : current call := ec

end
Event CallFeed =̂

when
grd1 : ec handling = TRUE
grd2 : candidate found = FALSE
grd3 : assigned doctor(emergency calls(current call)) /∈ disconnected
grd4 : assigned doctor(emergency calls(current call)) /∈ occupied

then
act1 : directed(current call) := assigned doctor(emergency calls(current call))
act2 : candidate found := TRUE

end
Event ForwardCall =̂

any
ma new

where
grd1 : ec handling = TRUE
grd2 : candidate found = FALSE
grd3 : assigned doctor(emergency calls(current call)) ∈ disconnected∨

assigned doctor(emergency calls(current call)) ∈ occupied

40

grd4 : ma new ∈ med agents
grd5 : ma new /∈ disconnected
grd6 : ma new /∈ occupied

then
act1 : directed(current call) := ma new
act2 : candidate found := TRUE

end
Event AcceptCall =̂

refines HandlingEmergencyCall
when

grd1 : ec handling = TRUE
grd2 : candidate found = TRUE
grd3 : current call ∈ dom(emergency calls)
grd4 : current call /∈ dom(accepted calls)
grd5 : directed(current call) /∈ disconnected

with
ec : ec = current call

ma : ma = directed(current call)
then

act1 : accepted calls(current call) := directed(current call)
act2 : ec handling := FALSE
act3 : candidate found := FALSE
act4 : occupied := ∅

end
Event RejectCall =̂

Status convergent
when

grd1 : ec handling = TRUE
grd2 : candidate found = TRUE
grd3 : card(med agents \ occupied) ≥ 2

then
act1 : occupied := occupied ∪ {directed(current call)}
act2 : candidate found := FALSE

end
Event ForcedAcceptCall =̂

refines HandlingEmergencyCall
when

grd1 : ec handling = TRUE
grd2 : candidate found = TRUE
grd3 : current call ∈ dom(emergency calls)
grd4 : current call /∈ dom(accepted calls)

41

grd5 : directed(current call) /∈ disconnected
grd6 : card(med agents \ occupied) = 1

with
ec : ec = current call

ma : ma = directed(current call)

then
act1 : accepted calls(current call) := directed(current call)
act2 : ec handling := FALSE
act3 : candidate found := FALSE
act4 : occupied := ∅

end
Event EmergencyVisitBegin =̂

extends EmergencyVisitBegin
any

ec

where
grd1 : ec ∈ dom(accepted calls)
grd2 : emergency calls(ec) /∈ visited

grd3 : accepted calls(ec) /∈ last visit[visited]
grd4 : accepted calls(ec) /∈ disconnected

then
act1 : last visit(emergency calls(ec)) := accepted calls(ec)
act2 : visited := visited ∪ {emergency calls(ec)}
act3 : emergency calls := emergency calls\{ec 7→ emergency calls(ec)}
act4 : accepted calls := accepted calls\{ec 7→ accepted calls(ec)}
act5 : directed := {ec}C− directed

end
Event RegularVisitBegin =̂

extends RegularVisitBegin
any

ma

pa

where
grd1 : ma ∈ med agents

grd2 : pa ∈ patients

grd3 : pa /∈ visited

grd4 : ma /∈ last visit[visited]
grd5 : pa /∈ ran(emergency calls)

then
act1 : last visit(pa) := ma

act2 : visited := visited ∪ {pa}

42

end
Event VisitEnd =̂

extends VisitEnd
any

pa

where
grd1 : pa ∈ visited

then
act1 : visited := visited \ {pa}

end
VARIANT

card(med agents \ occupied)
END

43

MACHINE Hospital5
REFINES Hospital4
SEES c4
VARIABLES

accepted calls

assigned doctor

directed

disconnected

emergency calls

last visit

med agents

patients

timer

record

scopes

ec handling

ma data

visited

occupied

candidate found

current call

INVARIANTS
inv1 : record ∈ patients → P(DATA)

inv2 : ma data ∈ med agents 7→ P(DATA)

inv3 : scopes ∈ ScopeName 7½ med agents

inv4 : ∀ma ·ma ∈ ran(scopes)⇔ma ∈ dom(ma data)

inv5 : ∀ma ·ma ∈ disconnected ⇒ma /∈ ran(scopes)

inv6 : ∀ma ·ma ∈ ran(visited C last visit)⇒ma ∈ ran(scopes)

inv7 : ∀ma, pa ·(pa 7→ ma) ∈ (visited C last visit)⇒ ma data(ma) =
record(pa)

inv8 : ∀pa ·pa ∈ visited ⇒ last visit(pa) ∈ ran(scopes)

inv9 : (visited C last visit) ∈ patients 7½ med agents

EVENTS
Initialisation

extended
begin

act1 : med agents := ∅

44

act2 : patients := ∅
act3 : assigned doctor := ∅
act4 : last visit := ∅
act5 : visited := ∅
act6 : disconnected := ∅
act7 : timer := ∅
act8 : emergency calls := ∅
act9 : accepted calls := ∅
act10 : ec handling := FALSE

act11 : candidate found := FALSE

act12 : directed := ∅
act13 : occupied := ∅
act14 : current call :∈ ALARMS

act15 : record := ∅
act16 : scopes := ∅
act17 : ma data := ∅

end
Event ActivateAgent =̂

extends ActivateAgent
any

ma

where
grd1 : ma ∈ MEDSTAFF

grd2 : ma /∈ med agents

then
act1 : med agents := med agents ∪ {ma}
act2 : timer(ma) := inactive

end
Event PatientArrival =̂

extends PatientArrival
any

pa

ma

da
where

grd1 : pa ∈ PATIENTS

grd2 : pa /∈ patients

grd3 : ma ∈ med agents

grd4 : da ⊆ DATA
then

act1 : patients := patients ∪ {pa}
act2 : assigned doctor(pa) := ma

45

act3 : record(pa) := da
end

Event PatientDischarge =̂

extends PatientDischarge
any

pa

where
grd1 : pa ∈ patients

grd2 : pa /∈ visited

grd3 : pa /∈ ran(emergency calls)
then

act1 : patients := patients \ {pa}
act2 : assigned doctor := {pa}C− assigned doctor

act3 : last visit := {pa}C− last visit

act4 : record := {pa}C− record
end

Event DisconnectAgent =̂

extends DisconnectAgent
any

ma

where
grd1 : ma ∈ med agents

grd2 : ma /∈ disconnected

grd3 : ec handling = FALSE

grd4 : ma /∈ ran(scopes)
then

act1 : disconnected := disconnected ∪ {ma}
act2 : timer(ma) := active

end
Event ReconnectionSuccessful =̂

extends ReconnectionSuccessful
any

ma

where
grd1 : ma ∈ disconnected

grd2 : timer(ma) = active

then
act1 : timer(ma) := inactive

act2 : disconnected := disconnected \ {ma}
end

Event ReconectionFailed =̂

46

extends ReconectionFailed
any

ma

where
grd1 : ma ∈ disconnected

grd2 : timer(ma) = active

then
act1 : timer(ma) := timeout

end
Event NormalAgentLeaving =̂

extends NormalAgentLeaving
any

ma

where
grd1 : ma ∈ med agents

grd2 : ma /∈ ran(assigned doctor)
grd3 : ma /∈ last visit[visited]
grd4 : ma /∈ disconnected

grd5 : ma /∈ ran(accepted calls)
grd6 : ma /∈ ran(directed)
grd7 : ma /∈ ran(scopes)

then
act1 : med agents := med agents \ {ma}
act2 : timer := {ma}C− timer

act3 : occupied := occupied \ {ma}
end

Event NormalReassignDoctor =̂

extends NormalReassignDoctor
any

ma

ma new

where
grd1 : ma ∈ ran(assigned doctor)
grd2 : ma /∈ last visit[visited]
grd3 : ma new ∈ med agents

grd4 : ma 6= ma new

grd5 : ma /∈ disconnected

grd6 : ma /∈ ran(accepted calls)
grd7 : ma /∈ ran(directed)
grd8 : ma /∈ ran(scopes)

then

47

act1 : med agents := med agents \ {ma}
act2 : assigned doctor := assigned doctorC−(dom(assigned doctorB

{ma})× {ma new})
act3 : timer := {ma}C− timer

act4 : occupied := occupied \ {ma}
end

Event DetectFailedFreeAgent =̂

extends DetectFailedFreeAgent
any

ma

where
grd1 : ma ∈ med agents

grd2 : ma /∈ ran(assigned doctor)
grd3 : ma /∈ last visit[visited]
grd4 : ma ∈ disconnected

grd5 : timer(ma) = timeout

grd6 : ma /∈ ran(directed)
then

act1 : med agents := med agents \ {ma}
act2 : disconnected := disconnected \ {ma}
act3 : timer := {ma}C− timer

act4 : accepted calls := accepted calls B− {ma}
act5 : occupied := occupied \ {ma}
act6 : scopes := scopes B− {ma}
act7 : ma data := {ma}C−ma data

end
Event DetectFailedAgent =̂

extends DetectFailedAgent
any

ma

ma new

where
grd1 : ma ∈ ran(assigned doctor)
grd2 : ma /∈ last visit[visited]
grd3 : ma new ∈ med agents

grd4 : ma 6= ma new

grd5 : ma ∈ disconnected

grd6 : timer(ma) = timeout

grd7 : ma new /∈ disconnected ∨ (ma new ∈ disconnected ∧
timer(ma new) = active)

grd8 : ma /∈ ran(directed)
then

48

act1 : med agents := med agents \ {ma}
act2 : assigned doctor := assigned doctorC−(dom(assigned doctorB

{ma})× {ma new})
act3 : disconnected := disconnected \ {ma}
act4 : timer := {ma}C− timer

act5 : accepted calls := accepted calls B− {ma}
act6 : occupied := occupied \ {ma}
act7 : scopes := scopes B− {ma}
act8 : ma data := {ma}C−ma data

end
Event EmergencyCall =̂

extends EmergencyCall
any

pa

ec

where
grd1 : pa ∈ patients

grd2 : ec ∈ ALARMS

grd3 : ec /∈ dom(emergency calls)
grd4 : pa /∈ ran(emergency calls)

then
act1 : emergency calls := emergency calls ∪ {ec 7→ pa}

end
Event ChooseCurrentCall =̂

extends ChooseCurrentCall
any

ec

where
grd1 : ec ∈ dom(emergency calls)
grd2 : ec /∈ dom(directed)
grd3 : ec handling = FALSE

then
act1 : ec handling := TRUE

act2 : current call := ec

end
Event CallFeed =̂

extends CallFeed
when

grd1 : ec handling = TRUE

grd2 : candidate found = FALSE

grd3 : assigned doctor(emergency calls(current call)) /∈ disconnected

49

grd4 : assigned doctor(emergency calls(current call)) /∈ occupied

then
act1 : directed(current call) := assigned doctor(emergency calls(current call))
act2 : candidate found := TRUE

end
Event AcceptCall =̂

extends AcceptCall
when

grd1 : ec handling = TRUE

grd2 : candidate found = TRUE

grd3 : current call ∈ dom(emergency calls)
grd4 : current call /∈ dom(accepted calls)
grd5 : directed(current call) /∈ disconnected

then
act1 : accepted calls(current call) := directed(current call)
act2 : ec handling := FALSE

act3 : candidate found := FALSE

act4 : occupied := ∅
end

Event RejectCall =̂

extends RejectCall
when

grd1 : ec handling = TRUE

grd2 : candidate found = TRUE

grd3 : card(med agents \ occupied) ≥ 2

then
act1 : occupied := occupied ∪ {directed(current call)}
act2 : candidate found := FALSE

end
Event ForwardCall =̂

extends ForwardCall
any

ma new

where
grd1 : ec handling = TRUE

grd2 : candidate found = FALSE

grd3 : assigned doctor(emergency calls(current call)) ∈ disconnected∨
assigned doctor(emergency calls(current call)) ∈ occupied

grd4 : ma new ∈ med agents

grd5 : ma new /∈ disconnected

grd6 : ma new /∈ occupied

50

then
act1 : directed(current call) := ma new

act2 : candidate found := TRUE

end
Event ForcedAcceptCall =̂

extends ForcedAcceptCall
when

grd1 : ec handling = TRUE

grd2 : candidate found = TRUE

grd3 : current call ∈ dom(emergency calls)
grd4 : current call /∈ dom(accepted calls)
grd5 : directed(current call) /∈ disconnected

grd6 : card(med agents \ occupied) = 1

then
act1 : accepted calls(current call) := directed(current call)
act2 : ec handling := FALSE

act3 : candidate found := FALSE

act4 : occupied := ∅
end

Event EmergencyEnterScope =̂

extends EmergencyVisitBegin
any

ec

sn
where

grd1 : ec ∈ dom(accepted calls)
grd2 : emergency calls(ec) /∈ visited

grd3 : accepted calls(ec) /∈ last visit[visited]
grd4 : accepted calls(ec) /∈ disconnected

grd5 : sn ∈ ScopeName
grd6 : sn /∈ dom(scopes)
grd7 : accepted calls(ec) /∈ ran(scopes)
grd8 : accepted calls(ec) /∈ disconnected

then
act1 : last visit(emergency calls(ec)) := accepted calls(ec)
act2 : visited := visited ∪ {emergency calls(ec)}
act3 : emergency calls := emergency calls\{ec 7→ emergency calls(ec)}
act4 : accepted calls := accepted calls\{ec 7→ accepted calls(ec)}
act5 : directed := {ec}C− directed

act6 : scopes(sn) := accepted calls(ec)
act7 : ma data(accepted calls(ec)) := record(emergency calls(ec))

end

51

Event RegularEnterScope =̂

extends RegularVisitBegin

any
ma

pa

sn

where
grd1 : ma ∈ med agents

grd2 : pa ∈ patients

grd3 : pa /∈ visited

grd4 : ma /∈ last visit[visited]
grd5 : pa /∈ ran(emergency calls)
grd6 : sn ∈ ScopeName
grd7 : sn /∈ dom(scopes)
grd8 : ma /∈ ran(scopes)
grd9 : ma /∈ disconnected

then
act1 : last visit(pa) := ma

act2 : visited := visited ∪ {pa}
act3 : scopes := scopes ∪ {sn 7→ ma}
act4 : ma data(ma) := record(pa)

end
Event ModifyRecord =̂

any
ma
sn
pa
da new

where
grd1 : (sn 7→ ma) ∈ scopes
grd2 : pa ∈ dom(last visit)
grd3 : last visit(pa) = ma
grd4 : pa ∈ visited
grd5 : da new ∈ P(DATA)
grd6 : da new 6= ∅

then
act1 : ma data(ma) := da new
act2 : record(pa) := da new

end
Event LeaveScope =̂

extends VisitEnd

52

any
pa

sn
where

grd1 : pa ∈ visited

grd2 : (sn 7→ last visit(pa)) ∈ scopes
then

act1 : visited := visited \ {pa}
act2 : scopes := scopes B− {last visit(pa)}
act3 : ma data := {last visit(pa)}C−ma data

end
END

CONTEXT c4
EXTENDS c3
SETS

DATA

ScopeName

AXIOMS
axm1 : finite(DATA)

axm2 : finite(ScopeName)

END

53

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Information Technologies

Turku School of Economics
• Institute of Information Systems Sciences

ISBN 978-952-12-2572-7
ISSN 1239-1891

