Inna Pereverzeva | Elena Troubitsyna | Linas Laibinis

Formal Goal-Oriented Development of
Resilient MAS in Event-B

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 1033, January 2012

1

Formal Goal-Oriented Development of
Resilient MAS in Event-B

Inna Pereverzeva
Abo Akademi University, Department of Computer Science,

Turku Centre for Computer Science
i Nnna. pereverzeva@bo. fi

Elena Troubitsyna
Abo Akademi University, Department of Computer Science
el ena. troubi t syna@bo. fi

Linas, Laibinis
Abo Akademi University, Department of Computer Science
i nas. | ai bi ni s@bo.fi

TUCS Technical Report
No 1033, January 2012

Abstract

Goal-Oriented Development facilitates structuring coemplequirements. To en-
sure resilience the designers should guarantee that thensyshieves its goals
despite changes, e.g., caused by failures of system comisore this paper we
propose a formal goal-oriented approach to developmenefient MAS. We
formalize the notion of goal and goal achievement in Everatr8 propose the
specification and refinement patterns that allow us to gteeathat the targeted
goals are reached despite agent failures. We illustratampnoach by a case study
— development of an autonomous multi-robotic system.

Keywords: Event-B, formal modelling, refinement, goal-oriented depenent,
multi-agent system.

TUCS Laboratory
Distributed Systems Laboratory

1 Introduction

Goal-Oriented Development [15] has been recognised asedul fimmework for
structuring and specifying complex system requirememsgolal-oriented devel-
opment, the system requirements are defined in terms of gtlad¢sfunctional and
non-functional objectives that a system should achievéerOfhanges in system
operational environment, e.g., caused by failures of agemidependent system
components of various types — might hinder achieving theettgoals. Hence,
to ensure system resilience [7], i.e., guarantee its degimlitg in spite of the
changes, we need formally verify reachability of the taedejoals. Traditionally,
such a verification is undertaken by abstracting implentamtap to requirements
level and model-checking satisfiability of goals. Howeweich an approach suf-
fers from a state explosion that is especially prohibitimeduch applications as
multi-robotic systems [5].

In this paper we propose a formal development approach tisatres goal
reachability “by construction”. Our approach is based dimesent in Event-B.
Event-B [2] is a formal top-down development approach toexirby-construction
system development. The main development technique — nedinie— allows us
to ensure that a concrete specification preserves gloldadlgreable behaviour and
properties of abstract specification. Verification of eagfinement step is done
by proofs. Rodin platform [11] automates modelling and fi@tion in Event-B.
Currently Event-B is actively used within EU project Dep[dyto model depend-
able systems from various domains.

We formalise goal-oriented development by defining a sepetdication and
refinement patterns. Our formalisation reflects the maircepts of the goal-
oriented engineering. In particular, we demonstrate hodetne system goals
at different levels of abstraction and guarantee goal i@aitty while specifying
collaborative agent behaviour. Moreover, we propose referg patterns that
allow the system to dynamically reallocate goals from thiégents to healthy
ones and per se, guarantee resilience. A development oftancamous multi-
robotic system illustrates application of the proposedegpas. We believe that
our approach offers a scalable technique for developmehtamal verification
of complex resilient MAS.

The paper has the following structure. In Section 2 we bripflgsent our
modelling framework — Event-B. In Section 3 we present theogspecification
and refinement patterns that facilitate goal-oriented ldgveent in Event-B. In
Section 4 we present a case study — development of an autarsamdti-robotic
system by refinement. In Section 5 we overview the relateckwiscuss the
presented approach and outline the directions for thedugsearch.

2 Formal Modelling and Refinement in Event B

In this section we present our formal development framewoikvent-B. The
Event-B formalism is an extension of the B Method [1]. It igate-based formal

1

Table 1: Before-after predicates

Action (5) BA(S)
.I‘I:E(.I‘,y) .T/:E(l',y) /\y/:y

x:€ Set dz - (zeSethad' =2) Ny =y
x:| P(z,y,) Jz - (P(z,z,y) Nl =2) Ny =y

approach that promotes the correct-by-construction deweént paradigm and
formal verification by theorem proving. Event-B has beercmally designed
to model and reason about parallel, distributed and reasjigtems.

2.1 Modelling in Event-B

In Event-B, a system model is specified using the notion ailastract state ma-
chine[2]. An abstract state machine encapsulates the system refatesented
as a collection of model variables, and defines operationthignstate, i.e., it
describes the dynamigehaviourof the modelled system. A machine may also
have the accompanying component, catedtext A context might include user-
defined carrier sets, constants and their properties, wdnielgiven as a list of
model axioms. In Event-B, the variables are strongly typgdhe constraining
predicates callethvariants. Moreover, the invariant specify important properties
that should be preserved during system execution.

The dynamic behaviour of the system is defined by the set ofiatevents
Generally, an event can be defined as follows:

evt = any vl where g then S end

wherewl is a list of new local variables (parameterg)is the evenguard, and
S is the eventction. The guard is a state predicate that defines the conditions
under which the action can be executed, i.e., when the esvenabled If several
events are enabled at the same time, any of them can be cloosxe@€ution non-
deterministically. If none of the events is enabled thensystem deadlocks. In
general, the action of an event is a parallel compositionedémininistic or non-
deterministic assignments. A deterministic assignment= FE(z,y), has the
standard syntax and meaning. A non-deterministic assighmeaenoted either
asz :€ Set, whereSet is a set of values, or :| P(x,y, '), whereP is a predicate
relating initial values ofr, y to some final value of’. As a result of such a non-
deterministic assignment, can get any value belonging ¢ or according to
P.

The semantics of Event-B actions is defined using so calletd®after (BA)
predicates [2]. A before-after predicate describes aiogighip between the sys-
tem states before and after execution of an event, as shovabla 1. Herer and
y are disjoint lists (partitions) of state variables, and,’ represent their values in
the after-state.

The semantics of an Event-B model is formulated as a catleadf proof
obligations— logical sequents, which must be proved to show that a madhin

2

well-defined and the events preserve invariant. The fulldigoroof obligations
can be found in [2].

2.2 Event-B Refinement

Event-B employs a top-down refinement-based approach teraygevelopment.
Development starts from an abstract system specificatiomat th
non-deterministically models the most essential funeioaquirements. In a se-
guence of refinement steps we gradually reduce non-detismind introduce
detailed design decisions. In particular, we can replasgratt variables by their
concrete counterparts, i.e., perform data refinement. ihdéise, the invariant
of the refined machine formally defines the relationship leetwthe abstract and
concrete variables. Via suchgluing invariant we establish a correspondence
between the state spaces of the refined and the abstractmeschi

Often a refinement step introduces new events and variatti@shie abstract
specification. The new events correspond to the stutterapsg shat are not visible
at the abstract level, i.e., they refine impliskip. To guarantee that the refined
specification preserves the global behaviour of the alistnachine, we should
demonstrate that the newly introduced everdsverge To prove it, we need to
define avariant— an expression over a finite subset of natural numbers — awd sh
that the execution of new events decreases it. Sometimegigence of an event
cannot be proved due to a high level of non-determinism. Therevent obtains
the statusnticipated This obliges the designer to prove at some later refinement
step, that the event indeed converges. Then the status evéms is changed to
theconvergent

Refinement relation is transitive. It allows us to build céexpspecifications
in a number of small (and hence rather simple and highlyraated) correctness-
preserving model transformations. Each refinement stapresjto verify a num-
ber of proof obligations that ensure that the refined spatifin adheres to its
abstract counterpart. The verification efforts, in patdcuautomatic generation
and proving of the required proof obligations, are signiftbafacilitated by the
Rodin platform [10].

Refinement and proof-based verification of Event-B offees designers a
scalable support for the development of such complex Higed systems as MAS.
In the next section we show how refinement process can &eilihodelling MAS
and reasoning about goal reachability.

3 AFormal View of Goal-Oriented Multi-Agent Sys-
tem.

3.1 Patterns for Goal-Oriented Development

The goal-oriented engineering facilitates structuringiptex system requirements
in terms ofgoals— objectives that the system should meet [15]. In this pager w

3

focus on modelling functional goals, i.e., the goals defjrobjectives of the ser-
vices that the system should deliver. We propose a numbspeaxfification and
refinement patternsghat interpret essential activities of goal-oriented eegring
in terms of Event-B refinement.

A pattern in Event-B is an abstract machine that defines argpem®@delling
solution that can be reused in similar developments viamigition. Usually an
Event-B pattern contains generic (abstract) types, catstnd variables. The
context of such a model constraints the instantiation byndefithe properties
that should be satisfied by concrete representations ffimsti@ns) of abstract data
structures. The invariant properties of a pattern, oncegiroremain valid for all
instantiations.

The aim of defining a pattern is to capture experience gainedadelling a
certain problem. To illustrate how patterns are defineddetaw present a pattern
that allow the designers to explicitly define goals while mlbdg a system in
Event-B. We call itAbstract Goal Modelling Pattern

3.2 Abstract Goal Modelling Pattern

Let GSTATE be an abstract type defining the system state spatareover, let
Goalbe a non-empty proper subset@$7T AT E that abstractly defines the given
system goals. We say that the system has achieved the dgeakdf its current
state belongs t6/oal. BothGST AT E andGoal are the abstract types. Together
with their properties they are defined in the model contexobows:

Goal# @ and Goal C GSTATE.
Let us note thaGSTATEand Goal are generic parameters of the initial pattern.
During a system development, we should supply their coadnstantiations that
satisfy the properties shown above.

While modelling a system in Event-B, we should ensure trasstem under
construction achieves the desired goal. We can formallyassathis by requiring
that the system terminates in a state satisfyiig/. The machinedV_AGM is
defined according to th@oal Modelling Pattern

Machine M_AGM
Variables gstate
Invariants
inv : gstate € GSTATE
Events
Initialisation =
begin
gstate :€ GSTATE \ Goal
end
Reaching_Goal =
status anticipated
when
gstate € GSTATE \ Goal
then
gstate :€ GSTATE
end
end

n fact, it is sufficient to consider the states that our g@gdehds on.

4

The dynamic behaviour of the system is abstractly modellgdiie event
Reaching_Goal. The system terminates wh&nsaching_Goal becomes disable, i.e.,
when a state satisfyinGoalis reached.

The eventReaching_Goal has the statusnticipated. Hence, in the machine
M_AGM goal reachability is postulated rather than proved. Howévaso obliges
us to prove (at some refinement step) that the event or itsereénts converge.
Therefore, while refining a concrete specification definezbeting toAbstract
Goal Modelling Patternwe will be forced to prove goal reachability.

Let us assume that we have a collection of Event-B pattePpsr, ..., P,
that refine each other in the following way:

Py isrefined by P, ... is refined by P,.

Such a refinement chain expresses a generic developmenfitgment. Ab-
stract data structures of all the involved patterns becognegc parameters of the
development. Each pattern abstractly defines a solutioedecifying a certain
modelling aspect. Therefore, each refinement step hasamadi behind it — its
meta-level description. We use it to formulate modellingeads that the refine-
ment transformation aims at defining. The result of refinenramsformation is
called a refinement pattern.

Next we propose several refinement patterns that allow usptement the
ideas of goal-oriented engineering in Event-B refinemerd.srt from defining
Goal Decomposition Refinement pattern

3.3 Goal Decomposition Pattern

The main idea of goal-oriented development is to decomguséigh-level sys-
tem goals into a set of subgoals. This is an iterative prodegsaims at building
the hierarchy of system goals. Essentially, subgoals defteemediate stages of
the process of achieving the main goal.

The purpose ooal Decomposition Patteris to explicitly model subgoals in
the system specification. While defining this pattern we gheasure that high-
level goals remain achievable. Hence, our refinement pasieould reflect the
relation between the high-level goals and subgoals. Maeavshould ensure
that high-level goal reachibility is preserved and can Hedd via reachibility of
lower-layer subgoals.

In this paper we assume that subgoals are independent ofotfaeh This
means that reachability of any subgoal does not affect redichof another one.
Moreover, while a certain subgoal is reached, it remainshed, i.e., the system
always progresses towards achieving its goals. Formabgn be expressed as a
stability property with respect to some state predidate

Stablé P) < once P becomes true it remains true.

Intuitively, a stability property can be understood as atpmsed invariant prop-
erty that does not need to be true initially.

5

In Event-B, stability properties can be easily expressethbpducing aux-
iliary variables for storing the previous value of the statel then formulating
stability properties as the invariant properties of therfor

P(prev_state) = TRUE = P(state) = TRUE.

To express a goal decomposition in terms of Event-B, let disi@e corre-
sponding refinement pattern. We present it by the madiirteD shown below.
The new pattern allows us to introduce a number of subgo&tsdar system
model and express their reachability. Moreover, the refer@melation between
patterns allows us to express reachability of the main g@ataachability of its
subgoals.

Let us assume for simplicity, that system g&al is achieved by reach-
ing three subgoals. The subgoals are defined as corresgovaliiables of the
M_GD machine: SubGoal;, SubGoals, and SubGoals. The goal independence
assumption allows us to partition high-level goal stateesgadS T AT E into three
non-empty subset$SiG_STATFE1, SG.STATE2,SG_STATFE3. We define the

subgoals as follows:
SubGoal; # @ and SubGoal; C SG_.STATFE1, i € 1..3.

To establish a relashionship between the new state spaeesi’ AT Ei, i € 1..3,
of theM_GD machine and the abstract state spackloAGM machine we define
the following function:

State_map € SG_STATE1 x SG_STATE2 x SG_STATE3 — GSTATE,
where— designates a bijection function. Essentially it partisoime original goal
state space into three independent parts.

To postulate that the main goal is reached if and only if aké¢hsubgoals are
reached, we add the axiom into the context oflth&D machine:

Vsgl, sg2,sg3. sgl € Subgoal; N\ sg2 € Subgoals N sg3 € Subgoals

& State-map(sgl — sg2 — sg3) € Goal.

Refinement performed according to tBeal Decomposition Patteris an ex-
ample of the Event-B data refinement. We replace the abstaaiztble gstate
with the new variablegstate;, € SG_.STATFi, i € 1..3. The new variables
model the state of the corresponding subgoals. The follgpwining invariant
allows us to prove data refinement:

gstate = State_map(gstatel — gstate2 — gstate3).

Essentially théVl_GD machine decomposes tReaching_Goal event of theM_AGM
machine into three similar everiReaching_SubGoal;, 7 € 1..3:

Machine M_GD
Reaching_SubGoal; = refinesReaching_Goal
status anticipated
when
gstate; € SG_.STATE:4 \ Subgoal;
then
gstate; :€ SG_.STATE?
end

Let us observe that we can easily verify that the followirapsgity property
holds for the patterivi_GD:

Stable(gstate; € Subgoali)AStable(gstates € Subgoala)\Stable(gstates € Subgoals).

The proposedsoal Decomposition Patternan be repeatedly used to refine
subgoals into the subgoals of finer granularity until tharéelslevel of details is
reached.

3.4 Agent Modelling Pattern

Our elaborated\bstract Goal ModellingandGoal Decompositiopatterns allow
us to specify the system goal(s) at different levels of @gsion. In multi-agent
systems, (sub)goals are usually achieved by system agkgésits are indepen-
dent entities that are capable of performing certain taBkgieneral, the system
might have several types of agents that are distinguishelédtype of tasks that
they are capable of performing. Our next refinement patteiNgent Modelling
Pattern— allows us to model agents and associate them with goals.

We introduce the seaGENTShat abstractly defines the set of system agents.
In this refinement pattern we also introduce a concept oftagigibility. An agent
is eligibleif it is capable of achieving a certain task (subgoal). Werdgefhe non-
empty set€L_AG], EL_ AG2 andEL_AG3of the agents eligible to achieve each
particular subgoal.

Agent might fail while trying to achieve a certain subgodahehn it is removed
from the dynamic set of eligible agents represented by thalael:g;:

elig; C EL_AGi, 1 € 1..3.

A goal is achieved if there is at least one eligible agent@ased with it. This
is formulated as the corresponding invariant property ofpaitern:

eligy # @ and elig, # @ and eligs # .

The dynamic part aAgent Modelling Patterrs defined in the machind_AM.
Since we assumed that the agents can fail, the goal assigrikd failed agent
cannot be reached. To reflect this assumption in our modelefiree the abstract
event Reaching_SubGoal; by two events
Successful_Reaching_SubGoal; andFailed_Reaching_SubGoal;, 7 € 1..3, which re-
spectively model successful and unsuccessful reachingeostibgoal by some
eligible agent:

Machine M_AM
Successful_Reaching_SubGoal; = refinesReaching_SubGoal;
status convergent
any ag
when
gstate; € SG_.STATE1\ Subgoal; A ag € elig;
then
gstate; :€ Subgoal;
end
Failed_Reaching_SubGoal; = refinesReaching_SubGoal;
status convergent
any ag
when
gstate; € SG_.STATE1\ Subgoal; A ag € elig; A card(elig;) > 1
then
gstate; :€ SG_STATEi \ Subgoal;
elig; := elig; \ {ag}
end

In the guard of the evertailed_Reaching_SubGoal; we restrict possible agent
failures by postulating that at least one agent associaitbdie subgoal remains
operational:card(elig;) > 1, i € 1..3. This assumption allows us to change the
event status from anticipated to convergent. In other wosgsare now able to
prove that, for each subgoal, the process of reaching itteaéiy terminates. To
prove the convergence we define the following variant exgioas

card(eligy) + card(eligs) + card(eligs) +

bnaty(gstate;) + bnats(gstates) + bnats(gstates).

When an agent fails, it is removed from a corresponding seligible agents
elig;. This in turn decreases the valuewf-d(elig;) and consequently the whole
variant expression. On the other hand, when an agent sicaeedaching the
goal, all the events become disabled, thus ensuring systemnation as well.
To show decreasing of the variant expression when the sulsyosached, we
introduce the auxiliary functionsat; :

bnat; € SG_STATFEi — N,

Vs-s € Subgoal; = bnat;(s) = 0,

Vs-s € SG.STATEi \ Subgoal; = bnat;(s) = 1.

These functions have two possible values — 0 and 1. Untilubgaal is not
reached, the corresponding value of functhent; equals to 1. When the subgoal
is reached, the value becomes 0 and this consequently desréee whole variant
expression.

In practice, the constraint to have at least one operatageit associated with
our model can be validated by probabilistic modelling oflgeachability, which
is planned as a future work. Let us also note that for multiste systems with
many homogenous agents this constraint is usually satisfied

8

3.5 Agent Refinement Pattern

Above we have defined the notion of agent eligibility quitestadctly. We es-
tablish the relationship between subgoals (tasks) andiagleat are capable of
achieving them. Our last refinement patteAgent Refinement Patteraims at
unfolding the notion of agent eligibility. Here we define thgent eligibility by
introducing agent attributesagent typesndstatuses An eligible agent will be
an operational agent that belongs to particular agent type.

We define an enumerated set of agent typ€s7Y PE = {TY PE1,TY PE?2,
TY PE3} and establish the correspondence between abstract skgslméagents
and the corresponding agent types by the following axioms:

Vag-ag € EL_AGi < atype(ag) = TY PEi, i € 1..3.

An agent is eligible to perform a certain subgoal if it hastiype associated with
this subgoal.

An agent might be operational or failed. To model the notibagent status
we define an enumerated seti_STATUS = {OK, KO}, where constant® i
and KO designate operational and failed agents correspondingly.

Below we present an excerpt from the dynamic part ofAgent Refinement
Pattern—the machind_AR. We add a new variablestatus to store the dynamic
status of each agent:

astatus € AGENTS — AG_STATUS.

Moreover, we data refine the variablésy;. The following gluing invariants relate
them with the concrete sets:

elig; = {ala € AGENTSNatype(a) = TY PFEilastatus(a) = OK}, i € 1..3.

In our case, the dynamic set of eligible agents to performri@isesubgoal be-
comes a set of active agents of the particular type.

Machine M_AR
Successful_Reaching_SubGoal; = refinesSuccessful_Reaching_SubGoal;
any ag
when
gstate; € SG.STATET\ Subgoal; A astatus(ag) = OK A atype(ag) = TY PE;
then
gstate; :€ Subgoal;
end
Failed_Reaching_SubGoal; = refinesFailed_Reaching_SubGoal;
any ag
when
gstate; € SG_.STATE1\ Subgoal; N astatus(ag) = OK A atype(ag) = TY PE; N
card({ala € AGENTS A atype(a) = TY PE; A astatus(a) = OK}) > 1
then
gstate; :€ SG_.STATEFEi \ Subgoal;
astatus(ag) := KO
end

The eventrailed_Reaching_SubGoal; is now refined to take into account the con-
crete definition of agent eligibility. The event also upddtee status of the failed
agent.

Further refinement patterns can be defined to model variausttderance
mechanism. However, in this paper instead of building frttme collection of
patterns, we will demostrate how to instantiate and useéierthed patterns in a
concrete development.

4 Case Study: a Multi-Robotic System

4.1 A Case Study Description

As a case study we consider a multi-robotic system. The giotlleosystem is
to coordinate identical robots to get a certain area cleafidég area is divided
into several zones, which can be further divided into a nunobsectors. Each
zone has a base station — a static computing and commugjaigirice — that
coordinates the cleaning of the zone. In its turn, each bia®rs supervises a
number of robots by assigning cleaning tasks to them.

A robot is an autonomous electro-mechanical device — a abkirid of a
rover that can move and clean. The base station may assigpohasector — a
certain area in the zone — to clean. As soon as the robot e=caimew cleaning
task, it autonomously travels to this area and starts toate@fter successfully
completing its mission, it returns back to the base stataeteive a new order.

The base station keeps track of the cleaned sectors. A rodpfarl to clean
the assigned sector. In that case, the base station assigghearobot to perform
this task. To ensure that the whole area is eventually ctea@aeh base station in
its turn should ensure that its zone is eventually cleaned.

The system should function autonomously, i.e., without &onmtervention.
Such kind of systems are often deployed in hazardous areeleén power plants,
disaster areas, mine fields etc.). Hence guaranteeingsysglience is an im-
portant requirement. Therefore, we should formally dertraies that the system
goal is achievable despite possible robot failures.

Next, we will show how to develop a multi-robotic system bfimement in
Event-B and demonstrate how to rely on the patterns propws&ection 3 to
formally specify the system behaviour to ensure reachglafithe overall system
goal.

4.2 Pattern-Driven Refinement of a Multi-Robotic System

In this section we will describe our formal development of altirrobotic sys-
tem in Event-B. The development is concluded via instaiotiadf the proposed
patterns, with the goal decomposition pattern being agligce in a row.

Abstract model. The initial model defined by the machihMRS_Abs specifies
the behaviour of a multi-robotic system according toAlstract Goal Modelling

10

Pattern We apply this pattern by instantiating abstract variabligls the concrete
values and specifying events that model system behaviour.

The state space of the initial model is defined by the &) L. The value
TRUE corresponds to the situation when the desired goal is astii@we., the
whole territory is cleaned), whilBALSE represents the opposite situation.

Similarly to the pattern machiné_AGM, the machin@IRS_Abs contains an
event,CleaningTerritory, that models system behaviour. It abstractly represents
the process of cleaning the territory, where a variabtepleted € BOOL mod-
els the current state of the system goal. This event is agctstt according to the
pattern eveniReaching_Goal by taking all the instantiations into account, as shown
below:

Machine AbsMRS
Variables completed
Invariants

inv : completed € BOOL
Events

CleaningTerritory =
status anticipated
when
completed = FALSE
then
completed :€ BOOL
end

The system continues its execution until the whole teryitsrcleaned, i.e., as
long as completed stays FALSE. At this level of abstraction, the event
CleaningTerritory has theanticipatedstatus. In other words, similarly to the ab-
stract pattern, we delay the proof that the event eventwalhyerges to subse-
guent refinements. It is easy to see that the machinBRS is an instantiation of
the pattern machin®_AGM, where the abstract tyg@STATEts replaced with
BOOL, the constanGoal is instantiated with a singleton s€TRUE}, and the
variablegstateis renamed int@ompleted

First refinement. Our initial model specifies system behaviour in a highly ab-
stract way. It models the process of cleaning the wholetteyti The goal of
the first refinement is to model the cleaning of the territarpes. Refinement is
performed according to th@oal Decomposition Pattern

In the first refinement step resulting in the machMRS_Refl, we augment
our model with representation of subgoals. The whole tewiis divided inton
zonesn € N andn > 1. We associate the notion osabgoalwith the process of
cleaning a particular zoneThus a subgoal is achieved when the corresponding
zone is cleaned. A new variablene_completed represents the current subgoal
status for every zone. The valU&RUE corresponds to the situation when the
certain zone is cleaned:

zone_completed € 1.n — BOOL.

11

The refined modeMRS_Ref1 is built as an instantiation of th@oal Decom-
position PatterrmachineM_GD, where the subgoal states are defined as elements
of the variablezone_completed, i.e.,

gstate; = zone_completed(t), fori € 1..n.

This observation suggests the following gluing invariaetveen the initial
and the refined models:

completed = TRUE < zone_completed|l..n]| = {TRUE}.

The invariant can be understood as follows: the territorgaasidered to be
cleaned if and only if its every zone is cleaned.
The pattern evenfReaching_Subgoal; correspond to a single evetitaningZone:

Machine MRS_Refl
CleaningZone = refinesCleaning Teritory
status anticipated
any zone, zone_result
when
zone € 1.n A zone_completed(zone) = FALSE A
zone_result € BOOL
then
zone_completed(zone) := zone_result
end

Second refinement. In our development of a multi-robotic system we should
apply the goal decomposition pattern twice, until we rehehevel of “primitive”
goals, i.e., the goals for which we define the classes of agdigible for execution

of these goals.

Every zone in our system is divided intsectorsk € Nandk > 1. Arobotis
responsible for cleaning a certain sector. We associatedtien of asubsubgoal
(or simply task with the process otleaning a particular sector The task is
completed when the sector is cleaned. A new array varighter_completed
represents the current task status for every sector:

sector_completed € 1.n — (1..k — BOOL).

The refined model is again built as an instantiation of@oal Decomposition
Pattern where the subsubgoal states are defined as the elements drtable
sector_completed, i.e.,

gstate;; = sector_completed(i)(j), fori e 1.n, j € 1..k.
A gluing invariant expresses the relationship between salsgand subsub-
goals:

V zone-zone € 1..n = (zone_completed(zone) = TRUE <
sector_completed(zone)[l .. k] = {TRUE}).

The invariant postulates that any zone is cleaned if and ibitly every sector is
cleaned. The abstract evetitaningZone is refined by the everffleaningSector.
The subsubgoal will be achieved if this section is evenyua#aned:

12

Machine MRS_Ref2
CleaningSector = refinesCleaningZone
status anticipated
any zone, sector, sector_result
when
zone € 1.n A sector € 1..k A
sector_completed(zone)(sector) = FALSE A
sector_result € BOOL
then
sector_completed(zone) := sector_completed(zone) < {sector — sector_result}
end

Now we have reached the desire level of granularity of ougeals. In the
next refinement step (the machikiRS _Ref3) we are going to augment our model
with an abstract representation of agents.

Third refinement. The next refined model of our development is constructed
according to the refinemertgent Modelling Pattern As a result, we introduce
the abstract sedGENTS, and its subset/LIG containing the eligible agents
for executing the tasks. A new variabiég represents the dynamic set of (cur-
rently available) eligible agents. Following the propogattern, we should also
guarantee that there will be at least one eligible agentlé&areng the sector. This
property is formulated as an additional invariadity # <.

Moreover, according to the pattern, we need abstractlypdhice agent fail-
ures. This is achieved by refining the abstract evéainingSector by two events
SuccessfulCleaningSector andFailedCleaningSector, which respectively model suc-
cessful and unsuccessful execution of the task by somdkdiggent:

Machine MRS_Ref3
SuccessfulCleaningSector = refinesCleaningSector
status convergent
any zone, sector, ag
when
zone € 1.n A sector € 1.. kA
sector_completed(zone)(sector) = FALSE N
ag € elig
then
sector_completed(zone) := sector_completed(zone)<{sector — TRUE}
end
FailedCleaningSector = refinesCleaningSector
status convergent
any zone, sector, ag
when
zone € 1l.n A sector € 1.. kA
sector_completed(zone)(sector) = FALSE N
ag € elig A card(elig) > 1
then
sector_completed(zone) := sector_completed(zone) < {sector i+
FALSE}
elig := elig \ {ag}
end

Following the proposed pattern, we add in the eVaiiledCleaningSector the
guardcard(elig) > 1 to restrict possible agent failure in task performance.uset
also note that for multi-robotic systems with many homogenagents this con-
straint is not unreasonable. This assumption allows usdweepthe convergence

13

of the goal-reaching events, i.e., to prove that the prosesteaning the territory
eventually terminates.

Fourth refinement. Finally, theAgent Refinement Pattefor introducing agent
types and their status is applied to produce the last refinediehof our multi-
robotic system. In this refinement step we explicitly defimedgent types — robots
and base stations. We partition our abstract4&6t%= NT'S by disjointed non-
empty subset®:B and BS, that represent robots and base station respectively.
In this case study robots perform the cleaning task. Henceabstract set of
eligible agents is completely represented by rob8t67G = RB. Robots might
be active or failed. We introduce the enumerateds§et7U S, which in our case
has two element§active, failed}.

At previous refinement step we have modelled agents faulile ywarforming
their tasks in a very abstract way. Now we will specify themrenoconcretely.
We assume that only robots may fail in our multi-robotic syst Their dynamic
status is stored in the variabté_status:

rb_status € RB — STATUS.
The abstract variableig is now data refined by the concrete set:
elig = {ala € AGENTS A atype(a) = RB A rb_status(a) = active}.

The concrete events are also built according to the proppatedrn. For in-
stance, the everfailCleaningSectors can now be specified as follows:

Machine MRS _Ref4
FailedCleaningSector = refinesFailedCleaningSector
any zone, sector, ag
when
zone € 1l.n A sector € 1.. kA
sector_completed(zone)(sector) = FALSE A
ag € RB A card({ala € RB A rb_status(a) = active}) > 1
rb_status(ag) = active
then
sector_completed(zone) := sector_completed(zone) < {sector — FALSE}
rb_status(ag) := failed
end

An overview of the development of an autonomous multi-rabsystem ac-
cording to the proposed specification and refinement pattasn shown
in the Fig. 1.

5 Conclusions

5.1 Discussion

In this paper we have proposed a formal goal-oriented apprimedevelopment of
resilient MAS. We have demonstrated how to rigorously defioals in Event-B
and ensure goal reachability by refinement. We have defined af snodelling

14

Abstract Goal > Abstract model:

Modelling Pattern cleaning the whole territory

refines
> First Refinement:
T PP cleaning the zones
Goal Decomposition | _.--=~
Pattern Seell Treﬁnes
. \\"A Second Refinement:
refines .
cleaning the sectors
i refines
Agent Modelling
Pattern [Tt L Third Refinement:
> introducing agents and
agent eligibility
refines

Fourth Refinement:

Agent Refinement | ____________. | defining robots, base stations and

Pattern

Figure 1: Overview of the development

and refinement patterns that describe generic solutionsnoanto formal mod-
elling of MAS. Rigorous modelling of the impact of agent ta#s on goal achiev-
ing allowed us to propose a dynamic goal reallocation mashathat guarantees
system resilience in presence of agent failures. We haw&riited our approach
by a case study — development of an autonomic multi-robgttes.

While modelling the behaviour of multi-robotic system, wevh shown that
refinement process allows us also to discover restrictioaiswe have to impose
on system behaviour to guarantee its resilience. In our, thsgoal was achiev-
able only if at least one robot remains healthy. Feasibditguch a restriction
can be checked probabilistically based on the failure m@itesbots. In our future
work we are planning to integrate stochastic reasoningiifiamal development.
Moreover, it would be also interesting to experiment witffeslent schemes for
goal decomposition and dynamic goal reallocation.

5.2 Related Work

Our approach is different from numerous process-algelajgcroaches used for
modeling MAS. Firstly, we relied on proof-based verificatithat does not im-
pose restrictions on the size of the model, number of ageoatsSecondly, we
adopted a system’s approach, i.e., we modeled the entitensyd extracted the
specifications of its individual components by decompositiSuch an approach
allows us to ensure resilience by enabling goal reallonatiodifferent architec-
tural levels. Furthermore, by incrementally increasingptexity of our models,
we have successfully managed to cope both with complexitgauiirements and
verification.

Formal modelling of MAS has been undertaken by [13, 12, 14 &uthors
have proposed an extension of the Unity framework to exptidefine such con-
cepts as mobility and context-awareness. Our modellingyad a different goal
— we aimed at formally guaranteeing that the specified agem@bour achieves
the defined goals. Formal modelling of fault tolerant MAS weEt-B has been

15

undertaken by Ball and Butler [3]. They have proposed a nuwitiaformally de-
scribed patterns that allow the designers to add well-knfauwth tolerance mech-
anisms to the specifications. In our approach, we implendegal reallocation
to guarantee goal reachability that can be also consideradyaal-specific fault
tolerance.

The foundational work on goal-oriented development has loeme by van
Lamswerde [15]. The original motivation behind the goaknted development
was to structure the requirements and derive propertieseiridrm of temporal
logic formulas that the system design should satisfy. Qwetdst decade the goal-
oriented approach has received several extensions tbat #ié designers to link
git with formal modelling [9, 6, 8]. These works aimed at eegsing temporal
logic properties in Event-B. In our work, we have relied oralgoto facilitate
structuring of system behaviour but derived system spatifio that satisfies the
desired properties by refinement.

16

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to MeaningSambridge
University Press, 2005.

[2] J.-R. Abrial. Modeling in Event-B Cambridge University Press, 2010.

[3] Elisabeth Ball and Michael Butler. Event-b patterns specifying fault-
tolerance in multi-agent interaction. Methods, Models and Tools for Fault
Tolerance pages 104-129. 20009.

[4] EU-project DEPLOY. online at http://www.deploy-prajeeu/.

[5] Marko Kaaramees, Juri Vain, and Kullo Raiend. Sysikef on-line plan-
ning tester for non-deterministic efsm models. TIKIC PART pages 147—
154, 2010.

[6] R.De Landtsheer, E. Letier, and A. van Lamsweerde. Dagitabular event-
based specifications from goal-oriented requirements feoda Require-
ments Engineering, 9(2pages 104-120, 2004.

[7] J.C. Laprie. From dependability to resilience.38th IEEE/IFIP Int. Conf.
On Dependable Systems and Netwpdegjes G8—-G9, 2008.

[8] Abderrahman Matoussi, Frederic Gervais, and Reginedial A Goal-Based
Approach to Guide the Design of an Abstract Event-B Speciéina In
16th International Conference on Engineering of Complexn@oter Sys-
tems IEEE, 2011.

[9] Christophe Ponsard, Gautier Dallons, and Massonegli From Rigor-
ous Requirements Engineering to Formal System Design @ftyséfritical
Systems. IEERCIM News (75)pages 22—23, 2008.

[10] Rigorous Open Development Environment for Complext&ys (RODIN).
IST FP6 STREP project, online at http://rodin.cs.ncl.lt.u

[11] RODIN. Event-B Platform. online at http://www.evebiorg/.

[12] G.-C. Roman, Ch. Julien, and J. Payton. A Formal Treatroé Context-
Awareness. IFFASE’2004 volume 2984 of NCS Springer, 2004.

[13] G.-C. Roman, Ch. Julien, and J. Payton. Modeling aslagiehaviors in
Context UNITY. In Theoretical Computure Scienceolume 376, pages
185-204, 2007.

[14] G.-C. Roman, P.McCann, and J. Plun. Mobile UNITY: Reasg and Spec-
ification in Mobile Computing. IrACM Transactions of Software Engineer-
ing and Methodology1997.

17

[15] Axel van Lamsweerde. Goal-oriented requirements reegjiing: A guided
tour. INRE, pages 249-263, 2001.

18

Appendix

MACHINE Top
SEES TopContext
VARIABLES

gstate
INVARIANTS

invl : gstate € GSTATE
EVENTS
Initialisation

begin

actl: gstate :€ GSTATE \ Goal
end

Event ReachingGoal=
Status anticipated

when

grdl : gstate € GSTATE \ Goal
then

actl: gstate :€ GSTATE
end

END

CONTEXT TopContext
SETS
GSTATE
CONSTANTS
Goal
AXIOMS
axml : Goal C GSTATE
axm? : Goal # &
END

19

MACHINE
REFINES

Subgoals
Top

SEES SubgoalContext
VARIABLES

gstatel

gstate?2

gstate3

prev

prev.

prev.

INVARIAN

invl :
inv2 :
inv3:
inv4 :
invb :
invé :
inv7 :
inv8 :

inv9 :

_gstatel

gstate?2

gstate3

TS

gstatel € SG_STATE1

gstate2 € SG_STATE?2

gstate3 € SG_STATES3

gstate = State_map(gstatel — gstate2 — gstate3)
prev_gstatel € SG_STATFE1

prev_gstatel € Subgoall = gstatel € Subgoall
prev_gstate2 € SG_STATE2

prev_gstate2 € Subgoal2 = gstate2 € Subgoal?2
prev_gstate3 € SG_STATES3

inv10 : prev_gstate3 € Subgoal3 = gstate3 € Subgoal3

EVENTS
Initialisation
begin
with
gstate’ : gstate’ = Statemap(gstatel’ — gstate2 —
gstated’)

end

actl : gstatel, prev_gstatel : |gstatel’ € SG_STATE1\ Subgoall A

prev_gstatel’ € SG_STATE1\ Subgoall Ngstatel’ = prev_gstatel’
act2 : gstate2, prev_gstate2 : |gstate2’ € SG_STATE2\ Subgoal2 N

prev_gstate2’ € SG_STATEZ2\ Subgoal2 N\gstate2' = prev_gstate2’
act3: gstate3, prev_gstate3 : |gstate3’ € SG_STATES3\ Subgoal3 N

prev_gstate3’ € SG_STATES\ Subgoal3 Ngstate3" = prev_gstate3’

Event ReachingSubGoall=

Status anticipated

refines ReachingGoal
when

20

grdl : gstatel € SG_.STATE1 \ Subgoall
with
gstate’ : gstate’ = State map(gstatel’ — gstate2 — gstate3d)
then
actl: gstatel :€ SG_STATE1
act2 : prev_gstatel := gstatel
end
Event ReachingSubGoalZ=
Status anticipated

refines ReachingGoal

when

grdl : gstate2 € SG_STATE2 \ Subgoal?
with

gstate’ : gstate’ = State map(gstatel — gstate2 — gstate3d)
then

actl: gstate2 :€ SG_STATE?2
act2 : prev_gstate? = gstate?
end

Event ReachingSubGoal3=
Status anticipated
refines ReachingGoal

when

grdl : gstate3 € SG_.STATES3 \ Subgoal3
with

gstate' : gstate’ = State map(gstatel — gstate2 — gstated’)
then

actl : gstate3 :€ SG_.STATES
act2: prev_gstate3 = gstate3
end

END

21

CONTEXT SubgoalContext
EXTENDS TopContext
SETS
SG_STATE1
SG_STATE2
SG_STATE3
CONSTANTS
Subgoall
Subgoal?
Subgoal3
State_map
AXIOMS
axml : Subgoall C SG_STATFE1
axm2 : Subgoall # @
axm3 : Subgoal2 C SG_STATE2
axmé : Subgoal? # &
axmb : Subgoal? C SG_STATES3
axm6 : Subgoal3 # &

axm?7 : State_map € SG_STATE1 x SG_STATE2 x SG_STATES —»
GSTATE

axm8 : Vsgl,sg2,s93-sqg1 € Subgoall Nsg2 € Subgoal2N\sq3 € Subgoal3<
State_map(sgl +— 592 +— sg3) € Goal

END

22

MACHINE Agents

REFINES

Subgoals

SEES AgentContex
VARIABLES
gstatel

gstate2

gstated

elig

1

elig?2

elig3

prev
prev

prev

_gstatel
_gstate?2
-gstate3

INVARIANTS

invl :
inv2 :
inv3:
invé4 :
invb :

invé :

EVENTS

eligl C EL_AG1
eligl + @
elig2 C FL_AG2
elig? # @
elig3 C FL_AG3
elig? # @

Initialisation
extended

begin

end

actl: gstatel,prev_gstatel : |gstatel’ € SG.STATE1\SubgoallA
prev_gstatel’ € SG_STATE1\SubgoalliAgstatel’ = prev_gstatel’

act2 : gstate2, prev_gstate2 : |gstate2 € SG_STATE2\Subgoal2A
prev_gstate2’ € SG_STATE2\Subgoal2/gstate2’ = prev_gstate2’

act3 : gstate3,prev_gstated :|gstate3 € SG_STATE3\Subgoal3A
prev_gstated € SG_STATE3\Subgoal3/gstated’ = prev_gstate3d

acth: eligl := EL_AGI

act6 : elig?2 := EL_AG2

act7: elig8 := EL_AG3

Event Fail_in_ReachingSubGoall=
Status convergent
refines ReachingSubGoall

any

23

ag
where

grdl :
grd2 :
grd3 :

then

actl :
act2:
act3:

end

gstatel € SG_STATE1 \ Subgoall
ag € eligl
card(eligl) > 2

gstatel :€ SG_STATE1 \ Subgoall
prev_gstatel = gstatel

eligl := eligl \ {ag}

Event ReachingSubGoall=
Status convergent
refines ReachingSubGoall

any

ag
where

grdl :
grd2 :

then

actl :
act2:

end

gstatel € SG_STATE1 \ Subgoall
ag € eligl

gstatel :€ Subgoall
prev_gstatel = gstatel

Event Fail_in_ReachingSubGoal2=
Status convergent
refines ReachingSubGoal2

any

ag
where

grdl :
grd2 :
grd3 :

then

actl :
act2 :
act3:

end

gstate2 € SG_STATE2 \ Subgoal?
ag € elig?
card(elig2) > 2

gstate2 :€ SG_STATE2 \ Subgoal?
prev_gstate2 := gstate?2

elig2 := elig2 \ {ag}

Event ReachingSubGoalZ=
Status convergent
refines ReachingSubGoal2

any

24

ag
where

grdl :
grd2 :

then

actl :
act2:

end

gstate2 € SG_STATE2 \ Subgoal?
ag € elig?

gstate2 :€ Subgoal2
prev_gstate? := gstate?2

Event Fail_in_ReachingSubGoal3=
Status convergent
refines ReachingSubGoal3

any

ag
where

grdl :
grd2 :
grd3 :

then

actl :
act2:
act3:

end

gstate3 € SG_STATES \ Subgoal3
ag € elig3
card(elig3) > 2

gstate3 :€ SG_STATES3 \ Subgoal3
prev_gstate3 := gstate3

eligd = elig3 \ {ag}

Event ReachingSubGoal3=
Status convergent
refines ReachingSubGoal3

any

ag
where

grdl :
grd2 :

then

actl :

act?2
end

VARIANT

gstate8 € SG_STATES \ Subgoal3
ag € elig3

gstate3 € Subgoal3

: prev_gstate3 := gstate3

card(eligl) + card(elig2) + card(elig3)+
bnatl(gstatel) + bnat2(gstate2) + bnat3(gstated)

END

25

CONTEXT

AgentContex

EXTENDS SubgoalContext

SETS

AGENTS

CONSTANTS

EL_AG1
EL_AG2
EL_AG3

bnatl
bnat?2
bnat3
AXIOMS
axml :
axm?2 :
axm3 :
axmé :
axmb :
axmé6 :
axm? :
axm8 :

axm9 :

axml0 :
axmll :
axml2 :
axml3 :
axml4 :

axml5b :

END

AGENTS + @
FEL_AG1 U EL_AG2 U EL_AG3 C AGENTS
EL_AG1 # @
ELAG2 + @
EL.AG3 + @
finite(AGENTS)
bnatl € SG_.STATE1 — N
Vs-s € Subgoall = bnatl(s) =0
Vs-s € SG.STATE1 \ Subgoall = bnatl(s) = 1
bnat2 € SG_STATE2 — N
Vs-s € Subgoal2 = bnat2(s) = 0
Vs-s € SG.STATE2 \ Subgoal2 = bnat2(s) = 1
bnat3 € SG_STATE3 — N
Vs-s € Subgoal? = bnat3(s) = 0
Vs-s € SG_STATES3 \ Subgoal3 = bnat3(s) = 1

26

MACHINE AgentsRef
REFINES Agents
SEES AgentContexExtended
VARIABLES
gstatel
gstate?2
gstated
astatus
prev_gstatel
prev_gstate2
prev_gstate3d
INVARIANTS
invl : astatus € AGENTS — AG_STATUS
inv4 : {ala € AGENTS A atype(a) = TYPE1 A astatus(a) = OK} =

elig1
inv5 : {ala € AGENTS A atype(a) = TYPE2 A astatus(a) = OK} =
elig2
inv6 : {ala € AGENTS A atype(a) = TYPES A astatus(a) = OK} =
eligs
EVENTS
Initialisation
begin

actl: gstatel, prev_gstatel : |gstatel’ € SG_STATE1\Subgoall N
prev_gstatel’ € SG_STATE1\ Subgoall Ngstatel’ = prev_gstatel’

act2 : gstate2, prev_gstate2 : |gstate2’ € SG_STATE2\ Subgoal2 N
prev_gstate2’ € SG_STATE2\ Subgoal2 Agstate2' = prev_gstate2’

act3: gstate3, prev_gstate3 : |gstate3’ € SG_STATES\ Subgoal3 A
prev_gstate3’ € SG_STATES\ Subgoal3 Ngstate3" = prev_gstate3’

act6 : astatus := AGENTS x {OK}

end

Event Fail_in_ReachingSubGoall=
Status anticipated
refines Fail_in_ReachingSubGoall
any
ag
where
grdl : gstatel € SG_STATE1 \ Subgoall
grd2 : astatus(ag) = OK
grdd : atype(ag) = TYPE1

27

grd5 : card({ala € AGENTS Natype(a) = TYPFE1 Aastatus(a) =
OK}) > 2
then
actl: gstatel :€ SG_STATE1 \ Subgoall
act2 : prev_gstatel := gstatel
act3: astatus(ag) := KO
end
Event ReachingSubGoall=
refines ReachingSubGoall
any
ag
where
grdl : gstatel € SG_STATE1 \ Subgoall
grd2 : astatus(ag) = OK
grd3 : atype(ag) = TYPE1
then
actl: gstatel :€ Subgoall
act2 : prev_gstatel = gstatel
end
Event Fail_in_ReachingSubGoal2=
Status anticipated
refines Fail_in_ReachingSubGoal2
any
ag
where
grdl : gstate2 € SG_.STATE2 \ Subgoal?
grd2 : astatus(ag) = OK
grdd : atype(ag) = TYPE2
grd5 : card({a|la € AGENTS Aatype(a) = TYPE2 Aastatus(a) =
OK}) > 2
then
actl : gstate2 :€ SG_STATE2 \ Subgoal2
act2 : prev_gstate2 = gstate?
act3: astatus(ag) := KO
end
Event ReachingSubGoalZ=
refines ReachingSubGoal2
any
ag
where
grdl : gstate2 € SG_.STATE2 \ Subgoal?

28

grd2 : astatus(ag) = OK
grd3 : atype(ag) = TYPE2
then
actl : gstate2 :€ Subgoal?2
act2 : prev_gstate2 = gstate2
end
Event Fail_in_ReachingSubGoal3=
Status anticipated
refines Fail_in_ReachingSubGoal3
any
ag
where
grdl : gstate3 € SG_STATES3 \ Subgoal3
grd2 : astatus(ag) = OK
grdd : atype(ag) = TYPES
grd5 : card({a|la € AGENTS Aatype(a) = TYPES3 Aastatus(a) =
OK}) > 2
then
actl: gstated :€ SGLSTATES \ Subgoal3
act2: prev_gstatel := gstates
act3: astatus(ag) := KO
end
Event ReachingSubGoal3=
refines ReachingSubGoal3
any
ag
where
grdl : gstate3 € SG_STATES \ Subgoal3
grd2 : astatus(ag) = OK
grd3 : atype(ag) = TYPES
then
actl : gstate3 :€ Subgoal’
act2: prev_gstatel := gstate3
end

END

29

CONTEXT

AgentContexExtended

EXTENDS AgentContex

SETS

AG_STATUS
AG_TYPES
CONSTANTS

0K
KO
TYPE1
TYPE2
TYPE3
atype
AXIOMS
axml :
axm?2 :
axm3 :
axmé
axm8 :

axm9 :

END

partition(AG_STATUS,{OK },{KO})
partition(AG_TYPES, { TYPE1},{ TYPE2}, { TYPE3})
atype € AGENTS — AG_TYPES

: Yag-ag € EL_AG1 < atype(ag) = TYPE1

Vag-ag € EL_AG2 < atype(ag) = TYPE2
Vag-ag € EL_AG3 < atype(ag) = TYPES3

30

MACHINE MRS_Abs
VARIABLES
completed
INVARIANTS
inv2 : completed € BOOL
EVENTS
Initialisation
begin
actl : completed := FALSE
end

Event CleaningTerritory=
Status anticipated

when
grdl : completed = FALSE
then
actl : completed :€ BOOL
end
END

31

MACHINE MRS_Refl
REFINES MRS_Abs
SEES cntx1
VARIABLES
zone_completed
INVARIANTS
invl : zone_completed € 1 ..n — BOOL
inv2 : zone_completed[1 .. n| = {TRUE} < completed = TRUE
EVENTS
Initialisation
begin
act2 : zone_completed :== 1 ..n x {FALSE}
end

Event CleaningZones
Status anticipated
refines CleaningTerritory

any
zone
zone_result
where
grd2 : zone€ 1 ..n
grd3 : zone_completed(zone) = FALSE
grd4 : zone_result € BOOL
with

completed’ : completed’ = bool(zone completed’[l..n] = {TRUE})
then

act2 : zone_completed(zone) := zone_result
end

END

CONTEXT cntx1
CONSTANTS

n
AXIOMS

axml: n € Ny
END

32

MACHINE MRS Ref2

REFINES MRS Refl

SEES cntx2

VARIABLES
sector_completed

INVARIANTS
invl : sector_completed € 1 ..n — (1 ..k — BOOL)
inv2: Vsg-sg € 1..n=(zone_completed(sq) = TRUE< sector_completed(sg)[1..

k| = {TRUE})
EVENTS
Initialisation
begin
actl: sector_completed := 1 ..n x {1 ..k x {FALSE}}
end

Event CleaningSecto&
Status anticipated
refines CleaningZones
any
zone
sector
sector_result
where
grdl: zone€ 1..mn
grd2 : sector € 1..k
grd3 : sector_completed(zone)(sector) = FALSE
grd4 : sector_result € BOOL
with
zone_result : zone_result = bool(sector_completed’(zone)[l..
k] = {TRUE})
then
actl: sector_completed(zone) := sector_completed(zone)<-{sector —
sector_result }
end

END

33

CONTEXT cntx2
EXTENDS cntx1
CONSTANTS

k
AXIOMS

axml : k € Ny
END

34

An Event-B Specification of MRS Ref3
Creation Date: 14 Feb 2012 @ 00:42:23 PM

MACHINE MRS_Ref3
REFINES MRS_Ref2
SEES cntx3
VARIABLES

sector_completed

elig

counter
INVARIANTS

invl : elig C ELIG

inv2: elig # @

inv3 : counter € 0 ..n*k
EVENTS

Initialisation
extended
begin
actl: sector_completed :=1..n x {1..k x {FALSE}}
act2: elig := FLIG
act3: counter :=nxk
end
Event FailedCleaningSectoe
Status convergent
refines CleaningSector
any
zone
sector
ag
where
grdl: zone€ 1 ..n
grd2 : sector € 1 ..k
grd3 : sector_completed(zone)(sector) = FALSE
grdd : card(elig) > 2
grd5 : ag € elig
with
sector_result : sector_result = FALSE
then

35

actl: sector_completed(zone) := sector_completed(zone)<-{sector —
FALSE}

act2 : elig := elig \ {ag}
end
Event SuccessfulCleaningSecter
Status convergent

refines CleaningSector

any
zone
sector
ag
where
grdl: zone€ 1 ..n
grd2 : sector € 1 ..k
grd3 : sector_completed(zone)(sector) = FALSE
grd4d : ag € elig
grd5 : counter > 0
with
sector_result : sector_result = TRUE
then
actl: sector_completed(zone) := sector_completed(zone)<{sector —
TRUE}
act2 : counter := counter — 1
end
VARIANT
card(elig) + counter
END

36

CONTEXT cntx3
EXTENDS cntx2
SETS
AGENTS
CONSTANTS
ELIG
bnat
AXIOMS
axml : finite(AGENTS)
axm2 : AGENTS # @
axm3 : FELIG C AGENTS
axm4 : FLIG # @
END

37

MACHINE MRS_Ref4
REFINES MRS_Ref3
SEES cntx4
VARIABLES

sector_completed
rb_status
counter
INVARIANTS
invl : rb_status € RB — AG_STATUS
inv2: {ala € RB A rb_status(a) = active} = elig
EVENTS
Initialisation
begin
actl: sector_completed := 1 ..n x {1 ..k x {FALSE}}
act2 : rb_status := RB X {active}

act3: counter .= n*k
end

Event SuccessfulCleaningSecter
refines SuccessfulCleaningSector

any
zone
sector
ag
where
grdl: zone€ 1..n
grd2 : sector € 1 ..k
grd3 : sector_completed(zone)(sector) = FALSE
grd4d : ag € RB
grd5 : rb_status(ag) = active
grd6 : counter > 0

then
actl: sector_completed(zone) := sector_completed(zone)<-{sector —
TRUE}
act2: counter := counter — 1
end

Event FailedCleaningSectoe
refines FailedCleaningSector

any
zone

38

sector
ag
where
grdl: zone€ 1..n
grd2 : sector € 1 ..k
grd3 : sector_completed(zone)(sector) = FALSE
grd4 : card({ala € RB A rb_status(a) = active}) > 2
grd5: ag € RB
grd6 : rb_status(ag) = active

then
actl: sector_completed(zone) := sector_completed(zone)<-{sector —
FALSE}
act2 : rb_status(ag) = failed
end
END

CONTEXT cntx4
EXTENDS cntx3
SETS
AG_STATUS
CONSTANTS
BS
RB
active
failed
AXIOMS
axm2 : RB C AGENTS
axm3: BS C AGENTS
axm4 : RB # &
axmb : BS # &
axm6 : partition(AGENTS, RB, BS)
axm7 : partition(AG_STATUS, {active}, { failed })
axm8 : KLIG = RB
END

39

TURKU

CENTRE for

COMPUTER

SCIENCE

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

m University of Turku
§ ,{’4 e Department of Information Technology
= S e Department of Mathematics
0 (4 i
/|
O

Abo Akademi University
e Department of Information Technologies

Turku School of Economics
e Institute of Information Systems Sciences

ISBN 978-952-12-2701-1
ISSN 1239-1891

