
Inna Pereverzeva | Elena Troubitsyna | Linas Laibinis

Formal Goal-Oriented Development of
Resilient MAS in Event-B

TUCS Technical Report
No 1033, January 2012

Formal Goal-Oriented Development of
Resilient MAS in Event-B

Inna Pereverzeva
Åbo Akademi University, Department of Computer Science,
Turku Centre for Computer Science
inna.pereverzeva@abo.fi

Elena Troubitsyna
Åbo Akademi University, Department of Computer Science
elena.troubitsyna@abo.fi

Linas Laibinis
Åbo Akademi University, Department of Computer Science
linas.laibinis@abo.fi

TUCS Technical Report

No 1033, January 2012

Abstract

Goal-Oriented Development facilitates structuring complex requirements. To en-
sure resilience the designers should guarantee that the system achieves its goals
despite changes, e.g., caused by failures of system components. In this paper we
propose a formal goal-oriented approach to development of resilient MAS. We
formalize the notion of goal and goal achievement in Event-Band propose the
specification and refinement patterns that allow us to guarantee that the targeted
goals are reached despite agent failures. We illustrate ourapproach by a case study
– development of an autonomous multi-robotic system.

Keywords: Event-B, formal modelling, refinement, goal-oriented development,
multi-agent system.

TUCS Laboratory
Distributed Systems Laboratory

1 Introduction
Goal-Oriented Development [15] has been recognised as an useful framework for
structuring and specifying complex system requirements. In goal-oriented devel-
opment, the system requirements are defined in terms of goals– the functional and
non-functional objectives that a system should achieve. Often changes in system
operational environment, e.g., caused by failures of agents – independent system
components of various types – might hinder achieving the desired goals. Hence,
to ensure system resilience [7], i.e., guarantee its dependability in spite of the
changes, we need formally verify reachability of the targeted goals. Traditionally,
such a verification is undertaken by abstracting implementation up to requirements
level and model-checking satisfiability of goals. However,such an approach suf-
fers from a state explosion that is especially prohibitive for such applications as
multi-robotic systems [5].

In this paper we propose a formal development approach that ensures goal
reachability “by construction”. Our approach is based on refinement in Event-B.
Event-B [2] is a formal top-down development approach to correct-by-construction
system development. The main development technique – refinement – allows us
to ensure that a concrete specification preserves globally observable behaviour and
properties of abstract specification. Verification of each refinement step is done
by proofs. Rodin platform [11] automates modelling and verification in Event-B.
Currently Event-B is actively used within EU project Deploy[4] to model depend-
able systems from various domains.

We formalise goal-oriented development by defining a set of specification and
refinement patterns. Our formalisation reflects the main concepts of the goal-
oriented engineering. In particular, we demonstrate how todefine system goals
at different levels of abstraction and guarantee goal reachability while specifying
collaborative agent behaviour. Moreover, we propose refinement patterns that
allow the system to dynamically reallocate goals from failed agents to healthy
ones and per se, guarantee resilience. A development of an autonomous multi-
robotic system illustrates application of the proposed patterns. We believe that
our approach offers a scalable technique for development and formal verification
of complex resilient MAS.

The paper has the following structure. In Section 2 we brieflypresent our
modelling framework – Event-B. In Section 3 we present the set of specification
and refinement patterns that facilitate goal-oriented development in Event-B. In
Section 4 we present a case study – development of an autonomous multi-robotic
system by refinement. In Section 5 we overview the related work, discuss the
presented approach and outline the directions for the future research.

2 Formal Modelling and Refinement in Event B
In this section we present our formal development framework– Event-B. The
Event-B formalism is an extension of the B Method [1]. It is a state-based formal

1

Table 1: Before-after predicates
Action (S) BA(S)

x := E(x, y) x′ = E(x, y) ∧ y′ = y

x :∈ Set ∃z · (z ∈ Set ∧ x′ = z) ∧ y′ = y

x :| P (x, y, x′) ∃z · (P (x, z, y) ∧ x′ = z) ∧ y′ = y

approach that promotes the correct-by-construction development paradigm and
formal verification by theorem proving. Event-B has been specifically designed
to model and reason about parallel, distributed and reactive systems.

2.1 Modelling in Event-B
In Event-B, a system model is specified using the notion of anabstract state ma-
chine [2]. An abstract state machine encapsulates the system state represented
as a collection of model variables, and defines operations onthis state, i.e., it
describes the dynamicbehaviourof the modelled system. A machine may also
have the accompanying component, calledcontext. A context might include user-
defined carrier sets, constants and their properties, whichare given as a list of
model axioms. In Event-B, the variables are strongly typed by the constraining
predicates calledinvariants. Moreover, the invariant specify important properties
that should be preserved during system execution.

The dynamic behaviour of the system is defined by the set of atomic events.
Generally, an event can be defined as follows:

evt =̂ any vl where g then S end

wherevl is a list of new local variables (parameters),g is the eventguard, and
S is the eventaction. The guard is a state predicate that defines the conditions
under which the action can be executed, i.e., when the event isenabled. If several
events are enabled at the same time, any of them can be chosen for execution non-
deterministically. If none of the events is enabled then thesystem deadlocks. In
general, the action of an event is a parallel composition of deterministic or non-
deterministic assignments. A deterministic assignment,x := E(x, y), has the
standard syntax and meaning. A non-deterministic assignment is denoted either
asx :∈ Set, whereSet is a set of values, orx :| P (x, y, x′), whereP is a predicate
relating initial values ofx, y to some final value ofx′. As a result of such a non-
deterministic assignment,x can get any value belonging toSet or according to
P .

The semantics of Event-B actions is defined using so called before-after (BA)
predicates [2]. A before-after predicate describes a relationship between the sys-
tem states before and after execution of an event, as shown inTable 1. Herex and
y are disjoint lists (partitions) of state variables, andx′, y′ represent their values in
the after-state.

The semantics of an Event-B model is formulated as a collection of proof
obligations– logical sequents, which must be proved to show that a machine is

2

well-defined and the events preserve invariant. The full list of proof obligations
can be found in [2].

2.2 Event-B Refinement
Event-B employs a top-down refinement-based approach to system development.
Development starts from an abstract system specification that
non-deterministically models the most essential functional requirements. In a se-
quence of refinement steps we gradually reduce non-determinism and introduce
detailed design decisions. In particular, we can replace abstract variables by their
concrete counterparts, i.e., perform data refinement. In this case, the invariant
of the refined machine formally defines the relationship between the abstract and
concrete variables. Via such agluing invariant we establish a correspondence
between the state spaces of the refined and the abstract machines.

Often a refinement step introduces new events and variables into the abstract
specification. The new events correspond to the stuttering steps that are not visible
at the abstract level, i.e., they refine implicitskip. To guarantee that the refined
specification preserves the global behaviour of the abstract machine, we should
demonstrate that the newly introduced eventsconverge. To prove it, we need to
define avariant– an expression over a finite subset of natural numbers – and show
that the execution of new events decreases it. Sometimes, convergence of an event
cannot be proved due to a high level of non-determinism. Thenthe event obtains
the statusanticipated. This obliges the designer to prove at some later refinement
step, that the event indeed converges. Then the status of theevents is changed to
theconvergent.

Refinement relation is transitive. It allows us to build complex specifications
in a number of small (and hence rather simple and highly-automated) correctness-
preserving model transformations. Each refinement step requires to verify a num-
ber of proof obligations that ensure that the refined specification adheres to its
abstract counterpart. The verification efforts, in particular, automatic generation
and proving of the required proof obligations, are significantly facilitated by the
Rodin platform [10].

Refinement and proof-based verification of Event-B offers the designers a
scalable support for the development of such complex distributed systems as MAS.
In the next section we show how refinement process can facilitate modelling MAS
and reasoning about goal reachability.

3 A Formal View of Goal-Oriented Multi-Agent Sys-
tem.

3.1 Patterns for Goal-Oriented Development
The goal-oriented engineering facilitates structuring complex system requirements
in terms ofgoals– objectives that the system should meet [15]. In this paper we

3

focus on modelling functional goals, i.e., the goals defining objectives of the ser-
vices that the system should deliver. We propose a number ofspecification and
refinement patternsthat interpret essential activities of goal-oriented engineering
in terms of Event-B refinement.

A pattern in Event-B is an abstract machine that defines a generic modelling
solution that can be reused in similar developments via instantiation. Usually an
Event-B pattern contains generic (abstract) types, constants and variables. The
context of such a model constraints the instantiation by defining the properties
that should be satisfied by concrete representations (instantiations) of abstract data
structures. The invariant properties of a pattern, once proven, remain valid for all
instantiations.

The aim of defining a pattern is to capture experience gained in modelling a
certain problem. To illustrate how patterns are defined let us now present a pattern
that allow the designers to explicitly define goals while modelling a system in
Event-B. We call itAbstract Goal Modelling Pattern.

3.2 Abstract Goal Modelling Pattern
Let GSTATE be an abstract type defining the system state space1. Moreover, let
Goalbe a non-empty proper subset ofGSTATE that abstractly defines the given
system goals. We say that the system has achieved the desiredgoals if its current
state belongs toGoal. BothGSTATE andGoal are the abstract types. Together
with their properties they are defined in the model context asfollows:

Goal 6= ∅ and Goal ⊂ GSTATE.

Let us note thatGSTATEandGoal are generic parameters of the initial pattern.
During a system development, we should supply their concrete instantiations that
satisfy the properties shown above.

While modelling a system in Event-B, we should ensure that the system under
construction achieves the desired goal. We can formally express this by requiring
that the system terminates in a state satisfyingGoal. The machineM AGM is
defined according to theGoal Modelling Pattern:

Machine M AGM

Variables gstate

Invariants

inv : gstate ∈ GSTATE

Events

Initialisation b=
begin

gstate :∈ GSTATE \ Goal

end

Reaching Goal b=
status anticipated

when

gstate ∈ GSTATE \ Goal

then

gstate :∈ GSTATE

end

end

1In fact, it is sufficient to consider the states that our goal depends on.

4

The dynamic behaviour of the system is abstractly modelled by the event
Reaching Goal. The system terminates whenReaching Goal becomes disable, i.e.,
when a state satisfyingGoal is reached.

The eventReaching Goal has the statusanticipated. Hence, in the machine
M AGM goal reachability is postulated rather than proved. However, it also obliges
us to prove (at some refinement step) that the event or its refinements converge.
Therefore, while refining a concrete specification defined according toAbstract
Goal Modelling Pattern, we will be forced to prove goal reachability.

Let us assume that we have a collection of Event-B patterns:P1, P2, ..., Pn

that refine each other in the following way:

P1 is refined byP2 ... is refined byPn.

Such a refinement chain expresses a generic development by refinement. Ab-
stract data structures of all the involved patterns become generic parameters of the
development. Each pattern abstractly defines a solution forspecifying a certain
modelling aspect. Therefore, each refinement step has a rationale behind it – its
meta-level description. We use it to formulate modelling aspects that the refine-
ment transformation aims at defining. The result of refinement transformation is
called a refinement pattern.

Next we propose several refinement patterns that allow us to implement the
ideas of goal-oriented engineering in Event-B refinement. We start from defining
Goal Decomposition Refinement pattern.

3.3 Goal Decomposition Pattern

The main idea of goal-oriented development is to decompose the high-level sys-
tem goals into a set of subgoals. This is an iterative processthat aims at building
the hierarchy of system goals. Essentially, subgoals defineintermediate stages of
the process of achieving the main goal.

The purpose ofGoal Decomposition Patternis to explicitly model subgoals in
the system specification. While defining this pattern we should ensure that high-
level goals remain achievable. Hence, our refinement pattern should reflect the
relation between the high-level goals and subgoals. Moreover, it should ensure
that high-level goal reachibility is preserved and can be defined via reachibility of
lower-layer subgoals.

In this paper we assume that subgoals are independent of eachother. This
means that reachability of any subgoal does not affect reachibility of another one.
Moreover, while a certain subgoal is reached, it remains reached, i.e., the system
always progresses towards achieving its goals. Formally, it can be expressed as a
stability property with respect to some state predicateP :

Stable(P) ⇔ once P becomes true it remains true.

Intuitively, a stability property can be understood as a postponed invariant prop-
erty that does not need to be true initially.

5

In Event-B, stability properties can be easily expressed byintroducing aux-
iliary variables for storing the previous value of the stateand then formulating
stability properties as the invariant properties of the form:

P (prev state) = TRUE ⇒ P (state) = TRUE.

To express a goal decomposition in terms of Event-B, let us define a corre-
sponding refinement pattern. We present it by the machineM GD shown below.
The new pattern allows us to introduce a number of subgoals into our system
model and express their reachability. Moreover, the refinement relation between
patterns allows us to express reachability of the main goal via reachability of its
subgoals.

Let us assume for simplicity, that system goalGoal is achieved by reach-
ing three subgoals. The subgoals are defined as corresponding variables of the
M GD machine:SubGoal1, SubGoal2, andSubGoal3. The goal independence
assumption allows us to partition high-level goal state spaceGSTATE into three
non-empty subsets:SG STATE1, SG STATE2, SG STATE3. We define the
subgoals as follows:

SubGoali 6= ∅ and SubGoali ⊂ SG STATEi, i ∈ 1..3.

To establish a relashionship between the new state spacesSG STATEi, i ∈ 1..3,
of theM GD machine and the abstract state space ofM AGM machine we define
the following function:
State map ∈ SG STATE1 × SG STATE2 × SG STATE3 ֌։ GSTATE,

where֌։ designates a bijection function. Essentially it partitions the original goal
state space into three independent parts.

To postulate that the main goal is reached if and only if all three subgoals are
reached, we add the axiom into the context of theM GD machine:

∀sg1, sg2, sg3. sg1 ∈ Subgoal1 ∧ sg2 ∈ Subgoal2 ∧ sg3 ∈ Subgoal3

⇔ State map(sg1 7→ sg2 7→ sg3) ∈ Goal.

Refinement performed according to theGoal Decomposition Patternis an ex-
ample of the Event-B data refinement. We replace the abstractvariablegstate

with the new variablesgstatei ∈ SG STATEi, i ∈ 1..3. The new variables
model the state of the corresponding subgoals. The following gluing invariant
allows us to prove data refinement:

gstate = State map(gstate1 7→ gstate2 7→ gstate3).

Essentially theM GD machine decomposes theReaching Goal event of theM AGM

machine into three similar eventsReaching SubGoali, i ∈ 1..3:

Machine M GD

Reaching SubGoali b= refinesReaching Goal

status anticipated

when

gstatei ∈ SG STATEi \ Subgoali
then

gstatei :∈ SG STATEi

end

...

6

Let us observe that we can easily verify that the following stability property
holds for the patternM GD:

Stable(gstate1 ∈ Subgoal1)∧Stable(gstate2 ∈ Subgoal2)∧Stable(gstate3 ∈ Subgoal3).

The proposedGoal Decomposition Patterncan be repeatedly used to refine
subgoals into the subgoals of finer granularity until the desired level of details is
reached.

3.4 Agent Modelling Pattern

Our elaboratedAbstract Goal ModellingandGoal Decompositionpatterns allow
us to specify the system goal(s) at different levels of abstraction. In multi-agent
systems, (sub)goals are usually achieved by system agents.Agents are indepen-
dent entities that are capable of performing certain tasks.In general, the system
might have several types of agents that are distinguished bythe type of tasks that
they are capable of performing. Our next refinement pattern –Agent Modelling
Pattern– allows us to model agents and associate them with goals.

We introduce the setAGENTSthat abstractly defines the set of system agents.
In this refinement pattern we also introduce a concept of agent eligibility. An agent
is eligible if it is capable of achieving a certain task (subgoal). We define the non-
empty setsEL AG1, EL AG2, andEL AG3of the agents eligible to achieve each
particular subgoal.

Agent might fail while trying to achieve a certain subgoal. Then it is removed
from the dynamic set of eligible agents represented by the variableeligi:

eligi ⊆ EL AGi, i ∈ 1..3.

A goal is achieved if there is at least one eligible agent associated with it. This
is formulated as the corresponding invariant property of our pattern:

elig1 6= ∅ and elig2 6= ∅ and elig3 6= ∅.

The dynamic part ofAgent Modelling Patternis defined in the machineM AM.
Since we assumed that the agents can fail, the goal assigned to the failed agent
cannot be reached. To reflect this assumption in our model, werefine the abstract
event Reaching SubGoali by two events
Successful Reaching SubGoali andFailed Reaching SubGoali, i ∈ 1..3, which re-
spectively model successful and unsuccessful reaching of the subgoal by some
eligible agent:

7

Machine M AM

Successful Reaching SubGoali b= refinesReaching SubGoali
status convergent

any ag

when

gstatei ∈ SG STATEi \ Subgoali ∧ ag ∈ eligi

then

gstatei :∈ Subgoali
end

Failed Reaching SubGoali b= refinesReaching SubGoali
status convergent

any ag

when

gstatei ∈ SG STATEi \ Subgoali ∧ ag ∈ eligi ∧ card(eligi) > 1
then

gstatei :∈ SG STATEi \ Subgoali
eligi := eligi \ {ag}

end

In the guard of the eventFailed Reaching SubGoali we restrict possible agent
failures by postulating that at least one agent associated with the subgoal remains
operational:card(eligi) > 1, i ∈ 1..3. This assumption allows us to change the
event status from anticipated to convergent. In other words, we are now able to
prove that, for each subgoal, the process of reaching it eventually terminates. To
prove the convergence we define the following variant expression:

card(elig1) + card(elig2) + card(elig3) +

bnat1(gstate1) + bnat2(gstate2) + bnat3(gstate3).

When an agent fails, it is removed from a corresponding set ofeligible agents
eligi. This in turn decreases the value ofcard(eligi) and consequently the whole
variant expression. On the other hand, when an agent succeeds in reaching the
goal, all the events become disabled, thus ensuring system termination as well.
To show decreasing of the variant expression when the subgoal is reached, we
introduce the auxiliary functionsbnati :

bnati ∈ SG STATEi → N,

∀s·s ∈ Subgoali ⇒ bnati(s) = 0,

∀s·s ∈ SG STATEi \ Subgoali ⇒ bnati(s) = 1.

These functions have two possible values – 0 and 1. Until the subgoal is not
reached, the corresponding value of functionbnati equals to 1. When the subgoal
is reached, the value becomes 0 and this consequently decreases the whole variant
expression.

In practice, the constraint to have at least one operationalagent associated with
our model can be validated by probabilistic modelling of goal reachability, which
is planned as a future work. Let us also note that for multi-robotic systems with
many homogenous agents this constraint is usually satisfied.

8

3.5 Agent Refinement Pattern

Above we have defined the notion of agent eligibility quite abstractly. We es-
tablish the relationship between subgoals (tasks) and agents that are capable of
achieving them. Our last refinement pattern,Agent Refinement Pattern, aims at
unfolding the notion of agent eligibility. Here we define theagent eligibility by
introducing agent attributes –agent typesandstatuses. An eligible agent will be
an operational agent that belongs to particular agent type.

We define an enumerated set of agent typesAG TY PE = {TY PE1, TY PE2,
TY PE3} and establish the correspondence between abstract sets of eligible agents
and the corresponding agent types by the following axioms:

∀ag ·ag ∈ EL AGi ⇔ atype(ag) = TY PEi, i ∈ 1..3.

An agent is eligible to perform a certain subgoal if it has thetype associated with
this subgoal.

An agent might be operational or failed. To model the notion of agent status
we define an enumerated setAG STATUS = {OK, KO}, where constantsOK

andKO designate operational and failed agents correspondingly.
Below we present an excerpt from the dynamic part of theAgent Refinement

Pattern– the machineM AR. We add a new variableastatus to store the dynamic
status of each agent:

astatus ∈ AGENTS → AG STATUS.

Moreover, we data refine the variableseligi. The following gluing invariants relate
them with the concrete sets:

eligi = {a|a ∈ AGENTS∧atype(a) = TY PEi∧astatus(a) = OK}, i ∈ 1..3.

In our case, the dynamic set of eligible agents to perform a sertain subgoal be-
comes a set of active agents of the particular type.

Machine M AR

Successful Reaching SubGoali b= refinesSuccessful Reaching SubGoali
any ag

when

gstatei ∈ SG STATEi \ Subgoali ∧ astatus(ag) = OK ∧ atype(ag) = TY PEi

then

gstatei :∈ Subgoali
end

Failed Reaching SubGoali b= refinesFailed Reaching SubGoali
any ag

when

gstatei ∈ SG STATEi \Subgoali ∧ astatus(ag) = OK ∧ atype(ag) = TY PEi ∧
card({a|a ∈ AGENTS ∧ atype(a) = TY PEi ∧ astatus(a) = OK}) > 1

then

gstatei :∈ SG STATEi \ Subgoali
astatus(ag) := KO

end

9

The eventFailed Reaching SubGoali is now refined to take into account the con-
crete definition of agent eligibility. The event also updates the status of the failed
agent.

Further refinement patterns can be defined to model various fault tolerance
mechanism. However, in this paper instead of building further the collection of
patterns, we will demostrate how to instantiate and use the described patterns in a
concrete development.

4 Case Study: a Multi-Robotic System
4.1 A Case Study Description
As a case study we consider a multi-robotic system. The goal of the system is
to coordinate identical robots to get a certain area cleaned. The area is divided
into several zones, which can be further divided into a number of sectors. Each
zone has a base station – a static computing and communicating device – that
coordinates the cleaning of the zone. In its turn, each base station supervises a
number of robots by assigning cleaning tasks to them.

A robot is an autonomous electro-mechanical device – a special kind of a
rover that can move and clean. The base station may assign a robot a sector – a
certain area in the zone – to clean. As soon as the robot receives a new cleaning
task, it autonomously travels to this area and starts to clean it. After successfully
completing its mission, it returns back to the base station to receive a new order.

The base station keeps track of the cleaned sectors. A robot may fail to clean
the assigned sector. In that case, the base station assigns another robot to perform
this task. To ensure that the whole area is eventually cleaned, each base station in
its turn should ensure that its zone is eventually cleaned.

The system should function autonomously, i.e., without human intervention.
Such kind of systems are often deployed in hazardous areas (nuclear power plants,
disaster areas, mine fields etc.). Hence guaranteeing system resilience is an im-
portant requirement. Therefore, we should formally demonstrate that the system
goal is achievable despite possible robot failures.

Next, we will show how to develop a multi-robotic system by refinement in
Event-B and demonstrate how to rely on the patterns proposedin Section 3 to
formally specify the system behaviour to ensure reachability of the overall system
goal.

4.2 Pattern-Driven Refinement of a Multi-Robotic System
In this section we will describe our formal development of a multi-robotic sys-
tem in Event-B. The development is concluded via instantiation of the proposed
patterns, with the goal decomposition pattern being applied twice in a row.

Abstract model. The initial model defined by the machineMRS Abs specifies
the behaviour of a multi-robotic system according to theAbstract Goal Modelling

10

Pattern. We apply this pattern by instantiating abstract variableswith the concrete
values and specifying events that model system behaviour.

The state space of the initial model is defined by the typeBOOL. The value
TRUE corresponds to the situation when the desired goal is achieved (i.e., the
whole territory is cleaned), whileFALSE represents the opposite situation.

Similarly to the pattern machineM AGM, the machineMRS Abs contains an
event,CleaningTerritory, that models system behaviour. It abstractly represents
the process of cleaning the territory, where a variablecompleted ∈ BOOL mod-
els the current state of the system goal. This event is constructed according to the
pattern eventReaching Goal by taking all the instantiations into account, as shown
below:

Machine AbsMRS

Variables completed

Invariants

inv : completed ∈ BOOL

Events

...

CleaningTerritory b=
status anticipated

when

completed = FALSE

then

completed :∈ BOOL

end

The system continues its execution until the whole territory is cleaned, i.e., as
long as completed stays FALSE. At this level of abstraction, the event
CleaningTerritory has theanticipatedstatus. In other words, similarly to the ab-
stract pattern, we delay the proof that the event eventuallyconverges to subse-
quent refinements. It is easy to see that the machineAbsMRS is an instantiation of
the pattern machineM AGM, where the abstract typeGSTATEits replaced with
BOOL, the constantGoal is instantiated with a singleton set{TRUE}, and the
variablegstateis renamed intocompleted.

First refinement. Our initial model specifies system behaviour in a highly ab-
stract way. It models the process of cleaning the whole territory. The goal of
the first refinement is to model the cleaning of the territory zones. Refinement is
performed according to theGoal Decomposition Pattern.

In the first refinement step resulting in the machineMRS Ref1, we augment
our model with representation of subgoals. The whole territory is divided inton

zones,n ∈ N andn ≥ 1. We associate the notion of asubgoalwith the process of
cleaning a particular zone. Thus a subgoal is achieved when the corresponding
zone is cleaned. A new variablezone completed represents the current subgoal
status for every zone. The valueTRUE corresponds to the situation when the
certain zone is cleaned:

zone completed ∈ 1..n → BOOL.

11

The refined modelMRS Ref1 is built as an instantiation of theGoal Decom-
position PatternmachineM GD, where the subgoal states are defined as elements
of the variablezone completed, i.e.,

gstatei = zone completed(i), for i ∈ 1..n.

This observation suggests the following gluing invariant between the initial
and the refined models:

completed = TRUE ⇔ zone completed[1..n] = {TRUE}.

The invariant can be understood as follows: the territory isconsidered to be
cleaned if and only if its every zone is cleaned.

The pattern eventsReaching Subgoali correspond to a single eventCleaningZone:

Machine MRS Ref1

CleaningZone b= refinesCleaningTeritory

status anticipated

any zone, zone result

when

zone ∈ 1..n ∧ zone completed(zone) = FALSE ∧
zone result ∈ BOOL

then

zone completed(zone) := zone result

end

Second refinement. In our development of a multi-robotic system we should
apply the goal decomposition pattern twice, until we reach the level of “primitive”
goals, i.e., the goals for which we define the classes of agents eligible for execution
of these goals.

Every zone in our system is divided intok sectors,k ∈ N andk ≥ 1. A robot is
responsible for cleaning a certain sector. We associate thenotion of asubsubgoal
(or simply task) with the process ofcleaning a particular sector. The task is
completed when the sector is cleaned. A new array variablesector completed

represents the current task status for every sector:

sector completed ∈ 1..n → (1..k → BOOL).

The refined model is again built as an instantiation of theGoal Decomposition
Pattern, where the subsubgoal states are defined as the elements of the variable
sector completed, i.e.,

gstateij = sector completed(i)(j), for i ∈ 1..n, j ∈ 1..k.

A gluing invariant expresses the relationship between subgoals and subsub-
goals:

∀ zone·zone ∈ 1 .. n ⇒ (zone completed(zone) = TRUE ⇔

sector completed(zone)[1 .. k] = {TRUE}).

The invariant postulates that any zone is cleaned if and onlyif its every sector is
cleaned. The abstract eventCleaningZone is refined by the eventCleaningSector.
The subsubgoal will be achieved if this section is eventually cleaned:

12

Machine MRS Ref2

CleaningSector b= refinesCleaningZone

status anticipated

any zone, sector, sector result

when

zone ∈ 1..n ∧ sector ∈ 1 .. k ∧
sector completed(zone)(sector) = FALSE ∧
sector result ∈ BOOL

then

sector completed(zone) := sector completed(zone) ⊳− {sector 7→ sector result}
end

Now we have reached the desire level of granularity of our subgoals. In the
next refinement step (the machineMRS Ref3) we are going to augment our model
with an abstract representation of agents.

Third refinement. The next refined model of our development is constructed
according to the refinementAgent Modelling Pattern. As a result, we introduce
the abstract setAGENTS, and its subsetELIG containing the eligible agents
for executing the tasks. A new variableelig represents the dynamic set of (cur-
rently available) eligible agents. Following the proposedpattern, we should also
guarantee that there will be at least one eligible agent for cleaning the sector. This
property is formulated as an additional invariant:elig 6= ∅.

Moreover, according to the pattern, we need abstractly introduce agent fail-
ures. This is achieved by refining the abstract eventCleaningSector by two events
SuccessfulCleaningSector andFailedCleaningSector, which respectively model suc-
cessful and unsuccessful execution of the task by some eligible agent:

Machine MRS Ref3

SuccessfulCleaningSector b= refinesCleaningSector

status convergent

any zone, sector, ag

when

zone ∈ 1..n ∧ sector ∈ 1 .. k ∧
sector completed(zone)(sector) = FALSE ∧
ag ∈ elig

then

sector completed(zone) := sector completed(zone)⊳−{sector 7→ TRUE}
end

FailedCleaningSector b= refinesCleaningSector

status convergent

any zone, sector, ag

when

zone ∈ 1..n ∧ sector ∈ 1 .. k ∧
sector completed(zone)(sector) = FALSE ∧
ag ∈ elig ∧ card(elig) > 1

then

sector completed(zone) := sector completed(zone) ⊳− {sector 7→
FALSE}

elig := elig \ {ag}
end

Following the proposed pattern, we add in the eventFailedCleaningSector the
guardcard(elig) > 1 to restrict possible agent failure in task performance. Letus
also note that for multi-robotic systems with many homogenous agents this con-
straint is not unreasonable. This assumption allows us to prove the convergence

13

of the goal-reaching events, i.e., to prove that the processof cleaning the territory
eventually terminates.

Fourth refinement. Finally, theAgent Refinement Patternfor introducing agent
types and their status is applied to produce the last refined model of our multi-
robotic system. In this refinement step we explicitly define the agent types – robots
and base stations. We partition our abstract setAGENTS by disjointed non-
empty subsetsRB andBS, that represent robots and base station respectively.
In this case study robots perform the cleaning task. Hence our abstract set of
eligible agents is completely represented by robots:ELIG = RB. Robots might
be active or failed. We introduce the enumerated setSTATUS, which in our case
has two elements{active, failed}.

At previous refinement step we have modelled agents faults while performing
their tasks in a very abstract way. Now we will specify them more concretely.
We assume that only robots may fail in our multi-robotic system. Their dynamic
status is stored in the variablerb status:

rb status ∈ RB → STATUS.

The abstract variableelig is now data refined by the concrete set:

elig = {a|a ∈ AGENTS ∧ atype(a) = RB ∧ rb status(a) = active}.

The concrete events are also built according to the proposedpattern. For in-
stance, the eventFailCleaningSectors can now be specified as follows:

Machine MRS Ref4

FailedCleaningSector b= refinesFailedCleaningSector

any zone, sector, ag

when

zone ∈ 1..n ∧ sector ∈ 1 .. k ∧
sector completed(zone)(sector) = FALSE ∧
ag ∈ RB ∧ card({a|a ∈ RB ∧ rb status(a) = active}) > 1
rb status(ag) = active

then

sector completed(zone) := sector completed(zone) ⊳− {sector 7→ FALSE}
rb status(ag) := failed

end

An overview of the development of an autonomous multi-robotic system ac-
cording to the proposed specification and refinement patterns is shown
in the Fig. 1.

5 Conclusions

5.1 Discussion
In this paper we have proposed a formal goal-oriented approach to development of
resilient MAS. We have demonstrated how to rigorously definegoals in Event-B
and ensure goal reachability by refinement. We have defined a set of modelling

14

Figure 1: Overview of the development

and refinement patterns that describe generic solutions common to formal mod-
elling of MAS. Rigorous modelling of the impact of agent failures on goal achiev-
ing allowed us to propose a dynamic goal reallocation mechanism that guarantees
system resilience in presence of agent failures. We have illustrated our approach
by a case study – development of an autonomic multi-robotic system.

While modelling the behaviour of multi-robotic system, we have shown that
refinement process allows us also to discover restrictions that we have to impose
on system behaviour to guarantee its resilience. In our case, the goal was achiev-
able only if at least one robot remains healthy. Feasibilityof such a restriction
can be checked probabilistically based on the failure ratesof robots. In our future
work we are planning to integrate stochastic reasoning in our formal development.
Moreover, it would be also interesting to experiment with different schemes for
goal decomposition and dynamic goal reallocation.

5.2 Related Work
Our approach is different from numerous process-algebraicapproaches used for
modeling MAS. Firstly, we relied on proof-based verification that does not im-
pose restrictions on the size of the model, number of agents etc. Secondly, we
adopted a system’s approach, i.e., we modeled the entire system and extracted the
specifications of its individual components by decomposition. Such an approach
allows us to ensure resilience by enabling goal reallocation at different architec-
tural levels. Furthermore, by incrementally increasing complexity of our models,
we have successfully managed to cope both with complexity ofrequirements and
verification.

Formal modelling of MAS has been undertaken by [13, 12, 14]. The authors
have proposed an extension of the Unity framework to explicitly define such con-
cepts as mobility and context-awareness. Our modelling pursued a different goal
– we aimed at formally guaranteeing that the specified agent behaviour achieves
the defined goals. Formal modelling of fault tolerant MAS in Event-B has been

15

undertaken by Ball and Butler [3]. They have proposed a number of informally de-
scribed patterns that allow the designers to add well-knownfault tolerance mech-
anisms to the specifications. In our approach, we implemented goal reallocation
to guarantee goal reachability that can be also considered as a goal-specific fault
tolerance.

The foundational work on goal-oriented development has been done by van
Lamswerde [15]. The original motivation behind the goal-oriented development
was to structure the requirements and derive properties in the form of temporal
logic formulas that the system design should satisfy. Over the last decade the goal-
oriented approach has received several extensions that allow the designers to link
git with formal modelling [9, 6, 8]. These works aimed at expressing temporal
logic properties in Event-B. In our work, we have relied on goals to facilitate
structuring of system behaviour but derived system specification that satisfies the
desired properties by refinement.

16

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 2005.

[2] J.-R. Abrial. Modeling in Event-B. Cambridge University Press, 2010.

[3] Elisabeth Ball and Michael Butler. Event-b patterns forspecifying fault-
tolerance in multi-agent interaction. InMethods, Models and Tools for Fault
Tolerance, pages 104–129. 2009.

[4] EU-project DEPLOY. online at http://www.deploy-project.eu/.

[5] Marko Kääramees, Jüri Vain, and Kullo Raiend. Synthesis of on-line plan-
ning tester for non-deterministic efsm models. InTAIC PART, pages 147–
154, 2010.

[6] R. De Landtsheer, E. Letier, and A. van Lamsweerde. Deriving tabular event-
based specifications from goal-oriented requirements models. In Require-
ments Engineering, 9(2), pages 104–120, 2004.

[7] J.C. Laprie. From dependability to resilience. In38th IEEE/IFIP Int. Conf.
On Dependable Systems and Networks, pages G8–G9, 2008.

[8] Abderrahman Matoussi, Frederic Gervais, and Regine Laleau. A Goal-Based
Approach to Guide the Design of an Abstract Event-B Specification. In
16th International Conference on Engineering of Complex Computer Sys-
tems. IEEE, 2011.

[9] Christophe Ponsard, Gautier Dallons, and Massone Philippe. From Rigor-
ous Requirements Engineering to Formal System Design of Safety-Critical
Systems. InERCIM News (75), pages 22–23, 2008.

[10] Rigorous Open Development Environment for Complex Systems (RODIN).
IST FP6 STREP project, online at http://rodin.cs.ncl.ac.uk/.

[11] RODIN. Event-B Platform. online at http://www.event-b.org/.

[12] G.-C. Roman, Ch. Julien, and J. Payton. A Formal Treatment of Context-
Awareness. InFASE’2004, volume 2984 ofLNCS. Springer, 2004.

[13] G.-C. Roman, Ch. Julien, and J. Payton. Modeling adaptive behaviors in
Context UNITY. In Theoretical Computure Science, volume 376, pages
185–204, 2007.

[14] G.-C. Roman, P.McCann, and J. Plun. Mobile UNITY: Reasoning and Spec-
ification in Mobile Computing. InACM Transactions of Software Engineer-
ing and Methodology, 1997.

17

[15] Axel van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. InRE, pages 249–263, 2001.

18

Appendix

MACHINE Top

SEES TopContext

VARIABLES

gstate

INVARIANTS

inv1 : gstate ∈ GSTATE

EVENTS

Initialisation

begin
act1 : gstate :∈ GSTATE \ Goal

end

Event ReachingGoal =̂

Status anticipated

when
grd1 : gstate ∈ GSTATE \ Goal

then
act1 : gstate :∈ GSTATE

end

END

CONTEXT TopContext

SETS

GSTATE

CONSTANTS

Goal

AXIOMS

axm1 : Goal ⊂ GSTATE

axm2 : Goal 6= ∅

END

19

MACHINE Subgoals

REFINES Top

SEES SubgoalContext

VARIABLES

gstate1

gstate2

gstate3

prev gstate1

prev gstate2

prev gstate3

INVARIANTS

inv1 : gstate1 ∈ SG STATE1

inv2 : gstate2 ∈ SG STATE2

inv3 : gstate3 ∈ SG STATE3

inv4 : gstate = State map(gstate1 7→ gstate2 7→ gstate3)

inv5 : prev gstate1 ∈ SG STATE1

inv6 : prev gstate1 ∈ Subgoal1 ⇒ gstate1 ∈ Subgoal1

inv7 : prev gstate2 ∈ SG STATE2

inv8 : prev gstate2 ∈ Subgoal2 ⇒ gstate2 ∈ Subgoal2

inv9 : prev gstate3 ∈ SG STATE3

inv10 : prev gstate3 ∈ Subgoal3 ⇒ gstate3 ∈ Subgoal3

EVENTS

Initialisation

begin
with

gstate′ : gstate′ = State map(gstate1′ 7→ gstate2′ 7→
gstate3′)

act1 : gstate1 , prev gstate1 : |gstate1 ′ ∈ SG STATE1\Subgoal1∧
prev gstate1 ′ ∈ SG STATE1\Subgoal1∧gstate1 ′ = prev gstate1 ′

act2 : gstate2 , prev gstate2 : |gstate2 ′ ∈ SG STATE2\Subgoal2∧
prev gstate2 ′ ∈ SG STATE2\Subgoal2∧gstate2 ′ = prev gstate2 ′

act3 : gstate3 , prev gstate3 : |gstate3 ′ ∈ SG STATE3\Subgoal3∧
prev gstate3 ′ ∈ SG STATE3\Subgoal3∧gstate3 ′ = prev gstate3 ′

end

Event ReachingSubGoal1̂=

Status anticipated

refines ReachingGoal

when

20

grd1 : gstate1 ∈ SG STATE1 \ Subgoal1

with
gstate′ : gstate′ = State map(gstate1′ 7→ gstate2 7→ gstate3)

then
act1 : gstate1 :∈ SG STATE1

act2 : prev gstate1 := gstate1

end

Event ReachingSubGoal2̂=

Status anticipated

refines ReachingGoal

when
grd1 : gstate2 ∈ SG STATE2 \ Subgoal2

with
gstate′ : gstate′ = State map(gstate1 7→ gstate2′ 7→ gstate3)

then
act1 : gstate2 :∈ SG STATE2

act2 : prev gstate2 := gstate2

end

Event ReachingSubGoal3̂=

Status anticipated

refines ReachingGoal

when
grd1 : gstate3 ∈ SG STATE3 \ Subgoal3

with
gstate′ : gstate′ = State map(gstate1 7→ gstate2 7→ gstate3′)

then
act1 : gstate3 :∈ SG STATE3

act2 : prev gstate3 := gstate3

end

END

21

CONTEXT SubgoalContext

EXTENDS TopContext

SETS

SG STATE1

SG STATE2

SG STATE3

CONSTANTS

Subgoal1

Subgoal2

Subgoal3

State map

AXIOMS

axm1 : Subgoal1 ⊂ SG STATE1

axm2 : Subgoal1 6= ∅

axm3 : Subgoal2 ⊂ SG STATE2

axm4 : Subgoal2 6= ∅

axm5 : Subgoal3 ⊂ SG STATE3

axm6 : Subgoal3 6= ∅

axm7 : State map ∈ SG STATE1 × SG STATE2 × SG STATE3 ֌։

GSTATE

axm8 : ∀sg1 , sg2 , sg3 ·sg1 ∈ Subgoal1∧sg2 ∈ Subgoal2∧sg3 ∈ Subgoal3⇔
State map(sg1 7→ sg2 7→ sg3) ∈ Goal

END

22

MACHINE Agents

REFINES Subgoals

SEES AgentContex

VARIABLES

gstate1

gstate2

gstate3

elig1

elig2

elig3

prev gstate1

prev gstate2

prev gstate3

INVARIANTS

inv1 : elig1 ⊆ EL AG1

inv2 : elig1 6= ∅

inv3 : elig2 ⊆ EL AG2

inv4 : elig2 6= ∅

inv5 : elig3 ⊆ EL AG3

inv6 : elig3 6= ∅

EVENTS

Initialisation
extended

begin
act1 : gstate1, prev gstate1 : |gstate1′ ∈ SG STATE1\Subgoal1∧

prev gstate1′ ∈ SG STATE1\Subgoal1∧gstate1′ = prev gstate1′

act2 : gstate2, prev gstate2 : |gstate2′ ∈ SG STATE2\Subgoal2∧
prev gstate2′ ∈ SG STATE2\Subgoal2∧gstate2′ = prev gstate2′

act3 : gstate3, prev gstate3 : |gstate3′ ∈ SG STATE3\Subgoal3∧
prev gstate3′ ∈ SG STATE3\Subgoal3∧gstate3′ = prev gstate3′

act5 : elig1 := EL AG1

act6 : elig2 := EL AG2

act7 : elig3 := EL AG3

end

Event Fail in ReachingSubGoal1̂=

Status convergent

refines ReachingSubGoal1

any

23

ag

where
grd1 : gstate1 ∈ SG STATE1 \ Subgoal1

grd2 : ag ∈ elig1

grd3 : card(elig1) ≥ 2

then
act1 : gstate1 :∈ SG STATE1 \ Subgoal1

act2 : prev gstate1 := gstate1

act3 : elig1 := elig1 \ {ag}

end

Event ReachingSubGoal1̂=

Status convergent

refines ReachingSubGoal1

any
ag

where
grd1 : gstate1 ∈ SG STATE1 \ Subgoal1

grd2 : ag ∈ elig1

then
act1 : gstate1 :∈ Subgoal1

act2 : prev gstate1 := gstate1

end

Event Fail in ReachingSubGoal2̂=

Status convergent

refines ReachingSubGoal2

any
ag

where
grd1 : gstate2 ∈ SG STATE2 \ Subgoal2

grd2 : ag ∈ elig2

grd3 : card(elig2) ≥ 2

then
act1 : gstate2 :∈ SG STATE2 \ Subgoal2

act2 : prev gstate2 := gstate2

act3 : elig2 := elig2 \ {ag}

end

Event ReachingSubGoal2̂=

Status convergent

refines ReachingSubGoal2

any

24

ag

where
grd1 : gstate2 ∈ SG STATE2 \ Subgoal2

grd2 : ag ∈ elig2

then
act1 : gstate2 :∈ Subgoal2

act2 : prev gstate2 := gstate2

end

Event Fail in ReachingSubGoal3̂=

Status convergent

refines ReachingSubGoal3

any
ag

where
grd1 : gstate3 ∈ SG STATE3 \ Subgoal3

grd2 : ag ∈ elig3

grd3 : card(elig3) ≥ 2

then
act1 : gstate3 :∈ SG STATE3 \ Subgoal3

act2 : prev gstate3 := gstate3

act3 : elig3 := elig3 \ {ag}

end

Event ReachingSubGoal3̂=

Status convergent

refines ReachingSubGoal3

any
ag

where
grd1 : gstate3 ∈ SG STATE3 \ Subgoal3

grd2 : ag ∈ elig3

then
act1 : gstate3 :∈ Subgoal3

act2 : prev gstate3 := gstate3

end

VARIANT

card(elig1) + card(elig2) + card(elig3)+

bnat1(gstate1) + bnat2(gstate2) + bnat3(gstate3)

END

25

CONTEXT AgentContex

EXTENDS SubgoalContext

SETS

AGENTS

CONSTANTS

EL AG1

EL AG2

EL AG3

bnat1

bnat2

bnat3

AXIOMS

axm1 : AGENTS 6= ∅

axm2 : EL AG1 ∪ EL AG2 ∪ EL AG3 ⊆ AGENTS

axm3 : EL AG1 6= ∅

axm4 : EL AG2 6= ∅

axm5 : EL AG3 6= ∅

axm6 : finite(AGENTS)

axm7 : bnat1 ∈ SG STATE1 → N

axm8 : ∀s ·s ∈ Subgoal1 ⇒ bnat1 (s) = 0

axm9 : ∀s ·s ∈ SG STATE1 \ Subgoal1 ⇒ bnat1 (s) = 1

axm10 : bnat2 ∈ SG STATE2 → N

axm11 : ∀s ·s ∈ Subgoal2 ⇒ bnat2 (s) = 0

axm12 : ∀s ·s ∈ SG STATE2 \ Subgoal2 ⇒ bnat2 (s) = 1

axm13 : bnat3 ∈ SG STATE3 → N

axm14 : ∀s ·s ∈ Subgoal3 ⇒ bnat3 (s) = 0

axm15 : ∀s ·s ∈ SG STATE3 \ Subgoal3 ⇒ bnat3 (s) = 1

END

26

MACHINE AgentsRef

REFINES Agents

SEES AgentContexExtended

VARIABLES

gstate1

gstate2

gstate3

astatus

prev gstate1

prev gstate2

prev gstate3

INVARIANTS

inv1 : astatus ∈ AGENTS → AG STATUS

inv4 : {a|a ∈ AGENTS ∧ atype(a) = TYPE1 ∧ astatus(a) = OK } =
elig1

inv5 : {a|a ∈ AGENTS ∧ atype(a) = TYPE2 ∧ astatus(a) = OK } =
elig2

inv6 : {a|a ∈ AGENTS ∧ atype(a) = TYPE3 ∧ astatus(a) = OK } =
elig3

EVENTS

Initialisation

begin
act1 : gstate1 , prev gstate1 : |gstate1 ′ ∈ SG STATE1\Subgoal1∧

prev gstate1 ′ ∈ SG STATE1\Subgoal1∧gstate1 ′ = prev gstate1 ′

act2 : gstate2 , prev gstate2 : |gstate2 ′ ∈ SG STATE2\Subgoal2∧
prev gstate2 ′ ∈ SG STATE2\Subgoal2∧gstate2 ′ = prev gstate2 ′

act3 : gstate3 , prev gstate3 : |gstate3 ′ ∈ SG STATE3\Subgoal3∧
prev gstate3 ′ ∈ SG STATE3\Subgoal3∧gstate3 ′ = prev gstate3 ′

act6 : astatus := AGENTS × {OK }
end

Event Fail in ReachingSubGoal1̂=

Status anticipated

refines Fail in ReachingSubGoal1

any
ag

where
grd1 : gstate1 ∈ SG STATE1 \ Subgoal1

grd2 : astatus(ag) = OK

grd4 : atype(ag) = TYPE1

27

grd5 : card({a|a ∈ AGENTS∧atype(a) = TYPE1∧astatus(a) =
OK }) ≥ 2

then
act1 : gstate1 :∈ SG STATE1 \ Subgoal1

act2 : prev gstate1 := gstate1

act3 : astatus(ag) := KO

end

Event ReachingSubGoal1̂=

refines ReachingSubGoal1

any
ag

where
grd1 : gstate1 ∈ SG STATE1 \ Subgoal1

grd2 : astatus(ag) = OK

grd3 : atype(ag) = TYPE1

then
act1 : gstate1 :∈ Subgoal1

act2 : prev gstate1 := gstate1

end

Event Fail in ReachingSubGoal2̂=

Status anticipated

refines Fail in ReachingSubGoal2

any
ag

where
grd1 : gstate2 ∈ SG STATE2 \ Subgoal2

grd2 : astatus(ag) = OK

grd4 : atype(ag) = TYPE2

grd5 : card({a|a ∈ AGENTS∧atype(a) = TYPE2∧astatus(a) =
OK }) ≥ 2

then
act1 : gstate2 :∈ SG STATE2 \ Subgoal2

act2 : prev gstate2 := gstate2

act3 : astatus(ag) := KO

end

Event ReachingSubGoal2̂=

refines ReachingSubGoal2

any
ag

where
grd1 : gstate2 ∈ SG STATE2 \ Subgoal2

28

grd2 : astatus(ag) = OK

grd3 : atype(ag) = TYPE2

then
act1 : gstate2 :∈ Subgoal2

act2 : prev gstate2 := gstate2

end

Event Fail in ReachingSubGoal3̂=

Status anticipated

refines Fail in ReachingSubGoal3

any
ag

where
grd1 : gstate3 ∈ SG STATE3 \ Subgoal3

grd2 : astatus(ag) = OK

grd4 : atype(ag) = TYPE3

grd5 : card({a|a ∈ AGENTS∧atype(a) = TYPE3∧astatus(a) =
OK }) ≥ 2

then
act1 : gstate3 :∈ SG STATE3 \ Subgoal3

act2 : prev gstate3 := gstate3

act3 : astatus(ag) := KO

end

Event ReachingSubGoal3̂=

refines ReachingSubGoal3

any
ag

where
grd1 : gstate3 ∈ SG STATE3 \ Subgoal3

grd2 : astatus(ag) = OK

grd3 : atype(ag) = TYPE3

then
act1 : gstate3 :∈ Subgoal3

act2 : prev gstate3 := gstate3

end

END

29

CONTEXT AgentContexExtended

EXTENDS AgentContex

SETS

AG STATUS

AG TYPES

CONSTANTS

OK

KO

TYPE1

TYPE2

TYPE3

atype

AXIOMS

axm1 : partition(AG STATUS , {OK }, {KO})

axm2 : partition(AG TYPES , {TYPE1}, {TYPE2}, {TYPE3})

axm3 : atype ∈ AGENTS → AG TYPES

axm4 : ∀ag ·ag ∈ EL AG1 ⇔ atype(ag) = TYPE1

axm8 : ∀ag ·ag ∈ EL AG2 ⇔ atype(ag) = TYPE2

axm9 : ∀ag ·ag ∈ EL AG3 ⇔ atype(ag) = TYPE3

END

30

MACHINE MRS Abs

VARIABLES

completed

INVARIANTS

inv2 : completed ∈ BOOL

EVENTS

Initialisation

begin
act1 : completed := FALSE

end

Event CleaningTerritory=̂

Status anticipated

when
grd1 : completed = FALSE

then
act1 : completed :∈ BOOL

end

END

31

MACHINE MRS Ref1

REFINES MRS Abs

SEES cntx1

VARIABLES

zone completed

INVARIANTS

inv1 : zone completed ∈ 1 .. n → BOOL

inv2 : zone completed [1 .. n] = {TRUE}⇔ completed = TRUE

EVENTS

Initialisation

begin
act2 : zone completed := 1 .. n × {FALSE}

end

Event CleaningZoneŝ=

Status anticipated

refines CleaningTerritory

any
zone

zone result

where
grd2 : zone ∈ 1 .. n

grd3 : zone completed(zone) = FALSE

grd4 : zone result ∈ BOOL

with
completed′ : completed′ = bool(zone completed′[1..n] = {TRUE})

then
act2 : zone completed(zone) := zone result

end

END

CONTEXT cntx1

CONSTANTS

n

AXIOMS

axm1 : n ∈ N1

END

32

MACHINE MRS Ref2

REFINES MRS Ref1

SEES cntx2

VARIABLES

sector completed

INVARIANTS

inv1 : sector completed ∈ 1 .. n → (1 .. k → BOOL)

inv2 : ∀sg ·sg ∈ 1 ..n⇒(zone completed(sg) = TRUE⇔sector completed(sg)[1 ..

k] = {TRUE})

EVENTS

Initialisation

begin
act1 : sector completed := 1 .. n × {1 .. k × {FALSE}}

end

Event CleaningSector̂=

Status anticipated

refines CleaningZones

any
zone

sector

sector result

where
grd1 : zone ∈ 1 .. n

grd2 : sector ∈ 1 .. k

grd3 : sector completed(zone)(sector) = FALSE

grd4 : sector result ∈ BOOL

with
zone result : zone result = bool(sector completed′(zone)[1..

k] = {TRUE})
then

act1 : sector completed(zone) := sector completed(zone)⊳−{sector 7→
sector result}

end

END

33

CONTEXT cntx2

EXTENDS cntx1

CONSTANTS

k

AXIOMS

axm1 : k ∈ N1

END

34

An Event-B Specification of MRSRef3
Creation Date: 14 Feb 2012 @ 00:42:23 PM

MACHINE MRS Ref3

REFINES MRS Ref2

SEES cntx3

VARIABLES

sector completed

elig

counter

INVARIANTS

inv1 : elig ⊆ ELIG

inv2 : elig 6= ∅

inv3 : counter ∈ 0 .. n ∗ k

EVENTS

Initialisation
extended

begin
act1 : sector completed := 1 .. n× {1 .. k× {FALSE}}
act2 : elig := ELIG

act3 : counter := n ∗ k

end

Event FailedCleaningSector̂=

Status convergent

refines CleaningSector

any
zone

sector

ag

where
grd1 : zone ∈ 1 .. n

grd2 : sector ∈ 1 .. k

grd3 : sector completed(zone)(sector) = FALSE

grd4 : card(elig) ≥ 2

grd5 : ag ∈ elig

with
sector result : sector result = FALSE

then

35

act1 : sector completed(zone) := sector completed(zone)⊳−{sector 7→
FALSE}

act2 : elig := elig \ {ag}

end

Event SuccessfulCleaningSector=̂

Status convergent

refines CleaningSector

any
zone

sector

ag

where
grd1 : zone ∈ 1 .. n

grd2 : sector ∈ 1 .. k

grd3 : sector completed(zone)(sector) = FALSE

grd4 : ag ∈ elig

grd5 : counter > 0

with
sector result : sector result = TRUE

then
act1 : sector completed(zone) := sector completed(zone)⊳−{sector 7→

TRUE}
act2 : counter := counter − 1

end

VARIANT

card(elig) + counter

END

36

CONTEXT cntx3

EXTENDS cntx2

SETS

AGENTS

CONSTANTS

ELIG

bnat

AXIOMS

axm1 : finite(AGENTS)

axm2 : AGENTS 6= ∅

axm3 : ELIG ⊆ AGENTS

axm4 : ELIG 6= ∅

END

37

MACHINE MRS Ref4

REFINES MRS Ref3

SEES cntx4

VARIABLES

sector completed

rb status

counter

INVARIANTS

inv1 : rb status ∈ RB → AG STATUS

inv2 : {a|a ∈ RB ∧ rb status(a) = active} = elig

EVENTS

Initialisation

begin
act1 : sector completed := 1 .. n × {1 .. k × {FALSE}}
act2 : rb status := RB × {active}
act3 : counter := n ∗ k

end

Event SuccessfulCleaningSector=̂

refines SuccessfulCleaningSector

any
zone

sector

ag

where
grd1 : zone ∈ 1 .. n

grd2 : sector ∈ 1 .. k

grd3 : sector completed(zone)(sector) = FALSE

grd4 : ag ∈ RB

grd5 : rb status(ag) = active

grd6 : counter > 0

then
act1 : sector completed(zone) := sector completed(zone)⊳−{sector 7→

TRUE}
act2 : counter := counter − 1

end

Event FailedCleaningSector̂=

refines FailedCleaningSector

any
zone

38

sector

ag

where
grd1 : zone ∈ 1 .. n

grd2 : sector ∈ 1 .. k

grd3 : sector completed(zone)(sector) = FALSE

grd4 : card({a|a ∈ RB ∧ rb status(a) = active}) ≥ 2

grd5 : ag ∈ RB

grd6 : rb status(ag) = active

then
act1 : sector completed(zone) := sector completed(zone)⊳−{sector 7→

FALSE}
act2 : rb status(ag) := failed

end

END

CONTEXT cntx4

EXTENDS cntx3

SETS

AG STATUS

CONSTANTS

BS

RB

active

failed

AXIOMS

axm2 : RB ⊂ AGENTS

axm3 : BS ⊂ AGENTS

axm4 : RB 6= ∅

axm5 : BS 6= ∅

axm6 : partition(AGENTS ,RB ,BS)

axm7 : partition(AG STATUS , {active}, {failed})

axm8 : ELIG = RB

END

39

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Information Technologies

Turku School of Economics
• Institute of Information Systems Sciences

ISBN 978-952-12-2701-1
ISSN 1239-1891

