
Inna Pereverzeva | Elena Troubitsyna | Linas Laibinis

A Case Study in a Formal Development of
a Fault Tolerant Multi-Robotic System

TUCS Technical Report

No 1052, July 2012

A Case Study in a Formal Development of
a Fault Tolerant Multi-Robotic System

Inna Pereverzeva
Åbo Akademi University, Department of Computer Science,

Turku Centre for Computer Science

inna.pereverzeva@abo.fi

Elena Troubitsyna

Åbo Akademi University, Department of Computer Science

elena.troubitsyna@abo.fi

Linas Laibinis
Åbo Akademi University, Department of Computer Science

linas.laibinis@abo.fi

TUCS Technical Report

No 1052, July 2012

Abstract

Multi-robotic systems are typical examples of complex multi-agent systems.
The robots – autonomic agents – cooperate with each other in order to achieve
the system goals. While designing multi-robotic systems, we should ensure
that these goals remain achievable despite robot failures, i.e., guarantee sys-
tem fault tolerance. However, designing the fault tolerance mechanisms for
multi-agent systems is a notoriously difficult task. In this paper we describe
a case study in formal development of a complex fault tolerant multi-robotic
system. The system design relies on cooperative error recovery and dynamic
reconfiguration. We demonstrate how to specify and verify essential proper-
ties of a fault tolerant multi-robotic system in Event-B and derive a detailed
formal system specification by refinement. The main objective of the pre-
sented case study is to investigate suitability of a refinement approach for
specifying a complex multi-agent system with co-operative error recovery.

Keywords: Event-B, formal modelling, refinement, fault tolerance, multi-
robotic system.

TUCS Laboratory

Distributed Systems Laboratory

1 Introduction

Over the last decade, the field of autonomous multi-robotic systems has
grown dramatically. There are several research directions that are contin-
uously receiving significant attention: autonomous navigation and control,
self-organising behaviour, architectures for multi-robot co-operation, to name
a few. The robot co-operation is studied from a variety of perspectives: dele-
gation of authority and control, heterogeneous versus homogeneous architec-
tures, communication structure etc. In this paper we focus on studying the
fault tolerance aspects of multi-robotic co-operation. Namely, we show by
example how to formally derive a specification of a multi-robotic system that
relies on dynamic reconfiguration and co-operative error recovery to achieve
fault tolerance.

Our paper presents a case study in formal development of a cleaning
multi-robotic system. That kind of systems are typically employed in haz-
ardous areas. The system has a heterogenous architecture consisting of sev-
eral stationary devices, base stations, that coordinate the work of respective
groups of robots. A base station assigns a robot to clean a certain segment.
Since both base stations and robots can fail, the main objective of our for-
mal development is to formally specify co-operative error recovery and verify
that the proposed design ensures goal reachability, i.e., guarantees that the
whole territory will be eventually cleaned. The proposed development ap-
proach ensures goal reachability ”by construction”. It is based on refinement
in Event-B [2] – a formal top-down approach to correct-by-construction sys-
tem development. The main development technique – refinement – allows us
to ensure that a resulting specification preserves the globally observable be-
haviour and properties of the specifications it refines. The Rodin platform [7]
automates modelling and verification in Event-B.

In this paper we demonstrate how to formally define a system goal and, in
a stepwise manner, derive a detailed specification of the system architecture.
While refining the system specification, we gradually introduce a representa-
tion of the main elements of the architecture – base stations and robots – as
well as failures and the fault tolerance mechanisms. Moreover, we identify
the main properties of a fault tolerant multi-robotic system and demonstrate
how to formally specify and verify them as a part of the refinement pro-
cess. In particular, we show how to derive a mechanism for cooperative error
recovery in a systematic way.

Traditionally, the behaviour of multi-robotic systems is verified by simula-
tion and model checking. These approaches allow the designers to investigate
only a limited number of scenarios and require a significant reduction of the
state space. In our paper, we discuss advantages and limitations of a refine-
ment approach to achieve full-scale verification of a multi-robotic system.

The paper is structured as follows. In Section 2 we briefly overview the

1

Event-B formalism. Section 3 describes the requirements for our case study
– a multi-robotic cleaning system – and outlines the development strategy.
Section 4 presents a formal development of the cleaning system and demon-
strates how to express and verify its properties in the refinement process.
Finally, in Section 5 we conclude by assessing our contributions and review-
ing the related work.

2 Modelling and Refinement in Event-B

The Event-B formalism – a variation of the B Method [1] – is a state-
based formal approach that promotes the correct-by-construction develop-
ment paradigm and formal verification by theorem proving. In Event-B, a
system model is specified using the notion of an abstract state machine [2].
An abstract state machine encapsulates the model state represented as a col-
lection of variables and defines operations on the state, i.e., it describes the
behaviour of the modelled system. Usually, a machine has an accompany-
ing component, called context, which may include user-defined carrier sets,
constants and their properties given as a list of model axioms. In Event-B,
the model variables are strongly typed by the constraining predicates. These
predicates and the other important properties that must be preserved by the
model constitute model invariants.

The dynamic behaviour of the system is defined by a set of atomic events.
Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, the guard Ge is a
predicate over the local variables of the event and the state variables of the
system. The body of the event is defined by the next-state relation Re. In
Event-B, Re is defined by a multiple (possibly nondeterministic) assignment
over the system variables. The guard defines the conditions under which the
assignment can be performed, i.e., when the event is enabled. If several events
are enabled at the same time, any of them can be chosen for execution non-
deterministically. If an event does not have local variables, it can be described
simply as:

e =̂ when Ge then Re end.

Event-B employs a top-down refinement-based approach to system de-
velopment. A development starts from an abstract system specification that
non-deterministically models the most essential functional requirements. In
a sequence of refinement steps, we gradually reduce non-determinism and
introduce detailed design decisions. In particular, we can add new events,
split events as well as replace abstract variables by their concrete counter-
parts, i.e., perform data refinement. When data refinement is performed,

2

we should define so called gluing invariant as a part of the invariant of the
refined machine. The gluing invariant defines the relationship between the
abstract and concrete variables.

Often a refinement step introduces new events and variables into the
abstract specification. The new events correspond to the stuttering steps
that are not visible at the abstract level, i.e., they refine implicit skip. To
guarantee that the refined specification preserves the global behaviour of the
abstract machine, we should demonstrate that the newly introduced events
converge. To prove it, we need to define a variant – an expression over a
finite subset of natural numbers – and show that the execution of new events
decreases it. Sometimes, convergence of an event cannot be proved due to
a high level of abstraction. Then the event obtains the status anticipated.
This obliges the designer to prove, at some later refinement step, that the
event indeed converges.

The consistency of Event-B models, i.e., verification of well-formedness
and invariant preservation as well as correctness of refinement steps, is for-
mally demonstrated by discharging the relevant proof obligations generated
by the Rodin platform [7]. Rodin also provides an automated tool support
for proving.

3 Multi-Robotic Systems

Our paper focuses on formal modelling and development of multi-robotic sys-
tems that should function autonomously , i.e., without human intervention.
Such kind of systems are often deployed in hazardous areas, e.g., nuclear
power plants, disaster areas, minefields, etc.

Typically, the main task or goal that a multi-robotic system should ac-
complish is split between the deployed robots. The robot activities are coor-
dinated by a number of stationary units – base stations. Since both robots
and base stations may fail, to ensure success of the overall goal we should
incorporate the fault tolerance mechanisms into the system design. These
mechanisms rely on co-operative error recovery that allows the system dy-
namically reallocate functions from the failed agents to the healthy ones.

Designing co-operative error recovery for multi-agent systems is a noto-
riously complex task. The complexity is caused by several factors: asyn-
chronous communication, a highly decentralised system architecture and the
lack of the ”universally known” global system state. Yet, the designers should
guarantee that the system goals are achievable despite failures. A variety of
failure modes and scenarios makes verification of goal reachability of the co-
operative error recovery difficult and time-consuming. Therefore, there is a
clear need for rigorous approaches that support scalable design and verifica-
tion in a systematic manner.

3

Next we present the requirements of our case study – a multi-robotic sys-
tem for cleaning a territory. Then we will demonstrate how we can formally
develop the system in Event-B and prove its essential properties.

3.1 A Case Study: Cleaning a Territory

The goal of the system is to get a certain territory cleaned by robots. The
whole territory is divided into several zones, which in turn are further divided
into a number of sectors. Each zone has a base station that coordinates
the cleaning activities within the zone. In general, one base station might
coordinate several zones. In its turn, each base station supervises a number
of robots attached to it by assigning cleaning tasks to them.

A robot is an autonomous electro-mechanical device that can move and
clean. A base station may assign a robot a specific sector to clean. Upon
receiving the assignment, the robot autonomously moves to this sector and
performs cleaning. After successfully completing its mission, the robot re-
turns back to the base station to receive a new assignment. The base station
keeps track of the cleaned and non-cleaned sectors. Moreover, the base sta-
tions periodically exchange the information about their cleaned sectors.

While performing the given task, a robot might fail which subsequently
leads to a failure to clean the assigned sector. We assume that a base station
is able to detect all the failed robots attached to it. In case of a robot failure,
the base station may assign another active robot to perform the failed task.

A base station might fail as well. We assume that a failure of a base
station can be detected by the others base stations. In that case, the healthy
base stations redistribute control over the robots coordinated by the failed
base station.

Let us now to formulate the main requirements and properties associated
with the multi-robotic system informally described above.

(PR1) The main system goal: the whole territory has to be cleaned.

(PR2) To clean the territory, every its zone has to be cleaned.

(PR3) To clean a zone, every its sector has to be cleaned.

(PR4) Every cleaned sector or zone remains cleaned during functioning of the
system.

(PR5) No two robots should clean the same sector. In other words, a robot
gets only non-assigned and non-cleaned sectors to clean.

(PR6) The information about the cleaned sectors stored in any base station
has to be consistent with the current state of the territory. More specif-
ically, if a base station sees a particular sector in some zone as cleaned,

4

then this sector is marked as cleaned in the memory of the base station
responsible for it. Also, if a sector is marked as non-cleaned in the
memory of the base station responsible for it, then any base station
sees it as non-cleaned.

(PR7) Base station cooperation: if a base station has been detected as failed
then some base station will take the responsibility for all the zones and
robots of the failed base station.

(PR8) Base station cooperation: if a base station has no more active robots,
a group of robot is sent to this base station from another base station.

(PR9) Base station cooperation: if a base station has cleaned all its zones, its
active robots may be reallocated under control of another base station.

The last three requirements essentially describe the co-operative recov-
ery mechanisms that we assume to be present in the described multi-robot
system.

3.2 Formal Development Strategy

In the next section we will present a formal Event-B development of the
described multi-system robotic system. We demonstrate how to specify and
verify the given properties (PR1)–(PR9). Let us now give a short overview of
this development and highlight formal techniques used to ensure the proposed
properties.

We start with a very abstract model, essentially representing the system
behaviour as a process iteratively trying to achieve the main goal (PR1). The
next couple of data refinement steps decompose the main goal into a set of
subgoals, i.e., reformulate it in the terms of zones and sectors. We will define
and prove the relevant gluing invariants establishing a formal relationship
between goals and the corresponding subgoals.

While the specification remains highly abstract, we postulate goal reach-
ability property by defining anticipate status for the involved events. Once,
as a result of the refinement process, the model becomes sufficiently detailed,
we change the event status into convergent and prove their termination by
supplying the appropriate variant expression.

Next we introduce different types of agents (i.e., base stations and robots).
The base stations coordinate execution of the tasks required to achieve the
corresponding subgoal, while the robots execute the tasks allocated on them.
We formally define the relationships between different types of agents, as
well as agents and respective subgoals. These relationships are specified and
proved as invariant properties of the model.

The consequent refinement steps explicitly introduce agent failures, the
information exchange as well as co-operation activities between the agents.

5

The integrity between the local and the global information stored within base
stations is again formulated and proved as model invariant properties.

We assume that communication between the base stations as well as the
robots and the base stations is reliable. In other words, messages are always
transmitted correctly without any loss or errors. The main focus of our devel-
opment is on specifying and verifying the co-operative recovery mechanisms.

4 Development of a Multi-Robotic System in

Event-B

4.1 Abstract Model

We start our development by abstractly modelling the described multi-robotic
system. We aim to ensure the property (PR1). The main system goal is to
clean the whole territory. The process of achieving this goal is modelled by
the simple event Body presented below. A variable goal ∈ STATE models
the current state of the system goal. It obtains values from the enumerated
set STATE = {incompl, compl}, where the value compl corresponds to the
situation when the goal is achieved, otherwise it is equal to incompl. The
system continues its execution until the whole territory is not cleaned, i.e.,
while goal stays incompl.

Body b=
status anticipated
when

goal 6= compl
then

goal :∈ STATE
end

The event Body has the status anticipated. This means that goal reach-
ability is postulated rather than proved. However, at some refinement step
it also obliges us to prove that the event or its refinements converge, i.e., to
prove that the process of achieving goal eventually terminates.

4.2 First Refinement: Zone Cleaning

Our initial model represents the system behaviour at a high level of abstrac-
tion. The objective of our first refinement step is to elaborate on the process
of cleaning the territory. Specifically, we assume that the whole territory
is divided into n zones, where n ∈ N and n ≥ 1, and aim at ensuring the
property (PR2).

We augment our model with a representation of subgoals. We also asso-
ciate the notion of a subgoal with the process of cleaning a particular zone.
A subgoal is achieved only when the corresponding zone is cleaned. A new
variable zones represents the current subgoal status for every zone:

zones ∈ 1..n → STATE.

6

In this refinement step we perform a data refinement: we replace the ab-
stract variable goal with a new variable zones. To establish the relationship
between those variables, we formulate the following gluing invariant:

goal = compl ⇔ zones[1..n] = {compl}.

The invariant can be understood as follows: the territory is considered to
be cleaned if and only if its every zone is cleaned. Hence, hereby we have
formalised the property (PR2). The refined event Body is presented below:

Body b= refines Body

status anticipated
any z, res
when

z ∈ 1..n ∧ zones(z) 6= compl ∧ res ∈ STATE
then

zones(z) := res
end

Moreover, while a certain subgoal is reached, it stays such, i.e., the system al-
ways progresses towards achieving its goals. Thereby we ensure the property
(PR4).

4.3 Second Refinement: Sector Cleaning

In the next refinement step we further decompose system subgoals into a
set of subsubgoals. Specifically, we assume that each zone in our system
is divided into k sectors, where k ∈ N and k ≥ 1, and aim at formalising
the property (PR3). We establish the relationship between the notion of a
subsubgoal (or simply a task) and the process of cleaning a particular sector.
A task is completed when the corresponding sector is cleaned. A new variable
territory represents the current status of each sector:

territory ∈ 1 .. n → (1 .. k → STATE).

The refinement step is again an example of a data refinement. Indeed, we re-
place the abstract variable zones with a new variable territory. The following
gluing invariant expresses the relationship between subgoals and subsubgoals
(tasks) and correspondingly ensures the property (PR3):

∀j ·j ∈ 1 .. n ⇒ (zones(j) = compl ⇔ territory(j)[1 .. k] = {compl}).

The invariant postulates that a zone is cleaned if and only if each of its
sectors is cleaned.

The abstract event Body is further refined. It is now models cleaning of a
previously non-cleaned sector s in a zone z. The task is achieved when this
sector is eventually cleaned, i.e., result becomes compl.

Body b= refines Body

status anticipated
any z, s, result
when

zone ∈ 1..n ∧ s ∈ 1 .. k ∧ territory(z)(s) 6= compl ∧ result ∈ STATE
then

territory(z) := territory(z) ✁− {s 7→ result}
end

7

Let us observe that the event Body also preserve the property (PR4).
At this refinement step we have achieved a sufficient level of detail to

introduce an explicit representation of the agents – base stations and robots.
This constitutes the main objective of our next refinement step.

4.4 Third Refinement: Introducing Agents

We start by defining, in the model context, the abstract finite set AGENTS
and its disjointed non-empty subsets RB and BS that represent the robots
and the base stations respectively. To define a relationship between a zone
and its supervising base station, we introduce the variable responsible, which
is defined as the following total function:

responsible ∈ 1 .. n → BS.

Each robot is supervised by a certain base station. During system execution
robots might become inactive (failed). We model the relationship between
robots and their supervised station by a variable attached, defined as partial
function:

attached ∈ RB 7→ BS.

The new function variables asgn z and asgn s model respectively the zone
and the sector assigned to a robot to clean. When a robot is idle, i.e., it does
not have a task assigned to it, the corresponding function value is 0:

asgn z ∈ RB 7→ 0 .. n, asgn s ∈ RB 7→ 0 .. k.

We require that only the robots that have a supervisory base station might
receive a cleaning task:

dom(attached) = dom(asgn z), dom(asgn z) = dom(asgn s).

Now we can formulate the property (PR5) – no two robots can clean the
certain sector at the same time – as a model invariant:

∀rb1, rb2·rb1 ∈ dom(attached)∧rb2 ∈ dom(attached)∧asgn z(rb1) = asgn z(rb2) ∧

asgn s(rb1) 6= 0 ∧ asgn s(rb2) 6= 0 ∧ asgn s(rb1) = asgn s(rb2) ⇒ rb1 = rb2.

To coordinate the cleaning process, a base station stores the information
about its own cleaned sectors and periodically updates information about
the status of the other cleaned sectors. Therefore, we assume that each base
station has a “map” – a knowledge about all sectors of the whole territory.
To model this, we introduce a new variable, local map:

local map ∈ BS → (1 .. n 7→ (1 .. k → STATE)).

The “maps” are defined only for the base stations that have any zone cleaning
to coordinate, i.e., bs ∈ ran(responsible):

∀bs·bs ∈ ran(responsible)⇒ local map(bs) ∈ 1 .. n → (1 .. k → STATE),

∀bs·bs ∈ BS ∧ bs /∈ ran(responsible)⇒ local map(bs) = ∅.

8

The abstract variable territory represents the global knowledge on the
whole territory. For any sector and zone, this global knowledge has to
be consistent with the information stored by the base stations. Namely,
if in the local knowledge of any base station bs a sector s is marked as
cleaned, i.e., local map(bs)(z)(s) = compl, then it should be cleaned accord-
ing to the global knowledge as well, i.e., territory(z)(s) = compl; and vice
versa: if a sector s is marked as non-cleaned in the global knowledge, i.e.,
territory(z)(s) = incompl, then it remains non-cleaned according the local
knowledge of any base station bs, i.e., local map(bs)(z)(s) = incompl. To
establish those relationships, we formulate and prove the following invariants:

∀bs, z, s·bs ∈ ran(responsible) ∧ z ∈ 1 .. n ∧ s ∈ 1 .. k ⇒

(local map(bs)(z)(s) = compl ⇒ territory(z)(s) = compl),

∀bs, z, s·bs ∈ ran(responsible) ∧ z ∈ 1 .. n ∧ s ∈ 1 .. k ⇒

(territory(z)(s) = incompl ⇒ local map(bs)(z)(s) = incompl).

For each base station, the local information about its zones and sectors
always coincides with the global knowledge about these zones and sectors:

∀bs, z, s·bs ∈ ran(responsible) ∧ z ∈ 1 .. n ∧ responsible(z) = bs ∧ s ∈ 1 .. k ⇒

(territory(z)(s) = incompl ⇔ local map(bs)(z)(s) = incompl).

All together, these three invariants formalise the property (PR6).
A base station assigns a cleaning task to its attached robots. This be-

haviour is modelled by a new event NewTask. In the event guard, we check
that the assigned sector s is not cleaned yet, i.e., local map(bs)(z)(s) =
incompl, and no other robot is currently cleaning it. The last condition can
be formally expressed as s /∈ ran((dom(asgn z ✄ {z})) ✁ asgn s), i.e., the
sector s is not assigned to any robot that performs cleaning in the zone z:

NewTask b=
any bs, rb, z, s
when

bs ∈ BS ∧ rb ∈ dom(attached) ∧ attached(rb) = bs ∧ z ∈ 1 .. n ∧
responsible(z) = bs ∧ asgn z(rb) = 0 ∧ s ∈ 1 .. k ∧ asgn s(rb) = 0 ∧
local map(bs)(z)(s) = incompl ∧ s /∈ ran((dom(asgn z ✄ {z})) ✁ asgn s)

then

asgn s(rb) := s
asgn z(rb) := z

end

The robot failures have impact on execution of the cleaning process. The
cleaning task cannot be performed if a robot assigned for this task has failed.
To reflect this behaviour in our model, we refine the abstract event Body by
two events TaskSuccess and TaskFailure, which respectively model successful
and unsuccessful execution of the task. If the task has been successfully
performed by the assigned robot rb, its supervising base station bs changes
the status of the sector s to cleaned, i.e., we override the previous value of
local map(bs)(z)(s) by the value compl.

9

TaskSuccess b= refines Body

status convergent
any bs, rb, z, s
when

bs ∈ BS ∧ rb ∈ dom(attached) ∧ attached(rb) = bs ∧
z ∈ 1 .. n ∧ responsible(z) = bs ∧ asgn z(rb) = z ∧
s ∈ 1 .. k ∧ asgn s(rb) = s ∧ local map(bs)(z)(s) = incompl

then

territory(z) := territory(z) ✁− {s 7→ compl}
local map(bs) := local map(bs) ✁− {z 7→ local map(bs)(z) ✁− {s 7→ compl}}
asgn s(rb) := 0
asgn z(rb) := 0
counter := counter − 1

end

The dual event TaskFailure abstractly models the opposite situation caused
by a robot failure. As a result, all the relationships concerning the failed
robot rb are removed:

TaskFailure b= refines Body

status convergent
any bs, rb, z, s
when

bs ∈ BS ∧ rb ∈ dom(attached) ∧ attached(rb) = bs ∧
z ∈ 1 .. n ∧ responsible(z) = bs ∧ asgn z(rb) = z ∧
s ∈ 1 .. k ∧ asgn s(rb) = s ∧ local map(bs)(z)(s) = incompl

then

territory(z) := territory(z) ✁− {s 7→ incompl}
asgn s := {rb} ✁− asgn s
asgn z := {rb} ✁− asgn z
attached := {rb} ✁− attached

end

At this refinement step, we are ready to demonstrate that the events
TaskSuccess and TaskFailure converge. To prove it, we define the following
variant expression over system variables:

counter + card(dom(attached)),

where counter is an auxiliary variable that stores the number of all non-
cleaned sectors of the whole territory. The initial value of counter is equal
to n ∗ k. When a robot fails to perform a task, it is removed from the corre-
sponding set of the attached robots dom(attached). This in turn decreases
the value of card(dom(attached)) and consequently the whole variant ex-
pression. On the other hand, when a robot succeeds in cleaning a sector, the
variable counter decreases and consequently the whole variant expression de-
creases as well. If there are no sectors to clean, the events become disabled
and the system terminates.

A base station keeps track of the cleaned and non-cleaned sectors and
repeatedly receives the information from the other base stations about their
cleaned sectors. This knowledge is inaccurate for the period when the infor-
mation is sent but not yet received. In this refinement step we abstractly
model receiving the information by a base station. In the next refinement
step, we are going to define this process of information broadcasting more
precisely.

10

The new event UpdateMap models updating the local map of a base sta-
tion bs. Here we have to ensure that the obtained information is always
consistent with the global one. Specifically, the base station updates a sector
s as cleaned only if it has this status according to the global knowledge, i.e.,
territory(z)(s) = compl.

UpdateMap b=
any bs, z, s
when

bs ∈ BS ∧ z ∈ 1 .. n ∧ s ∈ 1 .. k ∧ responsible(z) 6= bs∧
bs ∈ ran(responsible) ∧ territory(z)(s) = compl

then

local map(bs) := local map(bs) ✁− {z 7→ local map(bs)(z) ✁− {s 7→ compl}}
end

In this refinement step we also introduce an abstract representation of
the base station co-operation defined by the property (PR7). Namely, we
allow to reassign a group of robots from one base station to another. This
behaviour is defined by the event ReassignRB. In the next refinement steps
we will elaborate on this event and define the conditions under which this
behaviour takes place.

Additionally, we model a possible redistribution between the base stations
their pre-assigned responsibility for zones and robots. This behaviour is
defined in the new event GetAdditionalResponsibility presented below. The
event guard defines the conditions when such a change is allowed. A base
station bs j can take the responsibility for a set of new zones zss if it has
the accurate knowledge about these zones, i.e., the information about their
cleaned and non-cleaned sectors. Specifically, in the guard we check that the
global status of each sector s from the zone z, i.e., territory(z)(s), coincides
with the local information that the base station bs j has about this sector.
In that case, we reassign responsibility for the zone(s) zss and the robots rbs
to the base station bs j:

GetAdditionalResponsibility b=
any bs i, bs j, rbs, zs
when

bs i ∈ BS ∧ bs j ∈ BS∧
zs ⊂ 1 .. n ∧ zs = dom(responsible ✄ {bs i}) ∧
rbs ⊂ dom(attached) ∧ rbs = dom(attached ✄ {bs i}) ∧
bs i 6= bs j ∧ bs j ∈ ran(responsible) ∧ bs j ∈ ran(responsible) ∧
(∀z, s·z ∈ zs ∧ s ∈ 1 .. k ⇒ territory(z)(s) = local map(bs j)(z)(s))

then

responsible := responsible ✁− (zs × {bs j})
attached := attached ✁− (rbs × {bs j})
asgn s := asgn s ✁− (rbs × {0})
asgn z := asgn z ✁− (rbs × {0})
local map(bs i) := ∅

end

Modelling this behaviour allows us to formalise the property (PR9). Our next
refinement step will elaborate on our chosen communication model that is
needed to achieve such co-operative recovery.

11

4.5 Fourth Refinement: a Model of Broadcasting

In the fourth refinement step we aim at defining an abstract model of broad-
casting. After receiving a notification from a robot about successful cleaning
the assigned sector, a base station updates its local map and broadcasts the
message about the cleaned sector to the other base stations. In its turn,
upon receiving the message, each base station correspondingly updates its
own local map. We assume that the communication between base stations
is reliable: no message is lost and eventually every base station receives it.
In further refinement steps, this model of the broadcasting can be further
refined by a more concrete mechanism.

To model the described behaviour, we introduce a new relational variable,
msg, that models the message broadcasting buffer:

msg ∈ BS ↔ (1 .. n × 1 .. k).

If a message (bs 7→ (z 7→ s)) belongs to this buffer, this means that the sector
s from the zone z has been cleaned, i.e., territory(z)(s) = compl. The first
element of the message, bs, determines the base station the message is sent
to. We formulate this property by the following system invariant:

∀z, s·z ∈ 1 .. n ∧ s ∈ 1 .. k ∧ (z 7→ s) ∈ ran(msg) ⇒ territory(z)(s) = compl.

If there are no messages in the msg buffer for any particular base station
then the local map of this base station is accurate, i.e., it coincides with the
global knowledge about the teritory:

∀bs, z, s·z ∈ 1 .. n ∧ s ∈ 1 .. k ∧ bs ∈ ran(responsible)∧ (bs 7→ (z 7→ s)) /∈ msg⇒

territory(z)(s) = local map(bs)(z)(s),

∀bs·bs ∈ ran(responsible) ∧ bs /∈ dom(msg)⇒

(∀z, s·z ∈ 1 .. n ∧ s ∈ 1 .. k ⇒ territory(z)(s) = local map(bs)(z)(s)).

After receiving a notification about successful cleaning of a sector, a base
station marks this sector as cleaned in its local map and then broadcasts the
message about it to other base stations. To model this, we refine the abstract
event TaskSuccess. Specifically, in the event body we add a new assignment
msg := msg ∪ (bss × {z 7→ s}) to add a new message to the broadcasting
buffer.

We also refine the abstract event UpdateMap. In particular, we replace
the guard territory(z)(s) = compl by the guard (bs 7→ (z 7→ s)) ∈ msg.
This guard checks that there is a message for the base station bs about the
cleaned sector s from the zone z. As a result of the event, the base station
bs reads the message and marks the sector s in the zone z as cleaned in its
local map.

12

UpdateMap b= refines UpdateMap

any bs, z, s
when

bs ∈ BS ∧ z ∈ 1 .. n ∧ s ∈ 1 .. k ∧ responsible(z) 6= bs ∧
bs ∈ ran(responsible) ∧ (bs 7→ (z 7→ s)) ∈ msg

then

local map(bs) := local map(bs) ✁− {z 7→ local map(bs)(z) ✁− {s 7→ compl}}
msg := msg \ {bs 7→ (z 7→ s)}

4.6 Fifth Refinement: Introducing Robot Failures

Now we aim at modelling possible robot failures and elaborate on the abstract
events concerning robot and zone reassigning. We start by partitioning the
robots into active and failed ones. The current set of all active robots is
defined by a new variable active with the following invariant properties:

active ⊆ dom(attached), active ⊆ dom(asgn s), active ⊆ dom(asgn z).

Initially all robots are active, i.e., active = RB. A new event RobotFailure

models possible robot failures that can happen at any time during system
execution:

RobotFailure b=
any rb
when

rb ∈ active ∧ card(active) > 1
then

active := active \ {rb}
end

We make an assumption that the last active robot can not fail and add the
corresponding guard card(active) > 1 to the event RobotFailure to restrict
possible robot failures. Let us note that for multi-robotic systems with many
homogeneous robots this constraint is not unreasonable.

A base station monitors all its robots and detects the failed ones. The
abstract event TaskFailure abstractly models such robot detection.

To formalise the property (PR8), we should model a situation when some
base station bs j does not have active robots anymore, i.e., dom(attached ✄

{bs j}) * active. In that case, some group of active robots rbs has to be
sent to this base station bs j from another base station bs i. This behaviour
is modelled by the event ReassignNewBStoRBs that refines the abstract event
ReassignRB. As a result, all the robots from rbs become attached to the base
station bs j:

ReassignNewBStoRBs b= refines ReassignRB

any bs i, bs j, rbs
when

bs i ∈ BS ∧ bs j ∈ BS ∧ rbs ⊂ active ∧
ran(rbs ✁ attached) = {bs} ∧ bs i ∈ ran(responsible) ∧
ran(rbs ✁ asgn s) = {0} ∧ rbs 6= ∅ ∧ bs j ∈ ran(responsible) ∧
bs i 6= bs j ∧ bs i ∈ ran(rbs ✁− attached) ∧ dom(attached ✄ {bs j}) * active

then

attached := attached ✁− (rbs × {bs j})
end

13

This event can be further refined by a concrete procedure to choose a par-
ticular base station that will share its robots (e.g., based on load balancing).

Finally, to ensure the property (PR9) , let us consider the situation when
all the sectors for which a base station is responsible are cleaned. In that
case, all the active robots of the base station may be sent to some other
base station that still has some unfinished cleaning to co-ordinate. This
functionality is specified by the event SendRobotsToBS (a refinement of the
event ReassignRB):

SendRobotsToBS b= refines ReassignRB

any bs i, bs j, rbs
when

bs i ∈ operating ∧ bs j ∈ operating ∧ rbs ⊂ active ∧
ran(rbs ✁ attached) = {bs i} ∧ bs i ∈ ran(responsible) ∧
ran(rbs ✁ asgn s) = {0} ∧ rbs 6= ∅ ∧ bs j ∈ ran(responsible) ∧
bs i 6= bs j ∧ bs i ∈ ran(rbs ✁− attached) ∧ rbs = dom(attached ✄ {bs i}) ∧
(∀z ·z ∈ 1 .. n ∧ responsible(z) = bs i ⇒ local map(bs i)(z)[1 .. k] = {compl})

then

attached := attached ✁− (rbs × {bs j})
end

4.7 Sixth Refinement: Introducing Base Station Fail-

ures

In the final refinement step presented in the paper, we aim at specifying the
base station failures. Each base station might be either operating or failed.
We introduce a new variable operating to define the set of all operating base
stations. The corresponding invariant properties are as follows.

operating ⊆ BS,

∀bs· bs ∈ BS ∧ local map(bs) = ∅ ⇒ bs /∈ operating.

Also, similarly to the event RobotFailure, we introduce a new event
BaseStationFailure to model a possible base station failure.

In the fourth refinement step we assumed that a base station can take
over the responsibility for the robots and zones of another base station. This
behaviour was modelled by the event GetAdditionalResponsibility. Now we can
refine this event by introducing an additional condition – only if a base station
is detected as failed, another base station can take over its responsibility for
the respective zones and robots:

GetAdditionalResponsibility b= refines GetAdditionalResponsibility

any bs i, bs j, za, rbs
when

bs i ∈ BS ∧ bs j ∈ operating ∧ zs ⊂ 1 .. n ∧
zs = dom(responsible ✄ {bs i}) ∧ rbs ⊂ active ∧
rbs = dom(attached ✄ {bs i}) ∧ bs i 6= bs j ∧ bs j /∈ dom(msg) ∧ bs i /∈ operating

then

responsible := responsible ✁− (zs × {bs j})
attached := attached ✁− (rbs × {bs j})
asgn s := asgn s ✁− (rbs × {0})
asgn z := asgn z ✁− (rbs × {0})
local map(bs i) := ∅

end

14

As a result of the presented refinement chain, we arrived at a centralised
model of the multi-robotic system. We can further refine the system to derive
its distributed implementation, relying on the modularisation extension of
Event-B to achieve this.

5 Discussion

Assessment of the development. The development of the presented
multi-robotic system has been carried out with the support of the Rodin
platform [7]. We have derived a complex system specification in six refine-
ment steps. In general, the refinement approach has demonstrated a good
scalability and allowed us to model intricate dependencies between the sys-
tem components. We have been able to express and verify all the desired
properties defined for our system. Therefore, we can make a general con-
clusion about suitability of the refinement technique for formal development
and verification of the multi-robotic systems.

However, we have also identified a number of problems. Firstly, in spite
of seeming simplicity, the relationships between the base stations, zones and
sectors have been modelled using quite complex nested data structures (func-
tions). The Rodin platform could not comfortably handle the proofs in-
volving manipulations with the nested functions and required rather time-
consuming interactive proving efforts. Secondly, the Rodin platform does
not support the direct assignment to a function with nested arguments. For
instance, instead of simply specifying local map(bs)(z)(s) := compl, we have
to express it as the following intricate statement local map(bs) ✁− {z 7→
local map(bs)(z) ✁− {s 7→ compl}}, i.e., use the overriding relation twice.
These two problems can be alleviated with a mathematical extension of the
Rodin platform that is currently under development.

Despite certain technical difficulties, we have found the refinement ap-
proach as such to be beneficial for deriving precise requirements and the
corresponding model of a multi-robotic system. In the refinement process,
we have discovered a number of subtleties in the system requirements. The
proving effort has helped us to localise the present problems and ambiguities
and find the appropriate solutions. For instance, we had to impose extra re-
strictions on the situations when a base station takes a new responsibility for
other zones and robots. Moreover, we had to make our assumptions about
robot failures more precise.

Related work. Formal modelling of multi-agent systems has been un-
dertaken in [9, 8, 10]. The authors have proposed an extension of the
Unity framework to explicitly define such concepts as mobility and context-
awareness. Our modelling have pursued a different goal – we have aimed at
formally guaranteeing that the specified agent behaviour achieves the pre-

15

defined goals. Formal modelling of fault tolerant MAS in Event-B has been
undertaken by Ball and Butler [3]. They have proposed a number of infor-
mally described patterns that allow the designers to incorporate well-known
(static) fault tolerance mechanisms into formal models. In our approach, we
have implemented a more advanced fault tolerance scheme that relies on goal
reallocation and dynamic reconfiguration to guarantee goal reachability.

The foundational work on goal-oriented development has been done by
van Lamsweerde [11]. The original motivation behind the goal-oriented de-
velopment was to structure the requirements and derive properties in the
form of temporal logic formulas that the system design should satisfy. Over
the last decade, the goal-oriented approach has received several extensions
that allow the designers to link it with formal modelling [4, 5, 6]. These works
aimed at expressing temporal logic properties in Event-B. In our work, we
have relied on goals to facilitate structuring of the system behaviour and
derived a detailed system model that satisfies the desired properties by re-
finement.

Conclusions. In this paper we have presented a formal development of a
fault tolerant multi-robotic system. The development has been carried out by
refinement in Event-B. As a result of the formal development process, we have
achieved the desired goal – formally specified the complex system behaviour
and proved the desired properties. The formal development has allowed
us to uncover missing requirements and rigorously define the relationships
between agents. The refinement approach has also allowed us to derive a
complex mechanism for cooperative error recovery in a systematic manner.

Our approach has demonstrated a number of advantages comparing to
various process-algebraic approaches used for modelling multi-agent systems.
The reliance on a proof-based verification has allowed us to derive a quite
complex model of the behaviour of a multi-agent robotic system. We have
not needed to avoid complex data types and could comfortably express intri-
cate relationships between the system goals and the employed agents. As a
result, our approach scales well with respect to the number of system states,
agents, and their complex interactions. We believe that, once the mentioned
technical difficulties of handling complex nested functions are resolved in the
Rodin platform, Event-B and the associated tool set will provide a suitable
framework for formal modelling of complex multi-robotic systems.

16

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 2005.

[2] J.-R. Abrial. Modeling in Event-B. Cambridge University Press, 2010.

[3] Elisabeth Ball and Michael Butler. Event-b patterns for specifying fault-
tolerance in multi-agent interaction. In Methods, Models and Tools for
Fault Tolerance, pages 104–129. Springer, 2009.

[4] R. De Landtsheer, E. Letier, and A. van Lamsweerde. Deriving tabular
event-based specifications from goal-oriented requirements models. In
Requirements Engineering, 9(2), pages 104–120, 2004.

[5] Abderrahman Matoussi, Frederic Gervais, and Regine Laleau. A Goal-
Based Approach to Guide the Design of an Abstract Event-B Specifi-
cation. In 16th International Conference on Engineering of Complex
Computer Systems. IEEE, 2011.

[6] Christophe Ponsard, Gautier Dallons, and Massone Philippe. From Rig-
orous Requirements Engineering to Formal System Design of Safety-
Critical Systems. In ERCIM News (75), pages 22–23, 2008.

[7] Rodin. Event-B Platform, online at http://www.event-b.org/.

[8] G.-C. Roman, Ch. Julien, and J. Payton. A Formal Treatment of
Context-Awareness. In FASE’2004, volume 2984 of LNCS. Springer,
2004.

[9] G.-C. Roman, Ch. Julien, and J. Payton. Modeling adaptive behaviors
in Context UNITY. In Theoretical Computure Science, volume 376,
pages 185–204, 2007.

[10] G.-C. Roman, P.McCann, and J. Plun. Mobile UNITY: Reasoning and
Specification in Mobile Computing. In ACM Transactions of Software
Engineering and Methodology, 1997.

[11] Axel van Lamsweerde. Goal-Oriented Requirements Engineering: A
Guided Tour. In RE’01, pages 249–263. IEEE Computer Society, 2001.

17

Appendix: Event-B Development

MACHINE Abs

SEES cntx

VARIABLES

goal

INVARIANTS

inv1 : goal ∈ STATE

EVENTS

Initialisation

begin

act1 : goal := incompl
end

Event Body =̂

Status anticipated

when

grd1 : goal 6= compl
then

act1 : goal :∈ STATE
end

END

CONTEXT cntx

SETS

STATE

CONSTANTS

incompl

compl

AXIOMS

axm1 : partition(STATE , {incompl}, {compl})

END

18

MACHINE RS ref1

REFINES Abs

SEES cntx1

VARIABLES

zones

INVARIANTS

inv1 : zones ∈ 1 .. n → STATE

inv2 : zones [1 .. n] = {compl}⇔ goal = compl

EVENTS

Initialisation

begin

act1 : zones := 1 .. n × {incompl}
end

Event Body =̂

Status anticipated

refines Body

any

z
res

where

grd1 : z ∈ 1 .. n
grd2 : zones(z) 6= compl
grd3 : res ∈ STATE

with

goal′ : goal′ = fnc(bool(zones′[1 .. n] = {compl}))
then

act1 : zones(z) := res
end

END

CONTEXT cntx1

EXTENDS cntx

CONSTANTS

n, fnc

AXIOMS

axm1 : n ∈ N1

axm2 : fnc ∈ BOOL ։ STATE

axm3 : fnc(TRUE) = compl

axm4 : fnc(FALSE) = incompl

END

19

MACHINE RS ref2

REFINES RS ref1

SEES cntx2

VARIABLES

territory

INVARIANTS

inv1 : territory ∈ 1 .. n → (1 .. k → STATE)

inv2 : ∀j ·j ∈ 1 .. n ⇒ (zones(j) = compl ⇔ territory(j)[1 .. k] =
{compl})

EVENTS

Initialisation

begin

act1 : territory := 1 .. n × {1 .. k × {incompl}}
end

Event Body =̂

Status anticipated

refines Body

any

z
s
result

where

grd1 : z ∈ 1 .. n
grd2 : s ∈ 1 .. k
grd3 : territory(z)(s) 6= compl
grd4 : result ∈ STATE

with

res : res = fnc(bool(territory′(z)[1 .. k] = {compl}))
then

act1 : territory(z) := territory(z) ✁− {s 7→ result}
end

END

CONTEXT cntx2

EXTENDS cntx1

CONSTANTS

k

AXIOMS

axm1 : k ∈ N1

END

20

MACHINE RS ref3

REFINES RS ref2

SEES cntx3

VARIABLES

territory

responsible

attached

local map

asgn z

asgn s

counter

INVARIANTS

inv1 : responsible ∈ 1 .. n → BS

inv2 : attached ∈ RB 7→ BS

inv4 : asgn s ∈ RB 7→ 0 .. k

inv5 : asgn z ∈ RB 7→ 0 .. n

inv14 : dom(asgn z) = dom(asgn s)

inv15 : dom(attached) = dom(asgn z)

inv6 : local map ∈ BS → (1 .. n 7→ (1 .. k → STATE))

inv7 : ∀bs ·bs ∈ ran(responsible)⇒ local map(bs) ∈ 1 .. n → (1 .. k →
STATE)

inv8 : ∀bs ·bs /∈ ran(responsible) ∧ bs ∈ BS ⇒ local map(bs) = ∅

inv9 : ∀bs , z , s ·bs ∈ ran(responsible) ∧ z ∈ 1 .. n ∧ s ∈ 1 .. k ⇒
(territory(z)(s) = incompl ⇒ local map(bs)(z)(s) = incompl)

inv10 : ∀bs , z , s ·bs ∈ ran(responsible) ∧ z ∈ 1 .. n ∧ s ∈ 1 .. k ⇒
(local map(bs)(z)(s) = compl ⇒ territory(z)(s) = compl)

inv11 : ∀bs , z , s ·bs ∈ ran(responsible) ∧ z ∈ 1 .. n ∧ responsible(z) =
bs∧s ∈ 1 ..k⇒(territory(z)(s) = incompl⇔local map(bs)(z)(s) =
incompl)

inv12 : ∀rb ·rb ∈ dom(asgn z) ⇒ (asgn z (rb) = 0 ⇔ asgn s(rb) = 0)

inv13 : ∀rb1 , rb2 ·rb1 ∈ dom(asgn z)∧rb2 ∈ dom(asgn z)∧asgn z (rb1) =
asgn z (rb2)∧asgn s(rb1) 6= 0 ∧asgn s(rb2) 6= 0 ∧asgn s(rb1) =
asgn s(rb2) ⇒ rb1 = rb2

inv16 : counter ∈ 0 .. n ∗ k

EVENTS

Initialisation

extended

begin

21

act1 : territory := 1 .. n× {1 .. k× {incompl}}
act2 : responsible :∈ 1 .. n ։ BS
act3 : attached :∈ RB ։ BS
act4 : local map := BS × {1 .. n × {1 .. k × {incompl}}}
act5 : asgn s := RB × {0}
act6 : asgn z := RB × {0}
act7 : counter := n ∗ k

end

Event NewTask =̂

any

bs
rb
z
s

where

grd1 : bs ∈ BS
grd2 : rb ∈ dom(attached)
grd3 : attached(rb) = bs
grd4 : asgn s(rb) = 0
grd5 : z ∈ 1 .. n
grd6 : responsible(z) = bs
grd7 : asgn z (rb) = 0
grd8 : s ∈ 1 .. k
grd9 : local map(bs)(z)(s) = incompl
grd10 : s /∈ ran((dom(asgn z ✄ {z})) ✁ asgn s)

then

act1 : asgn s(rb) := s
act2 : asgn z (rb) := z

end

Event TaskSuccess =̂

Status convergent

refines Body

any

z
s
bs
rb

where

grd1 : bs ∈ BS
grd2 : rb ∈ dom(attached)
grd3 : attached(rb) = bs
grd4 : z ∈ 1 .. n

22

grd5 : responsible(z) = bs
grd6 : asgn z (rb) = z
grd7 : s ∈ 1 .. k
grd8 : asgn s(rb) = s
grd9 : local map(bs)(z)(s) = incompl

with

result : result = compl

then

act1 : territory(z) := territory(z) ✁− {s 7→ compl}
act2 : local map(bs) := local map(bs)✁−{z 7→ local map(bs)(z)✁−

{s 7→ compl}}
act3 : asgn s(rb) := 0
act4 : asgn z (rb) := 0
act5 : counter := counter − 1

end

Event TaskFailure =̂

Status convergent

refines Body

any

bs
rb
z
s

where

grd1 : bs ∈ BS
grd2 : rb ∈ dom(attached)
grd3 : attached(rb) = bs
grd4 : z ∈ 1 .. n
grd5 : responsible(z) = bs
grd6 : asgn z (rb) = z
grd7 : s ∈ 1 .. k
grd8 : asgn s(rb) = s
grd9 : local map(bs)(z)(s) = incompl

with

result : result = incompl

then

act1 : territory(z) := territory(z) ✁− {s 7→ incompl}
act3 : asgn s := {rb} ✁− asgn s
act4 : asgn z := {rb} ✁− asgn z
act5 : attached := {rb} ✁− attached

end

Event ReassignRB =̂

23

any

bs i
bs j
rbs

where

grd1 : bs i ∈ BS
grd2 : bs j ∈ BS
grd3 : rbs ⊂ dom(attached)
grd4 : ran(rbs ✁ attached) = {bs i}
grd5 : bs i ∈ ran(responsible)
grd6 : ran(rbs ✁ asgn s) = {0}
grd7 : rbs 6= ∅
grd8 : bs j ∈ ran(responsible)
grd9 : bs i 6= bs j
grd10 : bs i ∈ ran(rbs ✁− attached)

then

act1 : attached := attached ✁− (rbs × {bs j})

end

Event GetAdditionalResponsibility =̂

any

bs i
bs j
zs
rbs

where

grd1 : bs i ∈ BS
grd2 : bs j ∈ BS
grd3 : zs ⊂ 1 .. n
grd4 : zs = dom(responsible ✄ {bs i})
grd5 : rbs ⊂ dom(attached)
grd6 : rbs = dom(attached ✄ {bs i})
grd9 : bs i 6= bs j
grd10 : bs j ∈ ran(responsible)
grd11 : ∀z , s ·z ∈ zs∧s ∈ 1 ..k⇒territory(z)(s) = local map(bs j)(z)(s)

then

act1 : responsible := responsible ✁− (zs × {bs j})
act3 : attached := attached ✁− (rbs × {bs j})
act4 : asgn s := asgn s ✁− (rbs × {0})
act5 : asgn z := asgn z ✁− (rbs × {0})
act6 : local map(bs i) := ∅

end

Event UpdateMap =̂

24

any

bs
z
s

where

grd1 : bs ∈ BS
grd2 : z ∈ 1 .. n
grd3 : s ∈ 1 .. k
grd4 : responsible(z) 6= bs
grd5 : bs ∈ ran(responsible)
grd6 : territory(z)(s) = compl

then

act1 : local map(bs) := local map(bs)✁−{z 7→ local map(bs)(z)✁−
{s 7→ compl}}

end

VARIANT

counter + card(dom(attached))

END

CONTEXT cntx3

EXTENDS cntx2

SETS

AGENTS

TSTATE

CONSTANTS

RB

BS

AXIOMS

axm1 : partition(AGENTS ,RB ,BS)

axm2 : finite(AGENTS)

axm3 : RB 6= ∅

axm4 : BS 6= ∅

END

25

MACHINE RS ref4

REFINES RS ref3

SEES cntx3

VARIABLES

territory

responsible

attached

local map

asgn z

asgn s

msg

counter

INVARIANTS

inv1 : msg ∈ BS ↔ (1 .. n × 1 .. k)

inv2 : ∀z , s ·z ∈ 1 ..n∧s ∈ 1 ..k∧(z 7→ s) ∈ ran(msg)⇒territory(z)(s) =
compl

inv3 : ∀bs ·bs ∈ ran(responsible) ∧ bs /∈ dom(msg) ⇒ (∀z , s ·z ∈ 1 ..
n ∧ s ∈ 1 .. k ⇒ territory(z)(s) = local map(bs)(z)(s))

inv4 : ∀bs , z , s ·z ∈ 1 .. n ∧ s ∈ 1 .. k ∧ bs ∈ ran(responsible) ∧ (bs 7→
(z 7→ s)) /∈ msg ⇒ local map(bs)(z)(s) = territory(z)(s)

EVENTS

Initialisation

extended

begin

act1 : territory := 1 .. n× {1 .. k× {incompl}}
act2 : responsible :∈ 1 .. n ։ BS

act3 : attached :∈ RB ։ BS

act4 : local map := BS× {1 .. n× {1 .. k× {incompl}}}
act5 : asgn s := RB× {0}
act6 : asgn z := RB× {0}
act7 : counter := n ∗ k
act8 : msg := BS × ∅

end

Event NewTask =̂

extends NewTask

any

bs

rb

z

26

s

where

grd1 : bs ∈ BS

grd2 : rb ∈ dom(attached)
grd3 : attached(rb) = bs

grd4 : asgn s(rb) = 0

grd5 : z ∈ 1 .. n
grd6 : responsible(z) = bs

grd7 : asgn z(rb) = 0

grd8 : s ∈ 1 .. k
grd9 : local map(bs)(z)(s) = incompl

grd10 : s /∈ ran((dom(asgn z ✄ {z})) ✁ asgn s)

then

act1 : asgn s(rb) := s

act2 : asgn z(rb) := z

end

Event TaskSuccess =̂

extends TaskSuccess

any

z

s

bs

rb

bss

where

grd1 : bs ∈ BS

grd2 : rb ∈ dom(attached)
grd3 : attached(rb) = bs

grd4 : z ∈ 1 .. n
grd5 : responsible(z) = bs

grd6 : asgn z(rb) = z

grd7 : s ∈ 1 .. k
grd8 : asgn s(rb) = s

grd9 : local map(bs)(z)(s) = incompl

grd10 : bss = BS \ {bs}

then

act1 : territory(z) := territory(z) ✁− {s 7→ compl}
act2 : local map(bs) := local map(bs)✁−{z 7→ local map(bs)(z)✁−

{s 7→ compl}}
act3 : asgn s(rb) := 0

act4 : asgn z(rb) := 0

act5 : counter := counter − 1

27

act6 : msg := msg ∪ (bss × {z 7→ s})
end

Event TaskFailure =̂

extends TaskFailure

any

bs

rb

z

s

where

grd1 : bs ∈ BS

grd2 : rb ∈ dom(attached)
grd3 : attached(rb) = bs

grd4 : z ∈ 1 .. n
grd5 : responsible(z) = bs

grd6 : asgn z(rb) = z

grd7 : s ∈ 1 .. k
grd8 : asgn s(rb) = s

grd9 : local map(bs)(z)(s) = incompl

then

act1 : territory(z) := territory(z) ✁− {s 7→ incompl}
act3 : asgn s := {rb} ✁− asgn s

act4 : asgn z := {rb} ✁− asgn z

act5 : attached := {rb} ✁− attached

end

Event ReassignBS =̂

extends ReassignRB

any

bs i

bs j

rbs

where

grd1 : bs i ∈ BS

grd2 : bs j ∈ BS

grd3 : rbs ⊂ dom(attached)
grd4 : ran(rbs ✁ attached) = {bs i}
grd5 : bs i ∈ ran(responsible)
grd6 : ran(rbs ✁ asgn s) = {0}
grd7 : rbs 6= ∅
grd8 : bs j ∈ ran(responsible)
grd9 : bs i 6= bs j

grd10 : bs i ∈ ran(rbs ✁− attached)

28

then

act1 : attached := attached ✁− (rbs× {bs j})

end

Event GetAdditionalResponsibility =̂

refines GetAdditionalResponsibility

any

bs i
bs j
zs
rbs

where

grd1 : bs i ∈ BS
grd2 : bs j ∈ BS
grd3 : zs ⊂ 1 .. n
grd4 : zs = dom(responsible ✄ {bs i})
grd5 : rbs ⊂ dom(attached)
grd6 : rbs = dom(attached ✄ {bs i})
grd9 : bs i 6= bs j
grd10 : bs j ∈ ran(responsible)
grd12 : bs j /∈ dom(msg)

then

act1 : responsible := responsible ✁− (zs × {bs j})
act3 : attached := attached ✁− (rbs × {bs j})
act4 : asgn s := asgn s ✁− (rbs × {0})
act5 : asgn z := asgn z ✁− (rbs × {0})
act6 : local map(bs i) := ∅

end

Event UpdateMap =̂

refines UpdateMap

any

bs
z
s

where

grd1 : bs ∈ BS
grd2 : z ∈ 1 .. n
grd3 : s ∈ 1 .. k
grd4 : responsible(z) 6= bs
grd5 : bs ∈ ran(responsible)
grd6 : (bs 7→ (z 7→ s)) ∈ msg

then

29

act1 : local map(bs) := local map(bs)✁−{z 7→ local map(bs)(z)✁−
{s 7→ compl}}

act2 : msg := msg \ {bs 7→ (z 7→ s)}

end

END

30

MACHINE RS ref5

REFINES RS ref4

SEES cntx3

VARIABLES

territory

responsible

attached

local map

asgn z

asgn s

msg

active

counter

INVARIANTS

inv1 : active ⊆ dom(attached)

inv2 : active ⊆ dom(asgn s)

inv3 : active ⊆ dom(asgn z)

EVENTS

Initialisation

extended

begin

act1 : territory := 1 .. n× {1 .. k× {incompl}}
act2 : responsible :∈ 1 .. n ։ BS

act3 : attached :∈ RB ։ BS

act4 : local map := BS× {1 .. n× {1 .. k× {incompl}}}
act5 : asgn s := RB× {0}
act6 : asgn z := RB× {0}
act7 : counter := n ∗ k
act8 : msg := BS× ∅
act9 : active := RB

end

Event NewTask =̂

refines NewTask

any

bs
rb
z
s

where

31

grd1 : bs ∈ BS
grd2 : rb ∈ active
grd3 : attached(rb) = bs
grd4 : asgn s(rb) = 0
grd5 : z ∈ 1 .. n
grd6 : responsible(z) = bs
grd7 : asgn z (rb) = 0
grd8 : s ∈ 1 .. k
grd9 : local map(bs)(z)(s) = incompl
grd10 : s /∈ ran((dom(asgn z ✄ {z})) ✁ asgn s)

then

act1 : asgn s(rb) := s
act2 : asgn z (rb) := z

end

Event TaskSuccess =̂

refines TaskSuccess

any

z
s
bs
rb
bss

where

grd1 : bs ∈ BS
grd2 : rb ∈ active
grd3 : attached(rb) = bs
grd4 : z ∈ 1 .. n
grd5 : responsible(z) = bs
grd6 : asgn z (rb) = z
grd7 : s ∈ 1 .. k
grd8 : asgn s(rb) = s
grd9 : local map(bs)(z)(s) = incompl
grd10 : bss = BS \ {bs}

then

act1 : territory(z) := territory(z) ✁− {s 7→ compl}
act2 : local map(bs) := local map(bs)✁−{z 7→ local map(bs)(z)✁−

{s 7→ compl}}
act3 : asgn s(rb) := 0
act4 : asgn z (rb) := 0
act5 : msg := msg ∪ (bss × {z 7→ s})
act6 : counter := counter − 1

end

32

Event TaskFailure =̂

refines TaskFailure

any

bs
rb
z
s

where

grd1 : bs ∈ BS
grd2 : rb ∈ dom(attached)
grd3 : attached(rb) = bs
grd4 : z ∈ 1 .. n
grd5 : responsible(z) = bs
grd6 : asgn z (rb) = z
grd7 : s ∈ 1 .. k
grd8 : asgn s(rb) = s
grd9 : local map(bs)(z)(s) = incompl
grd10 : rb /∈ active

then

act1 : territory(z) := territory(z) ✁− {s 7→ incompl}
act3 : asgn s := {rb} ✁− asgn s
act4 : asgn z := {rb} ✁− asgn z
act5 : attached := {rb} ✁− attached

end

Event ReassignNewBStoRBs =̂

refines ReassignBS

any

bs i
bs j
rbs

where

grd1 : bs i ∈ BS
grd2 : bs j ∈ BS
grd3 : rbs ⊂ active
grd4 : ran(rbs ✁ attached) = {bs i}
grd5 : bs i ∈ ran(responsible)
grd6 : ran(rbs ✁ asgn s) = {0}
grd7 : rbs 6= ∅
grd8 : bs j ∈ ran(responsible)
grd9 : bs i 6= bs j
grd10 : bs i ∈ ran(rbs ✁− attached)
grd11 : dom(attached ✄ {bs j}) * active

33

then

act1 : attached := attached ✁− (rbs × {bs j})

end

Event GetAdditionalResponsibility =̂

refines GetAdditionalResponsibility

any

bs i
bs j
zs
rbs

where

grd1 : bs i ∈ BS
grd2 : bs j ∈ BS
grd3 : zs ⊂ 1 .. n
grd4 : zs = dom(responsible ✄ {bs i})
grd5 : rbs ⊂ active
grd6 : rbs = dom(attached ✄ {bs i})
grd9 : bs i 6= bs j
grd10 : bs j ∈ ran(responsible)
grd11 : bs j /∈ dom(msg)

then

act1 : responsible := responsible ✁− (zs × {bs j})
act3 : attached := attached ✁− (rbs × {bs j})
act4 : asgn s := asgn s ✁− (rbs × {0})
act5 : asgn z := asgn z ✁− (rbs × {0})
act6 : local map(bs i) := ∅

end

Event UpdateMap =̂

extends UpdateMap

any

bs

z

s

where

grd1 : bs ∈ BS

grd2 : z ∈ 1 .. n
grd3 : s ∈ 1 .. k
grd4 : responsible(z) 6= bs

grd5 : bs ∈ ran(responsible)
grd6 : (bs 7→ (z 7→ s)) ∈ msg

then

34

act1 : local map(bs) := local map(bs)✁−{z 7→ local map(bs)(z)✁−
{s 7→ compl}}

act2 : msg := msg \ {bs 7→ (z 7→ s)}

end

Event RobotFailure =̂

any

rb
where

grd1 : rb ∈ active
grd2 : card(active) > 1

then

act1 : active := active \ {rb}

end

Event SendRobotsToBS =̂

refines ReassignBS

any

bs i
bs j
rbs

where

grd1 : bs i ∈ BS
grd2 : bs j ∈ BS
grd3 : rbs ⊂ active
grd4 : ran(rbs ✁ attached) = {bs i}
grd5 : bs i ∈ ran(responsible)
grd6 : ran(rbs ✁ asgn s) = {0}
grd7 : rbs 6= ∅
grd8 : bs j ∈ ran(responsible)
grd9 : bs i 6= bs j
grd10 : bs i ∈ ran(rbs ✁− attached)
grd11 : rbs = dom(attached ✄ {bs i})
grd12 : ∀z ·z ∈ 1 ..n∧responsible(z) = bs i⇒local map(bs i)(z)[1 ..

k] = {compl}
then

act1 : attached := attached ✁− (rbs × {bs j})
end

END

35

MACHINE RS ref6

REFINES RS ref5

SEES cntx3

VARIABLES

territory

responsible

attached

local map

asgn z

asgn s

msg

active

operating

counter

INVARIANTS

inv1 : operating ⊆ BS

inv2 : operating ⊆ ran(responsible)

inv3 : ∀bs ·bs ∈ BS ∧ local map(bs) = ∅ ⇒ bs /∈ operating

EVENTS

Initialisation

extended

begin

act1 : territory := 1 .. n× {1 .. k× {incompl}}
act2 : responsible :∈ 1 .. n ։ BS

act3 : attached :∈ RB ։ BS

act4 : local map := BS× {1 .. n× {1 .. k× {incompl}}}
act5 : asgn s := RB× {0}
act6 : asgn z := RB× {0}
act7 : counter := n ∗ k
act8 : msg := BS× ∅
act9 : active := RB

act10 : operating := BS
end

Event NewTask =̂

refines NewTask

any

bs
rb
z

36

s

where

grd1 : bs ∈ operating
grd2 : rb ∈ active
grd3 : attached(rb) = bs
grd4 : asgn s(rb) = 0
grd5 : z ∈ 1 .. n
grd6 : responsible(z) = bs
grd7 : asgn z (rb) = 0
grd8 : s ∈ 1 .. k
grd9 : local map(bs)(z)(s) = incompl
grd10 : s /∈ ran((dom(asgn z ✄ {z})) ✁ asgn s)

then

act1 : asgn s(rb) := s
act2 : asgn z (rb) := z

end

Event TaskSuccess =̂

refines TaskSuccess

any

z
s
bs
rb
bss

where

grd1 : bs ∈ operating
grd2 : rb ∈ active
grd3 : attached(rb) = bs
grd4 : z ∈ 1 .. n
grd5 : responsible(z) = bs
grd6 : asgn z (rb) = z
grd7 : s ∈ 1 .. k
grd8 : asgn s(rb) = s
grd9 : local map(bs)(z)(s) = incompl
grd10 : bss = BS \ {bs}
grd11 : counter > 0

then

act1 : territory(z) := territory(z) ✁− {s 7→ compl}
act2 : local map(bs) := local map(bs)✁−{z 7→ local map(bs)(z)✁−

{s 7→ compl}}
act3 : asgn s(rb) := 0
act4 : asgn z (rb) := 0

37

act5 : msg := msg ∪ (bss × {z 7→ s})
act6 : counter := counter − 1

end

Event TaskFailure =̂

refines TaskFailure

any

bs
rb
z
s

where

grd1 : bs ∈ operating
grd2 : rb ∈ dom(attached)
grd3 : attached(rb) = bs
grd4 : z ∈ 1 .. n
grd5 : responsible(z) = bs
grd6 : asgn z (rb) = z
grd7 : s ∈ 1 .. k
grd8 : asgn s(rb) = s
grd9 : local map(bs)(z)(s) = incompl
grd10 : rb /∈ active

then

act1 : territory(z) := territory(z) ✁− {s 7→ incompl}
act3 : asgn s := {rb} ✁− asgn s
act4 : asgn z := {rb} ✁− asgn z
act5 : attached := {rb} ✁− attached

end

Event ReassignNewBStoRBs =̂

refines ReassignNewBStoRBs

any

bs i
bs j
rbs

where

grd1 : bs i ∈ operating
grd2 : bs j ∈ operating
grd3 : rbs ⊂ active
grd4 : ran(rbs ✁ attached) = {bs i}
grd5 : ran(rbs ✁ asgn s) = {0}
grd6 : rbs 6= ∅
grd7 : bs i 6= bs j
grd8 : bs i ∈ ran(rbs ✁− attached)

38

grd9 : dom(attached ✄ {bs j}) * active

then

act1 : attached := attached ✁− (rbs × {bs j})

end

Event GetAdditionalResponsibility =̂

refines GetAdditionalResponsibility

any

bs i
bs j
zs
rbs

where

grd1 : bs i ∈ BS
grd2 : bs j ∈ operating
grd3 : zs ⊂ 1 .. n
grd4 : zs = dom(responsible ✄ {bs i})
grd5 : rbs ⊂ active
grd6 : rbs = dom(attached ✄ {bs i})
grd7 : bs i 6= bs j
grd8 : bs j /∈ dom(msg)
grd9 : bs i /∈ operating

then

act1 : responsible := responsible ✁− (zs × {bs j})
act3 : attached := attached ✁− (rbs × {bs j})
act4 : asgn s := asgn s ✁− (rbs × {0})
act5 : asgn z := asgn z ✁− (rbs × {0})
act6 : local map(bs i) := ∅

end

Event UpdateMap =̂

refines UpdateMap

any

bs
z
s

where

grd1 : bs ∈ operating
grd2 : z ∈ 1 .. n
grd3 : s ∈ 1 .. k
grd4 : responsible(z) 6= bs
grd5 : (bs 7→ (z 7→ s)) ∈ msg

then

39

act1 : local map(bs) := local map(bs)✁−{z 7→ local map(bs)(z)✁−
{s 7→ compl}}

act2 : msg := msg \ {bs 7→ (z 7→ s)}
end

Event RobotFailure =̂

extends RobotFailure

any

rb

where

grd1 : rb ∈ active

grd2 : card(active) > 1

then

act1 : active := active \ {rb}
end

Event SendRobotsToBS =̂

refines SendRobotsToBS

any

bs i
bs j
rbs

where

grd1 : bs i ∈ operating
grd2 : bs j ∈ operating
grd3 : rbs ⊂ active
grd4 : ran(rbs ✁ attached) = {bs i}
grd5 : ran(rbs ✁ asgn s) = {0}
grd6 : rbs 6= ∅
grd7 : bs 6= bs j
grd8 : bs i ∈ ran(rbs ✁− attached)
grd9 : rbs = dom(attached ✄ {bs i})
grd10 : ∀z ·z ∈ 1 ..n∧responsible(z) = bs i⇒local map(bs i)(z)[1 ..

k] = {compl}
then

act1 : attached := attached ✁− (rbs × {bs j})
end

Event BaseStationFailure =̂

Status convergent

any

bs
where

grd1 : bs ∈ operating

40

grd2 : card(operating) > 1

then

act1 : operating := operating \ {bs}
end

VARIANT

card(operating)

END

41

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Information Technologies

Turku School of Economics

• Institute of Information Systems Sciences

ISBN 978-952-12-2766-0

ISSN 1239-1891

