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Abstract

In this paper we consider heat treatment by using the concentrated energy fluxes (laser).
We estimate the solutions of the nonlinear boundary inverse heat conduction problems
by using quasiinvertion and optimization methods. The results were obtained by using
both exact and noisy input data. In order to increase result stability a smoothing filter
was used for noisy input data. We analyse and compare results for different shapes of
laser treatment such as: trapezoidal shape, sinusoidal shape and triangular one with low-
angle anterior front.
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1. Introduction

Nowadays there exist a lot of construct materials with various physical parameters. In
many cases it is possible to improve the physical parameters with the heat treatment and
in most cases it is necessary to improve properties only at the work surface with a
certain depth. These results can be achieved by using concentrated energy fluxes. The
essence of the concentrated energy fluxes is that the relatively small amount of metal is
treated with pulse energy flows of high intensity (with high speed), with simultaneous
deformation and rapid cooling the metal by heat dissipation into the material depth.

At the moment there appear more and more requirements for the process of heating
operation. Especially many requirements refer to the high-temperature processes, where
it is important to take into account physical characteristics, depending on the
temperature [1]. However, it is not possible to provide numerous experiments for
obtaining required temperature field in a certain depth for improving its properties. The
main obstacles are their cost and long period for every individual case. Hence there
appears necessity for solving the inverse problems, where there is either known the heat
flux or set the given temperature field at inside point. But firstly this type of problems
are  ill-posed  and  secondly  the  data  of  the  temperature  field  are  usually  a  discrete
function. Furthermore the data have a limited amount of values, moreover these values
are not exact (i.e. they have a small deviation from the exact value).

Many authors have paid attention to the solution process and obtained algorithms for
inverse heat conduction problems such as Alifanov [2], Tikhonov [3], Cui [4],
Samarskiy [5], Yang [6], Beck [7], Matsevity [8], Li [9], Panchenko [10], Shen [11],
Terrola [12], Huang [13], et al. However, most of them have studied only linear
problems.

There exist several principles for obtaining stable solutions of the inverse problems.
One of them is the method using the principle of self-regularization (transfer from a
parabolic equation to a hyperbolic one) [5], another uses Tikhonov's method [3], and the
other one assumes usage of numerical optimization methods [2].

In this work we establish some new results solving the nonlinear inverse heat
conduction problem by using two different approaches: first of them is the
transformation  of  a  parabolic  equation  to  a  hyperbolic  one  and  the  second  one  is  the
usage of numerical optimization methods. These approaches were analyzed and
compared between each other with respect to both accuracy and time of obtaining the
results.
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2. Problem statement

Let us consider the inverse problem for one-dimensional case of the nonlinear heat
conduction equation in the following way

,)()(
x
TT

x
TTcT

where ,xT  is the temperature field, )(T , )(Tc  and T  are material's density
function, material's heat capacity function and material's heat conduction coefficient
function, respectively. All these functions depend on temperature T .  They  are  known
functions and the initial temperature distribution is given. Our aim is to find the
temperature field ,xT  in the area max0;0 LxD  and the function of the
heat-flux density q  on the outer boundary. In the capacity of additional information
we have temperature field at the internal point Mx  and the condition of the second
type at the other boundary 0x .  Thus  our  problem  can  be  represented  in  the  way
depicted in Figure 1.

                                       Figure 1. Problem statement

The problem can be written mathematically as follows

x
TT

x
TTcT )()( , ,0,0 maxLx (1)

)()0,( xxT , ,0 Lx (2)

0 xLxMx
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q  is a required heat
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)(),(MT , ,0 max (3)
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where x  is a spatial coordinate,  is a time variable, *q  is the heat flux at 0x ,
)(  is a temperature distribution at Mx , M is the inside point, L  is a thickness and
)(x  is an initial temperature distribution. If the heat flux (at 0x ) *q  is equal to 0

it means the heat insulation (i.e. the neighboring nodes are equal). We assume that the
initial and boundary conditions are harmonized between each other that is

)()0,( LLT , 0)( *qdx
LdT .

The heat flux (at Lx ) is an unknown value, thus if we can find the heat flux q  we
can also find the temperature field of the whole area from solving the direct problem for
the heat conduction equation.

3. Solution of the inverse problem

The problem (1-4) was solved by using both the quasiinvertion method [5] and the
parameter optimization method [2]. Let us next consider each case separately.

3.1. The quasiinvertion method
Before solving the inverse problem it is necessary to solve the direct problem in the area

,0;0ˆ
maxMxD  with known boundaries and initial conditions. Then we

can obtain the additional condition in the form of heat flux at the point ,Mx thus the
quasiinvertion method implies approximate solution of (1-4) from the perturbed
equation

x
TT

xx
TAATTcT *)()( ,

where A , *A  is a conjugated operator of A  and  is a regularization parameter.

Then the parabolic equation transformed to the hyperbolic equation is of the form

x
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TTTcT 2
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,, **q
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where **q  is the heat flux at Mx  obtained from the solution of the direct problem
(1-4) in the area D̂ . This problem was solved by using the finite difference method, and
the terms of the heat conduction equation were approximated in the following way
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where ,j
iT ,j

i
j

ic and j
i are the discrete values of the temperature field function,

material's density function, material's heat capacity function and material's heat
conduction coefficient function, respectively, N  and K  are the numbers of spatial steps
and time variables, respectively, n  is the number of spatial step depending on finding
the point M  and , x  are  the  sizes  of  the  spatial  step  and  time  variable,
respectively.
The terms of the initial and boundary conditions were approximated as follows

,)()0,( ixxT Nnni
TTxT ii ...,,1,,0)0,( 12

,

jMT )(),( , ....,,2,1,, 121 Kj
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Hence on each spatial step we have a system of equations which coefficients have only
three nonzero diagonals and can be solved by using Thomas algorithm [14]. After
solution we obtain the temperature field in the area .0; maxLxMD
Hence we can find the heat flux on the outer boundary. The key idea is that we change
the value of the regularization parameter .  Thus we look for the minimal residual
between the exact value of the heat flux (temperature fields) and the obtained results in
consequence of our calculations. The value of the residual is calculated by

,2

0
,,,min dMTMTJ datainputcalc

where ,MT
datainput  is the given temperature distribution at the point Mx  and

,,MTcalc  is the calculated temperature values at the same point Mx .
In order to calculate this integral, replace J  by lJ  and we can represent a finite
sum by

,
1

2
,,,

K

j
jdatainputjcalc

l MTMTJ

where l  is an iteration number.
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Typically  the  residual  depends  on  value  of  (regularization parameter) in the way
depicted in Figure 2.

                                    Figure 2. The residual J

Thus we can find the value of the regularization parameter and obtain best values of
the required heat flux.

3.2. The parameter optimization method
Another approach is to use optimization methods. We replace the continuous function
of the heat flux by the discrete values on the chosen time mesh

.,1,...,2,1, KKiqq i  Thus we can consider this problem as a problem of the
parameter optimization [2]. For finding the required value of the heat flux on each time
step we use the following minimization criterion
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k
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k

q
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where kJ  is the minimization criterion and k
approxinitial

q  is an initial approximate value of

the heat flux. The temperature k
approxinitialkcalc qMT ,,  corresponds to the solution of the

direct heat conduction problem
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Thus the search of the required value of the heat flux is realized by using the iterative
process  within  we  change  the  value  of  the  heat  flux  so  that  we  obtain  the  following
results

,)()1( lk
approxinitial

klk
approxinitial

k qJqJ

where l  is the iteration number. For finding the objective function value k
approxinitial

k qJ
on each time step we use method of golden section [15]. Thus, in this case for solving
our problem (1-4) and using method of golden section it is necessary to provide the
interval containing a minimum of the objective function qJ .

4. Numerical experiments and results

In order to check the efficiency of our methods let us consider the following case. We
have a one-dimensional steel plate with the following physical characteristics [16]

,0.097-7842)( TT 0.256112.3)( TTc , 116.4+0.135-105 25 TTT .

For  the  calculations  we  use  the  width  of  this  plate  as mm1 , mmx 01.0 ,
sec35.0max , sec0035.0 and KTinitial 293 . Additionally we suppose that the

temperature distribution is known at the point M being on the depth mm25.0 . Shapes of
the laser treatment are represented in Figure 3.

It is required to find the temperature distribution field and the heat flux on the surface.
The results of the solution process are represented by using different input data. First we
used exact data which was obtained by solving the direct problem with certain type of
laser treatment. Second we used noisy data which was obtained by changing exact data
on %1  by using uniform distribution on each time step.

The results are presented in Figures 4-7 (for temperature field of the outer boundary)
and 8-13 (for heat flux of the outer boundary) as well as in Tables 1-3 (for temperature
field of the outer boundary)

Tables 1-3 present the results (the temperature distribution on the outer
boundary) of the solution by using exact input data with the quasiinversion
method and parameter optimization. We can see that average relative deviation
of received results is around 0.40% for quasiinversion method and only 0.13-
0.20% (depending on the type of the flux) for the method of the parameter
optimization.
The next results were obtained by using noisy input data, that means we changed
exact input data on %1 . In Figure 4 there are represented the results obtained
with the quasiinversion method, and in Figure 6 the results obtained with method
of the parameter optimization.
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In order to receive more stable results for noisy input data we were smoothing
them by using the Savitzky–Golay smoothing filter [17-18]. Received results are
represented in Figures 5 (the quasiinversion method) and 7 (the method of the
parameter optimization).
In Figures 8-13 are represented the received values for heat flux with
quasiinversion method (Figures 8, 10, 12) and the parameter optimization
method (Figures 9, 11, 13).

Figure 3. Shapes of the laser treatment: a - triangular shape with low-angle anterior
front, b - sinusoidal shape, c- trapezoidal shape
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Table 1. Solution with exact data (triangular shape of the laser treatment with low-angle
anterior front)

Time, sec Exact
Solution

Inverse solution,
quasiinversion method

relative
deviation (%)

Inverse solution,
parameter optimization

relative
deviation (%)

0 293 293 0,00% 293 0,00%
0,0175 301 301 0,02% 299 0,40%

0,035 315 315 0,03% 314 0,34%
0,0525 335 334 0,05% 334 0,31%

0,07 360 360 0,07% 359 0,29%
0,0875 391 391 0,10% 390 0,26%

0,105 428 427 0,13% 427 0,24%
0,1225 521 519 0,23% 520 0,21%

0,14 785 772 1,73% 781 0,62%
0,1575 854 841 1,43% 852 0,13%

0,175 757 759 0,22% 756 0,14%
0,1925 729 729 0,01% 728 0,14%

0,21 738 737 0,03% 736 0,14%
0,2275 757 756 0,05% 756 0,14%

0,245 783 782 0,08% 782 0,13%
0,2625 814 813 0,12% 813 0,13%

0,28 850 849 0,16% 849 0,12%
0,2975 955 953 0,31% 954 0,12%

0,315 1268 1241 2,14% 1261 0,57%
0,3325 1318 1304 1,09% 1317 0,08%

0,35 1177 1185 0,71% 1176 0,09%
Average

deviation 0,41% 0,22%

Table 2. Solution with exact data (trapezoidal shape of laser treatment)
Time,

sec
Exact

Solution
Inverse solution,

quasiinversion method
relative

deviation (%)
Inverse solution,

parameter optimization
relative

deviation (%)
0 293 293 0,00% 293 0,00%

0,0175 335 335 0,09% 334 0,35%
0,035 415 414 0,24% 414 0,27%

0,0525 530 527 0,57% 529 0,21%
0,07 633 629 0,69% 632 0,18%

0,0875 729 723 0,77% 728 0,16%
0,105 822 815 0,85% 821 0,15%

0,1225 915 906 1,02% 914 0,13%
0,14 947 941 0,67% 946 0,12%

0,1575 932 930 0,26% 931 0,12%
0,175 885 887 0,21% 884 0,12%

0,1925 920 919 0,09% 919 0,12%
0,21 1014 1010 0,33% 1013 0,11%

0,2275 1149 1140 0,80% 1148 0,10%
0,245 1256 1246 0,79% 1255 0,09%

0,2625 1344 1335 0,61% 1342 0,08%
0,28 1422 1417 0,35% 1421 0,08%

0,2975 1494 1491 0,17% 1493 0,07%
0,315 1502 1504 0,08% 1501 0,07%

0,3325 1466 1467 0,07% 1465 0,07%
0,35 1397 1402 0,36% 1396 0,07%

Average
deviation 0,43% 0,13%
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Table 3. Solution with exact data (sinusoidal shape of laser treatment)
Time,

sec
Exact

Solution
 Inverse solution,

quasiinversion method
relative

deviation (%)
Inverse solution,

parameter optimization
relative

deviation (%)
0 293 293 0,00% 293 0,00%

0,0175 332 332 0,09% 331 0,36%
0,035 403 402 0,22% 401 0,27%

0,0525 493 492 0,39% 492 0,23%
0,07 596 592 0,58% 594 0,19%

0,0875 697 692 0,74% 696 0,17%
0,105 786 779 0,80% 785 0,15%

0,1225 849 843 0,72% 848 0,14%
0,14 879 874 0,50% 878 0,13%

0,1575 872 871 0,22% 871 0,13%
0,175 833 835 0,19% 832 0,13%

0,1925 866 866 0,09% 865 0,13%
0,21 947 944 0,29% 946 0,12%

0,2275 1050 1044 0,56% 1049 0,11%
0,245 1160 1151 0,78% 1159 0,10%

0,2625 1262 1252 0,79% 1261 0,09%
0,28 1340 1332 0,59% 1339 0,08%

0,2975 1386 1381 0,33% 1385 0,08%
0,315 1395 1393 0,15% 1394 0,08%

0,3325 1367 1367 0,04% 1366 0,08%
0,35 1306 1310 0,34% 1305 0,08%

Average
deviation 0,40% 0,14%

Figure 4. Temperature fields on the outer boundary. Curves 1, 2, 3 - exact data, 1’, 2’, 3’ -
received results by quasiinversion method with noisy input data. Curves 1 and 1’ correspond

trapezoidal shape, 2 and 2’ sinusoidal shape, 3 and 3’ - triangular shape
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Figure 5. Quasiinversion method output using smoothed noisy input data

Figure 6. Parameter optimization method output using noisy input data
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Figure 7. Parameter optimization method output using smoothed noisy input data
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5. Conclusions

By  analyzing  the  obtained  results  we  can  come  to  the  following  observations  and
conclusions.

Within results presented in Tables 1-3 one can see that both parameter
optimization method and quasiinversion method permit to calculate perfect
values of boundary conditions (both heat flux and temperature field) which are
almost familiar to the exact solution. But according to the parameter
optimization method, average relative deviation is several times less than the
relative deviation obtained by the quasiinversion method. Thus, in case of
having exact enough input data, the parameter optimization method is more
reasonable to be used.
Studying deviations on each time step in Tables 1-3 for the results obtained by
the parameter optimization method we can notice in all cases (trapezoidal,
sinusoidal and triangular shape), that there exist deviations of the first several
values exceeding the average one. The explanation to this observation is that
while starting process of heating, there is no visible heat in the internal points,
which means that the temperature changes with light rate. According to this fact
there appeared hardship with exact values. Also in the case with triangular shape
there  occurred  deviation  exceeding  the  average  one  at  the  top  point  of  triangle
shape, which can be explained by missing derivative at this point.
Studying deviations on each time step in Tables 1-3 we can notice that when
using quasiinversion method in all cases (trapezoidal, sinusoidal and triangular
shape) there occurred two segments of values where there exist deviations
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exceeding the average one. Thus there occurred a maximal increase of the speed
temperature, causing in these segments a maximal change of the physical
characteristics depending on the temperature. In order to calculate the physical
characteristics on each time step we used those obtained by using the
temperature values of previous time step. According to this fact there appears
influence on the solution accuracy.
Studying deviations in Tables 1-3 one can see that the shape of the laser
treatment influences on the solution accuracy especially when using the
parameter optimization method. This can be explained by the fact that we
calculate the temperature values on each time step independently. Thus in the
case  of  triangle  shape  (where  there  exist  worst  accuracy)  one  can  see  that  the
accuracy deterioration occurs during the process starts and on the top of triangle
(reason to that was explained earlier).
Within analyzed results obtained by noisy data and represented in Figures 4, 6,
8-13, one can see that quasiinversion method permits to determine good values
for both heat flux and temperature field. The usage of the parameter optimization
method gave us good enough values of the temperature field, while values of
heat flux are unstable enough. Thus the quasiinversion method is more stable
when there exist noisy input data.
While analyzing the obtained results of the temperature fields (Figures 4-7) for
both inverse method and for all shapes, it can be observed the increase in the
deviation value. This is due to the nonlinearity of the problem. In our case there
exists not only error in input data but also in calculated physical characteristics
obtained by using noisy data.
With noisy data we utilized Savitzky–Golay smoothing filter in order to stabilize
the  results.  As  a  result  of  using  this  filter  we  obtained  good enough values  for
the temperature field and the heat flux. These results are represented in Figures
5,7-11 for both methods.
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