
Viorel Preoteasa | Ralph-Johan Back | Johannes
Eriksson

Verification and Code Generation for
Invariant Diagrams in Isabelle

TUCS Technical Report
No 1058, September 2012

Verification and Code Generation for
Invariant Diagrams in Isabelle

Viorel Preoteasa
Ralph-Johan Back
Johannes Eriksson

Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
{vpreotea,backrj,joheriks}@abo.fi

TUCS Technical Report

No 1058, September 2012

Abstract

Invariant-based programming is a correct-by-construction programming method-
ology in which programs are expressed as graphs of situations connected by tran-
sitions. Such graphs are called invariant diagrams. The situations correspond to
the pre- and postconditions and loop invariants of the program, while the transi-
tions correspond to the program statements. The situations are developed before
the transitions, and each transition is verified at the time it is added to the diagram.
The correctness conditions for the transitions are derived using Hoare-like rules.
In this paper, we present an embedding of invariant diagrams in the higher-order
logic framework Isabelle/HOL for both proving the verification conditions in the
Isabelle proof assistant, as well as generating code that is operationally consistent
with the verification semantics by constructing a proof that the generated code
is correct with respect to the situations of the invariant diagram. We describe a
mechanic translation of the transitions of an invariant diagram into a collection
of mutually recursive functions and an associated correctness theorem stating that
the value computed by the functions satisfies the final situation. We show that
the proofs of the correctness theorem and the well-foundedness of the recursive
functions can be built mechanically. The verification conditions are lemmas in
the proofs. The collection of recursive functions is a refinement of the original
invariant diagram, and is in a form that can be directly converted to executable
code by Isabelle. This allows proof-producing compilation of invariant diagrams
into any of the languages supported by Isabelle code generator. We illustrate our
approach with a case study, and show that full proof automation can be achieved.
This work is a step towards verified compilation of invariant diagrams.

Keywords: Program verification, Isabelle, Invariant-based programming

TUCS Laboratory
Software Construction Laboratory

1 Introduction

Invariant-based programming (IBP) is a programming methodology [3, 2, 1] in
which a program is structured around its situations rather than the flow of control.
A situation is an identified subset of the state space of the program—for instance,
pre- and postconditions and loop invariants are situations. In IBP the situations
are identified before the actual program code is written. In the first stage, the
programmer establishes the overall situation structure of the program. Each situ-
ation is defined by a higher-order predicate on the state space, and the situations
are structured according to their logical relationship. In the second stage, after
all situations have been defined, the programmer goes on to add the transitions,
the actual program code. Transitions are guarded program statements, connecting
the situations. IBP is a correct-by-construction methodology. The programmer
formally verifies each added transition correct with respect to the situations, be-
fore adding the next transition. The program and its proof of correctness are thus
developed in lockstep.

The graph of situations and transitions is referred to as an invariant diagram.
From an operational point of view, an invariant diagram can be seen as a transition
system with unrestricted flow of control. Execution can start and terminate in any
situation, rather than being restricted to single-entry and single-exit structures.
From a mathematical point of view, an invariant diagram can be seen as a total
correctness theorem, since the diagram is constructed together with the pre- and
postconditions and invariants required to prove its correctness. The verification
conditions (VCs) that must be proved are derived from the invariant diagram based
on Hoare-like proof rules [4]. These proof rules have been shown to be sound and
complete with respect to the operational semantics of invariant diagrams. The
VCs can be proved by hand or in an automatic theorem prover. Socos is a tool for
constructing invariant diagrams in the Eclipse IDE and automatically checking
them in the PVS theorem prover and its associated SMT solver Yices [10].

In this paper, we study further the mechanization of IBP, this time in the Is-
abelle/HOL framework [19]. Isabelle is a generic meta-logical framework sup-
porting multiple object logics; we assume the higher order logic HOL in this pa-
per. We present a shallow embedding of invariant diagrams in Isabelle/HOL. This
embedding has two objectives. Firstly, we are developing tool support for me-
chanical checking of the VCs derived from invariant diagrams based on Isabelle.
Our goal is to build a VC generator using Isabelle as a back end, so that VCs
could be proved either interactively in the proof assistant, or automatically us-
ing the state of the art decision procedures available in Isabelle. One such pro-
cedure, sledgehammer, which invokes multiple external state-of-the-art auto-
matic provers simultaneously to discharge a proof goal, has proved highly useful
in practical, day-to-day verification [8]. Our second objective is to compile in-
variant diagrams into executable code. Here we would like to take advantage of
the new code generation framework for Isabelle [11], which can generate func-

1

Invariant
diagram

Hoare

rules

4. Verification
conditions

Isabelle

Correctness
certificate

Proofs/
tactics

Execution

semantics

1. Functional
representation

Executable
code

3. Correctness
proof

2. Correctness
theorem

uses

certifies

Figure 1: The VC generation and translation-validation compilation process

tional programs in multiple languages from recursive functions specified in the
logic. The code generator is based on higher-order rewrite systems and supports
translation into SML, OCaml, Haskell and Scala.

A fundamental problem of code generation in formal verification is that the
compiler has to be trusted. Since the compilation of invariant diagrams is based
on a different, lower-level, semantics than that of the VC generation, bugs in the
compiler have the potential to nullify all the effort that went into verifying the
VCs. One solution to this problem is to verify once and for all that the compiler is
correct for all possible inputs. However, this is a substantial task. The technique
outlined in this paper is based on translation validation [20]. Rather than verifying
the compiler correct, we propose to extend the compiler to generate, for each
compilation, not only the executable code but also a proof of its correctness. The
proof will be checked in a separate validation phase during the code generation,
and any compiler errors will be caught in this validation phase.

Figure 1 illustrates our verified code generation architecture for invariant di-
agrams. An invariant diagram is simultaneously translated into (1) an executable
functional representation of the program; (2) a correctness theorem stating that
the functional representation (1) implements the invariant diagram; (3) an Isabelle
proof of theorem (2); and (4) the Hoare verification conditions associated with the
program. The functional representation (1) is generated in a form that is readily
executable. Theorem (2) states that (1) is a refinement of the original invariant
diagram. The proof (3) certifies, based on the verification conditions (4) as lem-
mas, that the functional representation (1) satisfies the specification of the original
program. The construction of this proof is mechanical. It is the responsibility of
the programmer to discharge the verification conditions (4) in Isabelle (using au-
tomatic tactics as far as possible). Since the compilation is proof-producing, the
trusted core consists only of the Isabelle/HOL proof system, and the Isabelle code
generator. Hence, this allows verified compilation of invariant diagrams into any

2

of the languages supported by Isabelle without the need to verify the compiler.

Overview of paper. The sequel of the paper is structured as follows. We intro-
duce some mathematical preliminaries in Section 2. We then introduce invariant
diagrams, the underlying notation of IBP, in Section 3. Following this, we de-
scribe our embedding of an invariant diagram as an Isabelle theory in Section 4.
Sections 5, 6 and 7 describe the correctness conditions—liveness, consistency and
termination—given by the proof rules and how they are used to automatically dis-
charge the conditions associated with the functional representation. In Section 8
we describe how to extract an executable program using the Isabelle code gener-
ator. Section 9 surveys related work in the field. We conclude the paper with a
discussion of current and future work in Section 10.

2 Preliminaries
We use standard mathematical notations which maps directly to Isabelle notations.
We use A → B for the type (or set) of functions from type A to type B, f.a for
function f : A → B applied to a ∈ A. Function type constructor associates to
right, and the function application associates to left: A → B → C is the same
as A → (B → C) and f.a.b is the same as (f.a).b. We use f ◦ g for function
sequential composition: (f ◦ g).x = f.(g.x). The identity function is denoted by
id : A → A and for all x ∈ A we have id.x = x. For two types A and B the
Cartesian product of A and B is denoted by A × B and elements of A × B are
called pairs and denoted by (a, b), where a ∈ A and b ∈ B.

For separating the bounded variables from terms we use a small bullet (•) and
we use colon to separate variables or terms from their types: (∀x, y : Nat •x+y =
y + x). We use lambda notation for constructing functions without naming them.
(λx : Nat •x + 2) is the function which maps x to x + 2.

In general we use names starting with upper-case letters for denoting sets, and
names starting with lower-case letters for constants and variables. We use sans-
serif font for constants (true, false) and type constants (Bool, Nat) and we use
normal mathematical italic font for variables (x, y) and type variables (A, Index).

Nat denotes the type of natural numbers and Bool denotes the type of
the Booleans true and false. For Nat and Bool we assume the usual opera-
tions (+, −, . . . , ∧, ¬, . . .). For b ∈ Bool and x, y ∈ A, the if expression
(if b then x else y) is equal to x when b is true and is equal to y otherwise.

Arrays with values from A are modeled as functions from Nat to A. When
we are interested in finite arrays of size n ∈ Nat, then we work only with the
elements a.0, . . . , a.(n − 1). For a, b : Nat → A and n ∈ Nat the predicate
permutation.n.a.b is true if the array b (of size n) is a permutation of array a (of
size n), i.e. there exists a bijective function f : {0, ..., n − 1} → {0, ..., n − 1}
such that a ◦ f = b. For a : Nat → A and i, j ∈ Nat, swap.a.i.j denotes a new

3

array obtained from a by swapping the elements of indexes i and j.

swap.a.i.j.k =

a.j if k = i

a.i if k = j

a.k otherwise

A constant array is denoted by [[a0, a1, . . . , an−1]], where

[[a0, a1, . . . , an−1]].k =

{
ak if k < n

arbitrary fixed otherwise

Relations or graphs over a set A are sets of pairs with elements from A: r ⊆
A × A. We denote the relations and the graphs of A by Rel.A and Graph.A. We
use the term relation when working with order like relations, and the term graph
when we are interested in reachability properties. When we have a graph g over
A we call the elements of A vertexes, and the pairs (x, y) ∈ g edges.

A relation r on a set A is a linear order if it is a total partial order (reflexive,
antisymetric, transitive, and total). In this paper we use the notation LinOrd to
denote a type variable with a linear order relation ≤ on it.

A relation r on A is well founded if it satisfies the well founded induction
property:

well founded induction :
(∀P • (∀x • (∀ y • (y, x) ∈ r ⇒ P.y)⇒ P.x)⇒ (∀x •P.x))

We denote the set of well founded relations over A by WF.A. A relation r is well
founded, if and only if every decreasing sequence a1, a2, . . . ((ai+1, ai) ∈ r) is
finite.

If we have two relations r on A and r′ on B then the lexicographic composition
of r and r′, denoted r × r′, is a relation on A×B given by

((a, x), (b, y)) ∈ r × r′ ⇔ (a, b) ∈ r ∨ (a = b ∧ (x, y) ∈ r′).

If r and r′ are well founded, then r × r′ is also well founded.
For a relation r on A, the inverse of r is a relation on A, denoted r−, where

(x, y) ∈ r− ⇔ (y, x) ∈ r, and the reflexive closure of r is also a relation on A,
denoted r=, where (x, y) ∈ r= ⇔ x = y ∨ (x, y) ∈ r.

For a type A, List.A denotes the type of lists with elements from A (finite
sequences with elements from A). For x ∈ A and xs, ys ∈ List.A, x#xs ∈ List.A
is the list obtained from xs by adding the element x at the beginning, xs@ys ∈
List.A is the concatenation of the lists xs and ys, hd.xs ∈ A is the head of the list
xs (the first element of xs), and tl.x ∈ List.A is the tail of xs (the list obtained
from xs by removing the first element). If xs is the empty list, then hd.x and tl.x
are arbitrary but fixed elements of A and List.A, respectively. We denote the empty

4

list by [] and a constant list with elements a1, a2, . . . , an by [a1, a2, . . . , an]. On
lists we can have an inductive definition of a function f by defining the function
for the empty list and for the list x#xs assuming that f is already defined for xs.

For a list xs the set of elements of xs is given by Set.xs:

Set.[x1, x2, . . .] = {x1, x2, . . .}

For a function f : A→ B and a list xs : List.A the function map.f.xs returns
the list with elements given by function f applied to the elements of xs:

map.f.[x1, x2, . . .] = [f.x1, f.x2, . . .].

If g is a graph over A, s, s′ ∈ A, and xs ∈ List.A then the predicate
path.g.s.s′.xs is true if xs is a path in g from s to s′. Formally path is defined by
induction on xs:

path.g.s.s′.[] = false
path.g.s.s′.[x] = (x = s′ ∧ s′ = x)
path.g.s.s′.(x#y#xs) = (x = s ∧ y = s′ ∧ (x, y) ∈ g ∧ path.g.y.s′.(y#xs))

A path xs of a graph g from s to s′ is nonempty if it contains at least one edge of
g:

nonempty path.g.s.s′.xs = (path.g.s.s′.xs ∧ (∃u, v, ys •xs = u#v#ys))

A path in a graph is simple if all its vertexes are distinct. A path in a graph is a
cycle if the initial and final vertexes are the same (s = s′), and a cycle is simple if
all its vertexes, except the first one, are distinct.

For a type Index and a family of types (Ai, i ∈ Index) the disjoint union of
(Ai) is denoted by (

⊕
i : Index •Ai). Formally the disjoint union of Ai is a type

A = (
⊕

i : Index •Ai) and a collection of injective functions ini : Ai → A which
satisfy the property

(∀ a : A •∃! i : Index •∃ b : Ai • ini.b = a) (1)

where ∃! is the unique existential quantification. We should observe that in (1) b
is also unique because ini is injective. In other words for any element a ∈ A, there
is a unique index i such that a is in the i component of the disjoint union A. For
a ∈ A we define the function index .a ∈ Index which is the unique index i given
by (1). And for i ∈ Index and a ∈ A we define the function vali.a ∈ Ai to be the
unique b from (1) if i = index .a and it is arbitrary but fixed otherwise. In general
we use the following naming rule. The name of the index set starts always with
an upper-case letter, and the name the function computing the index of an element
a ∈ A is the same but with lower-case letters.

For A and Ai ⊆ A, we denote by (
⋃

i ∈ Index •Ai) ⊆ A the union of the sets
Ai.

5

3 Invariant diagrams
We introduce invariant diagrams by a simple sorting program—shown in Figure
2—that will also serve as a running example throughout the paper. The invariant
diagram shows an implementation of the selection sort algorithm for sorting an
array of totally ordered elements in non-decreasing order. Selection sort extends
in each iteration the already sorted region of the array by finding the minimum
element in the remaining unsorted region.

selsort

n : Nat

a0 : Nat → LinOrd

result a : Nat → LinOrd

permutation.n.a0.a

init
a = a0

sorting n − k

k : Nat

k ≤ n

(∀ i, j : Nat • i < j < k ⇒ a.i ≤ a.j)
(∀ i, j : Nat • i < k ≤ j < n ⇒ a.i ≤ a.j)

findingmin n − j

j, m : Nat

k ≤ m < n

k ≤ j ≤ n

(∀ i : Nat • k ≤ i < j ⇒ a.m ≤ a.i)

sorted

(∀ i, j : Nat • i < j < n ⇒ a.i ≤ a.j)

k := 0

[k = n]

[k < n] ;
j, m := k + 1, k

[j = n] ;
a := swap.a.k.m ;
k := k + 1

dec.sorting

[j < n ∧ a.m ≤ a.j] ;
j := j + 1

dec.findingmin

[j < n ∧ a.j < a.m] ;
m, j := j, j + 1

dec.findingmin

Figure 2: Invariant diagram representation of selection sort

The outermost situation, selsort, defines the global environment of selection
sort. It introduces the variables n, a, a0 representing respectively the length of the
array, its elements, and its original value; and the invariant permutation.n.a0.a.
The nested situations of selection sort are init, sorting, findingmin, and sorted. A
nested situation inherits the definitions and predicates of the outer situations. init

6

corresponds to the precondition of the program; in addition to the environment
properties we know that a has the initial value a0. The situation sorting corre-
sponds to the loop invariant of the outer loop; in addition to the global environ-
ment, k is a new variable and all elements to the left of k are known to be sorted
as well as smaller than or equal to the elements to the right of k. The predicate
of findingmin is the conjunction of all predicates in the environment, sorting, and
findingmin. It corresponds to the inner loop invariant, introducing the new vari-
ables j and m, and stating that j ∈ {k, . . . , n}, m is the index of a minimum of a
in the interval {k, . . . , j − 1}. sorted is the final situation of the program, stating
that a is sorted. A diagram could have in general more than one final situation. In
the diagram the final situations are marked with a thicker border. These invariants
are sufficiently strong to prove selection sort correct.

For a diagram in general we denote by Sit the set of situations’ labels, and we
denote by SitSort the set of situations’ labels of the sorting diagram, SitSort =
{selsort, init, sorting, findingmin, sorted}. The final situations of a diagram in gen-
eral are denoted by Final, and the final situations of the sorting digram are denoted
by FinalSort = {sorted}.

A transition from one situation to another or the same situation guarded by the
predicate g and assigning the value(s) e to the program variable(s) x is written as
[g] ; x := e on the transition arrow. Sequences of guards and assignments on the
same transition are executed sequentially in the usual way. For simplicity we as-
sume, without loss of generality, that all transitions have the form [g] ; x := e for
some predicate g, some variable(s) x and some expression(s) e. The expressions
e must correspond in types and number to variables x. By this assumption we
do not loose the generality of transitions because every sequential composition of
guards and assignments is equivalent to one of the form [g] ; x := e. A transition
[g] ; x := e is enabled in the current state if g is true. Unguarded transitions are al-
ways enabled. Execution of the diagram starts from any situation and follows the
enabled transitions. If several transitions are enabled in the current situation, one
is selected nondeterministically. If there are no enabled transitions execution ter-
minates in the current situation. After each transition the predicate of the current
situation must be satisfied by the current values of the program variables.

As we have seen already, a situation of an invariant diagrams inherits the vari-
ables from the other situations, and it may introduce new variables. For a situation
s ∈ Sit, we denote by xs all these variables of s, and we denote by zs only the new
variables introduced by s and not those that are inherited. A transition [g] ; x := e
from a situation s to a situation s′ may assign values to all variables xs′ and it
may access in g and e all variables xs of s. For example, in the sorting program,
the transition from the situation sorting to situation findingmin assigns values to
the new variables j and k defined in findingmin and it uses the values of k and
n defined in situation sorting. As usually in Hoare logic, we need specification
variables in invariant based programs. These are variables used for example to
record at the end of a program the initial values of the variables modified by the

7

program. For the sorting program the variable a0 is a specification variable which
records the value of the array a at the beginning of sorting. We need this initial
value of a in order to specify that after sorting a is a permutation of the original
values. Formally for a invariant diagram the specification variables are denoted
by SV and they are the variables that do not occur in the transitions. They are not
assigned to, and they are not used in guards or expressions that are assigned to
variables. The only specification variable of the sorting program is a0. For a situ-
ation s ∈ Sit we denote by ys all execution variables of s. These are all variables
of s, which are not specification variables. Invariant diagrams are used to compute
values of some certain variables. We can assume that the result of a diagram is
given by the values of the variables defined by the final situations. However this
approach is not satisfactory because in the final situation we may have also local
variables or input variables that do not change during the execution. On a diagram
we mark the result variables with the key word result. The only result variable of
the sorting diagram is the array a. To avoid any ambiguities we require that all
variables from a diagram have different names.

An invariant diagram is correct iff it is consistent, live and terminating. A
diagram is consistent if each transition is consistent. A transition [g] ; x := e from
a situation with predicate P to a situation with predicate Q is consistent iff

P ∧ g =⇒ Q[x← e]

where Q[x ← e] stands for the syntactic substitution of each free occurrence of
the variable(s) x in Q by the expression(s) e.

Liveness means that the program terminates in one of the final situations.
Liveness is established by checking for each non-final situation with predicate P
that the guards g1, . . . , gn of the outgoing transitions satisfy:

P =⇒ g1 ∨ · · · ∨ gn

Termination means that the program eventually reaches a situation with no
enabled transitions, i.e., that the program cannot loop indefinitely. In contrast
to consistency and liveness, verifying termination requires taking a global view
of the program. The termination proof for selection sort is based on two separate
termination functions (written in the upper right hand corner of the main recurring
situation): n−k for the outer loop (Sorting → FindingMin→ Sorting) and n−j
for the inner loop (FindingMin→ FindingMin). Termination follows from the
observation that both functions are bounded from below (by 0), that each iteration
of the outer loop strictly decreases n − k, that each iteration of the inner loop
strictly decreases n− j without increasing n−k, and that there are no other loops
in the diagram.

We refer to [3] for a general discussion of IBP and the correctness notions for
invariant diagrams. For a formal treatment of the semantics of invariant diagrams,
see [4].

8

4 Invariant diagrams in Isabelle/HOL

This section explains how an invariant diagram is embedded in an Isabelle the-
ory. We describe first the encoding of situations, followed by the encoding of
transitions.

4.1 Situation representation in Isabelle/HOL

We define the situations in Isabelle/HOL as locales [12]. A locale in Isabelle is
a sub-theory with a local scope for constants (or parameters), assumptions, defi-
nitions, and theorems. A locale can extend other locales and we may have locale
interpretations. A locale interpretation is an assignment of specific terms to the
locale parameters. As a consequence of this assignment we should prove that the
assumptions of the locales are true when the parameters are replaced by these
terms. Figure 3 introduces the definition of two locales and an interpretation. We
have a monoid locale that introduces two constants, a neutral element e and a
multiplication operation mult, and assumes the monoid axioms. Next we have
a group locale which extends monoid and introduces a new constant inv and as-
sumes the group axioms. Within the monoid and group locales we can prove
various theorems that follow from the axioms. Finally we have an interpretation
Group.0. + .− for the group locale where e, mult, and inv are replaced by the
integer operations 0, +, and −. For this interpretation we have to prove that the
concrete integer operations satisfy the group (and monoid) axioms. After this all
theorems proved for the general group locale become available for the group of
integers.

locale Monoid =
fixes e : A

mult : A→ A→ A
assumes (∀x •mult .e.x = mult .x.e = x)

· · ·

locale Group = Monoid +
fixes inv : A→ A
assumes (∀x •mult .x.(inv .x) = mult .(inv .x).x = e)
theorem (∀x, y • inv .(mult .x.y) = mult .(inv .y).(inv .x))

proof . . .

theorem Group.0. + .−
proof . . .

Figure 3: Monoid and Group locales

9

In Isabelle the definition of a locale which extends previously defined locales
with names name1 . . . namen is introduced with the key word locale followed
by the name of the locale, the equality symbol, the names of the extended locales
separated by the plus symbol (name1 + . . . + namen+), constants (or param-
eters), assumptions, and theorems and definitions. The constants of the locales
are introduced with the key word fixes. These constants are introduced together
with their types, and the colon symbol is used to separate the name of a constant
from its type. The assumptions are introduced with the keyword assumes and
theorems are introduced with with the keyword theorem. Every theorem must
have a formal proof written in Isabelle’s proof language. Both assumptions and
theorems can be named and their names can be used in proofs. Isabelle uses the
keywords begin and end to mark the content of a locale. In this presentation we
use indentation to serve the same purpose.

Locales are a good match for modeling situations. Each situation is modeled
by a distinct locale. The locale’s parameters or constants are used to model the
situation variables. The locale’s assumptions are used to model the predicates
of the situation. Locales’ extensions are used for modeling nesting of situations.
Locale’s interpretations are used to model the consistency proof obligations. The
definitions and theorems of the locales may be used to structure the proofs of some
of the more difficult proof obligations.

Each situation s, nested within situation s0, and introducing new variables zs

and predicate Ps, introduces the locale Ls as follows:

locale Ls = Ls0 + fixes zs assumes Ps

In this context we assume that zs is the list of new situation variables together with
their types.

Selection sort situation locales are shown in Figure 4. Note that the situation
locales are referenced only in the VCs and in the correctness proof produced by
the compiler. They are not required for executing the transitions of the invariant
diagram.

4.2 Functional representation in Isabelle/HOL

The executable part of an invariant diagram is represented in Isabelle as a collec-
tion of mutually recursive functions [13]. We introduce a function fs for every
situation s ∈ Sit. The parameters of the function fs are the execution variables
ys of s (all variables of s except the specification variables). The function fs ap-
plied to some values v for the parameters ys corresponds to the execution of the
diagram, starting in s, with values v for the variables ys. The result of fs is a
tuple with one component for every result variable of the diagram and an addi-
tional component that records the situation in which the termination has occurred.
If [g1] ; xs1 := e1, [g2] ; xs2 := e2, . . . are all transitions from situation s, and if

10

locale SelectionSort =
fixes n : Nat

a, a0 : Nat→ LinOrd
assumes permutation.n.a.a0

locale Init = SelectionSort +
assumes a = a0

locale Sorting = SelectionSort +
fixes k : Nat
assumes k ≤ n

(∀ i, j : Nat • i < j < k ⇒ a.i ≤ a.j)
(∀ i, j : Nat • i < k ≤ j < n⇒ a.i ≤ a.j)

locale FindingMin = Sorting +
fixes j,m : Nat
assumes k ≤ m < n

k ≤ j ≤ n
(∀ i : Nat • k ≤ i < j ⇒ a.m ≤ a.i)

locale Sorted = SelectionSort +
assumes (∀ i, j : Nat • i < j < n⇒ a.i ≤ a.j)

Figure 4: Locale representation of selection sort situations

for all i, [gi] ; xsi
:= ei is a transition between s and si, then the definition of the

function fs is
fs.ys = if g1 then fs1 .e1

else if g2 then fs2 .e2

· · ·
else (res , s)

Here we assume that the transitions assign values to all execution variables of
the target situations, and we remind the reader that the expressions g1, g2, . . . and
e1, e2, . . . may contain free only variables from ys. When all guards are false
this function returns the tuple res of result values and the current situation s. As
we pointed out already res = (res1, res2, . . .) has a component for every result
variable of the diagram. If the variable resi is among the execution variables of s,
then the value of resi is the corresponding component of ys, otherwise the value
of resi is arbitrary. We should also note here that the functional representation
is a refinement of the execution mechanism of a diagram described earlier. If the
execution of the diagram is in s and both guards g1 and g2 are true, then we could
choose nondeterministically between the two transitions. However the functional
representation always executes the first transition in this case.

Mutually recursive functions are introduced in Isabelle/HOL with the keyword
function. We should introduce first the names and the types of the functions

11

function
init fun : Nat→ (Nat→ LinOrd)→ (Nat→ LinOrd)× SitSort

sorting fun : Nat→ (Nat→ LinOrd)→ Nat→ (Nat→ Nat)× SitSort

findingmin fun :
Nat→ (Nat→ LinOrd)→ Nat→ Nat→ Nat→ (Nat→ LinOrd)× SitSort

sorted fun : Nat→ (Nat→ LinOrd)→ (Nat→ LinOrd)× SitSort

where
init fun.n.a = sorting fun.n.a.0

sorting fun.n.a.k =
if k < n then findingmin fun.n.a.k.(k + 1)

else if k = n then sorted fun.n.a
else (a, sorting)

findingmin fun.n.a.k.j.m =
if k < n ∧ j = n then sorting fun.n.(swap.a.n.k).(k + 1)

else if k < n ∧ j < n ∧ a.m ≤ a.j then findingmin fun.n.a.k.(j + 1).m
else if k < n ∧ j < n ∧ a.j < a.m then findingmin fun.n.a.k.(j + 1).j
else (a, findingmin)

sorted fun.n.a = (a, sorted)

Figure 5: Functional representation of selection sort

followed by the actual definitions. The functional representation of selection sort
is shown in Figure 5.

The result of all functions of the sorting program is a pair of an array a : Nat→
LinOrd and a situation s ∈ SitSort because we have only a as a result variable.
We skipped the introduction of a function for the situation selsort because the
purpose of this situation is to provide the common variables and assumptions for
all the other situations. The execution is not supposed to start in this situation, and
it can never end here. In general, we can always skip the introduction of functions
for situations that do not have incoming or outgoing transitions. We should also
note that the functions are curried. To show that these functions are well defined,
we should prove that the recursion always terminates. We postpone discussion of
termination of the mutual recursion until Section 7.

The definition of the function findingmin fun contains an additional guard k <
n which is always true when this function is called from sorting fun. We need this
additional guard when proving the termination of these functions.

12

The execution of the selection sort diagram starting from the init situation is
equivalent to computing init fun.n.a.

5 Consistency and liveness verification conditions
This section deals with the Isabelle representation of VCs for consistency and live-
ness. The consistency VCs and the liveness VC for all transitions with a common
source situation are generated under the context of the source situation’s locale.
Isabelle’s context blocks allow the user to add new theorems and definitions to
locales defined earlier. For example if the group locale presented earlier together
with the integer interpretation is in a library of facts, then we can extend the results
of the group locale using the context block.

context Group
theorem inv inv : (∀x • inv .(inv).x = x)

proof . . .

After this extension the theorem inv inv becomes available for groups as well as
for the group of integers. The result of this context is the same as if we would
introduce the theorem inv inv in the locale group.

For each situation s with outgoing transitions to situations s1, s2, . . . having
guards g1, g2, . . . and assignments xs1 := e1, xs2 := e2, . . . , the consistency and
liveness VCs are encoded as shown in the left hand column below:

context Ls

theorem tos1 :
assumes g1

shows Ls1 .e1

theorem live:

shows g1 ∨ · · · ∨ gn

context Sorting
theorem to FindingMin:

assumes k < n
shows

FindingMin.n.a.a0.k.(k + 1).k

theorem to Sorted:
assumes k = n
shows Sorted.n.a.a0

theorem live:

shows k < n ∨ k = n

Figure 6: Verification conditions

In the context of Ls if the guard g1 is true, then the locale interpretation Ls1 .e1

must be true. The theorem tos1 can also be stated g1 ⇒ Ls1 .e1, but the advantage
of using assumes and shows is that we can name the assumptions, and we can later

13

refer to them in proofs by their names. The liveness theorem states that the dis-
junction of the guards of all transitions from s must be true under the assumptions
of Ls. The liveness VC must be added only to locales of non-final situations.

The right hand column shows the consistency and liveness VCs generated
from the diagram for situation sorting. Actually proving that these VCs are all
true is part of the verification effort. In practice, there are many theorems that
need to be proved, so the task can be quite time-consuming. However, most of
the theorems are quite trivial and are best tackled with automatic tactics first, with
human attention needed only when this fails.

6 Consistency and liveness of the functional pro-
gram

Next, we define consistency and liveness in terms of the functional representation
of the program. Liveness and consistency properties are encoded in a locale and
a theorem interpreting the locale. We first describe how they are derived. Subse-
quently, we describe how an automatic proof of this theorem is constructed. This
proof certifies that the functional representation of the program is indeed consis-
tent and live if the consistency and liveness VCs are discharged.

The program is consistent if, for all situations s and all initial values xs of the
variables of s satisfying Ls.xs, the result (res ′, s′) of the function fs associated
to s must be consistent, i.e., res’ should satisfy the locale Ls′ associated to s′.
Additionally, the program is live if s′ is a final situation. Let Final = {s1, s2 . . .} ⊆
Sit be the set of final situations. We encode the consistency and liveness properties
in the locale shown in the left hand column below:

locale ConsLive =
fixes xFinal

s : Sit
assumes s ∈ Final

s = s1 ⇒ Ls1 .xs1

s = s2 ⇒ Ls2 .xs2

· · ·

locale ConsLiveSort =
fixes n : Nat

a, a0 : Nat→ LinOrd
s : SitSort

assumes s = sorted
Sorted.n.a.a0

The variables xFinal are all variables of all final situations. The constant s repre-
sents in this locale the situation in which the execution of the diagram terminates.
The locale states that s must be a final situation and the final values must satisfy the
locale corresponding to s. This means that the program is live, it would never ter-
minate in a non-final situation. The right-hand column shows the ConsLiveSort

locale for selection sort. In this case s = sorted and Sorted.n.a.a0 must both
hold.

Next we state the consistency and liveness of the functional representation of
the program by interpretations of the ConsLive locale. Since execution of invari-

14

ant diagrams can start from any situation s, the locale must be satisfied by all
states reached from each function fs when called from a state satisfying Ls. We
should prove for each s and xs

Ls.xs ∧ (res ′, s′) = fs.ys ⇒ ConsLive.xFinal[res ← res ′].s′ (2)

where ys are the execution variables of s, the variables res ′ are fresh, and
xFinal[res ← res ′] stands for the syntactic replacement of the result variables
res in xFinal with res ′. I.e., if xs satisfies the locale Ls, then the updated values
xFinal[res ← res ′] computed by the function fs must satisfy the locale ConsLive.

Next theorem is the correctness and liveness theorem for the selection sort.

Theorem 1.

(Init.n.a.a0 ∧ (a′, s′) = init fun.n.a⇒ ConsLiveSort.n.a′.a0.s
′)

∧ (Sorting.n.a.a0.k ∧ (a′, s′) = sorting fun.n.a.k
⇒ ConsLiveSort.n.a′.a0.s

′)
∧ (FindingMin.n.a.a0.k.j.m ∧ (a′, s′) = findingmin fun.n.a.k.j.m

⇒ ConsLiveSort.n.a′.a0.s
′)

∧ (Sorted.n.a.a0 ∧ (a′, s′) = sorted fun.n.a⇒ ConsLiveSort.n.a′.a0.s
′)

This theorem states that regardless of the situation on which the program starts,
if the locale of the starting situation is true and if the program terminates, then it
terminates in the situation sorted, the computed array a′ is sorted, and a′ is a
permutation of a0. Although we may be interested only in starting the program in
the initial situation, we need to state this theorem in this more general form to be
able to prove it.

The Isabelle proof of Theorem 1 can be mechanically constructed based on
the consistency and liveness verification conditions. The function definition 5 in-
troduces an induction theorem that can be used to prove properties like Theorem
1. If we apply the induction theorem, then proving Theorem 1 is reduced to prov-
ing four properties, one for each function. The second property, associated to the
function sorting fun is

(k < n ∧ FindingMin.n.a.a0.k.(k + 1).k
∧ (a′, s′) = findingmin fun.n.a.k.(k + 1).k
⇒ ConsLiveSort.n.a′.a0.s

′)
∧

(¬k < n ∧ k = n ∧ Sorted.n.a.a0 ∧ (a′, s′) = sorted fun.n.a
⇒ ConsLiveSort.n.a′.a0.s

′)
⇒

(Sorting.n.a.a0.k ∧ (a′, s′) = sorting fun.n.a.k
⇒ ConsLiveSort.n.a′.a0.s

′)

(3)

15

expanding the definition of sorting fun we obtain three new properties correspond-
ing to the three cases of sorting fun:

(k < n ∧ FindingMin.n.a.a0.k.(k + 1).k
∧ (a′, s′) = findingmin fun.n.a.k.(k + 1).k
⇒ ConsLiveSort.n.a′.a0.s

′)
∧

(¬k < n ∧ k = n ∧ Sorted.n.a.a0 ∧ (a′, s′) = sorted fun.n.a
⇒ ConsLiveSort.n.a′.a0.s

′)
⇒

(Sorting.n.a.a0.k ∧ k < n
∧ (a′, s′) = findingmin fun.n.a.k.(k + 1).k
⇒ ConsLiveSort.n.a′.a0.s

′)

(4)

and

(k < n ∧ FindingMin.n.a.a0.k.(k + 1).k
∧ (a′, s′) = findingmin fun.n.a.k.(k + 1).k
⇒ ConsLiveSort.n.a′.a0.s

′)
∧

(¬k < n ∧ k = n ∧ Sorted.n.a.a0 ∧ (a′, s′) = sorted fun.n.a
⇒ ConsLiveSort.n.a′.a0.s

′)
⇒

(Sorting.n.a.a0.k ∧ ¬k < n ∧ k = n ∧ (a′, s′) = sorted fun.n.a
⇒ ConsLiveSort.n.a′.a0.s

′)

(5)

and

(k < n ∧ FindingMin.n.a.a0.k.(k + 1).k
∧ (a′, s′) = findingmin fun.n.a.k.(k + 1).k

⇒ ConsLiveSort.n.a′.a0.s
′)

∧
(¬k < n ∧ k = n ∧ Sorted.n.a.a0 ∧ (a′, s′) = sorted fun.n.a

⇒ ConsLiveSort.n.a′.a0.s
′)

⇒
(Sorting.n.a.a0.k ∧ ¬k < n ∧ ¬k = n ∧ a′ = a ∧ s′ = sorting

⇒ ConsLiveSort.n.a′.a0.s
′)

(6)

The proof of these properties follow directly from the verification conditions pre-
sented in Figure 6 for the situation sorting. First two properties follow from the
consistency VCs and the last one follows from the liveness VC.

7 Termination
An invariant diagram is terminating if no infinite computation can start from any
situation. To establish the termination of the mutually recursive functions of a

16

diagram we should prove that a certain relation associated to the diagram is well
founded. We call this relation the termination relation of the diagram and we
will define it formally later. Proving that the termination relation is well founded
would be very difficult because it involves arbitrary executions paths of the dia-
gram. Instead, we handle termination analogously to consistency and liveness: by
generating some VCs for transitions that are part of cycles in the diagram. Based
on these VCs we automatically synthesize the proof that the termination relation
is well-founded.

A situation s is a cycle situation if there is a path of transitions from s back
to s. For each such situation we should provide in the diagram a termination
function from the values of the variables to a set W with a well-founded relation
r ⊆ W ×W . For selection sort, the cycle situations are sorting and findingmin
and their termination functions are n − k : Nat and n − j : Nat, respectively.
The well founded relation in this case is the normal order < on Nat. For every
cycle situation s, we should label some of the transitions as strictly decreasing
the termination function of s, and we should prove as VCs that this is the case.
This labeling should be such that all simple cycles from s to s contain at least
one of these transitions. Moreover we should prove as VCs that all transitions
that can occur on paths from s to s do not increase the termination function. The
combined effect of these verification conditions is that we cannot have executions
of the diagram which visits s infinitely often, and if we prove the same property
for all cycle situations, then we cannot have infinite executions in general.

On the sorting diagram, the transition from findingmin to sorting is the only
transition that should strictly decrease the termination function of sorting, and
the two transitions from findingmin two findingmin are the transitions that should
strictly decrease the termination function of findingmin. On the diagram these
transitions are labeled by dec.sorting and dec.findingmin respectively. If we apply
the technique described earlier for the situation findingmin, then we have to prove
that at least one of the transition from sorting to findingmin and from findingmin to
sorting strictly decreases the termination function of findingmin, because we have
a simple cycle [findingmin, sorting, findingmin] and at least one of its transitions
must strictly decrease the termination function of findingmin. However, this is
not true. We could not solve this problem by taking the termination function of
findingmin to be the pair (n− k, n− j) with the lexicographic order, because this
function is not defined for the transition from sorting to findingmin. We could
replace the second component of this pair with the current situation to obtain a
term which satisfies the desired conditions. However, here we consider a different
solution. We order the cycle situations of the diagram s1, s2, . . . and we start with
s1. For s1 we check that all simple cycles from s1 to s1 contain at least one strictly
decreasing transition, and all other transitions of cycles from s1 to s1 are non
increasing. After this we remove all incoming and outgoing transitions of s1 and
we repeat the process for s2, . . . until we finish all cycle situations. Determining
whether such an order exists, and if so constructing it, is accomplished by flow

17

graph analysis of the invariant diagram. For example, in selection sort the order
[sorting, findingmin] satisfies this property. If an order cannot be found, no VCs
will be emitted; in this case the programmer has to add decreasing transitions until
an order is found. Applying this technique to the sorting diagram using the order
[sorting, findingmin] results in the following verification conditions:

Situation sorting:

sd sorting findingmin sorting :
k < n ∧ j = n⇒ (n− (k + 1)) < (n− k)

ni sorting sorting findingmin :
k < n⇒ (n− k) ≤ (n− k)

ni sorting findingmin findingmin a :
j < n ∧ a.m ≤ a.j ⇒ (n− k) ≤ (n− k)

ni sorting findingmin findingmin b :
j < n ∧ a.j < a.m⇒ (n− k) ≤ (n− k)

(7)

Situation findingmin:

sd findingmin findingmin findingmin a :
j < n ∧ a.m ≤ a.j ⇒ (n− (j + 1)) < (n− j)

sd findingmin findingmin findingmin b :
j < n ∧ a.j < a.m⇒ (n− (j + 1)) < (n− j)

(8)

Naming of these proof obligations uses the following encoding: sd and ni stand
for “strictly decreasing” and “non increasing”, the first situation name is the sit-
uation giving the termination function, the second and the third situations are the
starting and ending situation for the transition, and a and b are the indexes of the
transitions when there are more than one transition between the same situations.
The properties of strictly decrease or non increase should be proved only when
the guards of the transitions are true. Ideally these properties should be proved
assuming also the situations’ predicates, but then they could not be used in the
proof of the termination of the mutually recursive functions, unless we add these
predicates as guards in the diagram. We have actually added the condition k < n
to the guards of the transitions starting from findingmin to be able to prove the
termination.

In the remainder of this section we introduce more formally the concepts de-
scribed so far and we show how these verification conditions are used mechani-
cally to prove termination for the mutually recursive functions, i.e. the termination
relation is well founded.

7.1 Well founded relation for function definition
For Sit a set of situations, the collection of mutually recursive functions fs, s ∈
Sit, where fs : As,1 → As,2 → . . .→ Bs, are defined by Isabelle internally using

18

one single recursive function

f : (
⊕

s : Sit •As)→ (
⊕

s : Sit •Bs)

where As = As,1 × As,2 × · · · , which satisfies the conditions

(a ∈ As ⇒ f.(ins.a) ∈ ins.Bs)
∧

fs.a1.a2. · · · = vals.(f.(ins.(a1, a2, . . .)))

The types As,1, As,2, . . . are the types of the execution variables of situation s.
The purpose of function f in this presentation is only to justify the introduction
of the disjoint union (

⊕
s : Sit •As) of the types As, which is used for proving

the termination of (fs, s ∈ Sit). An element a of (
⊕

s : Sit •As) represents the
execution state of the diagram. The element a represents the situation s = sit.a
as well as the values of the execution variables vals.a ∈ As. We remind the
reader that the function sit : (

⊕
s : Sit •As) → Sit returns for an element a the

component s of the disjoint union to which a belongs.
For simplicity when a = (a1, a2, . . .) ∈ As we denote by fs.a the term

fs.a1.a2. · · · . In our case the mutually recursive functions are tail recursive and
the general form of the definition of fs is

fs.ys = if g1 then fs1 .e1

else if g2 then fs2 .e2

· · ·
else (res , s)

In this definition ys stands for the list of formal parameters of fs, g1, g2, . . . are
guards on the components of ys, and e1 ∈ As1 , e2 ∈ As2, . . . are expressions on the
components of ys. In this definition we assume that [g1] ; ys1 := e1, [g2] ; ys2 :=
e1, . . . are all transitions from situation s. The execution graph of a diagram is
a relation dgr on (

⊕
s : Sit •As) such that (a, b) ∈ dgr if and only if there is

a transition from s = sit.a to s′ = sit.b enabled for vals.a and the result of the
transition on vals.a is vals′ .b. More formally

dgr = (
⋃

s : Sit • dgrs)

and

dgrs = {(ins.ys, ins1e1) | g1} ∪ {(ins.ys, ins2 .e2) | g2} ∪ . . .

19

For the sorting diagram the execution graph is given by

dgrsort = {(in.sorting.(n, a, k), in.findingmin.(n, a, k, k, k + 1) | k < n}
∪ {(in.findingmin.(n, a, k, j, m), in.sorting.(n, (swap.a.k.m), k + 1))
| j = n}

∪ {(in.findingmin.(n, a, k, j, m), in.findingmin.(n, a, k, j + 1,m))
| j < n ∧ a.m ≤ a.j}

∪ {(in.findingmin.(n, a, k, j, m), in.findingmin.(n, a, k, j + 1, j))
| j < n ∧ a.j < a.m}

∪ {(in.sorting.(n, a, k), in.sorted.(n, a, k)) | k = n}
In a diagram, an execution path, is a path in the graph dgr. In the sorting diagram,
if we start the execution in situation sorting with n = 4, a = [[2, 3, 7, 5]], and
k = 2, then we may get the following execution path

[in.sorting.(4, a, 2), in.findingmin.(4, a, 2, (j = 3), (m = 2)),
in.findingmin.(4, a, 2, 4, 3), in.sorting.(4, [[2, 3, 5, 7]], 3)]

(9)

To prove in Isabelle that the mutual recursive functions fs are terminating we
should provide a well founded relation < on (

⊕
s : Sit • As) and prove that

(g1 ⇒ ins1 .e1 < ins.ys) ∧
(¬g1 ∧ g2 ⇒ ins2 .e2 < ins.ys) ∧
(¬g1 ∧ ¬g2 ∧ g3 ⇒ ins3 .e3 < ins.ys) ∧
...

(10)

If we take < to be (dgr−1) then it becomes trivial (mechanical) to prove the prop-
erties (10). We call dgr−1 the termination relation of the diagram. The challenge
is to prove that this relation is well founded. In the next subsection we discuss the
practical procedure for proving termination of invariant diagrams and we show
how the resulting proof obligations can be used to mechanically prove that the
termination relation is well founded.

7.2 Termination proof obligations
We first introduce the definitions of some graph concepts, and we introduce a
theorem which reduces the well-foundness of the termination relation to some
properties of execution paths of the diagram (paths of the graph dgr). Because the
number of these paths is infinite, this reduction cannot be applied in practice, and
we introduce next another theorem which reduces the well-foundness property to
a finite number of VCs as discussed at the beginning of this section.

The predicate decrease : Rel.B → (A→ B)→ List.A→ Bool is defined by

decrease.r.t.[] = true
decrease.r.t.[x] = true
decrease.r.t.(x#y#xs) = ((t.y, t.x) ∈ r= ∧ decrease.r.t.(y#xs))

20

where decrease.r.t.xs is true if for all consecutive elements x and y of xs, the
function t applied to y is smaller or equal than t applied to x relatively to the strict
relation r. The predicate strictly decrease : Rel.B → (A → B) → List.A →
Bool is defined by

strictly decrease.r.t.[] = false
strictly decrease.r.t.[x] = false
strictly decrease.r.t.(x#y#xs) = (((t.y, t.x) ∈ r ∧ decrease.r.t.(y#xs))

∨ (t.y = t.x ∧ strictly decrease.r.t.(y#xs)))

strictly decrease.r.t.xs is true if the elements of xs are decreasing with respect to
t and r and there are at least two consecutive elements x and y such that t.y is
strictly smaller than t.x relatively to the strict relation r. For example the execu-
tion path (9) of the sorting diagram is strictly decreasing the term t = n− k with
respect to the natural order on Nat.

We what to ensure that all executions paths in the diagram are finite, and we
ensure this property by requiring that all paths are strictly decreasing with respect
to a well founded relation r and a termination term t. For g ∈ Graph.A, x, y ∈ A,
r ∈ Rel.W , and t : A → W the predicate strictly decrease all.g.r.t.x.y is true if
all nonempty paths from x to y in g are strictly decreasing with respect to r and t.

strictly decrease all.g.r.t.x.y =
(∀xs • nonempty path.g.x.y.xs⇒ strictly decrease.r.t.xs)

For dgr ∈ Graph.A, sit : A → Sit, ss ∈ List.Sit,r ∈ Rel.W , and t : A → W ,
the predicate strictly decrease loop.ss.sit.dgr.r.t is true if all nonempty execution
paths in the diagram dgr restricted to the situations in ss, from the situation hd.ss
to hd.ss are strictly decreasing.

strictly decrease loop.ss.sit.dgr.r.t =
(∀x y • sit.x = sit.y = hd.ss

⇒ strictly decrease all.(restrict.ss.sit.dgr).r.t.x.y)

The function sit : A → Sit returns the situation of a state a ∈ A of the diagram.
The list of situations ss plays the role of the situation ordering described at the be-
ginning of this section, and restrict.ss .sit .dgr restricts the graph dgr to transitions
from ss.

restrict.ss .sit .dgr = {(a, b) | (a, b) ∈ dgr ∧ sit .a ∈ Set.ss ∧ sit .b ∈ Set.ss}

For dgr ∈ Graph.A, sit : A → Sit, ss ∈ List.Sit, r ∈ Sit → Rel.W , and
t : Sit → A → W the predicate strictly decrease dgr.ss.sit.dgr.r.t is defined
by induction on the list ss of situations. This predicate is true if for the situation
s = hd.ss all nonempty execution paths starting and ending in s in the restricted

21

diagram are strictly decreasing; and the predicate is also true for the tail of ss .

strictly decrease dgr.[].sit.dgr.r.t = true

strictly decrease dgr.(s#ss).sit.dgr.r.t =
strictly decrease loop.(s#ss).sit.dgr.(r.s).(t.s)
∧ strictly decrease dgr.ss.sit.dgr.r.t

We should observe here that at every step in this recursive definition we remove
from the diagram the transitions adjacent to the situation considered already.

Using this definition we are able to introduce a theorem that can be used to
prove that the termination relation is well founded.

Theorem 2. If dgr ∈ Graph.A, sit : A → Sit, ss ∈ List.Sit, r ∈ Sit → WF.W ,
and t : Sit→ A→ W , then

strictly decrease dgr.ss.sit.dgr.r.t⇒ (restrict.ss.sit.dgr)−1 ∈ WF.A

The function t associates to every situation s a termination function t.s, a func-
tion from values of the execution variables to a set W with a well-founded relation
r.s. In the beginning of this section we mentioned that we associate a termination
function to every cycle situation. For non-cycle situations the termination func-
tion can be arbitrary because it will never be used. For the sorting diagram the
well-founded relation is the natural order on Nat ((x, y) ∈ less.s ⇔ x < y) and
the termination function is given by

term.sorting.(in.sorting.(n, a, k)) = n− k
term.sorting.(in.findingmin.(n, a, k, j,m)) = n− k
term.findingmin.(in.findingmin.(n, a, k, j,m)) = n− j
term.s.x = 0 for all other s and x

The definition of term.sorting.x has two main cases when x is a state from sit-
uation sorting and when x is a state from situation findingmin. In both situa-
tions the variables n and k are available and we require that the transition from
findingmin to sorting strictly decreases term.sorting, which is true for this defini-
tion of term.sorting.

When Set.ss = Sit then restrict.ss.sit.dgr = dgr. In this case the Theorem 2
can be used to prove that the termination relation is well-founded. In the case of
the sorting diagram we need to prove

strictly decrease dgr.[init, sorting, findingmin, sorted].sit.dgrsort.less.term

The order of the situations in the list [init, sorting, findingmin, sorted] is not ar-
bitrary, but it is chosen such that the situation sorting comes before situation
findingmin as we discussed at the beginning of this section. We first prove that all

22

execution paths from sorting to sorting are finite, and then we eliminate the tran-
sitions adjacent to sorting which ensures that all execution paths from findingmin
to findingmin in the restricted diagram are also finite. The order in which init and
sorted occur in this list is not relevant because there are no cycles containing these
situations, and there are no verification conditions generated for them.

A problem with Theorem 2 is that strictly decrease dgr.s.sit.dgr.r.t expands
to an infinite number of proof obligations. This is due to the fact that there may be
an infinite number of execution paths in the diagram dgr. We introduce later a new
similar theorem which will allow proving that dgr−1 is well founded but using a
finite number of proof obligations. The assumptions of this new theorem will be
based on some functions which for diagrams with finite number of situations can
be computed. The result of these computations will be the finite list of verification
conditions presented at the beginning of this section. The main idea is to reduce
reasoning about the set of execution paths to reasoning about the set of simple
cycles in the situation graph associated to a diagram. The situation graph of a
diagram is defined by

sdgr = {(s, s′) | there is a transition from s to s′ in the diagram}
and for the sorting diagram we have

sdgrsort = {(init, sorting), (sorting, findingmin), (findingmin, sorting),
(findingmin, findingmin), (sorting, sorted)}

For a list xs and an element x, the function del.x.xs deletes all occurrences
of x from xs. For g ∈ Graph.A, xs ∈ List.A, and x ∈ A, the function
next vertex.g.xs.x calculates the list of vertexes reachable from x in one step in
the graph restrict.xs.id.g.

next vertex.g.[].x = []
next vertex.g.(y#xs).x = if (x, y) ∈ g then y#(next vertex.g.xs.x)

else next vertex.g.xs.x

For g ∈ Graph.A, zs, xs ∈ List.A, and y ∈ A, the function simple path.g.zs.xs.y
calculates the list of all simple paths in the diagram restrict.zs.id.g from an ele-
ment of xs to y.

simple path.g.zs.[].y = []

simple path.g.zs.(x#xs).y =
(if x ∈ Set.zs then

(if x = y then [[x]] else [])
@(map.(λu •x#u).

(simple path.g.(del.x.zs).(next vertex.g.(del.x.zs).x).y))
else

[])
@(simple path.g.zs.xs.y)

23

For g ∈ Graph.A, zs ∈ List.A, and x ∈ A, the function simple cycle.g.zs.x
calculates the list of all simple cycles in the diagram restrict.zs.id.g from vertex
x to x.

simple cycle.g.zs.x = map.(λu •x#u).(simple path.g.zs.(next vertex.g.zs.x).x)

For zs, xs ∈ List.A the function reachable.g.zs.xs returns the list of reachable
vertexes from the vertexes in xs in the graph restrict.zs.id.g.

reachable.g.zs.[] = []

reachable.g.zs.(x#xs) =
if x ∈ Set.zs then

x#(reachable.g.(del.x.zs).((next vertex.g.(del.x.zs).x)@xs))
else

reachable.g.zs.xs

The set of reachable and co-reachable nodes from x in the graph
restrict.zs.id.g is defined by

core re.g.zs.x = Set.(reachable.g.zs.[x]) ∩ Set.(reachable.(g−1).zs.[x])

For dgr ∈ Graph.A, sit : A → Sit, s, s′ ∈ Sit, r ∈ Rel.W , and t : A → W , the
predicates
decrease edge.sit.dgr.a.b.r.t and strictly decrease edge.sit.dgr.a.b.r.t calculate
if all transitions from situation s to s′ decrease and strictly decrease the function t
with respect to r.

decrease edge.sit.dgr.s.s′.r.t =
(∀x y • (x, y) ∈ dgr ∧ sit.x = s ∧ sit.y = s′ ⇒ (t.y, t.x) ∈ r=)

strictly decrease edge.sit.dgr.s.s′.r.t =
(∀x y • (x, y) ∈ dgr ∧ sit.x = s ∧ sit.y = s′ ⇒ (t.y, t.x) ∈ r)

The predicates decrease edge and strictly decrease edge are used to state the ter-
mination verification conditions in a compact manner. For example for the sorting
diagram the predicate

strictly decrease edge.sit.dgrsort.findingmin.sorting.(less.sorting).(term.sorting)

is equivalent to the verification condition sd sorting findingmin sorting introduced
earlier in this section.

The function strictly decrease edge path.sit.dgr.ss.r.t calculates if there
exists two consecutive situations s and s′ in ss such that the condition

24

strictly decrease edge.sit.dgr.s.s′.r.t is true:

strictly decrease edge path.sit.dgr.[].r.t = false

strictly decrease edge path.sit.dgr.[s].r.t = false

strictly decrease edge path.sit.dgr.(s#s′#ss).r.t =
if strictly decrease edge.sit.dgr.s.s′.r.t then true
else strictly decrease edge path.sit.dgr.(s′#ss).r.t

The predicate strictly decrease loop calc.zs.sit.sdgr.dgr.r.t is true if all sim-
ple cycles from hd.zs to hd.zs in restrict.zs.id.sdgr have a strictly decreasing
edge, and all edges (s, s′) ∈ restrict.zs.id.sdgr where s and s′ are reachable and
correctable from hd.zs, are non increasing. Formally we have:

strictly decrease loop calc.zs.sit.sdgr.dgr.r.t =
(∀ss • ss ∈ Set.(simple cycle.sdgr.zs.(hd.zs))

⇒ strictly decrease edge path.sit.dgr.ss.r.t)
∧ (∀s s′ • s, s′ ∈ core re.sdgr.zs.(hd.zs) ∧ (s, s′) ∈ sdgr

⇒ decrease edge.sit.dgr.s.s′.r.t)

All functions involved in the definition of strictly decrease loop calc are defined
in Isabelle, but they are also executable, i.e. the simplification mechanism of
Isabelle is capable of calculating the result of strictly decrease loop calc for con-
crete parameters.

For a function sit : A → Sit and a graph dgr ∈ Graph.A we define the graph
sit .dgr ∈ Graph.Sit by

sit .dgr = {(s, s′) | ∃a b ∈ A • sit .a = s ∧ sit .b = s′}

For a diagram the function sit maps the execution graph into a graph on situa-
tions and we have the property that sit.dgr ⊆ sdgr. We have equality when every
transitions of the diagram is enabled for some values of the variables.

Next theorem gives a method for calculating a finite set of proof obligations
needed to show that all execution paths starting and ending in a situation s = hd.zs
are strictly decreasing (finite).

Theorem 3. If sit .dgr ⊆ sdgr then

strictly decrease loop calc.zs.sit.sdgr.dgr.r.t
⇒ strictly decrease loop.zs.sit.dgr.r.t

Theorem 3 reduces proving that all execution cycles starting and ending in
hd.zs are strictly decreasing if some finite verification conditions are true.

25

The final step in obtaining the verification conditions for the entire diagram is
to inductively apply the predicate strictly decrease loop calc.zs.sit.sdgr.dgr.r.t
for the tail of zs and so on.

strictly decrease dgr calc.[].sit .sdgr .dgr .r.t = true

strictly decrease dgr calc.(s#zs).sit .sdgr .dgr .r.t =
strictly decrease loop calc.(s#zs).sit.sdgr.dgr.r.t
∧ strictly decrease dgr calc.zs.sit .sdgr .dgr .r.t

Theorem 4. If dgr ∈ Graph.A, sdgr ∈ Graph.Sit, sit .dgr ⊆ sdgr , sit : A→ Sit,
ss ∈ List.Sit, r ∈ Sit→ WF.W , and t : Sit→ A→ W , then

strictly decrease dgr calc.ss.sit.sdgr .dgr.r.t = (restrict.ss.sit.dgr)−1 ∈ WF.A

This final theorem can be applied now to a concrete diagram and it will pro-
duce a finite number of verification conditions. We have observed already that
when Set.ss = Sit then restrict.ss.sit.dgr = dgr and if we apply this theorem for
the sorting diagram we obtain that dgrsort−1 is well-founded if

strictly decrease dgr calc.[init, sorting, findingmin, sorted].sit
.sdgrsort.dgrsort.less.term

(11)

is true, fact which can be simplified mechanically by Isabelle (by expanding the
definitions) into

strictly decrease edge.sit.dgrsort.findingmin.sorting.(less.sorting).(term.sorting)

decrease edge.sit.dgrsort.sorting.findingmin.(less.sorting).(term.sorting)

decrease edge.sit.dgrsort.findingmin.findingmin.(less.sorting).(term.sorting)

strictly decrease edge.sit.dgrsort.findingmin.findingmin.(less.findingmin)
.(term.findingmin)

These are exactly the termination verification conditions (7) and (8). We should
note here that although we may have two or more transitions from a situation s
to a situation s′, if one of these transitions must strictly decrease a termination
function t, then all transitions from s to s′ must decrease t. In the sorting diagram
this is the case for the two transitions from findingmin to findingmin.

8 Code generation
Isabelle/HOL comes with a built-in code generation framework based on term
rewriting [11]. The framework translates recursive functions specified in HOL

26

into functional programs in an intermediate language. It currently supports Scala,
SML, OCaml and Haskell target languages. The rewrites used during code gen-
eration can be extended with arbitrary equational theorems, as well as mappings
from abstract datatypes into executable/more efficient datatypes (data refinement).

Generating code from the functional representation of an invariant diagram is
straightforward. For instance, the Haskell rendition of selection sort is as follows:

data SitSort = Init | Sorting | Find_min | Sorted;

sorted_fun n a = (a, Sorted);

sorting_fun n a k =
(if less_nat k n then find_min_fun n a k (plus_nat k one_nat) k

else (if equal_nat k n then sorted_fun n a
else (error "undefined", Sorting)));

find_min_fun n a k j m =
(if less_nat k n && equal_nat j n
then sorting_fun n (swap a k m) (plus_nat k one_nat)
else (if less_nat k n && less_nat j n && less_eq (a m) (a j)

then find_min_fun n a k (plus_nat j one_nat) m
else (if less_nat k n && less_nat j n && less (a j) (a m)

then find_min_fun n a k (plus_nat j one_nat) j
else (error "undefined", Find_min))));

init_fun n a = sorting_fun n a Zero_nat;

Type declarations are omitted above for brevity. We note that as Haskell optimizes
tail recursion, the program remains iterative throughout translation.

9 Related work

Translating the VCs of a program into the logic of a theorem prover, so called
shallow embedding, is a well established technique in program verification. Some
existing program verifiers employ Isabelle as a backend for VC generation. For
instance, Jive is an interactive verifier for JML-annotated Java [9]. Boogie is an
intermediate verification language and VC generator supporting multiple back-
ends, including Isabelle/HOL [7]. These tools do not address verified compila-
tion. A deep embedding (e.g., by representing programs as objects of an inductive
datatype) allows reasoning about the embedded language itself in the theorem
prover, but may require more effort to achieve high proof automation. For exam-
ple, Simpl is an imperative language which is deeply embedded and fully formal-
ized in Isabelle/HOL [22]. Deep embedding allows verifying the compiler in the
theorem prover. Compilers from a subset of Java to bytecode [23], as well as from
a subset of C to assembly [15], have been verified in Isabelle.

27

Various translation validation-based approaches have been proposed for prov-
ing safety properties and optimization correctness in low-level code. Necula and
Lee introduced a compiler for the proof-carrying code framework [18], which pro-
duces certificates for type and memory safety. Blech and Poetzsch-Heffter have
implemented a certifying compiler from a subset of C to MIPS that produces an
Isabelle/HOL correctness proof [6]. The problem of translating function defini-
tions in a theorem prover to executable code in a functional language prover has
recently been addressed for HOL4 and Standard ML by Myreen and Owens [17].

Implementing flow charts as a collections of tail recursive functions is a well
established technique; for instance, it was described already in 1962 by McCarthy
[16].

Termination of transition systems is an active research topic. Size-change ter-
mination [14] is a general framework for proving termination by mapping infinite
paths in a control flow graph to infinitely descending well-founded data values.
Its main purpose is finding fully automatic termination proofs. Podelski and Ry-
balchenko [21] have shown that a program is terminating iff there exists a relation
that contains the transitive closure of the transition relation as a subset (a transition
invariant), and is a union of well-founded relations (a disjunctively well-founded
transition invariant). Transition invariants allow more general termination argu-
ments, but require reasoning about transitive transitions. An advantage of the
method shown here is that a VC is emitted for each transition, allowing for an in-
tuitive termination criterion (and, in our experience, it suffices for programs with
well structured loops).

10 Conclusion and future work

We have in this paper described a translation validation approach to verified code
generation for IBP, building on the fact that invariant diagrams have well-defined
operational and verification semantics. We have shown how to mechanically
translate an invariant diagram into an Isabelle/HOL theory consisting of the
Hoare-like verification conditions, a set of mutually recursive functions imple-
menting the transitions of the diagram, a consistency and liveness theorem, and
a well-founded termination relation. The Hoare VCs that must be discharged by
the programmer are local correctness conditions: they state that each transition
establishes its target situation, that the disjunction of guards from each non-final
situation is true, and that each loop decreases a termination function. The
consistency and liveness theorem and the well-founded termination relation are
global correctness conditions: they state that the functional representation of the
whole program computes a value that satisfies the intended final situation. We
have described how to mechanically construct the proof of the global correctness
condition based on the local conditions as lemmas.

Our approach has the following advantages.

28

• Embedding invariant diagrams into Isabelle gives access to powerful tac-
tics (such as sledgehammer) for discharging VCs. The functional repre-
sentation can be directly translated into executable code by Isabelle’s code
generation framework.

• The trusted core of the system consists of only the theorem prover. Its code
generator has to be trusted, but this gap is significantly smaller since the
code generation is based on equational rewrite systems which are close to
the proof theoretic framework of Isabelle (closing this gap, for HOL4, is
addressed in [17]).

• No need to build a compiler for invariant diagrams. It is significantly easier
to implement this method compared to constructing and formally verifying
a compiler. The presence of a validating proof means that any errors in the
compiler generating the functional representation of an invariant diagram
will be detected.

• The embedding of invariant diagrams in HOL is shallow, allowing the pro-
gram and its supporting theory to be developed together in a transparent
fashion. This transparency is a practical advantage when constructing and
verifying invariant-based programs. In our case studies, we have in fact
used Isabelle theories as the main program source. However, specialized
tool support could significantly simplify the program construction process.

We illustrated the approach with a case study. For the selection sort program we
achieved almost full automation: the only VC requiring human interaction was
that swapping two elements of an array maintains a permutation of the original
array. Once this fact was proved and added to the Isabelle theory, bluntly applying
sledgehammer worked well: all VCs were discharged by its default array of
first order provers and SMT solvers.

There is room for much future work on this topic. We have not yet built
the tool support for translating graphical invariant diagrams into Isabelle theo-
ries. We plan to automate this translation in our IBP environment Socos (see
www.imped.fi/socos). Socos features a graphical diagram editor and ex-
ports VCs for the PVS theorem prover, but does not currently support compila-
tion. Tool support for the approach presented here would allow assessment of its
feasibility and scalability in practice. In particular, larger examples are required
to identify potential bottlenecks in the proof construction and checking process.
Also, we plan to support local definitions, another feature of Isabelle locales [5].
A situation could introduce local abbreviations and lemmas, which may be rele-
vant for, e.g., discharging VCs related to that situation. Another research direction
we plan to explore is more general termination proofs. A limitation in our current
translation is that the termination proofs do not assume the loop invariant. Instead
we added the assumptions necessary to prove termination to the guard manually.
This step should be handled by the tool.

29

References
[1] Ralph-Johan Back. Program construction by situation analysis. Research

Report 6, Computing Centre, University of Helsinki, Helsinki, Finland,
1978.

[2] Ralph-Johan Back. Invariant based programming revisited. Technical Report
661, Turku Centre for Computer Science, Turku, Finland, 2005.

[3] Ralph-Johan Back. Invariant based programming: Basic approach and teach-
ing experiences. Formal Aspects of Computing, 21(3):227–244, 2009.

[4] Ralph-Johan Back and Viorel Preoteasa. Semantics and proof rules of in-
variant based programs. In Proceedings of the 2011 ACM Symposium on
Applied Computing. ACM, 2011.

[5] Clemens Ballarin. Locales and locale expressions in Isabelle/Isar. In Types
for proofs and programs (TYPES 2003), volume 3085 of LNCS, pages 34–
50. Springer, 2004.

[6] Jan Olaf Blech and Arnd Poetzsch-Heffter. A certifying code generation
phase. Electron. Notes Theor. Comput. Sci., 190(4):65–82, November 2007.

[7] Sascha Böhme, Michał Moskal, Wolfram Schulte, and Burkhart Wolff.
HOL-Boogie: An interactive prover-backend for the Verifiying C Compiler.
Journal of Automated Reasoning, 44(1–2):111–144, 2010.

[8] Sascha Böhme and Tobias Nipkow. Sledgehammer: Judgement day. In
Jürgen Giesl and Reiner Hähnle, editors, Automated Reasoning, volume
6173 of Lecture Notes in Computer Science, pages 107–121. Springer, 2010.

[9] Á. Darvas and P. Müller. Formal encoding of JML Level 0 specifications in
JIVE. Technical Report 559, ETH Zurich, 2007. Annual Report of the Chair
of Software Engineering. 17 pages.

[10] Johannes Eriksson. Tool-Supported Invariant-Based Programming. Ph.d.
thesis, Turku Centre for Computer Science, Finland, 2010.

[11] Florian Haftmann and Tobias Nipkow. Code generation via higher-order
rewrite systems. In M. Blume, N. Kobayashi, and G. Vidal, editors, Func-
tional and Logic Programming (FLOPS 2010), volume 6009 of LNCS.
Springer, 2010.

[12] Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. Locales
- a sectioning concept for isabelle. In Proceedings of the 12th Interna-
tional Conference on Theorem Proving in Higher Order Logics, TPHOLs
’99, pages 149–166, London, UK, UK, 1999. Springer-Verlag.

30

[13] Alexander Krauss. Defining Recursive Functions in Isabelle/HOL. Depart-
ment of Informatics, Technische Universitt Mnchen, 2007.

[14] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change
principle for program termination. In Proceedings of the 28th ACM Sym-
posium on Principles of Programming Languages, POPL ’01, pages 81–92,
New York, NY, USA, 2001. ACM.

[15] Dirk Leinenbach and Elena Petrova. Pervasive compiler verification – from
verified programs to verified systems. Electron. Notes Theor. Comput. Sci.,
217:23–40, July 2008.

[16] John McCarthy. Towards a mathematical science of computation. In IFIP
Congress, pages 21–28, 1962.

[17] Magnus O. Myreen and Scott Owens. Proof-producing synthesis of ML from
higher-order logic. In Proceedings of The 17th ACM SIGPLAN International
Conference on Functional Programming, 2012.

[18] George C. Necula and Peter Lee. The design and implementation of a certi-
fying compiler. SIGPLAN Not., 33(5):333–344, May 1998.

[19] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[20] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In
Proceedings of the 4th International Conference on Tools and Algorithms for
Construction and Analysis of Systems, TACAS ’98, pages 151–166, London,
UK, UK, 1998. Springer-Verlag.

[21] Andreas Podelski and Andrey Rybalchenko. Transition invariants. In LICS
’04: Proc. of the 19th Annual IEEE Symposium on Logic in Computer Sci-
ence, pages 32–41, Washington, DC, USA, 2004. IEEE Computer Society.

[22] Norbert Schirmer. Verification of Sequential Imperative Programs in Is-
abelle/HOL. PhD thesis, Technische Universität München, 2006.

[23] Martin Strecker. Formal verification of a java compiler in isabelle. In
Proceedings of the 18th International Conference on Automated Deduction,
CADE-18, pages 63–77, London, UK, UK, 2002. Springer-Verlag.

31

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-2791-2
ISSN 1239-1891

