
Yuliya Prokhorova | Linas Laibinis | Elena Troubitsyna

Towards Rigorous Construction of
Safety Cases

TUCS Technical Report
No 1110, May 2014

Towards Rigorous Construction of
Safety Cases

Yuliya Prokhorova
TUCS – Turku Centre for Computer Science,

Åbo Akademi University, Department of Information Technologies

Joukahaisenkatu 3-5 A, 20520 Turku, Finland

yuliya.prokhorova@abo.fi

Linas Laibinis
Åbo Akademi University, Department of Information Technologies

Joukahaisenkatu 3-5 A, 20520 Turku, Finland

linas.laibinis@abo.fi

Elena Troubitsyna
Åbo Akademi University, Department of Information Technologies

Joukahaisenkatu 3-5 A, 20520 Turku, Finland

elena.troubitsyna@abo.fi

TUCS Technical Report

No 1110, May 2014

Abstract

Certification of safety-critical software systems requires submission of safety assurance

documents, e.g., in the form of safety cases. A safety case is a justification argument used to

show that a system is safe for a particular application in a particular environment. Different

argumentation strategies are applied to determine the evidence for a safety case. They allow

us to support a safety case with such evidence as results of hazard analysis, testing, simula-

tion, etc. On the other hand, application of formal methods for development and verification

of critical software systems is highly recommended for their certification. In this paper, we

propose a methodology that combines these two activities. Firstly, it allows us to map the

given system safety requirements into elements of the formal model to be constructed, which

is then used for verification of these requirements. Secondly, it guides the construction of

a safety case demonstrating that the safety requirements are indeed met. Consequently, the

argumentation used in such a safety case allows us to support the safety case with formal

proofs and model checking results as the safety evidence. Moreover, we propose a set of

argument patterns that aim at facilitating the construction of (a part of) a safety case from

a formal model. In this work, we utilise the Event-B formalism due to its scalability and

mature tool support. We illustrate the proposed methodology by numerous small examples

as well as validate it by a larger case study – a steam boiler control system.

Keywords: safety-critical software systems, safety requirements, formal development,

formal verification, Event-B, safety cases, argument patterns.

TUCS Laboratory

Embedded Systems Laboratory

1 Introduction

Safety-critical software systems are subject to certification. More and more standards in

different domains require construction of safety cases as a part of the safety assurance pro-

cess of such systems, e.g., ISO 26262 [40], EN 50128 [25], and UK Defence Standard [19].

Safety cases are justification arguments for safety. They justify why a system is safe and

whether the design adequately incorporates the safety requirements defined in a system re-

quirement specification to comply with the safety standards. To facilitate the construction of

safety cases, two main graphical notations have been proposed: Claims, Arguments and Ev-

idence (CAE) notation [17] and Goal Structuring Notation (GSN) [44]. In our work, we rely

on the latter one due to its support for argument patterns, i.e., common structures capturing

successful argument approaches that can be reused within a safety case [45]. To demon-

strate the compliance with the safety standards, different types of evidence can be used [51].

Among them are results of hazard analysis, testing, simulation, formal verification, manual

inspection, etc.

At the same time, the use of formal methods is highly recommended for certification of

safety-critical software systems [36]. Safety cases constructed using formal methods give us

extra assurance that the desired safety requirements are satisfied. There are several works

dedicated to show how formal proofs can contribute to a safety case, e.g., [8–10, 21, 43].

For instance, such approaches as [8, 10] apply formal methods to ensure that different types

of safety properties of critical systems hold while focusing on particular blocks of software

system implementation (C code). The authors of [21] propose a generic approach to auto-

matic transformation of the formal verification output into a software safety assurance case.

Similarly to [8, 10], a formalised safety requirement in [21] is verified to hold at a specific

location (a specific line number for code, a file, etc.).

In our work, we deal with formal system models rather than the code. A high level of

abstraction allows us to cope with complexity of systems yet ensuring the desired safety

properties. We rely on formal modelling techniques, including external tools that can be

used together, that are scalable to analyse the entire system. Our chosen formal framework

is Event-B [4] – a state-based formal method for system level modelling and verification.

Event-B aims at facilitating modelling of parallel, distributed and reactive systems. Scala-

bility in Event-B can be achieved via abstraction, proof and decomposition. Moreover, this

formalism has strictly defined semantics and mature tool support – the Rodin platform [26]

accompanied by various plug-ins, including the ones for program code generation, e.g, C,

Java, etc. This allows us to model and verify a wide range of different safety-related proper-

ties stipulated by the given system safety requirements. Those requirements may include the

safety requirements about global and local system properties, the absence of system dead-

locks, temporal and timing properties, etc.

In this paper, we significantly extend and exemplify with a large case study our approach

to linking modelling in Event-B with safety cases presented in [54]. More specifically, we

further elaborate on the classification of safety requirements and define how each class can

be treated formally to allow for verification of the given safety requirements, i.e., we define

mapping of the classified safety requirements into the corresponding elements of Event-B.

1

The Event-B semantics then allows us to associate them with particular theorems (proof obli-

gations) to be proved when verifying the system. The employed formal framework assists

the developers in automatic generation of the respective proof obligations. This allows us to

use the obtained proofs as the evidence in safety cases, demonstrating that the given safety

requirements have been met. Finally, to facilitate the construction of safety cases, we define

a set of argument patterns where the argumentation and goal decomposition in safety cases

are based on the results obtained from the associated formal reasoning.

Therefore, the overall contribution of this paper is a developed methodology that covers

two main processes: (1) integration of formalised safety requirements into formal models of

software systems, and (2) construction of structured safety cases 1 from such formal models.

The remainder of the paper is organised as follows. In Section 2, we briefly introduce our

modelling framework – Event-B, its refinement-based approach to modelling software sys-

tems as well as the Event-B verification capabilities based on theorem proving. Additionally,

we overview the notion of safety cases and their supporting graphical notation. In Section 3,

we describe our methodology and provide the proposed classification of safety requirements.

We elaborate on the proposed methodology in Section 4, where we define a set of argument

patterns and their verification support. In Section 5, we illustrate application of the proposed

patterns on a larger case study – a steam boiler control system. In Section 6, we overview

the related work. Finally, in Section 7, we give concluding remarks as well as discuss our

future work.

2 Preliminaries

In this section, we briefly outline the Event-B formalism that we use to derive models of

safety-critical systems. In addition, we briefly describe the notion of safety cases and their

supporting notation that we will rely on in this paper.

2.1 Overview of Event-B

Event-B language. Event-B [4, 26] is a state-based formal method for system level mod-

elling and verification. It is a variation of the B Method [2]. Automated support for modelling

and verification in Event-B is provided by the Rodin platform [26].

Formally, an Event-B model is defined by a tuple (d, c, A, v,Σ, I, Init, E), where d

stands for sets (data types), c are constants, v is a vector of model variables, Σ corresponds

to a model state space defined by all possible values of the vector v. A(d, c) is a conjunc-

tion of axioms defining properties of model data structures, while I(d, c, v) is a conjunction

of invariants defining model properties to be preserved. Init is an non-empty set of model

initial states, Init ⊆ Σ. Finally, E is a set of model events where each event e is a relation

of the form e ⊆ Σ× Σ.

The sets and constants of the model are stated in a separate component called CONTEXT,

where their properties are postulated as axioms. The model variables, invariants and events,

1From now on, by safety cases we mean structured safety cases.

2

including initialisation event, are introduced in the component called MACHINE. The model

variables are strongly typed by the constraining predicates in terms of invariants.

In general, an event e has the following form:

e =̂ any lv where g then R end,

where lv is a list of local variables, the guard g is a conjunction of predicates defined over the

model variables, and the action R is a parallel composition of assignments over the variables.

The event guard defines when an event is enabled. If several events are enabled si-

multaneously then any of them can be chosen for execution non-deterministically. If none

of the events is enabled then the system deadlocks. In general, the action of an event is a

composition of assignments executed simultaneously. Variable assignments can be either de-

terministic or non-deterministic. The deterministic assignment is denoted as x := Expr(v),
where x is a state variable and Expr(v) is an expression over the state variables v. The

non-deterministic assignment can be denoted as x :∈ S or x :| Q(v, x′), where S is a set of

values and Q(v, x′) is a predicate. As a result of the non-deterministic assignment, x gets

any value from S or it obtains a value x′ such that Q(v, x′) is satisfied.

The Event-B language can also be extended by different kinds of attributes attached to

model events, guards, variables, etc. We will use Event-B attributes to contain formulas or

expressions to be used by external tools or Rodin plug-ins, e.g., Linear Temporal Logic (LTL)

formulas to be checked.

Event-B semantics. The semantics of Event-B events is defined using before-after predi-

cates [50]. A before-after predicate (BA) describes a relationship between the system states

before and after execution of an event. Hence, the definition of an event presented above can

be given as the relation describing the corresponding state transformation from v to v′, such

that:

e(v, v′) = ge(v) ∧ I(v) ∧BAe(v, v
′),

where ge is the guard of the event e, BAe is the before-after predicate of this event, and v, v′

are the system states before and after event execution respectively.

Sometimes, we need to explicitly reason about possible model states before or after some

particular event. For this purpose, we introduce two sets – before(e) and after(e). Specif-

ically, before(e) represents a set of all possible pre-states defined by the guard of the event

e, while after(e) is a set of all possible post-states of the event e, i.e., before(e) ⊆ Σ and

after(e) ⊆ Σ denote the domain and range of the relation e [37]:

before(e) = {v ∈ Σ | I(v) ∧ ge(v)},
after(e) = {v′ ∈ Σ | I(v′) ∧ (∃v ∈ Σ · I(v) ∧ ge(v) ∧ BAe(v, v

′))}.

To verify correctness of an Event-B model, we generate a number of proof obligations

(POs). More precisely, for an initial (i.e., abstract) model, we prove that its initialisation and

all events preserve the invariant:

A(d, c), I(d, c, v), ge(d, c, v), BAe(d, c, v, v
′) ⊢ I(d, c, v′). (INV)

Since the initialisation event has no initial state and guard, its proof obligation is simpler:

3

A(d, c), BAInit(d, c, v
′) ⊢ I(d, c, v′). (INIT)

On the other hand, we verify event feasibility. Formally, for each event e of the model,

its feasibility means that, whenever the event is enabled, its before-after predicate is well-

defined, i.e., there exists some reachable after-state:

A(d, c), I(d, c, v), ge(d, c, v) ⊢ ∃ v
′ · BAe(d, c, v, v

′). (FIS)

Refinement in Event-B. Event-B employs a top-down refinement-based approach to formal

development of a system. The development starts from an abstract specification of the sys-

tem (i.e., an abstract machine) and continues with stepwise unfolding of system properties

by introducing new variables and events into the model (i.e., refinements). This type of a

refinement is known as a superposition refinement. Moreover, Event-B formal development

supports data refinement allowing us to replace some abstract variables with their concrete

counterparts. In this case, the invariant of a refined model formally defines the relation-

ship between the abstract and concrete variables; this type of invariants is called a gluing

invariant.

To verify correctness of a refinement step, one needs to discharge a number of POs for

a refined model. For brevity, here we show only essential ones. The full list of POs can be

found in [4].

Let us introduce a shorthand H(d, c, v, w) that stands for the hypotheses A(d, c), I(d, c, v)
and I ′(d, c, v, w), where I and I ′ are respectively the abstract and the refined invariants, while

v, w are respectively the abstract and concrete variables.

When refining an event, its guard can only be strengthened:

H(d, c, v, w), g′e(d, c, w) ⊢ ge(d, c, v), (GRD)

where ge, g
′

e are respectively the abstract and concrete guards of the event e.

The simulation proof obligation (SIM) requires to show that the action (i.e., the modelled

state transition) of a refined event is not contradictory to its abstract version:

H(d, c, v, w), g′e(d, c, w), BA′

e(d, c, w, w
′) ⊢ ∃v′.BAe(d, c, v, v

′) ∧ I ′(d, c, v′, w′), (SIM)

where BAe, BA′

e are respectively the abstract and concrete before-after predicates of the

same event e, w and w′ are the concrete variable values before and after this event execution.

All the described above proof obligations are automatically generated by the Rodin plat-

form [26] that supports Event-B. Additionally, the tool attempts to automatically prove them.

Sometimes it requires user assistance by invoking its interactive prover. However, in general

the tool achieves high level of automation in proving (usually over 80% of POs are proved

automatically).

Verification via theorem proving. Additionally, the Event-B formalism allows the develop-

ers to formulate theorems either in the model CONTEXT or MACHINE components. In the

4

first case, theorems are logical statements about model static data structures that are prov-

able (derivable) from the model axioms given in the CONTEXT component. In the latter

case, these are logical statements about model dynamic properties that follow from the given

formal definitions of the model events and invariants.

The theorem proof obligation (THM) indicates that this is a theorem proposed by the

developers. Depending whether a theorem is defined in the CONTEXT or MACHINE com-

ponents, it has a slightly different form. To highlight this difference, we use indexes C and

M in this paper. The first variant of a proof obligation is defined for a theorem T (d, c) in the

CONTEXT component:

A(d, c) ⊢ T (d, c). (THMC)

The second variant is defined for a theorem T (d, c, v) in the MACHINE component:

A(d, c), I(d, c, v) ⊢ T (d, c, v). (THMM)

2.2 Safety cases

A safety case is “a structured argument, supported by a body of evidence that provides a

convincing and valid case that a system is safe for a given application in a given operating

environment” [13,19]. The construction, review and acceptance of safety cases are the valu-

able steps in safety assurance process of critical software systems. Several standards, e.g.,

ISO 26262 [40] for the automotive domain, EN 50128 [25] for the railway domain, and the

UK Defence Standard [19], prescribe production and evaluation of safety (or more generally

assurance) cases for certification of such critical systems [31].

In general, safety cases can be documented either textually or graphically. However, a

growing number of industrial companies working with safety-critical systems adopt a graph-

ical notation, namely Goal Structuring Notation (GSN) proposed by Kelly [44], in order to

present safety arguments within safety cases [30]. GSN aims at graphical representation of

safety case elements as well as the relationships that exist between these elements. The prin-

cipal building blocks of the GSN notation are shown in Figure 1. Essentially, a safety case

constructed using GSN consists of goals, strategies and solutions. Here goals are proposi-

tions in an argument that can be said to be true or false (e.g., claims of requirements to be

met by a system). Solutions contain the information extracted from analysis, testing or sim-

ulation of a system (i.e., evidence) to show that the goals have been met. Finally, strategies

are reasoning steps describing how goals are decomposed and addressed by sub-goals.

Thus, a safety case constructed in the GSN notation presents decomposition of the given

safety case goals into sub-goals until they can be supported by the direct evidence (a solu-

tion). It also explicitly defines the argument strategies, relied assumptions, the context in

which goals are declared, as well as justification for the use of a particular goal or strategy.

If the contextual information contains a model, a special GSN symbol called model can be

used instead of a regular GSN context element.

The elements of a safety case can be in two types of relationships: “Is solved by” and

“In context of”. The former is used between goals, strategies and solutions, while the latter

5

In context of

Is solved by

A proposition in an

argument that can be

said to be true or false

Goal (G)

Information necessary

for an argument to be

understood

Context (C)

A goal that needs to be

developed later on

Undeveloped Goal

Either a rule to be

used in solution of

a goal or a rule to

break down a goal

into a number

of sub-goals

Strategy (S)

A statement whose

validity has to be relied

upon in order to make

an argument
A

Assumption (A)

Provides

evidence to

show that a goal

has been met

Solution

(Sn)
n

A strategy that

needs to be

developed

later on

Undeveloped Strategy

m-of-n

A statement of rationale

for the use of particular

goal or strategy

J

Justification (J)

Principal GSN Elements and Relationships GSN Extensions

Structural Abstraction

Entity Abstraction

A context symbol

which refers to an information

artefact in the form of

a model

Model (M)

Undeveloped and

Uninstantiated Entity

Uninstantiated Entity

Figure 1: Elements of GSN (detailed description is given in [7, 28, 44, 45])

links a goal to a context, a goal to an assumption, a goal to a justification, a strategy to a

context, a strategy to an assumption, a strategy to a justification.

To allow for construction of argument patterns, GSN has been extended to represent

generalised elements [44, 45]. We utilise the following elements from the extended GSN

for structural abstraction of our argument patterns: multiplicity and optionality. Multiplicity

is a generalised n-ary relationship between the GSN elements, while optionality stands for

optional and alternative relationship between the GSN elements. Graphically, the former is

represented as a solid ball or a hollow ball on an arrow “Is solved by” shown in Figure 1,

where the label n indicates the cardinality of a relationship, while a hollow ball means zero

or one. The latter is depicted as a solid diamond in Figure 1, where m-of-n denotes a possible

number of alternatives. The multiplicity and the optionality relationships can be combined. If

a multiplicity symbol is placed in front of the optionality symbol, this stands for a multiplicity

over all the options.

There are two extensions for entity abstraction in GSN: (1) uninstantiated entity, and (2)

undeveloped and uninstantiated entity. The former one specifies that the entity requires to

be instantiated, i.e., the “abstract” entity needs to be replaced with a more concrete instance

later on. In Figure 1, the corresponding annotation is depicted as a hollow triangle. It can

be used with any GSN element. The latter one indicates that the entity needs both further

development and instantiation. In Figure 1, it is shown as a hollow diamond with a line in

the middle. This annotation can be applied to GSN goals and strategies only.

3 Methodology

In this section, we describe our methodology that aims at establishing a link between formal

verification of safety requirements in Event-B and the construction of safety cases.

6

3.1 General methodology

In this work, we contribute to the process of development, verification and certification of

software systems by showing how to proceed from the given safety requirements to safety

cases via formal modelling and verification in Event-B (Figure 2). We distinguish two main

processes: (1) representation of formalised safety requirements in Event-B models, and (2)

derivation of safety cases from the associated Event-B specifications. Let us point out that

these activities are tightly connected to each other. Accuracy of the safety requirements for-

malisation influences whether we are able to construct a safety case sufficient to demonstrate

safety of a system. This dependence is highlighted in Figure 2 as a dashed line. If a formal

specification is not good enough, we need to return and improve it.

Safety requirements

representation in Event-B

Derivation of safety cases

from Event-B specifications

Formal specification

in Event-B

· constants

· axioms

· variables

· invariants

· theorems

· events

Proof

obligations

Hazard analysis:

HAZOP, PHA,

FMEA, etc.
Solution

Sn1

Goal

G1

Strategy
S1

Sub-goal

G2

Sub-goal

G3

C1
Context

Safety case

Requirements

Figure 2: High-level representation of the overall approach

We connect these two processes via classification of safety requirements. On the one

hand, we propose a specific classification associated with particular ways these requirements

can be represented in Event-B. On the other hand, we propose a set of classification-based

argument patterns to facilitate the construction of safety cases from the associated Event-B

models. The classification includes separate classes for safety requirements about global and

local system properties, the absence of system deadlock, temporal and timing properties, etc.

We are going to present this classification in detail in Section 3.2.

In this paper, we leave out of the scope the process of elicitation of system safety re-

quirements. We assume that the given list of these requirements is completed beforehand by

applying well-known hazard analysis techniques such as HAZard and OPerability (HAZOP)

analysis, Preliminary Hazard Analysis (PHA), Failure Modes and Effects Analysis (FMEA),

etc.

Incorporating safety requirements into formal models. Each class of safety requirements

can be treated differently in an Event-B specification (model). In other words, various model

expressions based on model elements, e.g., axioms, variables, invariants, events, etc., can

7

be used to formalise a considered safety requirement. Consequently, the argument strategies

and resulting evidence in a safety case built based on such a formal model may also vary.

Using the defined classification, we provide the reader with the precise guidelines on how to

map safety requirements of some class into a particular subset of model elements. Moreover,

we define how to construct from these model elements a specific theorem to be verified.

Later on, we will show how the verification results (e.g., discharged proof obligations and

model checking results) can be used as the evidence in the associated safety cases.

Our methodology allows us to cope with two cases: (1) when a formal Event-B spec-

ification of the system under consideration has been already developed, and (2) when it is

performed simultaneously with the safety case construction. In the first case, we assume that

adequate models are constructed and linked with the classification we propose. In the sec-

ond case, the formal development is guided by our proposed classification and methodology.

Consequently, both ways allow us to contribute towards obtaining adequate safety cases.

Constructing safety cases from formal models. Model-based development in general and

development using formal methods in particular typically require additional argumentation

about model correctness and well-definedness [6]. In this paper, we address this challenge

and provide the corresponding argument pattern as shown in Section 4.1.

Having a well-defined classification of safety requirements benefits both stages of the

proposed methodology, i.e., while incorporating safety requirements into formal models and

while deriving safety cases from such formal models. To simplify the task of linking the

formalised safety requirements with the safety case to be constructed, we propose a set of

classification-based argument patterns (Sections 4.2-4.9). The patterns have been developed

using the corresponding GSN extensions (Figure 1). Some parts of an argument pattern

may remain the same for any instance, while others need to be further instantiated (they are

labelled with a specific GSN symbol – a hollow triangle). The text highlighted by braces { }
should be replaced by a concrete value.

The generic representation of a classification-based argument pattern is given in Figure 3.

Here, a safety requirement Requirement of some class Class {X} is reflected in the goal GX,

where X is a class number (see the next section for the reference). According to the proposed

approach, the requirement is verified within a formal model M in Event-B (the model element

MX.1).

In order to obtain the evidence that a specific safety requirement is met, different con-

struction techniques might be undertaken. The choice of a particular technique influences

the argumentation strategies to be used in each pattern. For example, if a safety requirement

can be associated with a model invariant property, the corresponding theorem for each event

in the model M is required to be proved. Correspondingly, the proofs of these theorems are

attached as the evidence for the constructed safety case.

The formulated properties and theorems associated with a particular requirement can be

automatically derived from the given formal model. Nonetheless, to increase clarity of a

safety case, any theorem or property whose verification result is provided as a solution of the

top goal needs to be referred to in the GSN context element (CX.2 in Figure 3).

To bridge a semantic gap in the mapping associating an informally specified safety re-

8

{Requirement} of Class {X}

is met

GX

Argument over all

formulated theorems /

properties

{Discharged

PO} / {model

checking

result}

SX.3

SnX.1

The provided theorem

{thm} is indeed provable / the model

satisfies the property {propertyi}

GX.3

no. of theorems /

properties

Theorem {thm} /

property {propertyi}

CX.2

Theorem prover /

Model checker

CX.1

Argument over the

involved model

elements

SX.1

Property of the involved

model elements holds

GX.1

Formal model {M}

in Event-B

MX.1 Argument over

formalisation of

{Requirement}

SX.2

Formulated theorems/properties

are the proper formalisation of

{Requirement}

GX.2

Agreement over

inspection

conducted by

domain and

formalisation

experts

SnX.2

Figure 3: Generic argument pattern

quirement with the corresponding formal expression that is verified and connected to evi-

dence, we need to argue over a correct formalisation of the requirement (SX.2 in Figure 3).

We rely on a joint inspection conducted by domain and formalisation experts (SnX.2) as the

evidence that the formulated theorems/properties are proper formalisations of the require-

ment.

Generating code. Additionally, the most detailed (concrete) specification obtained during

the refinement-based development can be used for code generation. The Rodin platform,

Event-B tool support, allows for program code generation utilising a number of plug-ins.

One of these plug-ins, EB2ALL [24], automatically generates a target programming lan-

guage code from an Event-B formal specification. In particular, EB2C allows for generation

of C code, EB2C++ supports C++ code generation, using EB2J one can obtain Java code,

and using EBC# – C# code. The alternative solution is to use the constructed formal spec-

ification for verification of an already existing implementation code. Then, if the code has

successfully passed such a verification, the existing safety case derived from the formal spec-

ification implies the code safety for the verified safety properties. Nonetheless, in both cases

a safety case based on formal analysis cannot be used solely. It requires additional argumen-

tation, for example, over the correctness of the code generation process itself [30, 43].

9

3.2 Requirements classification and its mapping into Event-B elements

To classify safety requirements, we have firstly adopted the taxonomy proposed by Bitsch

[15] as presented in our previous work [54]. However, the Bitsch’s approach uses Computa-

tional Tree Logic (CTL) to specify the requirements and relies on model checking as a formal

verification technique. The differences between the semantics of CTL and Event-B signif-

icantly restrict the use of the Bitsch’s classification in the Event-B framework. As a result,

we extensively modified the original classification. In this paper, we propose the following

classification of safety requirements, as shown in Figure 4.

Safety Requirements

(SRs)

SRs about global

properties (Class 1)

Hierarchical SRs

(Class 6)

SRs about local

properties (Class 2)

SRs about temporal

properties (Class 7)

SRs about the absence

of system deadlock

(Class 4)

SRs about control flow

(Class 3)

SRs about timing

properties (Class 8)

SRs about system

termination (Class 5)

Figure 4: Classification of safety requirements

We divide safety requirements (SRs) into eight classes:

• Class 1: SRs about global properties are the requirements stipulating the system safety

properties that must be always maintained by the modelled system;

• Class 2: SRs about local properties are the requirements that reflect the necessity of

some property to be true at a specific system state;

• Class 3: SRs about control flow are the requirements that define the necessary flow

(order) in occurrences of some system events;

• Class 4: SRs about the absence of system deadlock are the requirements related to a

certain class of control systems where an unexpected stop of the system may lead to a

safety-related hazard;

• Class 5: SRs about system termination are the requirements related to a certain class of

control systems where non-termination of the system in a specific situation may lead

to a safety-related hazard;

• Class 6: Hierarchical SRs are the requirements that are hierarchically structured to

deal with the complexity of the system, i.e., a more general requirement may be de-

composed into several more detailed ones;

10

• Class 7: SRs about temporal properties are the requirements that describe the proper-

ties related to reachability of specific system states;

• Class 8: SRs about timing properties are the requirements that establish timing con-

straints of a system, for example, of a safety-critical real-time system where the re-

sponse time is crucial.

The given classes of SRs are represented differently in a formal model. For instance, SRs

of Class 1 are modelled as invariants in the MACHINE component, while SRs of Class 2 are

modelled by defining a theorem about the required post-state of a specific Event-B model

event. However, in some cases requirements of Class 2 can be also formalised as require-

ments of Class 1 by defining implicative invariants, i.e., invariants that hold in specific system

states. The SRs about control flow (Class 3) can be expressed as event-flow properties (e.g.,

by using Event-B extension – the graphical Usecase/Flow language [37]). The SRs about the

absence of system deadlock (Class 4) are represented as deadlock freedom conditions, while

the SRs of Class 5 are modelled as shutdown conditions. In both cases, these conditions are

turned into specific model theorems to be proved. The class of hierarchical SRs (Class 6) is

expressed within Even-B based on refinement between the corresponding Event-B models.

Finally, the associated ProB tool for the Rodin platform [52] allows us to support the SRs of

Class 7 by model checking.

Let us note however that the representation of timing properties (Class 8) in the Event-B

framework is a challenging task. There are several works dedicated to address this issue

[12, 18, 39, 58]. In this paper, we adopt the approach that establishes a link between timing

constraints defined in Event-B and verification of real-time properties in Uppaal [39].

Formally, the described above relationships can be defined as a function FM mapping

safety requirements (SRs) into a set of the related model expressions:

SRs → P(MExpr),

where P(T) corresponds to a power set on elements of T and MExpr stands for a gen-

eralised type for all possible expressions that can be built from the model elements, i.e.,

model expressions. Here model elements are elements of Event-B models such as axioms,

variables, invariants, events, and attributes. MExpr includes such model elements as triv-

ial (basic) expressions. Among other possible expressions of this type are state predicates

defining post-conditions and shutdown conditions, event control flow expressions as well as

Linear Temporal Logic (LTL) and Timed Computation Tree Logic (TCTL) formulas based on

elements of the associated Event-B model.

The defined strict mapping allows us to trace the safety requirements given in an infor-

mal manner into formal specifications in Event-B as well as into the accompanying means

for verification, i.e., the Flow and ProB plug-ins and Uppaal. In Figure 5, we illustrate the

steps of evidence construction in our proposed approach. Firstly, we map a safety require-

ment into a set of model expressions. Secondly, we construct a specific theorem or a set

of theorems out of these model expressions, thus essentially defining the semantics of the

formalised requirement. Finally, we prove each theorem using the theorem provers of Event-

B or perform model checking using, e.g., Event-B extension ProB. As a result, we obtain

11

either a discharged proof obligation or a result of model checking. We include such results

into the fragment of a safety case corresponding to the considered safety requirement as the

evidence that this requirement holds. Table 1 illustrates the correspondence between safety

requirements of different classes, model expressions and constructed theorems.

Safety

requirement

(SR)

Model

expressions

(MExpr)

Theorem

Proof /

Result of model

checking

mapping building

proving /

model

checking

Figure 5: Steps of evidence construction

Table 1: Formalisation of safety requirements
Safety Model element Theorem

requirement expressions

SR of Cl. 1 invariants group of theorems for each event

Eventk/safetyi/INV

SR of Cl. 2 event, theorem about a specific post-state of

state predicate an event thm ap/THM

SR of Cl. 3 pairs of events, group of theorems about enabling

event control flow relationships between events,

e.g., Eventi/Eventj/FENA

SR of Cl. 4 all events theorem about the deadlock freedom

thm dlf/THM

SR of Cl. 5 state predicate, theorem about a shutdown condition

all events thm shd/THM

SR of Cl. 6 abstract event, theorem about guard strengthening

concrete event(s) Event′k/grd/GRD,

theorem about action simulation

Event′k/act/SIM

SR of Cl. 7 LTL formula LTL propertyi
SR of Cl. 8 TCTL formula TCTL propertyj

As soon as all safety requirements are assigned to their respective classes and their map-

ping into Event-B elements is performed, we can construct the part of a safety case corre-

sponding to assurance of these requirements. We utilise GSN to graphically represent such

a safety case.

4 Argument patterns

In this section, we present the argument patterns corresponding to each of the introduced

classes. In addition, to obtain an adequate safety case, we need to demonstrate well-

definedness of the formal models we rely on. Therefore, we start this section by present-

ing a specific argument pattern to address this issue.

12

4.1 Argumentation that formal development of a system is well-defined

We propose the argument pattern shown in Figure 6 in order to provide evidence that the

proposed formal development of a system is well-defined. To verify this (e.g., that a partial

function is applied within its domain), Event-B defines a number of proof obligations (well-

definedness (WD) for theorems, invariants, guards, actions, etc. and feasibility (FIS) for

events [4]), which are automatically generated by the Rodin platform. We assume here that

all such proof obligations are discharged for models in question. However, if model axioms

are inconsistent (i.e., contradictory), the whole model becomes fallacious and thus logically

meaningless. Demonstrating that this is not the case is a responsibility of the developer. To

handle this problem, we introduce a specific argument pattern shown in Figure 6. In Event-

B, well-definedness of a CONTEXT can be ensured by proving axiom consistency (the goal

G1.2 in Figure 6).

We propose to construct a theorem showing axiom consistency and prove it. However,

All axioms in

the CONTEXT are

consistent

(i.e., non-contradictory)

G1.2

Discharged

PO

{thm_axm{i}}/

THMC

Argument over

axioms consistency

via defining theorems

about groups of

independent axioms

The theorem about

the group {i} of independent

axioms is proved

S1.2

Sn1.1

G1.3

Formal

development of

the {System S} is

well-defined

G1.1

Argument

over well-

definedness of

the model

S1.1

no. of independent

groups of axioms

Theorem

{thm_axm{i}}

about the

group {i}

C1.2

no. of models in

development

Model {M}

M1.2

Formal

development that

consists of a chain of

refinements

in Event-B

M1.1

Rodin

theorem

provers

C1.1

According to the Event-B

semantics, if axioms are

contradictory, the whole

model becomes

fallicious J

J1.1

Figure 6: Argument pattern for well-definedness of formal development

13

such a theorem could be very large in size. Thus, for simplicity, we suggest to divide axioms

into groups, where each group consists of axioms that use shared constants and sets. In

other words, each group of axioms is independent from each other. Consequently, we define

theorems for all groups of independent axioms (the strategy S1.2) as shown below:

thm axm{i}: A(d, c) ⊢ ∃ d, c · A1(d, c) ∧ ... ∧ AN (d, c),

where i stands for i-th group of axioms such that i ∈ 1 .. K and K is the number of indepen-

dent groups of axioms. The number of axioms in a group is represented by N . The generated

proof obligation (Sn1.1) shown in Figure 6 is an instance of the (THMC) proof obligation

given in Section 2.1.

In order to instantiate this pattern for each model in the development,

• a formal development that consists of a chain of refinements in Event-B should be

defined in a GSN model element;

• a formal model M, for which a particular fragment of the safety case is constructed,

should be referred to in a GSN model element;

• theorems about the defined groups of independent axioms should be formulated using

the Event-B formal language and referred to in GSN context elements;

• the proof obligations of the type THMC discharged by the Rodin platform should be

included as solutions of the goal ensuring consistency of model axioms.

The instantiation example for this fragment of the safety case can be found in Section 5.3.1.

In the remaining part of Section 4, we introduce the argument patterns that correspond to

each class of safety requirements proposed in Section 3.2. It is not necessarily the case that

the final safety case of the modelled system will include SRs of all the classes. Moreover, it

is very common for the Event-B practitioners to limit the requirements model representation

to invariants, theorems and operation refinement [41, 49, 59]. However, to achieve a strong

safety case, the developers need to provide the evidence that all the safety requirements listed

in the requirements document hold. The proposed argument patterns cover a broader range of

safety requirements, including also those that specify temporal and timing properties which

cannot be formalised in Event-B directly.

4.2 Argument pattern for SRs about global properties (Class 1)

In this section, we propose an argument pattern for the safety requirements stipulating global

safety properties, i.e., properties that must be maintained by the modelled system during its

operation (Figure 7).

We assume that there is a model M, which is a part of the formal development of a system

in Event-B, where a safety requirement of Class 1 is verified to hold (M2.1.1). In addition,

we assume that the model invariant I(d, c, v) contains the conjuncts safety1, ..., safetyN ,

where N is the number of safety invariants, which together represent a proper formalisation

of the considered safety requirement (A2.1.1) 2. Then, for each safety invariant safetyi, i ∈

2Such an assumption can be substantiated by arguing over formalisation of the requirements as demon-

strated in Figure 3 (the strategy SX.2). It is applicable to all the classification-based argument patterns and

their instances.

14

Invariant

{safetyi}

Argument over all

formulated invariants

S2.1.1
Invariants

{safety1,�, safetyN}

are the proper

formalisation of the

requirement
A

The invariant {safetyi}

holds for all events
G2.1.1

Sn2.1.1

Discharged PO

{Eventk}/

{safetyi}/INV

Argument over each

event individually

S2.1.2

The invariant {safetyi}

holds for the event {Eventk}
G2.1.2

{Requirement} of Class 1

is met

G2.1

A2.1.1

no. of events

C2.1.1

no. of invariants

Model {M}

M2.1.1

Rodin

theorem

provers

C2.1.2

Figure 7: Argument pattern for safety requirements of Class 1

1..N, the event Eventk, k ∈ 1..K, where K is the number of all model events, represents some

event for which this invariant must hold.

We build the evidence for the safety case in the way illustrated in Figure 5. Thus, for each

model expression, in this case, an invariant, formalising the safety requirement, we construct

a separate fragment of the safety case. Then, a separate theorem is defined for each event

where a particular invariant should hold. In other words, we define a group of theorems, one

per each event. The number of model events influences the number of branches into which

the goal G2.1.1 is split. In a special case when the set of variables referred in an invariant

is mutually exclusive with the set of variables modified by an event, such an event can be

excluded from the list of events because the theorem generated for such an event is trivially

true.

According to our approach, the generic mapping function FM is of the form SRs →
P(MExpr). In general case, for each requirement of this class the function returns a set of

invariants {safety1, ..., safetyN} that can be represented as a conjunction. Due to this fact,

each such an invariant can be verified independently. The theorem for verification that the

safety invariant safetyi (denoted by I(d, c, v′)) holds for the event Eventk is as follows:

A(d, c), I(d, c, v), gEventk(d, c, v), BAEventk(d, c, v, v
′) ⊢ I(d, c, v′). (INV)

The Rodin platform allows us to prove this theorem using the integrated theorem provers

and explicitly support the safety case to be built with the discharged proof obligations of the

type INV for each event where the safety invariant has been verified to hold.

15

The key elements of the pattern to be instantiated are as follows:

• a requirement Requirement should be replaced with a particular safety requirement;

• a formal model M should be referred to in a GSN model element;

• the concrete mapping between the requirement and the corresponding model invariants

should be provided, while the invariants safety1, ..., safetyN formalising the require-

ment from this mapping should be referred to in GSN context elements;

• the proof obligations of the type INV discharged by the Rodin platform should be

included in the safety case as the respective solutions.

Let us consider instantiation of the proposed pattern by an example – a sluice gate control

system [46]. The system is a sluice connecting areas with dramatically different pressures.

The purpose of the system is to adjust the pressure in the sluice area and operate two doors

(door1 and door2) connecting outside and inside areas with the sluice area. To guarantee

safety, a door may be opened only if the pressure in the locations it connects is equalized,

namely

SR-cl1-ex1: When the door1 is open, the pressure in the sluice area

is equal to the pressure outside;
SR-cl1-ex2: When the door2 is open, the pressure in the sluice area

is equal to the pressure inside.

These safety requirements are formalised in the Event-B model (available from Appendix

C, Refinement 2 of [46]) as the invariants inv cl1 ex1 and inv cl1 ex2 such that

SR-cl1-ex1 7→ {inv cl1 ex1},
SR-cl1-ex2 7→ {inv cl1 ex2},

where:

inv cl1 ex1: failure = FALSE ∧ (door1 position > 0 ∨
door1 motor = MOTOR OPEN)⇒
pressure value = PRESSURE OUTSIDE,

inv cl1 ex2: failure = FALSE ∧ (door2 position > 0 ∨
door2 motor = MOTOR OPEN)⇒
pressure value = PRESSURE INSIDE.

The expressions doorX position > 0 and doorX motor = MOTOR OPEN indicate that the

corresponding door X (where X = 1 or X = 2) is open. The variable door1 models a door

that connects the sluice area with the outside area and the variable door2 models a door that

connects the sluice area with inside area. The variable pressure value stands for the pressure

in the sluice area.

Then, according to the proposed approach, we show that these invariants hold for all

events in the model. Due to the space limit, we give only an excerpt of the safety case that

corresponds to the safety requirement SR-cl1-ex1 (Figure 8). The associated invariant affects

a number of model events, including such as pressure high (changing pressure to high) and

closed2 (closing the door 2). From now on, we will hide a part of the safety case by three

dots to avoid unnecessary big figures in the paper. We assume that the given part of the safety

case is clear and can be easily repeated for the hidden items.

16

Invariant

inv_cl1_ex1

Argument over all

formulated invariants

S2.1.1 Invariant

inv_cl1_ex1 is the

proper formalisation of

the requirement
A

The invariant inv_cl1_ex1

holds for all events
G2.1.1

Sn2.1.1

Discharged PO

pressure_high/

inv_cl1_

ex1/INV

Argument over each

event individually

S2.1.2

The invariant inv_cl1_ex1

holds for the event pressure_high
G2.1.2

SR-cl1_ex1 of Class 1

is met

G2.1

A2.1.1

C2.1.1

Sn2.1.n

Discharged PO

closed2/

inv_cl1_

ex1/INV

The invariant inv_cl1_ex1

holds for the event closed2
G2.1.n...

Model: the

second refinement

(MACHINE m2 and

CONTEXT c1)

M2.1.1

Rodin

theorem

provers

C2.1.2

Figure 8: The pattern instantiation example

4.3 Argument pattern for SRs about local properties (Class 2)

Safety requirements of Class 2 describe local properties, i.e., the properties that need to be

true at specific system states. For example, in case of a control system relying on the notion

of operational modes, a safety requirement of Class 2 may define a (safety) mode which

the system enters after the execution of some transition. In terms of Event-B, the particular

system states we are interested in are usually associated with some desired post-states of

specific model events.

Figure 9 shows the argument pattern for justification of a safety requirement of Class 2.

As for Class 1, the key argumentation strategy here (S2.2.1) is defined by the steps of ev-

idence construction illustrated in Figure 5. However, in contrast to the invariant theorems

established and proved for each event in the model, the theorem formalising the safety re-

quirement of Class 2 is formulated and proved only once for the whole model M.

As mentioned above, local properties are usually expressed in Event-B in terms of post-

states of specific model events. This suggests the mapping function FM for Class 2 to be of

the form:

Requirement 7→ {(e1, q1), ..., (eK , qS)},

where the events e1,..., eK and the state predicates q1,..., qS are model expressions based on

which the corresponding theorems are constructed. The number of such theorems reflects

the number of branches of a safety case for the goal G2.2 (Figure 9). Specifically, we can

verify a safety requirement of Class 2 by proving the following theorem for each pair (ei,qj),

where i ∈ 1..K and j ∈ 1..S:

17

{Requirement} of Class 2

is met

G2.2

Discharged

PO

{thm_ap}/

THMM

Argument by providing

theorems for events

where post-conditions

are required to hold

S2.2.1

Sn2.2.1

The provided theorem

{thm_ap} is indeed provable

G2.2.1
Theorem

{thm_ap}

C2.2.2

no. of theorems

Formulated

theorems are the

proper formalisation

of the requirement

A

A2.2.1

Model {M}

M2.2.1

Rodin

theorem

provers

C2.2.1

Figure 9: Argument pattern for safety requirements of Class 2

thm ap : A(d, c), I(d, c, v) ⊢ ∀v′ · v′ ∈ after(ei) ⇒ qj(v
′).

Here after(ei) is the set of all possible post-states of the event ei as defined in Section 2.1.

This argument pattern (Figure 9) can be instantiated as follows:

• a requirement Requirement should be replaced with a particular safety requirement;

• a formal model M should be referred to in a GSN model element;

• the concrete mapping between the requirement and event-post-condition pairs should

be supplied, while the theorems thm ap obtained from this mapping should be referred

to in GSN context elements;

• the proof obligations of the type THMM discharged by the Rodin platform should be

included in the safety case as the evidence supporting that the top-level claim (i.e.,

G2.2) holds.

In order to demonstrate application of this pattern, let us introduce another case study

– Attitude and Orbit Control System (AOCS) [53]. The AOCS is a typical layered control

system. The main function of this system is to control the attitude and the orbit of a satellite.

Since the orientation of a satellite may change due to disturbances of the environment, the

attitude needs to be continuously monitored and adjusted. At the top layer of the system

there is a mode manager (MM). The transitions between modes can be performed either to

fulfil the predefined mission of the satellite (forward transitions) or to perform error recov-

ery (backward transitions). Correspondingly, the MM component might be in either stable,

increasing (i.e., in forward transition) or decreasing (i.e., in backward transition) state. As

an example, let us consider the safety requirement

SR-cl2: When a mode transition is completed,

the state of the MM shall be stable.

18

To verify this property on model events and variables, we need to prove that the corre-

sponding condition q, namely

last mode = prev target ∧ next target = prev target,

holds after the execution of the event Mode Reached. Here prev target is the previous mode

that a component was in transition to, last mode is the last successfully reached mode, and

next target is the target mode that a component is currently in transition to. The event is

enabled only when there is no critical error in the system, i.e., when the condition error =
No Error holds.

We represent the mapping of the shown safety requirement on Event-B as FM such that

SR-cl2 7→ {(Mode Reached, q)}. According to thm ap and the definition of after(e) given in

Section 2.1, we can construct the theorem to be verified as follows:

thm cl2 ex: ∀last mode′, prev targ′, next targ′ ·
(∃ next targ, error, prev targ·
(next targ 6= prev targ ∧ error = No Error) ∧
(last mode′ = next targ ∧ prev targ′ = next targ∧
next targ′ = next targ))
⇒
last mode′ = next targ ∧ prev targ′ = next targ.

Here, for simplicity, we omit showing types of the involved variables. The corresponding

instance of the argument pattern is illustrated in Figure 10.

SR-cl2 of Class 2

is met

G2.2

Discharged

PO

thm_cl2_ex/

THM

Argument by providing

theorems for events

where post-conditions

are required to hold

S2.2.1

Sn2.2.1

The provided theorem

thm_cl2_ex is indeed provable

G2.2.1
Theorem

thm_cl2_ex

C2.2.2

Theorem

thm_cl2_ex is the

proper formalisation

of the requirement

A

A2.2.1
Model: the first

refinement (MACHINE

MM_Ref1_M and CONTEXT

MM_Ref1_C)

M2.2.1

Rodin

theorem

provers

C2.2.1

Figure 10: The pattern instantiation example

4.4 Argument pattern for SRs about control flow (Class 3)

In this section, we propose an argument pattern for the requirements that define the flow in

occurrences of some system events, i.e., safety requirements about control flow. For instance,

19

this class may include certain requirements that define fault-tolerance procedures. Since fault

detection, isolation and recovery actions are strictly ordered, we also need to preserve this

order in a formal model of the system.

Formally, the ordering between system events can be expressed as a particular relation-

ship amongst possible pre- and post-states of the corresponding model events. We consider

three types of relationships proposed by Iliasov [37]: enabling (ena), disabling (dis) and

possibly enabling (fis). In detail, enabling relationship between two events means that, when

one event occurs, it is always true that the other one may occur next (i.e., the set of pre-states

of the second event is included in the set of post-states of the first event). An event disables

another event if the guard of the second event is always false after the first event occurs (i.e.,

the set of pre-states of the second event is excluded from the set of post-states of the first

event). Finally, an event possibly enables another event if, after its occurrence, the guard of

the second event is potentially enabled (i.e., there is a non-empty intersection of the set of

pre-states of the second event with the set of post-states of the first event).

Let em and en be some events. Then, according to the usecase/flow approach [37], the

proof obligations that support the relationships between these events can be defined as fol-

lows:

em ena en ⇔ after(em) ⊆ before(en)
⇔ ∀v, v′ · I(v) ∧ gem(v) ∧ BAem(v, v

′) ⇒ gen(v
′),

(FENA)

em dis en ⇔ after(em) ∩ before(en) = ∅

⇔ ∀v, v′ · I(v) ∧ gem(v) ∧ BAem(v, v
′) ⇒ ¬gen(v

′),
(FDIS)

em fis en ⇔ after(em) ∩ before(en) 6= ∅

⇔ ∃v, v′ · I(v) ∧ gem(v) ∧ BAem(v, v
′) ∧ gen(v

′).
(FFIS)

The flow approach and its supporting plug-in for the Rodin platform, called Usecase/Flow

plug-in [27], allows us to derive these proof obligations automatically.

The argument pattern shown in Figure 11 pertains to the required events order (C2.3.2)

which is proved to be preserved by the respective events of a model M. As explained above,

each event Eventi′ can be either enabled (ena), or disabled (dis), or possibly enabled (fis)

by some other event Eventi. This suggests that the mapping function FM is of the form:

Requirement 7→ {(Eventi, ena, Eventi′),
(Eventj , dis, Eventj′),
(Eventk, fis, Eventk′), ... }.

The corresponding theorem is constructed according to the definition of either (FENA), or

(FDIS), or (FFIS). Then, the discharged proof obligations for each such a pair of events are

provided as the evidence in a safety case, e.g., Sn2.3.1 in Figure 11.

The instantiation of the proposed argument pattern can be achieved by preserving a num-

ber of the following steps:

• a requirement Requirement should be replaced with a particular safety requirement;

• a formal model M should be referred to in a GSN model element;

20

{Requirement} of Class 3

is met

G2.3

Discharged PO

{Eventi}/

{Eventi�}/

FENA

Argument over

required events order

S2.3.1

Sn2.3.1

The required

events order is preserved

G2.3.1

Argument over

each pair of events

S2.3.2

{Eventi} enables {Eventi�}
G2.3.2

{Eventi} disables {Eventi�}
G2.3.3 {Eventi} possibly

enables {Eventi�}

G2.3.4

Discharged PO

{Eventi}/

{Eventi�}/

FDIS

Sn2.3.2

Discharged PO

{Eventi}/

{Eventi�}/

FFIS

Sn2.3.3

Required events

order

C2.3.2

no. of pairs of events

1-of-3

Flow plug-in for the

Rodin platform

C2.3.1

Events order

expression is the

proper formalisation

of the requirement

A2.3.1

A

Model {M}

M2.3.1

Rodin

theorem

provers

C2.3.3

Figure 11: Argument pattern for safety requirements of Class 3

• the concrete mapping between the requirement and the corresponding pairs of events

and relationships between them should be provided, while the required events order

based on this mapping should be referred to in a GSN context element;

• a separate goal for each pair should be introduced in the safety case;

• each goal that claims the enabling relationship between events should be supported by

the proof obligation of the type FENA in a GSN solution element;

• each goal that claims the disabling relationship between events should be supported by

the proof obligation of the type FDIS in a GSN solution element;

• each goal that claims the possibly enabling relationship between events should be sup-

ported by the proof obligation of the type FFIS in a GSN solution element.

In the already introduced case study AOCS (Section 4.3), there is a set of requirements

regulating the order of actions to take place in the system control flow. These requirements

define the desired rules of transitions between modes, e.g.,

SR-cl3: The system shall perform its (normal or failure handling) operation

only when there are no currently running transitions between

modes at any level.

This means that once a transition is initiated either by the high-level mode manager or lower

level managers, it has to be completed before system operation continues.

21

As an example, we consider a formalisation of the requirement SR-cl3 at the most ab-

stract level, i.e., the MACHINE MM Abs M and the CONTEXT MM Abs C, where the

essential behaviour of the high-level mode manager is introduced.

The required events order (C2.3.2) is depicted by the usecase/flow diagram in Figure 12.

This flow diagram can be seen as a use case scenario specification attached to the MA-

CHINE MM Abs M. The presented flow diagram is drawn in the graphical editor for the

Usecase/Flow plug-in for the Rodin platform. While defining the desired relationships be-

tween events using this editor, the corresponding proof obligations are generated automati-

cally by the Rodin platform.

Event

Enabling relationship

Disabling relationship

A symbol indicating that the

corresponding proof obligation

has been discharged

Figure 12: The partial flow diagram of the abstract machine of AOCS

In terms of the usecase/flow approach, the requirement SR-cl3 states that the event

Advance partial enables the event Advance complete and disables operation events Nor-

mal Operation and Failure Operation. In its turn, the event Advance complete disables the

event Advance partial and enables system (normal or failure handling) operation events.

Then, the mapping function FM is instantiated as follows:

SR-cl3 7→ {(Advance partial, ena, Advance complete),
(Advance partial, dis, Normal Operation),
(Advance partial, dis, Failure Operation),
(Advance complete, dis, Advance partial),
(Advance complete, ena, Normal Operation),
(Advance complete, ena, Failure Operation)}.

The instance of the argument pattern for the safety requirement SR-cl3 is shown in Fig-

ure 13.

4.5 Argument pattern for SRs about the absence of system deadlock

(Class 4)

In this section, we propose an argument pattern for the safety requirements stipulating the

absence of the unexpected stop of the system (Figure 14). We formalise requirements of

Class 4 within an Event-B model M as the deadlock freedom theorem. Similarly to the SRs

of Class 2, this theorem has to be proved only once for the whole model M. The theorem is

reflected in the argument strategy that is used to develop the main goal of the pattern (S2.4.1

in Figure 14).

22

SR-cl3 of Class 3

is met

G2.3

Discharged PO

Advance_

partial/Advance

_complete/

FENA

Argument over

required events order

S2.3.1

Sn2.3.1

The required

events order is preserved

G2.3.1

Argument over

each pair of events

S2.3.2

Advance_partial

enables

Advance_complete

G2.3.2

Required events

order

C2.3.2

Discharged PO

Advance_

partial/Normal

_Operation/

FDIS

Sn2.3.2

Advance_partial

disables

Normal_Operation

G2.3.3

Discharged PO

Advance_com-

plete/Advance

_partial/

FDIS

Sn2.3.5

Advance_complete

disables

Advance_partial

G2.3.6

Discharged PO

Advance_com-

plete/Normal_

Operation/

FENA

Sn2.3.6

Advance_complete

enables

Normal_Operation

G2.3.7

...

Flow plug-in for the Rodin

platform

C2.3.1

Events order

expression is the

proper formalisation

of the requirement

A2.3.1

A

Model: the abstract

model (MACHINE

MM_Abs_M and CONTEXT

MM_Abs_C)

M2.3.1

Rodin

theorem

provers

C2.3.3

Figure 13: The pattern instantiation example

Formally, the deadlock freedom theorem is formulated as the disjunction of guards of all

model events g1(d, c, v) ∨ ... ∨ gK(d, c, v), where K is the total number of model events:

thm dlf : A(d, c), I(d, c, v) ⊢ g1(d, c, v) ∨ ... ∨ gK(d, c, v).

The corresponding mapping function FM for this argument pattern is defined as

Requirement 7→ {event1, ... , eventK}. Then, the instance of the (THMM) proof obliga-

tion given in Section 2.1 provides the evidence for the safety case (Sn2.4.1 in Figure 14).

The argument pattern presented in Figure 14 can be instantiated as follows:

• a requirement Requirement should be replaced with a particular safety requirement;

• a formal model M should be referred to in a GSN model element;

• the concrete mapping between the requirement and the corresponding model events

should be supplied, while the theorem thm dlf formalising the requirement from this

mapping should be referred to in a GSN context element;

• the proof obligation of the type THMM discharged by the Rodin platform should be

included in the safety case as the evidence supporting that the top-level claim (i.e.,

G2.4 in Figure 14) holds.

We illustrate the instantiation of this argument pattern by a simple example presented by

Abrial in Chapter 2 of [4]. The considered system performs controlling cars on a bridge. The

bridge connects the mainland with an island. Cars can always either enter the compound or

leave it. Therefore, the absence of the system deadlock should be guaranteed, i.e.,

SR-cl4: Once started, the system should work for ever.

23

{Requirement} of Class 4

is met

G2.4

Discharged

PO

{thm_dlf}/

THMM

Argument by

providing the

deadlock freedom

theorem

S2.4.1

Sn2.4.1

The provided theorem

{thm_dlf} is indeed provable

G2.4.1
Theorem

{thm_dlf}

C2.4.2

Formulated

theorem is the proper

formalisation

of the requirement

A2.4.1

A

Model {M}

M2.4.1

Rodin

theorem

provers

C2.4.1

Figure 14: Argument pattern for safety requirements of Class 4

The semantics of Event-B allows us to chose the most abstract specification to argue over

the deadlock freedom of a system. According to the notion of the relative deadlock freedom,

which is a part of the Event-B semantics, new deadlocks cannot be introduced in a refinement

step 3. As a consequence, once the model is proved to be deadlock free, no new refinement

step can introduce a deadlock.

The abstract model of the system has three events: Initialisation, ML out and ML in.

Thus, the concrete mapping function FM is as follows:

SR-cl4 7→ {Initialisation,ML out,ML in}.

Here ML out models leaving the mainland, while ML in models entering the mainland. The

former event has the guard n < d, where n is a number of cars on the bridge and d is

a maximum number of cars that can enter the bridge. The latter event is guarded by the

condition n > 0, which allows this event to be enabled only when some car is on the island

or the bridge. Therefore, the corresponding deadlock freedom theorem thm cl4 ex can be

defined as follows:

thm cl4 ex: n > 0 ∨ n < d.

The event Initialisation does not have a guard and therefore is not reflected in the theorem.

The instantiated fragment of the safety case for this example is shown in Figure 15.

The details on the considered formal development in Event-B (Controlling cars on a

bridge) as well as the derived proof obligation of the deadlock freedom can be found in [3,4].

3This may be enforced by the corresponding generated theorem to be proved for the respective model.

24

SR-cl4 of Class 4

is met

G2.4

Discharged

PO

thm_cl4_ex/

THM

Argument by

providing the

deadlock freedom

theorem

S2.4.1

Sn2.4.1

The provided theorem

thm_cl4_ex is indeed provable

G2.4.1
Theorem

thm_cl4_ex

C2.4.2

Theorem

thm_cl4_ex is the

proper formalisation

of the requirement

A2.4.1

A

Model: the

abstract

model

M2.4.1

Rodin

theorem

provers

C2.4.1

Figure 15: The pattern instantiation example

4.6 Argument pattern for SRs about system termination (Class 5)

In contrast to Class 4, Class 5 contains the safety requirements stipulating the system ter-

mination in particular cases. For instance, it corresponds to failsafe systems (i.e., systems

which need to be put into a safe but non-operational state to prevent an occurrence of a haz-

ard). Despite the fact that the argument pattern is quite similar to the one about the absence

of system deadlock, this class of safety requirements can be considered as essentially op-

posite to the previous one. Here the requirements define the conditions when the system

must terminate. More specifically, the system is required to have a deadlock either (1) in a

specific state of the model M, i.e., after the execution of some event ei (where i ∈ 1 .. K and

K is the total number of model events), or (2) once a shutdown condition (shutdown cond)

is satisfied:

(1) after(ei) ∩ before(E) = ∅,
(2) shutdown cond ∩ before(E) = ∅,

where shutdown cond is a predicate formalising a condition when the system terminates and

before(E) is defined as a union of pre-states of all the model events:

before(E) =
⋃

e∈E

before(e).

Correspondingly, the mapping function FM for Class 5 can be either of the form

(1) Requirement 7→ {ei, e1, ..., eK}, or

(2) Requirement 7→ {state predicate, e1, ..., eK},

where state predicate is a formally defined shutdown condition.

Then, for the first case, the theorem about a shutdown condition has the following form:

thm shd : A(d, c), I(d, c, v) ⊢ after(ei)⇒ ¬before(E),

25

while, for the second case, it is defined as:

thm shd : A(d, c), I(d, c, v) ⊢ shutdown cond ⇒ ¬before(E).

The argument pattern presented in Figure 16 can be instantiated as follows:

• a requirement Requirement should be replaced with a particular safety requirement;

• a formal model M should be referred to in a GSN model element;

• the concrete mapping between the requirement and the corresponding model events

(and state predicates) should be provided, while the theorem thm shd formalising the

requirement from this mapping should be referred to in a GSN context element;

• the proof obligation of the type THMM discharged by the Rodin platform should be

included in the safety case as the evidence supporting that the top-level claim (i.e.,

G2.5) holds.

{Requirement} of Class 5

is met

G2.5

Discharged

PO

{thm_shd}/

THMM

Argument by

providing the

theorem about a

shutdown condition

S2.5.1

Sn2.5.1

The provided theorem

{thm_shd} is indeed provable

G2.5.1
Theorem

{thm_shd}

C2.5.2

Formulated

theorem is the proper

formalisation

of the requirement

A2.5.1

A

Model {M}

M2.5.1

Rodin

theorem

provers

C2.5.1

Figure 16: Argument pattern for safety requirements of Class 5

To show an example of the pattern instantiation, let us consider the sluice gate control

system [46] described in detail in Section 4.2. This system is a failsafe system. To handle

critical failures, it is required to raise an alarm and terminate:

SR-cl5: When a critical failure is detected, an alarm shall be raised

and the system shall be stopped.

Thus, we need to assure that our model also terminates after the execution of the event

which sets the alarm on (i.e., the event SafeStop in the model). This suggests the concrete

instance of the mapping function FM to be of the form:

SR-cl5 7→ {SafeStop,Environment,Detection door1, ..., close2, closed2}.

26

Then, the corresponding theorem thm cl5 ex, which formalises the safety requirement SR-

cl5, can be formulated as follows:

thm cl5 ex: ∀flag′, Stop′ ·
(∃ flag, door1 fail, door2 fail, pressure fail, Stop ·
flag = CONT ∧ (door1 fail = TRUE ∨
door2 fail = TRUE ∨ pressure fail = TRUE) ∧
Stop = FALSE ∧ flag′ = PRED ∧ Stop′ = TRUE)
⇒
¬(before(Environment) ∨ before(Detection door1) ∨ ...∨
before(close2) ∨ before(closed2)),

where the variable flag indicates the current phase of the sluice gate controller, while the

variables door1 fail, door2 fail and pressure fail stand for failures of the system components

(the doors and the pressure pump respectively). The variable Stop models an alarm and

a signal to stop the physical operation of the system components. Finally, Environment,

Detection door1, ..., closed2 are model events. The corresponding instance of the argument

pattern is given in Figure 17.

SR-cl5 of Class 5

is met

G2.5

Discharged

PO

thm_cl5_ex/

THM

Argument by

providing the

theorem about a

shutdown condition

S2.5.1

Sn2.5.1

The provided theorem

thm_cl5_ex is indeed provable

G2.5.1
Theorem

thm_cl5_ex

C2.5.2

Theorem

thm_cl5_ex is the

proper formalisation

of the requirement

A2.5.1

A

Model: the first

refinement (MACHINE m1

and CONTEXT c1)

M2.5.1

Rodin

theorem

provers

C2.5.1

Figure 17: The pattern instantiation example

4.7 Argument pattern for Hierarchical SRs (Class 6)

Sometimes a whole requirements document or some particular requirements (either func-

tional or safety) of a system may be structured in a hierarchical way. For example, a general

safety requirement may stipulate actions to be taken in the case of a system failure, while

more specific safety requirements elaborate on the general requirement by defining how the

failures of different system components may contribute to such a failure of the system as well

as regulate the actions to mitigate these failures. Often, the numbering of requirements may

27

indicate such intended hierarchical relationships. A more general requirement can be num-

bered REQ X, while its more specific versions – REQ X.1, REQ X.2, etc. In our classification,

we call such requirements Hierarchical SRs.

The class of Hierarchical SRs (Class 6) differs from the previously described classes

since it involves several, possibly quite different yet hierarchically linked requirements. To

create the corresponding argument patterns for such cases, we apply a composite approach.

This means that the involved individual requirements (a more general requirement and its

more detailed counterparts) can be shown to hold separately in different models of the sys-

tem development in Event-B, by instantiating suitable argument patterns from the described

classes 1-5. Moreover, to ensure the consistency of their hierarchical link, an additional

fragment in a safety case is needed. This fragment illustrates that the formalisation of the in-

volved requirements is consistent, even if it is done in separate models of the Event-B formal

development. To address the class of hierarchical requirements, in this section we propose

an argument pattern that facilitates the task of construction of such an additional fragment of

a safety case.

Since the main property of the employed refinement approach is the preservation of con-

sistency between the models, it is sufficient for us to show that the involved models are

valid refinements of one another. In Event-B, to guarantee consistency of model transforma-

tions, we need to show that the concrete events refine their abstract versions by discharging

the corresponding proof obligations to verify guard strengthening (GRD) and action sim-

ulation (SIM), as given in Section 2.1. This procedure may involve the whole set of the

refined events. However, to simplify the construction of the corresponding fragment of a

safety case, we limit the number of events by choosing only those events that are affected

by the requirements under consideration. To achieve this, we rely on the given mappings

for higher-level and lower-level requirements, returning the sets of the involved model ex-

pressions Reqh ⇒ {Expr1, ..., ExprN} and Reql ⇒ {Expr1, ..., ExprP}. Making a step

further, we can always obtain the set of affected model events:

Reqh ⇒ {Expr1, ..., ExprN} ⇒ {Eventh1
, ..., EventhK},

Reql ⇒ {Expr1, ..., ExprP } ⇒ {Event′l1 , ..., Event′lL}.

As a result, we attach proofs only for those events from {Event′l1 , ..., Event′lL} that refine

some events from {Eventh1
, ..., EventhK}.

Each higher-level requirement may be linked with a set of more detailed requirements

in the requirements document. Nevertheless, to simplify the task, let us consider the case

where there is only one such a lower-level requirement. If there are more than one such a

requirement, one could reiterate the proposed approach by building a separate fragment of a

safety case for each pair of linked requirements.

In Figure 18, Higher-level req. stands for some higher-level requirement, while Lower-

level req. is a requirement that is a more detailed version of the higher-level one. The higher-

level requirement is mapped onto a formal model Mabs and the lower-level requirement is

mapped onto a formal model Mconcr (where Mconcr is a refinement of Mabs) using one of the

mapping functions defined for the classes 1-5.

Following the procedure described above, we can associate Higher-level req. with the set

28

Action

{act} simulation in

refinement of the event

{Event} is correct

G2.6.2

Discharged

PO

{Event�}/{act}/

SIM

Guard {grd}

of the event {Event}

is strengthened in

refinement

G2.6.1

Discharged

PO

{Event�}/{grd}/

GRD

Sn2.6.1 Sn2.6.2

{Lower-level req.}

is a proper elaboration of

{Higher-level req.}

G2.6

Argument over the

abstract {Event} and

refined {Event�} events

S2.6.1
Abstract event

{Event}

C2.6.1

Refined event

{Event�}

C2.6.2

no. of events Model {Mconcr} is a

refinement of

model {Mabs}

A2.6.1

A

More abstract model

{Mabs}, more concrete

model {Mconcr}

M2.6.1

Rodin

theorem

provers

C2.6.3

Figure 18: Argument pattern for safety requirements of Class 6

of affected events {Eventh1
, ..., EventhK}. Similarly, Lower-level req. is associated with its

own set of affected events {Event′l1 , ..., Event′lL}.
For each pair of events Event and Event′ from the obtained sets, the following two gen-

erated proof obligations (GRD) and (SIM) are needed to be proved to establish correctness

of model refinement (Section 2.1):

H(d, c, v, w), g′Event′(d, c, w) ⊢ gEvent(d, c, v),
H(d, c, v, w), g′Event′(d, c, w), BA′

Event′(d, c, w,w
′) ⊢

∃v′.BAEvent(d, c, v, v
′) ∧ I ′(d, c, v′, w′).

The established proofs of the types GRD and SIM serve as solutions in our pattern, Sn2.6.1

and Sn2.6.2 in Figure 18 respectively.

The instantiation of the pattern proceeds as shown below:

• requirements Higher-level req. and Lower-level req. should be replaced with specific

requirements;

• a more abstract formal model Mabs and a more concrete formal model Mconcr should

be referred to in a GSN model element;

• the pairs of the associated events of the respective abstract and concrete system models

should be referred to in GSN context elements;

• the proof obligations of the types GRD and SIM discharged by the Rodin platform

should be included in the safety case as solutions.

Moreover, there can be several hierarchical levels of requirements specification. To cope

with this case, we propose to instantiate patterns for each such a level separately.

To illustrate the construction of a safety case fragment for this class of requirements, we

refer to the sluice gate control system [46] described in Sections 4.2 and 4.6. Some safety

29

requirements of this system are hierarchically structured. Thus, there is a more generic safety

requirement SR-cl6-higher-level:

SR-cl6-higher-level: The system shall be able to handle a critical failure

by either initiating a shutdown or a recovery procedure

stipulating that some actions should take place in order to tolerate any critical failure. How-

ever, it does not define the precise procedures associated with this failure handling. In

contrast, there is a more detailed counterpart SR-cl6-lower-level of the requirement SR-

cl6-higher-level (it was presented in the previous section as the requirement SR-cl5). It

regulates precisely that an alarm should be raised and the system should stop its operation

(the system should terminate):

SR-cl6-lower-level: When a critical failure is detected, an alarm shall be raised

and the system shall be stopped.

These safety requirements are shown to hold in different models of the system devel-

opment. The requirement SR-cl6-higher-level is formalised as two invariants at the most

abstract level of the formal specification in Event-B, the MACHINE m0, while the require-

ment SR-cl6-lower-level is formalised as a theorem in the MACHINE m1. Note that the

MACHINE m1 is the refinement of the MACHINE m0.

The instance of the mapping function FM for the requirement SR-cl6-higher-level is as

follows:

SR-cl6-higher-level 7→ {inv 1 cl6, inv 2 cl6},

where:

inv 1 cl6: Failure = FALSE ⇒ Stop = FALSE,
inv 2 cl6: Failure = TRUE ∧ flag 6= CONT ⇒ Stop = TRUE.

The handling of critical failures is non-deterministically modelled in the event ErrorHan-

dling of the abstract model (Figure 19). The local variable res is of the type BOOL and can

be either TRUE or FALSE. It means that, if a successful error handling procedure that does

not lead to the system termination has been performed, both variables standing for a critical

failure (Failure) and for the system shutdown (Stop) are assigned the values FALSE and the

system continues its operation. Otherwise, they are assigned the values TRUE leading to the

system termination.

The fragment of a safety case for the safety requirement SR-cl6-higher-level can be

constructed preserving the instructions determined in Section 4.2, while the fragment of a

safety case for the requirement SR-cl6-lower-level can be found in Section 4.6.

Now let us focus on ensuring the hierarchical link between these requirements by instan-

tiating the argument pattern for Class 6. Following the proposed approach, we define a set of

the affected model events for the higher-level safety requirement: {Environment, Detection,

ErrorHandling, Prediction, NormalOperation}, and for the lower-level safety requirement:

{Environment, Detection NoFault, Detection Fault, SafeStop, Prediction, NormalSkip}. For

30

// Event in the MACHINE m0

 event ErrorHandling

 any res

 where

 @grd1 flag = CONT

 @grd2 Failure = TRUE

 @grd3 Stop = FALSE

 @grd4 res BOOL

 then

 @act1 flag PRED

 @act2 Stop res

 @act3 Failure res

 end

// Event in the refined MACHINE m1

 event SafeStop

 refines ErrorHandling

 where

 @grd1 flag = CONT

 @grd2 door1_fail = TRUE !

 door2_fail = TRUE !

 pressure_fail = TRUE

 @grd3 Stop = FALSE

 with

 @res res = TRUE

 then

 @act1 flag PRED

 @act2 Stop TRUE

 end

Figure 19: Events ErrorHandling and SafeStop

simplicity, here we consider only one pair of events ErrorHandling and SafeStop shown in

Figure 19.

In the Event-B development of the sluice gate system, the non-determinism modelled by

the local variable res is eliminated via introduction of a specific situation leading to the sys-

tem shutdown. All other fault tolerance procedures are left out of the scope of the presented

development.

Additionally to the introduction of the deterministic procedures for error handling, the

variable Failure is data refined in the first refinement m1. Now, the system failure may occur

either if the component door1 fails (door1 fail = TRUE), or door2 fails (door2 fail = TRUE),

or the pressure pump fails (pressure fail = TRUE). This relationship between the old abstract

variable and new concrete ones is defined by the corresponding gluing invariant.

The corresponding instance of the argument pattern is presented in Figure 20. To ensure

that the requirement SR-cl6-lower-level is a proper elaboration of the requirement SR-cl6-

higher-level (the goal G2.6 in Figure 20), we argue over the abstract event ErrorHandling

and the refined event SafeStop. We show that the guard grd2 is strengthened in the refine-

ment (the discharged proof obligation (GRD)) and the action act2 is not contradictory to the

abstract version (SIM). The corresponding proof obligations are shown in Figure 21.

4.8 Argument pattern for SRs about temporal properties (Class 7)

So far, we have considered the argument patterns of safety requirements classes where the

evidence that the top goal of the pattern holds is constructed based on the proof obliga-

tions generated by the Rodin platform. Not all types of safety requirements can be formally

demonstrated in this way, however. In particular, the Event-B framework lacks direct support

of temporal system properties such as reachability, liveness, existence, etc. Nevertheless, the

Rodin platform has an accompanying plug-in, called ProB [47], which allows for model

checking of temporal properties.

Therefore, in this section, we propose an argument pattern for the class of safety require-

31

Action act2

simulation in refinement of

the event ErrorHandling is

correct

G2.6.2

Discharged PO

SafeStop/act2/

SIM

Guard grd2 of the

event ErrorHandling is

strengthened in

refinement

G2.6.1

Discharged PO

SafeStop/grd2/

GRD

Sn2.6.1 Sn2.6.2

SR-cl6-lower-level is a proper

elaboration of

SR-cl6-higher-level

G2.6

Argument over

the abstract event

ErrorHandling and the

refined event SafeStop

S2.6.1

Abstract event

ErrorHandling

C2.6.1

Refined event

SafeStop

C2.6.2

Model (MACHINE m1 and

CONTEXT c1)
is a refinement of model

(MACHINE m0 and

CONTEXT c0)

A2.6.1

A

The abstract model

(MACHINE m0 and CONTEXT

c0), the first refinement

(MACHINE m1 and

CONTEXT c1)

M2.6.1

Rodin

theorem

provers

C2.6.3

Figure 20: The pattern instantiation example

flag = CONT

door1_fail = TRUE

 door2_fail = TRUE

 pressure_fail = TRUE

Stop = FALSE

|-

Failure = TRUE

flag = CONT

door1_fail = TRUE

 door2_fail = TRUE

 pressure_fail = TRUE

Stop = FALSE

|-

TRUE = TRUE

 SafeStop/grd2/GRD

 SafeStop/act2/SIM

Figure 21: The proof obligations of the types GRD and SIM

ments that can be expressed as temporal properties. The pattern is graphically shown in

Figure 22. Here propertyi stands for some temporal property to be verified, for i ∈ 1 .. N,

where N is the number of temporal properties of the system.

The property to be verified should be formulated as an LTL formula in the LTL Model

Checking wizard of the ProB plug-in for some particular model M. This suggests the mapping

function FM for Class 7 to be of the form

32

Requirement 7→ {LTL formula}.

Each such a temporal property should be well-defined according to restrictions imposed

on LTL in ProB. The tool can generate three possible results: (1) the given LTL formula is

true for all valid paths (no counter-example has been found, all nodes have been visited); (2)

there is a path that does not satisfy the formula (a counter-example has been found and it is

shown in a separate view); (3) no counter-example has been found, but the temporal property

in question cannot be guaranteed because the state space was not fully explored.

To instantiate this pattern, one needs to proceed as follows:

• a requirement Requirement should be replaced with a particular safety requirement;

• a formal model M should be referred to in a GSN model element;

• the concrete mapping between the requirement and the corresponding LTL formula

should be supplied, while each temporal property propertyi from this mapping should

be referred to in a GSN context element;

• model checking results on an instantiated property that have been generated by ProB

should be included as the evidence that this property is satisfied.

There are several alternative ways to reason over temporal properties in Event-B [5, 29,

34,48]. The most recent of them is that of Hoang and Abrial [34]. The authors propose a set

of proof rules for reasoning about such temporal properties as liveness properties (existence,

progress and persistence). The main drawback of this approach is that, even though it does

not require extensions of the proving support of the Rodin platform, it necessitates extension

of the Event-B language by special clauses (annotations) corresponding to different types of

temporal properties. Alternatively, in the cases when a temporal property can be expressed

as a condition on the system control flow, the usecase/flow approach [37] described in Sec-

tion 4.4 can be used.

{Requirement} of Class 7

is met

G2.7

Argument over

all formulated

requirement properties

Model checking

result on

{propertyi}

S2.7.1

Sn2.7.1

The model

satisfies the property {propertyi}

G2.7.1

no. of

properties

Property

{propertyi}

C2.7.3

ProB tool for the

Rodin platform

C2.7.1

Formulated

properties are the

proper formalisation

of the requirement

A2.7.1

A

Model {M}

M2.7.1

ProB model

checker

C2.7.2

Figure 22: Argument pattern for safety requirements of Class 7

33

To exemplify the instantiation of the argument pattern for safety requirements of Class 7,

we consider a distributed monitoring system – Temperature Monitoring System (TMS). The

full system formal specification in Event-B is presented in [56]. In brief, the TMS consists

of three data processing units (DPUs) connected to operator displays in the control room. At

each cycle, the system performs readings of the temperature sensors, distributes preprocessed

data among DPUs where they are analysed (processed), and finally displays the output to the

operator. The system model is developed in such a way that it allows for ensuring integrity

of the temperature data as well as its freshness.

A safety requirement about a temporal property of this system, which we consider here,

is as follows:

SR-cl7: Each cycle the system shall display fresh and correct data.

We leave out of the scope of this paper the mechanism of ensuring data freshness, cor-

rectness and integrity, while focusing on the fact of displaying data at each cycle. In the

given Event-B specification, a new cycle starts when the event Environment is executed. To

verify that the system will eventually display the data to the operator (i.e., the corresponding

event Displaying will be enabled), we formulate an LTL formula for the abstract model of

the system (temp pr ex). Then, the instance of the mapping function FM is defined as

SR-cl7 7→ {temp pr ex},

where

temp pr ex: � (after(Environment) → ♦ before(Displaying)).

Here � is an operator “always” and ♦ stands for “eventually”.

The formula temp pr ex has the following representation in ProB:

G ({∀main phase′, temp sensor′, curr time′ ·
main phase′ ∈ MAIN PHASES ∧ temp sensor′ ∈ N ∧ curr time′ ∈ N ∧
(∃main phase, sync t · main phase ∈ MAIN PHASES ∧ sync t ∈ N ∧
main phase′ = PROC ∧ temp sensor′ ∈ N ∧ curr time′ = sync t)}
⇒
F {∃ ss, TEMP SET ·main phase = DISP ∧ packet sent flag = TRUE ∧
TEMP SET ⊆ N ∧ time progressed = TRUE ∧
ss = {x 7→ y | ∃ i · i ∈ dom(timestamp) ∧ x = timestamp(i) ∧
y = temperature(i)}[curr time− Fresh Delta · · curr time] ∧
(ss 6= ∅⇒ TEMP SET = ss) ∧ (ss = ∅⇒ TEMP SET = {ERR VAL})}),

where G stands for the temporal operator “globally” and F is the temporal operator “fi-

nally”. These operators correspond to the standard LTL constructs “always” and “eventu-

ally” respectively. For the detailed explanation of the used variables, constants and language

constructs, see [56].

In this case, the result of the model checking of this property in ProB is “no counter-

example has been found, all nodes have been visited”. Figure 23 illustrates the corresponding

instance of the argument pattern.

34

SR-cl7 of Class 7

is met

G2.7

Argument over all

formulated

requirement properties

Model checking

result on

temp_pr_ex

S2.7.1

Sn2.7.1

The model

satisfies the property temp_pr_ex

G2.7.1 Property

temp_pr_ex

C2.7.3

Property

temp_pr_ex is the

proper formalisation

of the requirement

A2.7.1

A

ProB tool for the

Rodin platform

C2.7.1

Model: the abstract

model (MACHINE M0

and CONTEXT C0)

M2.7.1

ProB model

checker

C2.7.2

Figure 23: The pattern instantiation example

4.9 Argument pattern for SRs about timing properties (Class 8)

Another class of safety requirements that requires to be treated in a different way is Class 8

containing timing properties of the considered system. As we have already mentioned, the

representation of timing properties in Event-B has not been explicitly defined yet. Nonethe-

less, the majority of safety-critical systems rely on timing constraints for critical functions.

Obviously, the preservation of such requirements must be verified. To address this, we pro-

pose to bridge Event-B modelling with model checking of timing properties in Uppaal.

Figure 24 shows our argument pattern for the safety requirements about timing proper-

ties. In our pattern, propertyj stands for some timing property to be verified, for j ∈ 1 .. N,

where N is the number of timing properties.

Following the approach proposed by Iliasov et al. [39], we rely on the Uppaal toolset for

obtaining model checking results that further can be used as the evidence in a safety case. The

timing property in question can be formulated using the TCTL language. A timed automata

model (an input model of Uppaal) is obtained from a process-based view extracted from an

Event-B model as well as additionally introduced clocks and timing constraints. The generic

mapping function FM for this class is then of the form Requirement 7→ {TCTL formula}.

Uppaal uses a subset of TCTL to specify properties to be checked [11]. The results

of the property verification can be of three types: (1) a trace is found, i.e., a property is

satisfied (user can then import the trace into the simulator); (2) a property is violated; (3) the

verification is inconclusive with the approximation used.

We propose the following steps in order to instantiate this pattern:

• a requirement Requirement should be replaced with a particular safety requirement;

• a formal development that consists of a chain of refinements in Event-B and the corre-

sponding Uppaal model should be referred to in GSN model elements;

• the concrete mapping between the requirement and the corresponding TCTL formula

35

{Requirement} of Class 8

is met

G2.8

Argument over all

formulated

requirement properties

Model checking

result on

{propertyj}

S2.8.1

Sn2.8.1

The model

satisfies the property {propertyj}

G2.8.1

Uppaal toolset
C2.8.1

no. of

properties

Property

{propertyj}

C2.8.3

Formulated

properties are the

proper formalisation

of the requirement

A2.8.2

A

Formal development

that consists of a chain of

refinements

in Event-B

M2.8.1

Corresponding model

in Uppaal

M2.8.2

Uppaal

model

checker

C2.8.2

The Uppaal model is

consistent with the

Event-B model

A2.8.1

A

Figure 24: Argument pattern for safety requirements of Class 8

should be provided, while each timing property propertyj from this mapping should

be referred to in a GSN context element;

• model checking results on an instantiated property that have been generated by Uppaal

should be included as the evidence that this property is satisfied.

We adopt a case study considered in [38, 39] in order to show the instantiation of the

proposed argument pattern for a safety requirement of Class 8. The case study is the Data

Processing Unit (DPU) – a module of Mercury Planetary Orbiter of the BepiColombo Mis-

sion. The DPU consists of the core software and software of two scientific instruments. The

core software communicates with the BepiColombo spacecraft via interfaces, which are used

to receive telecommands (TCs) from the spacecraft and transmit science and housekeeping

telemetry data (TMs) back to it. In this paper, we omit showing the detailed specification

of the DPU in Event-B as well as we do not explain how the corresponding Uppaal model

was obtained. We rather illustrate how the verified liveness and time-bounded reachability

properties of the system can be reflected in the resulting safety case (Figure 25).

The DPU is required to eventually return a TM for any received TC and must respond

within a predefined time bound:

SR-cl8: The DPU shall eventually return a TM for any received TC and

shall respond no later than the maximal response time.

We consider two timing properties associated with this requirement, i.e.,

time pr ex1: (new tc == id) → (last tm == id),
time pr ex2: A[](last tm == id && Obs1.stop) imply (Obs1 c < upper bound),

36

SR-cl8 of Class 8

is met

G2.8

Argument over all

formulated

requirement properties

Model checking

result on

time_pr_ex2

S2.8.1

Sn2.8.2

The model

satisfies the property time_pr_ex2

G2.8.2

Uppaal toolset
C2.8.1

Property

time_pr_ex2

C2.8.4

Model checking

result on

time_pr_ex1

Sn2.8.1

The model

satisfies the property time_pr_ex1

G2.8.1Property

time_pr_ex1

C2.8.3

Properties

time_pr_ex1 and

time_pr_ex2 are the proper

formalisation

of the requirement

A2.8.2

A

Formal development

that consists of a chain of

refinements

in Event-B

M2.8.1

Corresponding model

in Uppaal

M2.8.2

Uppaal

model

checker

C2.8.2

The Uppaal model is

consistent with the

Event-B model

A2.8.1

A

Figure 25: The pattern instantiation example

such that the concrete instance of the generic mapping function FM is as follows:

SR-cl8 7→ {time pr ex1, time pr ex2}.

The symbol → stands for the TCTL “leads-to” operator, and id is some TC identification

number. A[] stands for “Always, for any execution path” and Obs1 is a special observer

process that starts the clock Obs1 c, whenever a TC command with id is received, and stops

it, once the corresponding TM is returned. The variable upper bound corresponds to the

maximal response time. The corresponding instance of the argument pattern is given in

Figure 25.

4.10 Summary of the proposed argument patterns

To facilitate the construction of safety cases, we have defined a set of argument patterns

graphically represented using GSN. The argumentation and goal decomposition in these pat-

terns were influenced by the formal reasoning in Event-B.

However, since the development utilising formal methods typically require additional

reasoning about model correctness and well-definedness, we firstly proposed an argument

pattern for assuring well-definedness of the system development in Event-B. Secondly, we

proposed a number of argument patterns for assuring safety requirements of a system. We

associated these argument patterns with the classification of safety requirements presented

37

in Section 3.2. Therefore, we distinguished eight classification-based argument patterns.

Despite the fact that the proposed classification of safety requirements covers a wide range of

different safety requirements, the classification and subsequently the set of argument patterns

can be further extended if needed.

Unfortunately, at the meantime not all the introduced classes of safety requirements can

be formally demonstrated utilising Event-B solely. Therefore, among the proposed argument

patterns there are several patterns where the evidence was constructed using accompanying

toolsets – the Usecase/Flow and ProB plug-ins for the Rodin platform, as well as the external

model checker for verification of real-time systems Uppaal.

In this section, we exemplified the instantiation of the proposed argument patterns for

assuring safety requirements on several case studies. Among them are the sluice gate control

system [46], the attitude and orbit control system [53], the system for controlling cars on a

bridge [4], the temperature monitoring system [56], and the data processing unit of Mercury

planetary orbiter of the BepiColombo mission [38, 39].

The instantiation of the proposed argument patterns is a trivial task. Nonetheless, the

application of the overall approach requires basic knowledge of principles of safety case

construction as well as a certain level of expertise in formal modelling. Therefore, experience

in formal modelling and verification using state-based formalisms would be beneficial for

safety and software engineers.

Currently, the proposed approach is restricted by the lack of the tool support. Indeed,

manual construction of safety cases especially of large-scale safety-critical systems may be

error-prone. We believe that the well-defined steps of evidence construction and the detailed

guidelines on the pattern instantiation given in this paper will contribute to the development

of the corresponding plug-in for the Rodin platform.

5 Case study – steam boiler

In this section, we demonstrate our proposed methodology (based on argument patterns) for

building safety cases on a bigger case study. The considered case study is a steam boiler con-

trol system. It is a well-known safety-critical system widely used in industrial applications.

Due to the large number of safety requirements of different types imposed on it, this system

is highly suitable for demonstration of our methodology.

5.1 System description

The steam boiler (Figure 26) is a safety-critical control system that produces steam and

adjusts the quantity of water in the steam boiler chamber to maintain it within the predefined

safety boundaries [1]. The situations when the water level is too low or too high might result

in loss of personnel life, significant equipment damage (the steam boiler itself or the turbine

placed in front of it), or damage to the environment.

The system consists of the following units: a chamber, a pump, a valve, a sensor to

measure the quantity of water in the chamber, a sensor to measure the quantity of steam

38

Steam exit

Steam output

sensor

M1

M2

N1

N2

Water output

sensor

Water level

sensor

Valve

Water input sensor

(pump sensor)

Pump

Chamber

Figure 26: Steam boiler

Table 2: Parameters of the steam boiler

Label Description Unit

C the total capacity of the steam boiler chamber litre

P the maximal capacity of the pump litre/sec

W the maximal quantity of steam produced litre/sec

M1 the minimal quantity of water, i.e., the lower safety boundary litre

M2 the maximal quantity of water, i.e., the upper safety boundary litre

N1 the minimal normal quantity of water to be maintained during litre

regular operation

N2 the maximal normal quantity of water to be maintained during litre

regular operation

which comes out of the steam boiler chamber, a sensor to measure water input through

the pump, and a sensor to measure water output through the valve. The essential system

parameters are given in Table 2.

The considered system has several modes. After being powered on, the system enters the

Initialisation mode. At each control cycle, the system reads sensors and performs failure

detection. Then, depending on the detection result, the system may enter either one of its

operational modes or the non-operational mode. There are three operational modes in the

system: Normal, Degraded, Rescue. In the Normal mode, the system attempts to maintain

the water level in the chamber between the normal boundaries N1 and N2 (such that N1 <

N2) providing that no failures of the system units have occurred. In the Degraded mode,

the system tries to maintain the water level within the normal boundaries despite failures of

some physical non-critical units. In the Rescue mode, the system attempts to maintain the

normal water level in the presence of a failure of the critical unit – the water level sensor.

If failures of the system units and the water level sensor occur simultaneously or the water

level is outside of the predefined safety boundaries M1 and M2 (such that M1 < M2), the

system enters the non-operational mode Emergency Stop.

In our development, we consider the following failures of the system and its units. The

failure of the steam boiler control system is detected if either the water level in the chamber

is outside of the safety boundaries (i.e., if it is lower than M1 or higher than M2) or the

39

combination of a water level sensor failure and a failure of any other system unit (the pump

or the steam output sensor) is detected. The water level sensor is considered as failed if it

returns a value which is outside of the nominal sensor range or the estimated range predicted

in the last cycle. Analogously, a steam output sensor failure is detected. The pump fails if it

does not change its state when required.

A water level sensor failure by itself does not lead to a system failure. The steam boiler

contains the information redundancy, i.e., the controller is able to estimate the water level

in the chamber based on the amount of water produced by the pump and the amount of the

released steam. Similarly, the controller is able to maintain the acceptable level of efficiency

based on the water level sensor readings if either the pump or the steam output sensor fail.

The detailed description of the system, its functional and safety requirements as well as the

models of our formal development in Event-B can be found in [55].

5.2 Brief overview of the development

Our Event-B development of the steam boiler case study consists of an abstract specifica-

tion and its four refinements [55]. The abstract model (MACHINE M0) implements a basic

control loop. The first refinement (MACHINE M1) introduces an abstract representation of

the activities performed after the system is powered on and during system operation (under

both nominal and failure conditions). The second refinement (MACHINE M2) introduces

a detailed representation of the conditions leading to a system failure. The third refinement

(MACHINE M3) models the physical environment of the system as well as elaborates on

more advanced failure detection procedures. Finally, the fourth refinement (MACHINE M4)

introduces a representation of the required execution modes. Each MACHINE has the as-

sociated CONTEXT where the necessary data structures are introduced and their properties

are postulated as axioms.

Let us now give a short overview of the basic model elements (i.e., constants, variables

and events). The parameters of the steam boiler system presented in Table 2 are defined as

constants in one of the CONTEXT components. Moreover, several abstract functions are

defined there to formalise, for example, the critical water level (WL critical).

The dynamic behaviour of the system is modelled in the corresponding MACHINE com-

ponents. Some essential variables and events are listed below:

• The variables modelling the steam boiler actuators – the pump and the valve:

– pump ctrl: the value of this variable equals to ON if the pump is switched on,

and OFF otherwise;

– valve ctrl: the value of this variable equals to OPEN if the valve is open, and

CLOSED otherwise.

• The variables representing the amount of water passing through the pump and the

valve:

– pump stands for the amount of water incoming into the chamber through the

pump;

40

– water output models the amount of water coming out of the chamber through the

valve.

• The variables representing the water level in the chamber:

– water level models the latest water level sensor readings;

– min water level and max water level represent the estimated interval for the

sensed water level.

• The variables representing the amount of the steam coming out of the chamber:

– steam output models the latest steam output sensor readings;

– min steam output and max steam output represent the estimated interval for the

sensed amount of steam.

• The variables representing failures of the system and its components:

– failure is an abstract boolean variable modelling occurrence of a system failure;

– wl sensor failure represents a failure of the water level sensor;

– pump failure models a failure of the pump actuator;

– so sensor failure represents a failure of the steam output sensor.

• The variables modelling phases of the control cycle and the system modes:

– phase: the value of this variable can be equal either to ENV, DET, CONT, PRED

corresponding to the current controller stage (i.e., reading environment, detecting

system failures, performing routing control, or predicting the system state in the

next cycle);

– preop flag is a flag which indicates whether the system is in the pre-operational

stage or not;

– mode models the current mode of the system, i.e., Initialisation, Normal, De-

graded, Rescue, or Emergency Stop.

• The variable stop abstractly models system shutdown and raising an alarm.

• Essential events of the modelled system:

– Environment, modelling the behaviour of the environment;

– Detection, representing detection of errors;

– PreOperational1 and PreOperational2, modelling the initial system procedures

to establish the amount of water in the chamber within the safety boundaries;

– Operational, performing controller actions under the nominal conditions;

– EmergencyStop, modelling error handling;

– Prediction, computing the next estimated states of the system.

In the refinement process, such events as Detection and Operational are split into a num-

ber of more concrete events modelling detection of failures of different system components

as well as different system operational modes.

41

5.3 Application of the proposed approach

In this section, we follow our proposed approach to constructing a safety case of a system

from its formal model in Event-B. More specifically, firstly we show that our formal devel-

opment of the steam boiler control system is well-defined by instantiating the corresponding

argument pattern (introduced in Section 4.1). Secondly, we apply the classification-based

argument patterns (presented in Sections 4.2 – 4.9) to construct the corresponding fragments

of the safety case related to specific safety requirements of the considered system.

The steam boiler control system is a complex system, which has a rich functionality and

adheres to a large number of safety requirements. The accomplished formal development of

this system as well as its safety case are also complex and large in size. Therefore, we will

not show the system in its entirety but rather demonstrate application of our methodology on

selected system fragments.

5.3.1 Instantiation of the argument pattern for well-definedness of the development

Due to a significant size of the system safety case, here we show only a part of the in-

stantiated pattern for demonstrating well-definedness of a formal development (Section 4.1).

Figure 27 presents the resulting fragment of the safety case concerning the first refinement

model (MACHINE M1 and the associated CONTEXT C1).

Let us remind that, to apply the well-definedness argument pattern, we have to formally

demonstrate axiom consistency in the CONTEXT C1. To argue over axiom consistency, we

define two groups of axioms. The first group includes axioms defining generic parameters of

the system, e.g., the constants associated with the criticality of the water level, which is based

on the pre-defined safety boundaries. The second group consists of the axioms defining

the abstract function Stable needed to model the failure stability property. Here stability

means that, once a failure occurred, the value of the variable representing this failure remains

unchanged until the whole system is restarted. These groups are independent because they

refer to distinct Event-B constants and sets. The corresponding theorems thm axm1 and

thm axm2 are shown below. The first theorem verifies that the parameters of the steam

boiler are introduced in the model correctly:

thm axm1: ∃ N1, N2, M1, M2, C, WL critical · N1 ∈ N1 ∧ N2 ∈ N1 ∧
M1 ∈ N1 ∧M2 ∈ N1 ∧ C ∈ N1 ∧WL critical ∈ N× N→ BOOL ∧
0 < M1 ∧ M1 < N1 ∧ N1 < N2 ∧ N2 < M2 ∧ M2 < C ∧
(∀ x, y · x ∈ N ∧ y ∈ N ∧
((x < M1 ∨ y > M2)⇔WL critical(x 7→ y) = TRUE)) ∧
(∀ x, y · x ∈ N ∧ y ∈ N ∧
((x ≥ M1 ∧ y ≤ M2)⇔WL critical(x 7→ y) = FALSE)).

The second theorem verifies that the group of axioms introduced to define a function about

the failure stability is consistent:

thm axm2: ∃ Stable · Stable ∈ BOOL×BOOL→ BOOL ∧
(∀ x, y · x ∈ BOOL ∧ y ∈ BOOL ⇒
(Stable(x 7→ y) = TRUE ⇔ (x = TRUE ⇒ y = TRUE))).

42

All axioms in

the CONTEXT of the model the

first refinement

(MACHINE M1 and CONTEXT C1)

are consistent

(i.e., non-contradictory)

G1.2

Discharged

PO

thm_axm1/

THM

Argument over

axioms consistency

via defining

theorems about

groups of

independent axioms

The theorem about

the group 1 of independent

axioms is proved

S1.2

Sn1.1

G1.3

Formal development of the

steam boiler control system

is well-defined

G1.1

Argument over

well-definedness

of all models in

the development

S1.1

Theorem

thm_axm1

about the

group 1

C1.2

Discharged

PO

thm_axm2/

THM

The theorem

about the group 2

of independent

axioms is proved

Sn1.2

G1.4

Theorem

thm_axm2

about the

group 2

C1.3

Formal

development that

consists of a chain of

refinements

in Event-B

M1.1

Model: the first refinement

(MACHINE M1 and

CONTEXT C1)

M1.2

Rodin

theorem

provers

C1.1

According to the Event-B

semantics, if axioms are

contradictory, the whole

model becomes

fallicious J

J1.1

All axioms in

the CONTEXT of the model the

second refinement

(MACHINE M2 and CONTEXT C1)

are consistent

(i.e., non-contradictory)

G1.6 All axioms in

the CONTEXT of the model the

third refinement

(MACHINE M3 and CONTEXT C2)

are consistent

(i.e., non-contradictory)

G1.7All axioms in

the CONTEXT of the model the

abstract model

(MACHINE M0 and CONTEXT C0)

are consistent

(i.e., non-contradictory)

G1.5

All axioms in

the CONTEXT of the model the

fourth refinement

(MACHINE M4 and CONTEXT C3)

are consistent

(i.e., non-contradictory)

G1.8

Figure 27: A fragment of the safety case corresponding to well-definedness of the develop-

ment

The obtained proofs of these theorems are included in the safety case as the solutions Sn1.1

and Sn1.2 correspondingly.

5.3.2 Instantiation of the argument pattern for Class 1

The steam boiler control system has a large number of safety requirements [55]. Among

them there are several requirements that can be classified as SRs belonging to Class 1. Let

us demonstrate the instantiation of the corresponding argument pattern by the example of

one such a safety requirement:

SR-02 : During the system operation the water level shall not exceed

the predefined safety boundaries.

We formalise it as the invariant inv1.2 at the first refinement step of the Event-B development

(MACHINE M1):

43

inv1.2: failure = FALSE ∧ phase 6= ENV ∧ phase 6= DET ⇒
min water level ≥M1 ∧ max water level ≤M2,

where the variable failure represents a system failure, the variable phase models the stages

of the steam boiler controller behaviour (i.e., the stages of its control loop), and finally the

variables min water level and max water level represent the estimated interval for the sensed

water level.

The mapping function FM for this case is

SR-02 7→ {inv1.2},

which is a concrete instance of its general form Requirement 7→ {safety1, ..., safetyN} for

Class 1 given in Section 4.2.

To provide evidence that this safety requirement is met by the system, we instantiate the

argument pattern for Class 1 as shown in Figure 28.

Invariant

inv1.2

Argument over all

formulated invariants

S2.1.1
Invariant inv1.2 is the

proper formalisation of

the requirement
A

The invariant inv1.2

holds for all events

G2.1.1

Sn2.1.1

Discharged PO

Environment/

inv1.2/INV

Argument over each

event individually
S2.1.2

The invariant inv1.2

holds for the event

Environment

G2.1.2

SR-02 of Class 1

is met

G2.1

A2.1.1

C2.1.1

Sn2.1.2

Discharged PO

Detection_OK/

inv1.2/INV

The invariant inv1.2

holds for the event

Detection_OK

G2.1.3

Sn2.1.3
Discharged PO

Detec-

tion_NOK1/

inv1.2/INV

The invariant inv1.2

holds for the event

Detection_NOK1

G2.1.4

Sn2.1.8

Discharged PO

Prediction/

inv1.2/INV

The invariant inv1.2

holds for the event

Prediction

G2.1.9
...

Model: the first

refinement (MACHINE

M1 and CONTEXT

C1)

M2.1.1

Rodin

theorem

provers

C2.1.2

Figure 28: A fragment of the safety case corresponding to assurance of SR-02

The list of affected model events where this invariant must hold is the following: En-

vironment, Detection OK, Detection NOK1, Detection NOK2, PreOperational1, PreOpera-

tional2, Operational, Prediction. To support the claim that inv1.2 holds for all these events,

we attach the discharged proof obligations as the evidence. For brevity, we present only

the supporting evidence Sn2.1.2 of the goal G2.1.3 as shown in Figure 29. This discharged

proof obligation ensures that inv1.2 holds for the event Detection OK modelling detection

of no failures.

44

failure = FALSE phase !"ENV phase !"DET #

min_water_level $"M1 max_water_level %"M2

phase = DET

failure = FALSE

stop = FALSE

min_water_level $"M1 max_water_level %"M2

phase�"="CONT

|-

failure=FALSE

CONT!ENV"

CONT!DET #

min_water_level$M1" max_water_level%M2

 I(d, c, v)

 ge(d, c, v)

 BAe(d, c, v, v�)

 I(d, c, v�)

Figure 29: The proof obligation of the type INV for the event Detection OK in M1

5.3.3 Instantiation of the argument pattern for Class 2

Since the steam boiler system is a failsafe system (i.e., it has to be put into a safe but non-

operational state to prevent an occurrence of a hazard), whenever a system failure occurs,

the system should be stopped. However, we abstractly model such failsafe procedures by

assuming that, when the corresponding flag stop is raised thus indicating a system failure,

the system is shut down and an alarm is activated. This condition is defined by the safety

requirement SR-01:

SR-01 : When a system failure is detected, the steam boiler control

system shall be shut down and an alarm shall be activated.

The stipulated property does not rely on a detailed representation of the steam boiler

system and therefore can be incorporated at early stages of the development in Event-B, e.g.,

at the first refinement step (MACHINE M1). Since the property needs to be true at a specific

state of the model, we classify this safety requirement as a SR belonging to Class 2 and

formalise it as the following theorem:

thm1.1: ∀stop′ · stop′ ∈ BOOL ∧
(∃phase, stop · phase ∈ PHASE ∧ stop ∈ BOOL ∧
phase = CONT ∧ stop = FALSE ∧ stop′ = TRUE)
⇒
stop′ = TRUE,

where stop′ = TRUE is a predicate defining the required post-condition of the event Emer-

gencyStop.

The corresponding instance of the mapping function FM for this class of safety require-

ments in this case is

SR-01 7→ {(EmergencyStop, stop′ = TRUE)}.

45

The instantiated fragment of the safety case is presented in Figure 30. The proof obliga-

tion (thm1.1/THM) serves as the evidence that this requirement holds.

SR-01 of Class 2

is met

G2.2

Discharged

PO

thm1.1/THM

Argument by providing

theorems for events

where post-conditions

are required to hold

S2.2.1

Sn2.2.1

The provided theorem

thm1.1 is indeed provable

G2.2.1
Theorem

thm1.1

C2.2.2

Theorem

thm1.1 is the proper

formalisation of the

requirement

A2.2.1

A

Model: the first

refinement (MACHINE

M1 and CONTEXT

C1)

M2.2.1

Rodin

theorem

provers

C2.2.1

Figure 30: A fragment of the safety case corresponding to assurance of SR-01

5.3.4 Instantiation of the argument pattern for Class 3

Another safety-related property of the system under consideration is its cyclic behaviour.

At each cycle the controller reads the sensors, performs computations and sets the actuators

accordingly. Thus, the described control flow needs to be preserved by the Event-B model

of the system as well. The safety requirement SR-12 reflects the desired order in the control

flow, associated with the corresponding order of the events in the Event-B model.

SR-12 : The system shall operate cyclically. Each cycle it shall read

the sensors, detect failures, perform either normal or degraded

or rescue operation, or, in case of a critical system failure,

stop the system, as well as compute the next values of variables

to be used for failure detection at the next cycle if no critical

system failure is detected.

For the sake of simplicity, here we consider only the abstract model of the system (MA-

CHINE M0). The refinement-based semantics of Event-B allows us to abstract away from

detailed representation of the operational modes of the system (i.e., normal, degraded and

rescue), ensuring nevertheless that the control flow properties proved at this step will be

preserved by more detailed models.

We represent the required events order (C2.3.2) using the flow diagram (Figure 31). The

generic mapping function Requirement 7→ {(eventi, relationship, eventj)} for Class 3 can be

instantiated in this case as

46

Event

Enabling relationship

Disabling relationship

A symbol indicating that the
corresponding proof obligation

has been discharged

Start

Stop

Figure 31: The flow diagram of the abstract MACHINE M0

SR-12 7→ {(Environment, ena, Detection), (Detection, ena, Operational),
(Detection, ena, EmergencyStop), (Operational, ena, Prediction),
(Prediction, ena, Environment), (EmergencyStop, dis, Prediction)}.

The instance of the pattern that ensures the order of the events in the MACHINE M0 is

presented in Figure 32. Due to the lack of space, we show only two proof obligations (Fig-

ure 33) discharged to support this branch of the safety case – Environment/Detection/FENA

(Sn2.3.1) and EmergencyStop/Prediction/ FDIS (Sn2.3.6).

5.3.5 Instantiation of the argument pattern for Class 4

As we have already mentioned in Section 5.3.3, the steam boiler control system is a failsafe

system. This means that it does contain a deadlock and therefore we do not need to construct

the system safety case based on the argumentation defined by the pattern for SRs about

the absence of system deadlock (Class 4). Quite opposite, we need to ensure that when

the required sutdown condition is satisfied, the system terminates. Thus, we instantiate the

pattern for Class 5 instead.

5.3.6 Instantiation of the argument pattern for Class 5

Let us consider again the safety requirement SR-01 given in Section 5.3.3:

SR-01 : When a system failure is detected, the steam boiler control

system shall be shut down and an alarm shall be activated.

47

SR-12 of Class 3

is met

G2.3

Discharged PO

Environment/

Detection/

FENA

Argument over

required events order

S2.3.1

Sn2.3.1

The required

events order is preserved

G2.3.1

Argument over

each pair of events

S2.3.2

Environment

enables Detection

G2.3.2 Detection

enables Operational

G2.3.3 Prediction

enables Environment

G2.3.6

Discharged PO

Detection/

Operational/

FENA

Sn2.3.2
Discharged PO

Prediction/

Environment/

FENA

Sn2.3.5

Required events

order

C2.3.2

... EmergencyStop

disables Prediction

G2.3.7

Discharged PO

EmergencyStop/

Prediction/

FDIS

Sn2.3.6

Flow plug-in for the

Rodin platform

C2.3.1

Events order

expression is the

proper formalisation

of the requirement

A2.3.1

A

Model: the abstract

model (MACHINE M0

and CONTEXT

C0)

M2.3.1

Rodin

theorem

provers

C2.3.3

Figure 32: A fragment of the safety case corresponding to assurance of SR-12

phase !PHASE

failure !BOOL

stop !BOOL

failure = FALSE " stop = FALSE

failure = TRUE # phase!$!CONT!"!stop=TRUE

phase=ENV

stop=FALSE

|-

DET=DET #

failure=FALSE #

stop=FALSE

failure !BOOL

stop !BOOL

failure = FALSE " stop = FALSE

failure = TRUE # phase!$!CONT!" stop = TRUE

phase = CONT

failure = TRUE

stop = FALSE

|-

¬ (phase = PRED # TRUE = FALSE)

 Environment/Detection/FENA

 EmergencyStop/Prediction/FDIS

Figure 33: The proof obligations of the types FENA and FDIS

The corresponding model theorem thm1.1 (see Section 5.3.3) guarantees that the system

variables are updated accordingly to prepare for a system shutdown, e.g., the stop flag is

48

raised. However, it does not ensure that the system indeed terminates, i.e., there are no

enabled system events anymore. This should be done separately. Therefore, this safety

requirement can be classified as a requirement belonging to both Class 2 and Class 5. To

show that our system definitely meets this requirement, we instantiate the argument pattern

for Class 5 as well (Figure 34).

SR-01 of Class 5

is met

G2.5

Discharged

PO

thm4.1/THM

Argument by

providing the

theorem about a

shutdown condition

S2.5.1

Sn2.5.1

The provided theorem

thm4.1 is indeed provable

G2.5.1
Theorem

thm4.1

C2.5.2

Theorem

thm4.1 is the proper

formalisation of the

requirement

A2.5.1

A

Model: the fourth

refinement (MACHINE

M4 and CONTEXT

C3)

M2.5.1

Rodin

theorem

provers

C2.5.1

Figure 34: A fragment of the safety case corresponding to assurance of SR-01

In this case, the corresponding instance of the generic mapping function FM for Class 5

is

SR-01 7→ {stop = TRUE,Environment,Detection OK no F, ...,
EmergencyStop,Prediction},

where stop = TRUE stands for the required shutdown condition.

Then, the corresponding theorem thm4.1 is formulated as follows:

thm4.1: stop = TRUE ⇒ ¬(before(Environment) ∨ before(Detection OK no F)
∨ .. ∨ before(EmergencyStop) ∨ before(Prediction)),

which in turn can be rewritten (by expanding the definition of before(e) described in detail

in Section 2.1) as:

thm4.1: stop = TRUE ⇒ ¬((stop = FALSE ∧ phase = ENV ∧ ..) ∨
(stop = FALSE ∧ phase = DET ∧ ..) ∨ .. ∨
(stop = FALSE ∧ phase = CONT ∧ ..) ∨
(stop = FALSE ∧ phase = PRED ∧ ..));

stop = TRUE ⇒ ¬(stop = FALSE ∧ ((phase = ENV ∧ ..) ∨
(phase = DET ∧ ..) ∨ .. ∨
(phase = CONT ∧ ..) ∨ (phase = PRED ∧ ..)));

49

stop = TRUE ⇒ ¬stop = FALSE ∨ ¬((phase = ENV ∧ ..) ∨
(phase = DET ∧ ..) ∨ .. ∨
(phase = CONT ∧ ..) ∨ (phase = PRED ∧ ..));

stop = TRUE ⇒ stop = TRUE ∨ ¬((phase = ENV ∧ ..) ∨
(phase = DET ∧ ..) ∨ .. ∨
(phase = CONT ∧ ..) ∨ (phase = PRED ∧ ..)).

The discharged proof obligation (thm4.1/THM) provides the evidence for validity of the

claim G2.5 (see Figure 34).

5.3.7 Instantiation of the argument pattern for Class 6

We demonstrate an application of the argument pattern for Class 6 on a pair of hierarchically

linked requirements for the steam boiler system.

The requirement R-09-higher-level describes general behaviour of the pump actuator in

the operational system phase, which concerns safety of the system only implicitly:

R-09-higher-level : In the operational phase of the system execution, the pump actuator

can be switched on or off (based on the water level estimations),

or stay in the same mode,

while its more detailed counterpart (SR-09-lower-level) does this explicitly. It stipulates the

behaviour of the system and the pump actuator in the presence of a pump actuator failure:

SR-09-lower-level : When the pump actuator fails, it shall stay in its current mode.

In our formal development, these requirements are also introduced gradually at differ-

ent refinement steps. More specifically, the first one is formalised at the first refinement

step (MACHINE M1), while the second one is incorporated at the second refinement step

(MACHINE M2).

We consider both requirements as requirements belonging to Class 2. Therefore, their

verification is done by proving the corresponding theorems about post-states of specific

events. Here we assume that the corresponding separate fragments of the safety case have

been constructed using the argument pattern for Class 2 to guarantee that the requirements

R-09-higher-level and SR-09-lower-level hold. However, in this section we leave out these

fragments of the safety case while focusing on ensuring the hierarchical consistency be-

tween these requirements. In other words, we focus on application of the argument pattern

for Class 6.

The correctness of the hierarchical link between the requirements R-09-higher-level and

SR-09-lower-level is guaranteed via operation refinement of the affected events belonging

to MACHINE M1 and MACHINE M2 correspondingly. In this particular case, these are the

abstract event Operational in M1 and its refinement – the event Degraded Operational in

M2. The events are presented in Figure 35.

50

// Event in the MACHINE M1

event Operational refines Operational

 where

 @grd1 phase = CONT

 @grd2 failure = FALSE

 @grd3 stop = FALSE

 @grd4 preop_flag = FALSE

 @grd5 min_water_level ! M1 "

 max_water_level # M2

 then

 @act1 phase $ PRED

 @act2 pump_ctrl :% pump_ctrl' & PUMP_MODE "

 (pump_ctrl' = pump_ctrl '

 ((min_water_level ! M1 " max_water_level < N1)

 pump_ctrl' = ON) "

 (min_water_level > N2 " max_water_level # M2)

 pump_ctrl' = OFF) "

 (min_water_level ! N1 " max_water_level # N2)

 pump_ctrl' = pump_ctrl)))

 end

// Event in the refined MACHINE M2

 event Degraded_Operational refines Operational

 where

 @grd1 phase = CONT

 @grd3 stop = FALSE

 @grd4 preop_flag = FALSE

 @grd6 wl_sensor_failure = FALSE "

 (pump_failure = TRUE ' so_sensor_failure = TRUE)

 @grd7 valve_ctrl = CLOSED

 @grd8 WL_critical(min_water_level *

 max_water_level) = FALSE

 then

 @act1 phase $ PRED

 @act2 pump_ctrl :% pump_ctrl' & PUMP_MODE "

 (pump_failure = TRUE) pump_ctrl' = pump_ctrl) "

 (pump_failure = FALSE " min_water_level ! M1 "

 max_water_level < N1) pump_ctrl' = ON) "

 (pump_failure = FALSE " min_water_level > N2 "

 max_water_level # M2) pump_ctrl' = OFF) "

 (pump_failure = FALSE " min_water_level ! N1 "

 max_water_level # N2) pump_ctrl' = pump_ctrl)

 end

Figure 35: Events Operational and Degraded Operatinal

In the MACHINE M1, we abstractly model a system failure by the variable failure.

Then, in the MACHINE M2, we substitute this abstract variable and introduce the variables

standing for failures of the system components, namely, the water level sensor failure – the

variable wl sensor failure, the pump failure – the variable pump failure, and the steam output

sensor failure – the variable so sensor failure. The precise formal relationships between

these new variables and the old one is depicted by the respective gluing invariant. In other

words, the gluing invariant added to the MACHINE M2 relates these concrete variables with

the variable failure modelling an abstract failure.

The described data refinement directly affects the considered events Operational and

Degraded Operational. To guarantee that the refinement of the variable failure in the event

Degraded Operational does not weaken the corresponding guard of the event Operational,

i.e., grd2, the proof obligation of the type GRD is discharged (see Section 4.7). Moreover, to

satisfy the requirement SR-09-lower-level, we modify the action act2 as shown in Figure 35.

The correctness of this kind of simulation is guaranteed by the proof obligation of the type

SIM. This pair of discharged proof obligations serves as the evidence that the consistency

relationship between the corresponding hierarchically linked requirements is preserved by

refinement.

The resulting instance of the argument pattern is shown in Figure 36. Here the mentioned

proof obligations are attached as the safety case evidence – Sn2.6.1 and Sn2.6.2 respectively.

Due to the large size, we do not show the details of these proof obligations in this paper.

5.3.8 Instantiation of the argument pattern for Class 7

To demonstrate an instantiation of the argument pattern for Class 7 (i.e., a class representing

safety requirements about temporal properties), we consider the following safety requirement

51

Action act2 simulation in

refinement of the event

Operational is correct

G2.6.2

Discharged PO

Degraded_Op-

erational/act2/

SIM

Guard grd2 of the

event Operational is

strengthened in

refinement

G2.6.1

Discharged PO

Degraded_Op-

erational/grd2/

GRD

Sn2.6.1 Sn2.6.2

SR-09-lower-level

is a proper elaboration of

R-09-higher-level

G2.6

Argument over

the abstract event

Operational and the

refined event

Degraded_Operational

S2.6.1

Abstract event

Operational

C2.6.1

Refined event

Degraded_Operational

C2.6.2

The first refinement

(MACHINE M1 and CONTEXT

C1), the second refinement

(MACHINE M2 and

CONTEXT C1)

M2.6.1

Rodin

theorem

provers

C2.6.3

Model (MACHINE M2 and

CONTEXT C1)
is a refinement of model

(MACHINE M1 and

CONTEXT C1)

A2.6.1

A

Figure 36: A fragment of the safety case corresponding to assurance of hierarchical require-

ments R-09-higher-level and SR-09-lower-level

of the steam boiler system:

SR-13 : If there is no system failure, the system shall continue

its operation in a new cycle.

In our Event-B specification of the steam boiler system, the new cycle starts when the sys-

tem enables the event Environment (Figure 31). Therefore, we have to show that, whenever

no failure is detected in the detection phase, the system will start a new cycle by eventually

reaching the event Environment. According to our pattern, we associate the requirement SR-

13 with a temporal reachability property. The corresponding instance of the generic mapping

function FM for Class 7 in this case is

SR-13 7→ {temp property},

where temp property is an LTL formula defined as

temp property: � (after(Detection) ∧ failure = FALSE →
♦ before(Environment)).

This formula has the following representation in the ProB plug-in:

G ({(∀phase′, failure′ · phase′ ∈ PHASE ∧ failure′ ∈ BOOL ∧
(∃ phase, stop, failure · phase ∈ PHASE ∧ stop ∈ BOOL ∧
failure ∈ BOOL ∧ phase = DET ∧ failure = FALSE ∧
stop = FALSE) ∧ phase′ = CONT ∧ failure′ ∈ BOOL) ∧
failure = FALSE}
⇒
F {phase = ENV ∧ stop = FALSE}).

52

As a result of the model checking on this property, ProB yields the following outcome:

“no counter-example has been found, all nodes have been visited”. Therefore, we can attach

this result as the evidence for the corresponding fragment of our safety case (Sn2.7.1). The

resulting instance of the argument pattern is shown in Figure 37.

SR-13 of Class 7

is met

G2.7

Argument over all

formulated

requirement properties

Model checking

result on

temp_pro-

perty

S2.7.1

Sn2.7.1

The model

satisfies the property

temp_property

G2.7.1 Property

temp_property

C2.7.3

ProB tool for the

Rodin platform

C2.7.1

Property

temp_property is the

proper formalisation of

the requirement

A2.7.1

A

Model: the abstract

model (MACHINE M0

and CONTEXT

C0)

M2.7.1

ProB model

checker

C2.7.2

Figure 37: A fragment of the safety case corresponding to assurance of SR-13

5.3.9 Instantiation of the argument pattern for Class 8

We did not take into account timing constraints imposed on the steam boiler control system

while developing the formal system specification in Event-B. Therefore, we could not sup-

port the system safety case with a fragment associated with the safety requirements about

timing properties (Class 8).

5.4 Discussion on the application of the approach

Despite the fact that the accomplished Event-B development of the steam boiler control

system is quite complicated and, as a result, a significant number of proof obligations has

been discharged, we have not been able to instantiate two argument patterns, namely the

patterns for Class 4 and Class 8. First of all, the steam boiler control system is a failsafe

system, which means that there is a deadlock in its execution. Consequently, there are no re-

quirements about the absence of system deadlock (Class 4). Second of all, timing properties

(Class 8) were not a part of the given system requirements either. Nevertheless, the presented

guidelines on the instantiation of the argument patterns have allowed us to easily construct

the corresponding fragments of the system safety case for the remaining safety requirements

as well as to demonstrate well-definedness of the overall development of the system.

The use of the Rodin platform and accompanying plug-ins has facilitated derivation of

the proof- and model checking-based evidence that the given safety requirements hold for

the modelled system. The proof-based semantics of Event-B (a strong relationship between

53

model elements and the associated proof obligations) has given us a direct access to the

corresponding proof obligations. It has allowed us to not just claim that the verified theorems

were proved but also explicitly include the obtained proof obligations into the resulting safety

case.

6 Related work

In this section, we overview related contributions according to the following three directions:

firstly, we consider the publications on the use of formal methods for safety cases; secondly,

we overview the works that aim at formalising safety requirements; and thirdly, we take a

closer look at the approaches focusing on argument patterns.

Formal methods in safety cases. There are two main research directions in utilising

formal methods for safety cases. On the one hand, a safety case argument itself can be

formally defined and verified. On the other hand, safety requirements can be formalised and

formally verified allowing us to determine the safety evidence such as the obtained results of

static analysis, model checking or theorem proving. Note that such evidence corresponds to

the class of safety evidence called formal verification results defined in the safety evidence

taxonomy proposed by Nair et al. in [51].

In the former case, soundness of a safety argument can be proved by means of theo-

rem proving in the classical or higher order logic, e.g., using the interactive theorem prover

PVS [33, 57]. In particular, Rushby [57] formalises a top-level safety argument to support

automated checking of soundness of a safety argument. He proposes to represent a safety

case argument in the classical logic as a theorem where antecedents are the assumptions un-

der which a system (or design) satisfies the consequent, whereas the consequent is a specific

claim in the safety case that has to be assured. Then, such a theorem can be verified by an

automated interactive theorem prover or a model checker.

In the latter case, soundness of an overall safety case is not formally examined. The fo-

cus is rather put on the evidence derived from formal analysis to show that the specific goals

reflecting safety requirements are met. For example, to support the claim that the source

code of a program module does not contain potentially hazardous errors, the authors of [32]

use as the evidence the results of static analysis of program code. In [8,9], the authors assure

safety of automatically generated code by providing formal proofs as the evidence. They

ensure that safety requirements hold in specific locations of software system implementa-

tions. In [22, 23], the authors automate generation of heterogeneous safety cases including

a manually developed top-level system safety case, and lower-level fragments automatically

generated from the formal verification of safety requirements. According to this approach,

the implementation is formally verified against a mathematical specification within a logi-

cal domain theory. This approach is developed for the aviation domain and illustrated by

an unmanned aircraft system. To ensure that a model derived during model-driven devel-

opment of a safety critical system, namely pacemaker, satisfies all the required properties,

the authors of [43] use the obtained model checking results. Our approach proposed in this

paper also belongs to this category. Formalisation and verification of safety requirements of

54

a critical system allows us to obtain the proof- and model checking-based evidence that these

requirements hold.

Formalisation of safety requirements. Incorporation of requirements in general, and

safety requirements in particular, into formal specifications is considered to be a challenging

task. We overview some recent approaches that address this problem dividing them into two

categories: those that aim at utilising model checking for verification of critical properties,

and those that employ theorem proving for this purpose.

For example, a formalisation of safety requirements using the Computation Tree Logic

(CTL) and then verification of them using a model checker is presented in [14]. The author

classifies the given requirements associating them with the corresponding CTL formulas. A

similar approach is presented in [35]. Here safety properties defined as LTL formulas are

verified by using the SPIN model checker.

In contrast, the authors of [16] perform a systematic transformation of a Petri net model

into an abstract B model for verification of safety properties by theorem proving. Another

work that aims at verifying safety requirements by means of theorem proving is presented

in [46]. The authors incorporate the given requirements into an Event-B model via applying

a set of automated patterns, which are based on Failure Modes and Effects Analysis (FMEA).

Similarly to these works, we take an advantage of using theorem proving and a

refinement-based approach to formal development of a system. We gradually introduce the

required safety properties into an Event-B model and verify them in the refinement process.

This allows us to avoid the state explosion problem commonly associated with model check-

ing, thus making our approach more scalable for systems with higher levels of complexity.

Nonetheless, in this paper, we also rely on model checking for those properties that cannot

be verified by our framework directly.

Furthermore, there are other works that aim at formalising safety requirements, specifi-

cally in Event-B [41, 42, 49, 59]. Some of them propose to incorporate safety requirements

as invariants and before-after predicates of events [41, 59], while others, e.g., [49], represent

them as invariants or theorems only. Moreover, all these works show the correspondence

between some particular requirements and the associated elements of the Event-B structure.

However, they neither classify the safety requirements nor give precise guidelines for formal

verification of those requirements that cannot be directly verified by the Event-B framework.

In contrast, to be able to argue over each given safety requirement by relying on its formal

representation, we propose a classification of safety requirements and define a precise map-

ping of each class onto a set of the corresponding model expressions. Moreover, for some of

these classes, we propose bridging Event-B with other tools (model checkers).

Argument patterns. In general, argument patterns (or safety case patterns) facilitate

construction of a safety case by capturing commonly used structures and allowing for sim-

plified instantiation. Safety case patterns have been introduced by Kelly and McDermid [45]

and received recognition among safety case developers. In [20], the authors give a formal

definition for safety case patterns, define formal semantics of patterns, and propose a generic

data model and algorithm for pattern instantiation. For example, a safety case pattern for

arguing the correctness of implementations developed from a timed automata model using a

model-based development approach has been presented in [6]. An instantiation of this pattern

55

has been illustrated on the implementation software of a patient controlled analgesic infu-

sion pump. In [7], the author proposes a set of property-oriented and requirement-oriented

safety case patterns for arguing safe execution of automatically generated program code with

respect to the given safety properties as well as safety requirements. Additionally, the author

defines architecture-oriented patterns for safety-critical systems developed using a model-

based development approach.

An approach to automatically integrating the output generated by a formal method or tool

into a software safety assurance case as an evidence argument is described in [21]. To cap-

ture the reasoning underlying a tool-based formal verification, the authors propose specific

safety case patterns. The approach is software-oriented. A formalised requirement is verified

to hold at a specific location of code. The proposed patterns allow formal reasoning and evi-

dence to be integrated into the language of assurance arguments. Our approach is similar to

the approach presented in [21]. However, we focus on formal system models rather that the

code. Moreover, the way system safety requirements are formalised and verified in Event-

B varies according to the proposed classification of safety requirements. Consequently, the

resulting evidence arguments are also different. Nevertheless, we believe that the approach

given in [21] can be used to complement our approach.

In this paper, we contribute to a set of existing safety case patterns and describe in detail

their instantiation process for different classes of safety requirements. Moreover, our pro-

posed patterns facilitate construction of safety cases where safety requirements are verified

formally and the corresponding formal-based evidence is derived to represent justification of

safety assurance. The evidence arguments obtained by applying our approach explicitly re-

flect the formal reasoning instead of just references to the corresponding proofs or the model

checking results.

7 Conclusions

In this paper, we propose a methodology supporting rigorous construction of safety cases

from formal Event-B models. It guides the developers starting from informal representa-

tion of safety requirements to building the corresponding parts of safety cases via formal

modelling and verification in Event-B and the accompanying toolsets.

We believe that the proposed methodology has shown good scalability. In this paper,

we have illustrated the application of our methodology both by small examples and a larger

case study without major difficulties. Moreover, we have applied the methodology in two

different situations: when formal models of systems were developed beforehand, and when

the development was performed in parallel with the construction of the associated safety

case. Specifically, all the formal models for illustrating the argument patterns in Section 4

were taken as given, while the formal development of the steam boiler system (presented

in our previous work [55] and partially in Section 5.3) was done taking into account the

proposed classification of safety requirements and the need to produce a safety case of the

system. We have additionally observed the fact that, to construct an adequate safety case

of a system based on its formal model, a feedback loop between two processes, namely,

56

the process of formal system development and construction of safety cases, is required. It

means that, if construction of a safety case indicates that the associated formal model is

“weak”, i.e., it does not contain an adequate formalisation of some safety requirements that

need to be demonstrated in the safety case, the developers should be able to react on that by

improving the model.

Our main contribution, namely, the proposed methodology for rigorous construction of

safety cases, has led us to achieving the following two sub-contributions. Firstly, we have

classified safety requirements and shown how they can be formalised in Event-B. To attain

this, we have proposed a strict mapping between the given safety requirements and the asso-

ciated elements of formal models, thus establishing a clear traceability of those requirements.

Secondly, we have proposed a set of argument patterns based on the proposed classification,

the use of which facilitates the construction of safety cases. Due to the strong relationship

between model elements and the associated proof obligations provided by the proof-based

semantics of Event-B, we have been able to formally verify the mapped safety requirements

and derive the corresponding proofs. Moreover, via developing the argument strategies based

on formal reasoning and using the resulting proofs as the evidence for a safety case, we have

achieved additional assurance that the desired safety requirements hold.

Furthermore, application of the well-defined Event-B theory for formal verification of

safety requirements and formal-based construction of safety cases has clarified the use of

particular safety case goals or strategies. It has allowed us to omit the additional explanations

why the defined strategies are needed and why the proposed evidence is relevant. Otherwise,

we would have needed to extend each proposed argument pattern with multiple instances

of a specific GSN element called justification [28]. Consequently, this would have led to a

significant growth of already large safety cases.

In this work, we have focused on safety aspects however the proposed approach can be

extended to cover other dependability attributes, e.g., reliability and availability. We also

believe that the generic principles described in this paper by the example of the Event-B

formalism are applicable to any other formalism defined as a state transition system, e.g., B,

Z, VDM, refinement calculus, etc.

So far, all the proposed patterns and their instantiation examples have been developed

manually. However, the larger a system under consideration is, the more difficult this proce-

dure becomes. Therefore, the necessity of automated tool support is obvious. We consider

development of a dedicated plug-in for the Rodin platform as a part of our future work.

Moreover, the proposed classification of the safety requirements is by no means complete.

Consequently, it could be further extended with some new classes and the corresponding

argument patterns.

Acknowledgements

Yuliya Prokhorova’s work is partially supported by the Foundation of Nokia Corporation.

Additionally, the authors would like to thank Prof. Michael Butler for the valuable feedback

on the requirements classification.

57

References

[1] J.-R. Abrial. Steam-Boiler Control Specification Problem. In Formal Methods for

Industrial Applications, Specifying and Programming the Steam Boiler Control (the

book grow out of a Dagstuhl Seminar, June 1995), pages 500–509, London, UK, 1996.

Springer-Verlag.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University

Press, New York, NY, USA, 1996.

[3] J.-R. Abrial. Controlling Cars on a Bridge. http://deploy-eprints. ecs.soton.ac.uk/112/,

April 2010.

[4] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge

University Press, New York, NY, USA, 1st edition, 2010.

[5] J.-R. Abrial and L. Mussat. Introducing Dynamic Constraints in B. In D. Bert, editor,

B’98: Recent Advances in the Development and Use of the B Method, volume 1393 of

Lecture Notes in Computer Science, pages 83–128. Springer Berlin Heidelberg, 1998.

[6] A. Ayoub, B.G. Kim, I. Lee, and O. Sokolsky. A Safety Case Pattern for Model-Based

Development Approach. In Proceedings of the 4th International Conference on NASA

Formal Methods (NFM’12), pages 141–146, Berlin, Heidelberg, 2012. Springer-Verlag.

[7] N. Basir. Safety Cases for the Formal Verification of Automatically Generated Code.

Doctoral thesis, University of Southampton, 2010.

[8] N. Basir, E. Denney, and B. Fischer. Constructing a Safety Case for Automatically

Generated Code from Formal Program Verification Information. In M.D. Harrison

and M.-A. Sujan, editors, Computer Safety, Reliability, and Security, volume 5219 of

Lecture Notes in Computer Science, pages 249–262. Springer Berlin Heidelberg, 2008.

[9] N. Basir, E. Denney, and B. Fischer. Deriving Safety Cases from Automatically Con-

structed Proofs. In Systems Safety 2009. Incorporating the SaRS Annual Conference,

4th IET International Conference on, pages 1–6, 2009.

[10] N. Basir, E. Denney, and B. Fischer. Deriving Safety Cases for Hierarchical Structure in

Model-Based Development. In E. Schoitsch, editor, Computer Safety, Reliability, and

Security, volume 6351 of Lecture Notes in Computer Science, pages 68–81. Springer

Berlin Heidelberg, 2010.

[11] G. Behrmann, A. David, and K.G. Larsen. A Tutorial on Uppaal. In M. Bernardo and

F. Corradini, editors, Formal Methods for the Design of Real-Time Systems, volume

3185 of Lecture Notes in Computer Science, pages 200–236. Springer Berlin Heidel-

berg, 2004.

58

[12] J. Berthing, P. Boström, K. Sere, L. Tsiopoulos, and J. Vain. Refinement-Based Devel-

opment of Timed Systems. In J. Derrick, S. Gnesi, D. Latella, and H. Treharne, editors,

Integrated Formal Methods, volume 7321 of Lecture Notes in Computer Science, pages

69–83. Springer Berlin Heidelberg, 2012.

[13] P. Bishop and R. Bloomfield. A Methodology for Safety Case Development. In Safety-

Critical Systems Symposium, Birmingham, UK. Springer-Verlag, 1998.

[14] F. Bitsch. Classification of Safety Requirements for Formal Verification of Software

Models of Industrial Automation Systems. In Proceedings of 13th International Con-

ference on Software and Systems Engineering and their Applications (ICSSEA’00),

Paris, France, 2000. CNAM.

[15] F. Bitsch. Safety Patterns - The Key to Formal Specification of Safety Requirements. In

Proceedings of the 20th International Conference on Computer Safety, Reliability and

Security (SAFECOMP’01), pages 176–189, London, UK, UK, 2001. Springer-Verlag.

[16] P. Bon and S. Collart-Dutilleul. From a Solution Model to a B Model for Verification

of Safety Properties. Journal of Universal Computer Science, 19(1):2–24, 2013.

[17] Claims, Arguments and Evidence (CAE). http://www.adelard.com/ asce/choosing-

asce/cae.html, 2014.

[18] D. Cansell, D. Méry, and J. Rehm. Time Constraint Patterns for Event-B Development.

In J. Julliand and O. Kouchnarenko, editors, B 2007: Formal Specification and De-

velopment in B, volume 4355 of Lecture Notes in Computer Science, pages 140–154.

Springer Berlin Heidelberg, 2007.

[19] UK Ministry of Defence. 00-56 Safety Management Requirements for Defence Sys-

tems, 2007.

[20] E. Denney and G. Pai. A Formal Basis for Safety Case Patterns. In F. Bitsch, J. Guio-

chet, and M. Kaâniche, editors, Computer Safety, Reliability, and Security, volume

8153 of Lecture Notes in Computer Science, pages 21–32. Springer Berlin Heidelberg,

2013.

[21] E. Denney and G. Pai. Evidence Arguments for Using Formal Methods in Software

Certification. In Proceedings of IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW’13), pages 375–380, 2013.

[22] E. Denney, G. Pai, and J. Pohl. Heterogeneous Aviation Safety Cases: Integrating

the Formal and the Non-formal. In Proceedings of the 2012 IEEE 17th International

Conference on Engineering of Complex Computer Systems (ICECCS 2012), pages 199–

208, Washington, DC, USA, 2012. IEEE Computer Society.

59

[23] E.W. Denney, G.J. Pai, and J.M. Pohl. Automating the Generation of Heterogeneous

Aviation Safety Cases. NASA Contractor Report NASA/CR-2011-215983, August

2011.

[24] EB2ALL - The Event-B to C, C++, Java and C# Code Generator. http://eb2all.loria.fr/,

October 2013.

[25] European Committee for Electrotechnical Standardization (CENELEC). EN 50128

Railway applications – Communication, signalling and processing systems – Software

for railway control and protection systems. June 2011.

[26] Event-B and the Rodin Platform. http://www.event-b.org/, 2014.

[27] The Flow plug-in. http://iliasov.org/usecase/, 2014.

[28] Goal Structuring Notation Working Group. Goal Structuring Notation Standard.

http://www.goalstructuringnotation.info/, November 2011.

[29] J. Groslambert. Verification of LTL on B Event Systems. In J. Julliand and

O. Kouchnarenko, editors, B 2007: Formal Specification and Development in B, vol-

ume 4355 of Lecture Notes in Computer Science, pages 109–124. Springer Berlin Hei-

delberg, 2006.

[30] I. Habli and T. Kelly. A Generic Goal-Based Certification Argument for the Justifica-

tion of Formal Analysis. Electronic Notes in Theoretical Computer Science, 238(4):27–

39, September 2009.

[31] J. Hatcliff, A. Wassyng, T. Kelly, C. Comar, and P. Jones. Certifiably Safe Software-

dependent Systems: Challenges and Directions. In Proceedings of the Track on Fu-

ture of Software Engineering (FOSE’14), pages 182–200, New York, NY, USA, 2014.

ACM.

[32] R. Hawkins, I. Habli, T. Kelly, and J. McDermid. Assurance cases and prescriptive

software safety certification: A comparative study. Safety Science, 59:55–71, 2013.

[33] H. Herencia-Zapana, G. Hagen, and A. Narkawicz. Formalizing Probabilistic Safety

Claims. In M. Bobaru, K. Havelund, G.J. Holzmann, and R. Joshi, editors, NASA

Formal Methods, volume 6617 of Lecture Notes in Computer Science, pages 162–176.

Springer Berlin Heidelberg, 2011.

[34] T.S. Hoang and J.-R. Abrial. Reasoning about Liveness Properties in Event-B. In

S. Qin and Z. Qiu, editors, Formal Methods and Software Engineering, volume 6991 of

Lecture Notes in Computer Science, pages 456–471. Springer Berlin Heidelberg, 2011.

[35] G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineer-

ing, 23(5):279–295, 1997.

60

[36] IEC61508. International Electrotechnical Commission. IEC 61508, functional safety

of electrical/electronic/programmable electronic safety-related systems. April 2010.

[37] A. Iliasov. Use Case Scenarios as Verification Conditions: Event-B/Flow Approach. In

Proceedings of the 3rd International Workshop on Software Engineering for Resilient

Systems (SERENE’11), pages 9–23, Berlin, Heidelberg, 2011. Springer-Verlag.

[38] A. Iliasov, L. Laibinis, E. Troubitsyna, A. Romanovsky, and T. Latvala. Augmenting

Event B Modelling with Real-Time Verification. TUCS Technical Report 1006, 2011.

[39] A. Iliasov, L. Laibinis, E. Troubitsyna, A. Romanovsky, and T. Latvala. Augment-

ing Event-B Modelling with Real-Time Verification. In Proceedings of Workshop on

Formal Methods in Software Engineering: Rigorous and Agile Approaches (Form-

SERA’12), pages 51–57, 2012.

[40] International Organization for Standardization. ISO 26262 Road Vehicles Functional

Safety. November 2011.

[41] M. Jastram, S. Hallerstede, and L. Ladenberger. Mixing Formal and Informal Model

Elements for Tracing Requirements. In Electronic Communications of the EASST, vol-

ume 46, 2011.

[42] M. Jastram, S. Hallerstede, M. Leuschel, and A.G. Russo Jr. An Approach of Re-

quirements Tracing in Formal Refinement. In Proceedings of the Third International

Conference on Verified Software: Theories, Tools, Experiments (VSTTE’10), pages 97–

111, Berlin, Heidelberg, 2010. Springer-Verlag.

[43] E. Jee, I. Lee, and O. Sokolsky. Assurance Cases in Model-Driven Development of

the Pacemaker Software. In T. Margaria and B. Steffen, editors, Leveraging Applica-

tions of Formal Methods, Verification, and Validation, volume 6416 of Lecture Notes

in Computer Science, pages 343–356. Springer Berlin Heidelberg, 2010.

[44] T.P. Kelly. Arguing Safety – A Systematic Approach to Managing Safety Cases. Doc-

toral thesis, University of York, September 1998.

[45] T.P. Kelly and J.A. McDermid. Safety Case Construction and Reuse Using Patterns.

In P. Daniel, editor, Proceedings of the 16th International Conference on Computer

Safety, Reliability and Security (SAFECOMP’97), pages 55–69. Springer-Verlag Lon-

don, 1997.

[46] I. Lopatkin, Y. Prokhorova, E. Troubitsyna, A. Iliasov, and A. Romanovsky. Patterns

for Representing FMEA in Formal Specification of Control Systems. TUCS Technical

Report 1003, 2011.

[47] The ProB Animator and Model Checker. http://www.stups.uni-

duesseldorf.de/ProB/index.php5/LTL Model Checking, 2014.

61

[48] D. Méry. Requirements for a Temporal B Assigning Temporal Meaning to Abstract

Machines ... and to Abstract Systems. In K. Araki, A. Galloway, and K. Taguchi,

editors, Integrated Formal Methods, pages 395–414. Springer London, 1999.

[49] D. Méry and N.K. Singh. Technical Report on Interpretation of the Electrocardiogram

(ECG) Signal using Formal Methods. Technical Report INRIA-00584177, 2011.

[50] C. Metayer, J.-R. Abrial, and L. Voisin. Event-B Language. Rigorous

Open Development Environment for Complex Systems (RODIN) Deliverable 3.2.

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, May 2005.

[51] S. Nair, J.L. de la Vara, M. Sabetzadeh, and L. Briand. Classification, Structuring, and

Assessment of Evidence for Safety – A Systematic Literature Review. In Proceedings

of IEEE Sixth International Conference on Software Testing, Verification and Validation

(ICST’13), pages 94–103, 2013.

[52] The ProB Animator and Model Checker. http://www.stups.uni-duesseldorf.de/

ProB/index.php5/Main Page, 2014.

[53] Y. Prokhorova, L. Laibinis, E. Troubitsyna, K. Varpaaniemi, and T. Latvala. Deriving a

mode logic using failure modes and effects analysis. International Journal of Critical

Computer-Based Systems, 3(4):305––328, 2012.

[54] Y. Prokhorova and E. Troubitsyna. Linking Modelling in Event-B with Safety Cases.

In P. Avgeriou, editor, Software Engineering for Resilient Systems, volume 7527 of

Lecture Notes in Computer Science, pages 47–62. Springer Berlin Heidelberg, 2012.

[55] Y. Prokhorova, E. Troubitsyna, and L. Laibinis. A Case Study in Refinement-Based

Modelling of a Resilient Control System. TUCS Technical Report 1086, 2013.

[56] Y. Prokhorova, E. Troubitsyna, L. Laibinis, D. Ilić, and T. Latvala. Formalisation of an

Industrial Approach to Monitoring Critical Data. TUCS Technical Report 1070, 2013.

[57] J. Rushby. Formalism in Safety Cases. In C. Dale and T. Anderson, editors, Mak-

ing Systems Safer: Proceedings of the Eighteenth Safety-Critical Systems Symposium,

pages 3–17, Bristol, UK, 2010. Springer.

[58] M.R. Sarshogh and M. Butler. Specification and Refinement of Discrete Timing Prop-

erties in Event-B. In Electronic Communications of the EASST, volume 46, 2011.

[59] S. Yeganefard and M. Butler. Structuring Functional Requirements of Control Systems

to Facilitate Refinement-based Formalisation. In Electronic Communications of the

EASST, volume 46, 2011.

62

Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku

Faculty of Mathematics and Natural Sciences

• Department of Information Technology

• Department of Mathematics

Turku School of Economics

• Institute of Information Systems Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

ISBN 978-952-12-3064-6
ISSN 1239-1891

