
Yuliya Prokhorova | Elena Troubitsyna | Linas Laibinis

A Case Study in Refinement-Based
Modelling of a Resilient Control System

TUCS Technical Report
No 1086, June 2013

A Case Study in Refinement-Based
Modelling of a Resilient Control System

Yuliya Prokhorova
TUCS – Turku Centre for Computer Science,
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
yuliya.prokhorova@abo.fi

Elena Troubitsyna
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
elena.troubitsyna@abo.fi

Linas Laibinis
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
linas.laibinis@abo.fi

TUCS Technical Report

No 1086, June 2013

Abstract

In this paper, we present a case study in modelling a resilient control system in Event-B.
We demonstrate how to formally define the basic safety properties and fault tolerance mech-
anisms, as well as the system modes describing the system behaviour under different exe-
cution and fault conditions. Our formal development helps us to identify the diagnosability
conditions for resilience, i.e., identify the limitations to be imposed on possible component
changes to guarantee its controllability and hence dependability.

Keywords: Event-B, formal modelling, refinement, resilient control systems, steam boiler.

TUCS Laboratory
Distributed Systems Laboratory

1 Introduction
Resilience is a property of a system to remain dependable despite changes [1]. Often changes
are introduced in the design to incorporate new functionality, new components as well as
change the existing components. How to ensure that the introduced changes do not lead to
unsafe or unreliable behaviour?

In this paper, we undertake a formal development of a control system. We apply a system-
level modelling technique – Event-B [2] – to formally derive a system specification and rep-
resent its behaviour in different operational modes. Our formalisation allows us to identify
diagnosability conditions – the restrictions imposed on the system design to ensure that the
controller can deduce the state of the controlled environment. The diagnosability conditions
introduce the constraints on possible changes in the system requirements that would allow us
to preserve system dependability. Our approach is presented via a case study – development
of a steam boiler control system [3].

The paper is organised as follows. In Section 2, we briefly describe the Event-B frame-
work and the refinement-based approach to modelling systems in Event-B. Section 3 presents
our case study – a steam boiler control system – and outlines the proposed modelling strategy.
Section 4 presents a formal development of the steam boiler and illustrates the specification
and verification process of the system requirements. In Section 5, we assess our contributions
by describing lessons learned. Finally, in Section 6, we review related work and conclude
the paper.

2 Refinement-Based Modelling in Event-B
Resilience is a system-level property that requires the techniques supporting system-level
modelling and analysis. In this paper, we use Event-B [2, 4] as a framework for system level
modelling and proof-based verification.

In Event-B, system models are defined using the notion of an abstract state machine.
The abstract machine encapsulates the state (the variables) of a model and defines operations
(events) on its state. Each machine is uniquely identified by its name MachineName. The
state variables of the machine are declared in the Variables clause and initialised in the INI-
TIALISATION event. The variables are strongly typed by the constraining predicates given
in the Invariants clause. The data types and constants of the model are given in context
that also postulated their properties as axioms. The behaviour of the system is defined by a
number of atomic events. An event has the following form:

evt =̂ any lv where g then R end,

where lv is a list of local variables, the guard g is the conjunction of predicates defined
over the model (local and state) variables, and the action R is a parallel composition of
assignments over the variables.

A guard defines when an event is enabled. If several events are enabled simultaneously,
then any of them can be chosen for execution non-deterministically. If none of the events

1

is enabled, then the system deadlocks. In general, the action of an event is a composition
of assignments executed simultaneously. Variable assignments can be either deterministic
or non-deterministic. The deterministic assignment is denoted as x := E(v), where x is a
state variable and E(v) is an expression over the state variables v. The non-deterministic
assignment can be denoted as x :∈ S or x :| Q(v, x′), where S is a set of values and Q(v, x′)
is a predicate. As a result of the non-deterministic assignment, x gets any value from S or it
obtains a value x′ such that Q(v, x′) is satisfied.

Event-B promotes top-down approach to correct-by-construction system development. It
relies on the top-down refinement-based approach to formal development. The development
starts from an abstract specification of the system that defines essential behaviour and prop-
erties of the system. In a number of correctness-preserving transformations – refinements –
we introduce implementation details and arrive at the detailed system specification closely
resembling an eventual implementation. Usually refinement steps result in introducing new
variables and events into the model.

We can also perform data refinement allowing us to replace some abstract variables of the
model with their concrete counterparts. In this case, the invariant of a refined model formally
defines the relationship between the abstract and concrete variables.

Event-B relies on theorem proving to verify correctness. Via discharging proof obliga-
tions we formally verify the essential correctness conditions: the events preserve the invari-
ant; whenever the event is enabled, there exists some reachable after-state (i.e., each event
is feasible); the model is well-formed; refinement does not introduce additional deadlocks.
The detailed discussion of the Event-B proof obligations can be found in [2].

The Rodin platform [4] provides an integrated modelling environment that includes auto-
mated theorem proving environment. In general, the Rodin platform achieves a high degree
of automation – usually over 80% of proof obligations are discharged automatically.

In the next section, we present our case study – a formal development of the steam boiler
control system.

3 The Steam Boiler Control System

The steam boiler control system (Fig. 1) is a resilient control system that produces steam and
adjusts the quantity of water in the steam boiler to maintain it within the predefined safety
boundaries [3].

The system consists of the following units: a chamber, a pump, a valve, a sensor to
measure the quantity of water in the chamber, a sensor to measure the quantity of steam
which comes out of the steam boiler chamber, a sensor to measure water input through the
pump, and a sensor to measure water output through the valve. The system parameters are
given in Table 1.

The considered system has several execution modes. After being powered on, the system
enters the Initialisation mode. At each control cycle, the system reads sensors and performs
failure detection. Then, depending on the detection result, the system may enter either an op-
erational mode or a non-operational mode. There are three operational modes in the system:

2

Steam exit

Steam output

sensor

M1

M2

N1

N2

Water output

sensor

Water level

sensor

Valve

Water input sensor

(pump sensor)

Pump

Chamber

Figure 1: Steam boiler

Table 1: Parameters of the steam boiler
Label Description Unit
C the total capacity of the steam boiler chamber litre
M1 the minimal quantity of water, i.e., the lower safety boundary litre
M2 the maximal quantity of water, i.e., the upper safety boundary litre
N1 the minimal normal quantity of water to be maintained during litre

regular operation
N2 the maximal normal quantity of water to be maintained during litre

regular operation
W the maximal quantity of steam produced litre/sec
U1 the maximal gradient of increase of the quantity of steam litre/sec/sec
U2 the maximal gradient of decrease of the quantity of steam litre/sec/sec
P the maximal capacity of the pump litre/sec

Normal, Degraded, and Rescue. In the Normal mode, the system attempts to maintain the
water level in the chamber between the normal boundaries N1 and N2 (here N1 < N2), pro-
viding that no failures of the system units have occurred. In the Degraded mode, the system
tries to maintain the water level within normal boundaries despite failures of some physical
non-critical units. In the Rescue mode, the system attempts to maintain the normal water
level in the presence of a failure of the critical system unit – the water level sensor. If failures
of the system units and water level sensor occur simultaneously or the water level is outside
of the safety boundaries M1 and M2 (here M1 < M2), the system enters the non-operational
mode Emergency Stop.

The fault tree [5] shown in Fig. 2 gives a systematic representation of safety require-
ments. The main hazard of the system is associated with the overflow or lack of water in
the chamber, i.e., when the water level exceeds the safety boundaries. Next, we list both the
functional (Table 2) and safety requirements (Table 3) and show how they are incorporated
in an Event-B formal specification.

In our development, we consider the following failures of the system and its units.

3

The water level
exceeds the safety

boundaries

The quantity of
water is less than
the lower safety

boundary

The quantity of
water is higher than

the upper safety
boundary

The water level
is low

The water level
is high

The real water level
is incorrectly

evaluated
The real water

level is incorrectly
evaluated

Any system unit
other than the

water level sensor
fails

The water level
sensor fails

The steam output
sensor fails

Steam output
value is out of
allowed range

Steam output
value is out of

predicted range

The pump fails
(it does not

change its state
when required)

Water level
value is out of
allowed range

Water level
value is out of

predicted range

HW failures of
system units

No means to
detect and

tolerate failures
of system

units

Figure 2: Fault tree of the steam boiler

4

Table 2: Functional requirements of the steam boiler control system
ID Requirement
FR-01 The system shall rely on the minimal and maximal predicted values of the

water level to detect whether the water level is within the normal and
safety boundaries

FR-02 The pump and the valve shall not be operated simultaneously
FR-03 The valve shall be switched on in the pre-operational phase only
FR-04 When the water level is between N1 and M1, the pump shall be switched on
FR-05 When the water level is between N2 and M2, the pump shall be switched off

Table 3: Safety requirements of the steam boiler control system
ID Requirement
SR-01 When the system failure is detected, the steam boiler control system shall

be shut down and an alarm shall be raised (the system shall enter the
emergency stop mode)

SR-02 During the system operation the water level shall not exceed the predefined
safety boundaries

SR-03 If either the water level exceeds the safety boundaries or there is a failure of
the water level sensor and there is a failure of the pump or the steam
output sensor, the system failure shall be detected

SR-04 When the water level value is out of the allowed range or the water level
value is out of the predicted range, the water level sensor failure shall be
detected

SR-05 When the pump does not change its state if required, the pump actuator
failure shall be detected

SR-06 When the steam output value is out of the allowed range or the steam
output value is out of the predicted range, the steam output sensor failure
shall be detected

SR-07 When the water level sensor fails, the minimal and maximal predicted values
of the water level shall be computed independently of the sensor readings

SR-08 When the steam output sensor fails, the minimal and maximal predicted
values of the steam output shall be computed independently of the sensor
readings

SR-09 When the pump actuator fails, the system shall rely on the pump sensor
readings and shall not switch the pump actuator

SR-10 When the pump or the steam output sensor failure is detected, the steam
boiler control system shall enter the degraded mode

SR-11 When the water level sensor failure is detected, the steam boiler control
system shall enter the rescue mode

A failure of the steam boiler control system is detected if either the water level in the chamber
is out of the predefined safety boundaries (i.e., if it is lower than M1 or higher than M2) or a
combined failure of the water level sensor and any other system unit (the pump or the steam
output sensor) occurs. The water level sensor fails if it indicates a value which exceeds the
allowed range (i.e., the range in which a non-failed sensor operates) or a value which exceeds
the predicted range. The pump fails if it does not change its state when required. The steam
output sensor fails if it indicates a value which is out of the allowed range or the value which
is out of the predicted range.

5

The water level sensor failure by itself does not lead to the system failure. The steam
boiler contains the information redundancy, i.e., the controller is able to estimate the water
level in the chamber based on the amount of water produced by the pump and the amount
of the released steam. Similarly, the controller is able to maintain the acceptable level of
efficiency based on the water level sensor readings if either the pump or the steam output
sensor fail. Furthermore, the system has an intrinsic resilience mechanism: it can cope with
both the physical pump failure and failed water supply due to clogged pipes.

We design a formal specification of the steam boiler control system incrementally, i.e.,
by gradually unfolding the system functionality and architecture. This allows us to struc-
ture complex functional (FR-01..FR-05) and safety (SR-01..SR-11) requirements and also
simplifies verification.

Let us now shortly outline the proposed development strategy (Fig. 3). The abstract
model (the machine M0) implements a basic control loop. The first refinement (M1) in-
troduces an abstract representation of the activities performed after the system is powered
on and during system operation (in nominal and failure conditions). At the second refine-
ment step (M2), we introduce a detailed representation of the conditions leading to a system
failure. We model the physical environment of the system and refine its failure detection
procedures at the third refinement step (M3). Finally, at the fourth refinement step (M4), we
introduce a representation of the required execution modes. Each machine M0..M4 has an
associated context C0..C3 (i.e., a machine sees a context) where the corresponding properties
of the model are postulated as axioms. While each subsequent machine refines the previous
one, each subsequent context extends the previous one. Additionally, several machines can
see the same context (e.g., both machines M1 and M2 see the context C1).

Generic pattern for

abstract specification of a control system

Unfolding pre-operational functionality

(refinement)

Refines

Refines

Data refinement of the system failure.

Refinement of the Detection event.

Refinement of the Operational event

(Normal, Degraded, Rescue)

(refinement)

M0

M1

M2

Unfolding physical environment

and failure detection procedures

(refinement)

Refines

M3

Unfolding system modes

(refinement)

Refines

M4

Sees
PHASE

C0

Sees
PUMP_MODE,

VALVE_MODE,

System parameters,

Stability function definition,

Critical water level function

definition

C1

Extends

Sees

Sees

Sees

System parameters,

Min/Max water level functions

definition,

Min/Max steam output functions

definition

C2

Extends

MODE
C3

Extends

Figure 3: Refinement strategy

6

4 Development of Steam Boiler by Refinement in Event-B

In this section, we give an overview of the formal development of the steam boiler. The
complete models of our formal development can be found in Appendix.

4.1 The Abstract Model

In the abstract model, the system behaviour is defined as interleaving between the events
modelling the environment and the controller as proposed in our previous work [6]. The
behaviour of the controller has the following stages: Detection, Control (Normal Opera-
tion or Error Handling), Prediction as modelled by the variable phase: {ENV, DET, CONT,
PRED}. The events Environment, Operational and Prediction abstractly model the environ-
ment, controller reaction and computation of the next expected states of the system units
correspondingly. The event Detection non-deterministically models an outcome of the error
detection. A reaction on errors is abstractly modelled by the event EmergencyStop.

In the abstract specification, we start to abstractly model the safety requirement SR-01.
The variable stop abstractly models system shutdown and raising the alarm. The safety
invariant:

inv0.1: failure = TRUE ∧ phase 6= CONT ⇒ stop = TRUE

ensures that, if a failure has been detected and processed (phase 6= CONT), the shutdown
will be initiated. Let us note that the invariant inv0.1 covers only a part of the requirement
SR-01. Modelling SR-01 will be completed when we introduce a representation of execution
modes in our model.

4.2 The First Refinement: Unfolding Pre-operational Functionality

At our first refinement step, we introduce a representation of system components. We de-
fine the variables representing the water level sensor and the actuators – the pump and
the valve. The variable water level models the sensor readings, while min water level and
max water level represent the estimated interval for a sensed water level (which corresponds
to the functional requirement FR-01). The values of the variables min water level and
max water level are assigned in the event Prediction.

The variables pump ctrl and valve ctrl model the steam boiler actuators – the pump and
the valve respectively. If the pump is switched on, the value of the variable pump ctrl equals
to ON. It is OFF otherwise. The valve can be open (valve ctrl = OPEN) or closed (valve ctrl
= CLOSED). At this refinement step, we introduce the following invariants:

inv1.1: valve ctrl = OPEN ⇒ pump ctrl = OFF,

inv1.2: failure = FALSE ∧ phase 6= ENV ∧ phase 6= DET ⇒
min water level ≥M1 ∧ max water level ≤M2.

7

The invariant inv1.1 corresponds to the system functional requirement FR-02, while the
invariant inv1.2 ensures another main system safety requirement (SR-02). The event guards
ensure that the minimal and maximal water levels are within the nominal interval [M1..M2].

Moreover, at this stage we refine the event Operational to single out the system initial-
isation stage. The PreOperational events (Fig. 4) are executed only at the beginning of the
system operation to equalize the amount of water in the boiler chamber. Once the water level
reaches the normal boundaries, the PreOperational events are disabled. Then the Opera-
tional event can be executed.

 event PreOperational1 refines Operational

 where

 phase = CONT

 failure = FALSE

 stop = FALSE

 preop_flag = TRUE

 max_water_level > N2 ∧ min_water_level > N1

 min_water_level ≥ M1 ∧ max_water_level ≤ M2

 then

 pump_ctrl ≔ OFF

 valve_ctrl ≔ OPEN

 phase ≔ PRED

 end

 event PreOperational2 refines Operational

 where

 phase = CONT

 failure = FALSE

 stop = FALSE

 preop_flag = TRUE

 min_water_level ≥ M1 ∧ max_water_level ≤ M2

 max_water_level ≤ N2

 then

 pump_ctrl :∣ pump_ctrl' ∈ PUMP_MODE ∧

 (((min_water_level ≥ N1 ⇒ pump_ctrl' = OFF) ∧

 (min_water_level < N1 ⇒ pump_ctrl' = ON)) ∨

 pump_ctrl' = pump_ctrl)

 valve_ctrl ≔ CLOSED

 preop_flag ≔ FALSE

 phase ≔ PRED

 end

Figure 4: Pre-operational events

Since the valve is only used to adjust the water level in the chamber at the pre-operational
phase, the requirement (FR-03) is formalised as follows:

inv1.3: preop flag = FALSE ⇒ valve ctrl = CLOSED,

where preop flag indicates whether the system is in the pre-operational stage. Furthermore,
we refine the event Detection to separate three cases: (1) the water level is within [M1..M2]
and no failure is detected; (2) the water level is out of [M1..M2]; (3) the water level is within
[M1..M2], but some failures are detected.

4.3 The Second Refinement: Introducing Failure Assumptions

To introduce the required operational modes presented in Section 3, we split the event Opera-
tional into three events: Normal Operational, Degraded Operational and Rescue Opera-
tional (see Fig. 5).

At this refinement step, we also elaborate on failure detection procedures. We establish
a relation between a system failure and component failures via the following invariant:

8

inv2.1: (phase 6= DET ∧ phase 6= ENV) ⇒
(failure = TRUE ⇔ ((wl sensor failure = TRUE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE)) ∨
WL critical(min water level 7→ max water level) = TRUE)),

where wl sensor failure stands for a failure of the water level sensor, the variable
pump failure models a failure of the pump, while the variable so sensor failure represents a
failure of the steam output sensor. WL critical is a function that returns TRUE, if the water
level exceeds the safety limits, and FALSE otherwise. Let us point out that the pump is a
complex device which includes both a sensor and an actuator. However, we consider only
an actuator failure and assume that the pump sensor (the water input sensor) never fails. We
also assume that the valve and water output sensor never fail.

Therefore, the given invariant establishes a correspondence between an abstract system
failure (represented by the abstract variable failure) and the specific failures of the compo-
nents. It postulates that a failure of the system occurs if and only if either a water level sensor
failure is detected in combination with a unit failure (a pump failure or a steam output sensor
failure or both) or the critical water level is exceeded. The corresponding events are modified
accordingly (Fig. 5).

 event Normal_Operational refines Operational

 where

 …

 wl_sensor_failure = FALSE ∧ pump_failure = FALSE ∧ so_sensor_failure = FALSE

 WL_critical(min_water_level ↦ max_water_level) = FALSE

 then

 // operate normally relying on min/max_water_level

 end

 event Degraded_Operational refines Operational

 where

 …

 wl_sensor_failure = FALSE ∧ (pump_failure = TRUE ∨ so_sensor_failure = TRUE)

 WL_critical(min_water_level ↦ max_water_level) = FALSE

 then

 // if the pump failure is detected, do not modify pump_ctrl,

 else operate normally relying on min/max_water_level

 end

 event Rescue_Operational refines Operational

 where

 …

 wl_sensor_failure = TRUE ∧ pump_failure = FALSE ∧ so_sensor_failure = FALSE

 WL_critical(min_water_level ↦ max_water_level) = FALSE

 then

 // operate normally relying on min/max_water_level

 end

Figure 5: Normal, degraded and rescue operational events

9

We also introduce the notion of failure stability into the model (axioms axm2.1 and
axm2.2 in the context C1 given in Fig. 3). The failure stability means that, once a failure oc-
curred, the value of the variable representing this failure remains unchanged until the whole
system is restarted:

axm2.1: Stable ∈ BOOL×BOOL→ BOOL,

axm2.2: ∀x, y · x ∈ BOOL ∧ y ∈ BOOL⇒
(Stable(x 7→ y) = TRUE ⇔ (x = TRUE ⇒ y = TRUE)).

We rely on the stability property to refine the detection events. At this refinement step,
we also model the process of switching on and off the pump, i.e., FR-04 and FR-05. An
adherence to the corresponding requirements is ensured by the following invariants:

inv2.2: (pump failure = FALSE ∧ phase = PRED ∧
max water level < N1 ∧ min water level ≥M1) ⇒
pump ctrl = ON,

inv2.3: (pump failure = FALSE ∧ phase = PRED ∧
min water level > N2 ∧ max water level ≤M2) ⇒
pump ctrl = OFF.

Let us note that the invariants inv2.2 and inv2.3 guarantee that the pump is not switched
on if a failure is detected (SR-09).

4.4 The Third Refinement: Unfolding Physical Environment
The third refinement step elaborates further on the physical behaviour of the steam boiler
and failure detection procedures. The new variables steam output and water output stand
for readings of the steam output sensor and the water output sensor respectively.

To implement safety requirements associated with failure detection of the system com-
ponents (i.e., SR-04..SR-06), we refine the previously introduced abstract detection events
as follows. Firstly, the event Detection OK is decomposed into a set of events modelling
detection of different types of failures. Similarly, the event Detection NOK is refined into a
set of events modelling combinations of failures of the water level sensor and pump or steam
output sensors.

The names of the events reflect the results of failure detection. If a failure or combination
of failures does not lead to a system failure, it is called Detection OK *. Otherwise, an event
is called Detection NOK *.

Two variables representing the steam output predicted values – min steam output and
max steam output – are introduced in the same way as the water prediction values. For the
sake of simplicity, we assume that the water output sensor never fails.

We refine the event Prediction to calculate expected (predicted) values of the minimal and
maximal water level and steam output (Fig. 6). In the context of the model (C2 in Fig. 3),
we define functions WL min, WL max, SO min and SO max to compute them.

10

 event Prediction refines Prediction

 where

 phase = PRED

 stop = FALSE

 then

 phase ≔ ENV

 min_water_level, max_water_level :∣ min_water_level' ∈ 0‥C ∧ max_water_level' ∈ 0‥C ∧

 ((wl_sensor_failure = FALSE ∧ so_sensor_failure = FALSE) ⇒

 (min_water_level' = WL_min(water_level↦steam_output↦pump↦water_output) ∧

 max_water_level' = WL_max(water_level↦steam_output↦pump↦water_output))) ∧

 ((wl_sensor_failure = TRUE ∧ so_sensor_failure = FALSE) ⇒

 (min_water_level' = WL_min(min_water_level↦steam_output↦pump↦water_output) ∧

 max_water_level' = WL_max(max_water_level↦steam_output↦pump↦water_output))) ∧

 min_water_level' ≤ max_water_level'∧

 ((wl_sensor_failure = FALSE ∧ so_sensor_failure = TRUE) ⇒

 (min_water_level' = WL_min(water_level↦min_steam_output↦pump↦water_output) ∧

 max_water_level' = WL_max(water_level↦max_steam_output↦pump↦water_output)))

 min_steam_output, max_steam_output :∣ min_steam_output' ∈ 0‥W ∧ max_steam_output' ∈ 0‥W ∧

 (so_sensor_failure = FALSE ⇒ (min_steam_output' = SO_min(steam_output) ∧

 max_steam_output' = SO_max(steam_output))) ∧

 (so_sensor_failure = TRUE ⇒ (min_steam_output' = SO_min(min_steam_output) ∧

 max_steam_output' = SO_max(max_steam_output))) ∧ min_steam_output' ≤ max_steam_output'

 end

Figure 6: The event Prediction

WL min and WL max take the current values of the variables water level, steam output,
pump, water output as the input and return new predicted values, which are assigned to the
respective variables min water level and max water level. Similarly, the functions SO min
and SO max take the current value of the variable steam output and return new values to be
assigned to the respective variables min steam output and max steam output.

These calculations are performed with the actual water level and steam output values only
in the nominal conditions. In the presence of failures, the minimal and maximal values are
used instead. The system behaviour in the presence of a pump failure (SR-09) is modelled
by the following assignment:

pump ctrl :| pump ctrl′ ∈ PUMP MODE ∧
(pump failure = TRUE ⇒ pump ctrl′ = pump ctrl).

4.5 The Fourth Refinement: Introducing System Modes
To explicitly define the system execution modes, we introduce the variable mode, which can
take the following values: {Initialisation, Normal, Degraded, Rescue, Emergency Stop}.

The assignments to the variable mode reflect the mode changes defined in the require-
ments (SR-10) and (SR-11). The mode changes are modelled in the corresponding detection
events. The following invariants ensure a proper mapping between a mode and its entry
conditions:

11

inv4.1: mode = Normal ⇒ wl sensor failure = FALSE ∧
pump failure = FALSE ∧ so sensor failure = FALSE,

inv4.2: mode = Degraded ⇒ wl sensor failure = FALSE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE),

inv4.3: mode = Rescue ⇒ wl sensor failure = TRUE ∧
pump failure = FALSE ∧ so sensor failure = FALSE,

inv4.4: mode = Emergency Stop ⇒ ((wl sensor failure = TRUE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE)) ∨
WL critical(min water level 7→ max water level) = TRUE).

After introducing a representation of modes in the model, we complete modelling of the
safety requirement SR-01:

inv4.5: phase 6= ENV ∧ phase 6= DET ∧
((wl sensor failure = TRUE ∧ (pump failure = TRUE ∨
so sensor failure = TRUE)) ∨
WL critical(min water level 7→ max water level) = TRUE) ⇒
mode = Emergency Stop.

To guarantee that the system will not enter the non-operational mode if the system failure
is not detected, we define the invariant:

inv4.6: WL critical(min water level 7→ max water level) = FALSE ∧
stop = FALSE ∧ (wl sensor failure = FALSE ∨
(pump failure = FALSE ∧ so sensor failure = FALSE)) ⇒
mode 6= Emergency Stop.

Moreover, to guarantee that the predefined reaction on errors (i.e., shutdown of the system
and raising the alarm) occurs after execution of the event EmergencyStop, we postulate the
following theorem:

thm4.1: ∀p′ · p′ ∈ {stop′ 7→ pump ctrl′ 7→ valve ctrl′ |
(∃phase, stop, pump ctrl, valve ctrl,mode·
(phase = CONT ∧ stop = FALSE ∧ mode = Emergency Stop) ∧
(stop′ = TRUE ∧ pump ctrl′ = OFF ∧ valve ctrl′ = CLOSED))} ⇒
p′ ∈ {stop′ 7→ pump ctrl′ 7→ valve ctrl′ | stop′ = TRUE},

where the variable p′ is of the type BOOL× {ON,OFF} × {OPEN,CLOSED}.

12

5 Lessons Learned

5.1 Discussion of the Development
Table 4 gives the proof statistics of the formal development of the steam boiler control sys-
tem. It shows that over 90% of proof obligations were automatically proved by the Rodin
platform. Moreover, one can observe the significant increase in the number of proof obliga-
tions at the third refinement step. This is caused by the complexity of the model of the phys-
ical environment and by a high number of the introduced error detection events to cover all
the identified hazardous situations associated with the environment. In general, the number
of proof obligations to be discharged at each refinement step does not depend on the number
of the proof obligations at the previous refinement step. For instance, since introducing the
system modes is a more simple procedure than unfolding the physical environment and error
detection, the number of proof obligations in the fourth refinement is lower.

Table 4: Proof statistics
Model Proof Automatically Interactively

Obligations Discharged Discharged

Context 15 13 2
Abstract Model 10 10 0
1st Refinement 35 33 2
2nd Refinement 157 145 12
3rd Refinement 231 205 26
4th Refinement 193 183 10
Total 641 589 52

The presented formal development in Event-B has facilitated derivation and verification
of a complex specification in a highly automated manner. However, the Rodin platform has
not coped sufficiently well with the event feasibility proofs and required interactive proving.
Moreover, weak support provided by the platform for arithmetic calculations made it hard to
instantiate the required abstract functions with the actual physical laws.

5.2 Diagnosability
Our formal modelling has allowed us to formally underpin the diagnosability conditions.
The formulated invariants explicitly define the conditions that should be satisfied for an ac-
tion to take place. These conditions can be seen as restrictions that should be put on the
system architecture when changes are introduced. For instance, the changes should ensure
that each parameter remains controllable either by the corresponding sensor or via informa-
tion redundancy. Moreover, an introduction of new operational modes should ensure mode
exclusiveness conditions (no two modes are enabled simultaneously). Finally, the mecha-
nisms of monitoring the environment should not be weakened as a result of changes.

13

6 Related Work and Conclusions
Nowadays, resilient control systems received a notable attention. In spite of the fact that these
systems are employed in critical domains, there is a lack in formal techniques to modelling
and verification of their crucial safety properties. Variations of resilient control systems
are usually verified by simulation [7] and model-checking [8]. Thus, the paper [7] verifies
the proposed resilient control strategy by utilising a co-simulation platform based on Mat-
lab/Simulink and EnergyPlus while the authors of [8] perform model-checking of adaptive
resilient systems using the AdaCTL logic.

Formal modelling of the steam boiler control system has been undertaken in several
works [9] by applying various formalisms (e.g., Z, VDM, Action Systems, etc.) and focusing
on various properties of the system (e.g., safety properties, real-time behaviour, etc.). Our
formalisation is based on state-based modelling. Moreover, it allows us to obtain a more
detailed specification. Furthermore, the used formal language (Event-B) has more powerful
tool support, which makes it attractive to the industrial practitioners.

In this paper, we have presented a formal refinement-based development of a resilient
control system – the steam boiler control system. We formally specified and verified the
essential functional and safety requirements of this system. Our formal modelling helped us
to define diagnosability conditions that facilitate incorporation of the design changes typical
for resilient systems in a dependability-preserving way.

In our future work, we are planning to further elaborate on a taxonomy of diagnosability
requirements.

14

References
[1] J. Laprie, “From Dependability to Resilience,” in Proceedings of the 38th IEEE/IFIP

International Conference on Dependable Systems and Networks, 2008, pp. G8—-G9.

[2] J.-R. Abrial, Modeling in Event-B: System and Software Engineering, 1st ed. New
York, NY, USA: Cambridge University Press, 2010.

[3] J.-R. Abrial, “Steam-Boiler Control Specification Problem,” in Formal Methods for In-
dustrial Applications, Specifying and Programming the Steam Boiler Control (the book
grow out of a Dagstuhl Seminar, June 1995). London, UK: Springer-Verlag, 1996, pp.
500–509.

[4] “Event-B and the Rodin Platform,” http://www.event-b.org/, 2013.

[5] N. Storey, Safety-Critical Computer Systems. Harlow, UK: Addison-Wesley, 1996.

[6] I. Lopatkin, Y. Prokhorova, E. Troubitsyna, A. Iliasov, and A. Romanovsky, “Patterns
for Representing FMEA in Formal Specification of Control Systems,” Tech. Rep. TUCS
1003, 2011.

[7] K. Ji, Y. Lu, L. Liao, Z. Song, and D. Wei, “Prognostics Enabled Resilient Control
for Model-Based Building Automation Systems,” in Proceedings of Building Simulation
2011: 12th Conference of International Building Performance Simulation Association,
2011, pp. 286–293.

[8] M. Cordy, A. Classen, P. Heymans, A. Legay, and P.-Y. Schobbens, “Model Checking
Adaptive Software with Featured Transition Systems,” in Assurances for Self-Adaptive
Systems, ser. LNCS, J. Cámara, R. Lemos, C. Ghezzi, and A. Lopes, Eds. Springer
Berlin Heidelberg, 2013, vol. 7740, pp. 1–29.

[9] J.-R. Abrial, E. Börger, and H. Langmaack, Eds., Formal Methods for Industrial Appli-
cations, Specifying and Programming the Steam Boiler Control (the book grow out of
a Dagstuhl Seminar, June 1995), ser. LNCS, vol. 1165. London, UK, UK: Springer-
Verlag, 1996.

15

Appendix

Event-B Development of the Steam Boiler Control System

CONTEXT C0
SETS

PHASE
CONSTANTS

ENV

DET

CONT

PRED
AXIOMS

axm1 : partition(PHASE, {ENV }, {DET}, {CONT}, {PRED})
END

MACHINE M0 // The abstract model
SEES C0
VARIABLES

phase

failure

stop
INVARIANTS

inv1 : phase ∈ PHASE

inv2 : failure ∈ BOOL

inv3 : stop ∈ BOOL

inv4 : failure = FALSE⇒ stop = FALSE

inv5 : failure = TRUE ∧ phase 6= CONT ⇒ stop = TRUE // inv0.1

16

EVENTS
Initialisation

begin

act1 : phase := ENV
act2 : failure := FALSE
act3 : stop := FALSE

end
Event Environment =̂

when

grd1 : phase = ENV
grd2 : stop = FALSE

then

act1 : phase := DET
end

Event Detection =̂

when

grd1 : phase = DET
grd2 : failure = FALSE
grd3 : stop = FALSE

then

act1 : phase := CONT
act2 : failure :∈ BOOL

end
Event Operational =̂

when

grd1 : phase = CONT
grd2 : failure = FALSE
grd3 : stop = FALSE

then

act1 : phase := PRED
end

Event EmergencyStop =̂

when

grd1 : phase = CONT
grd2 : failure = TRUE
grd3 : stop = FALSE

then

act1 : stop := TRUE
end

17

Event Prediction =̂

when

grd1 : phase = PRED
grd2 : stop = FALSE

then

act1 : phase := ENV
end

END

CONTEXT C1
EXTENDS C0
SETS

PUMP MODE

V ALV E MODE
CONSTANTS

ON

OFF

OPEN

CLOSED

N1

N2

M1

M2

C

WL critical

Stable
AXIOMS

axm1 : partition(PUMP MODE, {ON}, {OFF})
axm2 : partition(V ALV E MODE, {OPEN}, {CLOSED})
axm3 : N1 ∈ N1

axm4 : N2 ∈ N1

axm5 : M1 ∈ N1

18

axm6 : M2 ∈ N1

axm7 : C ∈ N1

axm8 : 0 < M1 ∧M1 < N1 ∧N1 < N2 ∧N2 < M2 ∧M2 < C

axm9 : 0 /∈ N1

axm10 : WL critical ∈ N× N→BOOL

axm11 : ∀x, y ·x ∈ N ∧ y ∈ N ∧ ((x < M1 ∨ y > M2)⇔
WL critical(x 7→ y) = TRUE)

axm12 : ∀x, y ·x ∈ N ∧ y ∈ N ∧ ((x ≥M1 ∧ y ≤M2)⇔
WL critical(x 7→ y) = FALSE)

axm13 : Stable ∈ BOOL×BOOL→BOOL //axm2.1

axm14 : ∀x, y ·x ∈ BOOL ∧ y ∈ BOOL⇒
(Stable(x 7→ y) = TRUE⇔ (x = TRUE⇒ y = TRUE)) //axm2.2

axm15 : ∃n1, n2,m1,m2, c·n1 ∈ N1∧n2 ∈ N1∧m1 ∈ N1∧m2 ∈ N1∧c ∈ N1∧
0 < m1 ∧m1 < n1 ∧ n1 < n2 ∧ n2 < m2 ∧m2 < c

axm16 : ∀x, y, z ·x ∈ N ∧ y ∈ N ∧ z ∈ N ∧ x ≤ y ∧ y < z⇒ x < z
END

MACHINE M1 // The first refinement: unfolding pre-operational functionality
REFINES M0
SEES C1
VARIABLES

phase

failure

stop

water level

pump ctrl

valve ctrl

preop flag

min water level

max water level
INVARIANTS

inv1 : water level ∈ Z
inv2 : pump ctrl ∈ PUMP MODE

inv3 : valve ctrl ∈ V ALV E MODE

19

inv4 : preop flag ∈ BOOL

inv5 : valve ctrl = OPEN ⇒ pump ctrl = OFF // inv1.1
inv6 : pump ctrl = ON ⇒ valve ctrl = CLOSED

inv7 : min water level ∈ N
inv8 : max water level ∈ N
inv9 : min water level ≤ max water level

inv10 : failure = FALSE ∧ phase 6= ENV ∧ phase 6= DET ⇒
min water level ≥M1 ∧max water level ≤M2 // inv1.2

inv11 : preop flag = TRUE⇒ pump ctrl = OFF

inv12 : preop flag = FALSE⇒ valve ctrl = CLOSED // inv1.3
EVENTS
Initialisation

begin

act1 : phase := ENV
act2 : failure := FALSE
act3 : stop := FALSE

act4 : water level,min water level,max water level : |
water level′ ∈M1 .. M2 ∧min water level′ ∈M1 .. M2 ∧
max water level′ ∈M1 .. M2 ∧
min water level′ ≤ max water level′ ∧
min water level′ = water level′ ∧max water level′ = water level′

act5 : pump ctrl := OFF
act6 : valve ctrl := CLOSED
act7 : preop flag := TRUE

end
Event Environment =̂
refines Environment

when

grd1 : phase = ENV
grd2 : stop = FALSE

then

act1 : phase := DET
act2 : water level :∈ Z

end
Event Detection OK =̂
refines Detection

when

grd1 : phase = DET
grd2 : failure = FALSE
grd3 : stop = FALSE

20

grd4 : min water level ≥M1 ∧max water level ≤M2
then

act1 : phase := CONT
end

Event Detection NOK 1 =̂
refines Detection

when

grd1 : phase = DET
grd2 : failure = FALSE
grd3 : stop = FALSE
grd4 : min water level < M1 ∨max water level > M2

then

act1 : phase := CONT
act2 : failure := TRUE

end
Event Detection NOK 2 =̂
refines Detection

when

grd1 : phase = DET
grd2 : failure = FALSE
grd3 : stop = FALSE
grd4 : min water level ≥M1 ∧max water level ≤M2

then

act1 : phase := CONT
act2 : failure :∈ BOOL

end
Event PreOperational1 =̂
refines Operational

when

grd1 : phase = CONT
grd2 : failure = FALSE
grd3 : stop = FALSE
grd4 : preop flag = TRUE
grd5 : max water level > N2 ∧min water level > N1
grd6 : min water level ≥M1 ∧max water level ≤M2

then

act1 : pump ctrl := OFF
act2 : valve ctrl := OPEN
act3 : phase := PRED

21

end
Event PreOperational2 =̂
refines Operational

when

grd1 : phase = CONT
grd2 : failure = FALSE
grd3 : stop = FALSE
grd4 : preop flag = TRUE
grd5 : min water level ≥M1 ∧max water level ≤M2
grd6 : max water level ≤ N2

then

act1 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
(((min water level ≥ N1⇒ pump ctrl′ = OFF) ∧
(min water level < N1⇒ pump ctrl′ = ON)) ∨
pump ctrl′ = pump ctrl)

act2 : valve ctrl := CLOSED
act3 : preop flag := FALSE
act4 : phase := PRED

end
Event Operational =̂
refines Operational

when

grd1 : phase = CONT
grd2 : failure = FALSE
grd3 : stop = FALSE
grd4 : preop flag = FALSE
grd5 : min water level ≥M1 ∧max water level ≤M2

then

act1 : phase := PRED

act2 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
(((min water level ≥M1 ∧max water level < N1⇒
pump ctrl′ = ON) ∧
(min water level > N2 ∧max water level ≤M2⇒
pump ctrl′ = OFF) ∧
(min water level ≥ N1 ∧max water level ≤ N2⇒
pump ctrl′ = pump ctrl)) ∨
pump ctrl′ = pump ctrl)

end

22

Event EmergencyStop =̂
refines EmergencyStop

when

grd1 : phase = CONT
grd2 : failure = TRUE
grd3 : stop = FALSE

then

act1 : stop := TRUE
act2 : pump ctrl := OFF
act3 : valve ctrl := CLOSED

end
Event Prediction =̂
refines Prediction

when

grd1 : phase = PRED
grd2 : stop = FALSE

then

act1 : phase := ENV

act2 : min water level,max water level : |
min water level′ ∈ 0 .. C ∧max water level′ ∈ 0 .. C ∧
min water level′ ≤ max water level′

end
END

23

MACHINE M2 // The second refinement: introducing failure assumptions
REFINES M1
SEES C1
VARIABLES

phase

stop

water level

pump ctrl

valve ctrl

wl sensor failure

pump failure

so sensor failure

preop flag

min water level

max water level
INVARIANTS

inv1 : wl sensor failure ∈ BOOL

inv2 : pump failure ∈ BOOL

inv3 : so sensor failure ∈ BOOL

inv4 : (phase 6= DET ∧ phase 6= ENV)⇒ (failure = TRUE⇔
((wl sensor failure = TRUE ∧ (pump failure = TRUE ∨
so sensor failure = TRUE)) ∨WL critical(min water level 7→
max water level) = TRUE)) // inv2.1

inv5 : stop = FALSE∧phase = PRED⇒¬(wl sensor failure = TRUE∧
(pump failure = TRUE ∨ so sensor failure = TRUE))

inv6 : wl sensor failure = TRUE ∧ (pump failure = TRUE ∨
so sensor failure = TRUE) ∧ phase = PRED⇒ stop = TRUE

inv7 : WL critical(min water level 7→ max water level) = TRUE ∧
phase = PRED⇒ stop = TRUE

inv8 : phase = PRED ∧ valve ctrl = OPEN ⇒
WL critical(min water level 7→ max water level) = FALSE ∧
¬(wl sensor failure = TRUE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE))

inv9 : phase = PRED ∧ pump ctrl = ON ⇒
WL critical(min water level 7→ max water level) = FALSE ∧
¬(wl sensor failure = TRUE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE))

inv10 : phase 6= CONT ⇒ (wl sensor failure = FALSE ∨
(pump failure = FALSE ∧ so sensor failure = FALSE))

24

inv11 : (pump failure = FALSE ∧ phase = PRED ∧
max water level < N1 ∧min water level ≥M1)⇒
pump ctrl = ON // inv2.2

inv12 : (pump failure = FALSE ∧ phase = PRED ∧
min water level > N2 ∧max water level ≤M2)⇒
pump ctrl = OFF // inv2.3

inv13 : stop = FALSE ∧ phase = PRED⇒
WL critical(min water level 7→ max water level) = FALSE

inv14 : phase 6= ENV ⇒
((WL critical(min water level 7→ max water level) = FALSE)⇔
(min water level ≥M1 ∧max water level ≤M2))

inv15 : phase 6= ENV ⇒
((WL critical(min water level 7→ max water level) = TRUE)⇔
(min water level < M1 ∨max water level > M2))

EVENTS
Initialisation

begin

act1 : phase := ENV
act2 : stop := FALSE

act3 : water level,min water level,max water level : |
water level′ ∈M1 .. M2 ∧min water level′ ∈M1 .. M2 ∧
max water level′ ∈M1 .. M2 ∧
min water level′ ≤ max water level′ ∧
min water level′ = water level′ ∧max water level′ = water level′

act4 : pump ctrl := OFF
act5 : valve ctrl := CLOSED
act6 : wl sensor failure := FALSE
act7 : pump failure := FALSE
act8 : so sensor failure := FALSE
act9 : preop flag := TRUE

end
Event Environment =̂
refines Environment

when

grd1 : phase = ENV
grd2 : stop = FALSE

then

act1 : phase := DET
act2 : water level :∈ Z

end

25

Event Detection OK =̂
refines Detection OK

when

grd1 : phase = DET

grd2 : ¬(wl sensor failure = TRUE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE))

grd3 : stop = FALSE

grd4 : WL critical(min water level 7→ max water level) = FALSE
then

act1 : phase := CONT

act2 : wl sensor failure, pump failure, so sensor failure : |
Stable(wl sensor failure 7→ wl sensor failure′) = TRUE ∧
Stable(pump failure 7→ pump failure′) = TRUE ∧
Stable(so sensor failure 7→ so sensor failure′) = TRUE ∧
¬(wl sensor failure′ = TRUE ∧ (pump failure′ = TRUE ∨
so sensor failure′ = TRUE))

end

Event Detection NOK safety bounds =̂
refines Detection NOK 1

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = TRUE
then

act1 : phase := CONT
end

Event Detection NOK =̂
refines Detection NOK 2

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = FALSE
with

failure’ : failure′ = TRUE
then

act1 : phase := CONT

26

act2 : wl sensor failure, pump failure, so sensor failure : |
((Stable(wl sensor failure 7→ wl sensor failure′) = TRUE ∧
Stable(pump failure 7→ pump failure′) = TRUE ∧
Stable(so sensor failure 7→ so sensor failure′) = TRUE) ∧
(wl sensor failure′ = TRUE ∧ (pump failure′ = TRUE ∨
so sensor failure′ = TRUE)))

end
Event PreOperational1 =̂
refines PreOperational1

when

grd1 : phase = CONT

grd2 : ¬(wl sensor failure = TRUE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE))

grd3 : stop = FALSE
grd4 : max water level > N2 ∧min water level > N1
grd5 : preop flag = TRUE

grd6 : WL critical(min water level 7→ max water level) = FALSE
then

act1 : valve ctrl := OPEN
act2 : phase := PRED

act3 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
(pump failure = FALSE⇒ pump ctrl′ = OFF) ∧
(pump failure = TRUE⇒ pump ctrl′ = pump ctrl)

end
Event PreOperational2 =̂
refines PreOperational2

when

grd1 : phase = CONT
grd2 : stop = FALSE
grd3 : preop flag = TRUE
grd4 : max water level ≤ N2

grd5 : ¬(wl sensor failure = TRUE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE))

grd6 : WL critical(min water level 7→ max water level) = FALSE
then

act1 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
(pump failure = TRUE⇒ pump ctrl′ = pump ctrl) ∧
(pump failure = FALSE ∧min water level ≥ N1⇒
pump ctrl′ = OFF) ∧
(pump failure = FALSE ∧min water level < N1⇒
pump ctrl′ = ON)

27

act2 : phase := PRED
act3 : valve ctrl := CLOSED
act4 : preop flag := FALSE

end

Event Normal Operational =̂
refines Operational

when

grd1 : phase = CONT
grd2 : stop = FALSE
grd3 : preop flag = FALSE
grd4 : wl sensor failure = FALSE ∧

pump failure = FALSE ∧ so sensor failure = FALSE
grd5 : valve ctrl = CLOSED

grd6 : WL critical(min water level 7→ max water level) = FALSE

then

act1 : phase := PRED

act2 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
((min water level ≥M1 ∧max water level < N1)⇒
pump ctrl′ = ON) ∧
((min water level > N2 ∧max water level ≤M2)⇒
pump ctrl′ = OFF) ∧
((min water level ≥ N1 ∧max water level ≤ N2)⇒
pump ctrl′ = pump ctrl)

end

Event Degraded Operational =̂
refines Operational

when

grd1 : phase = CONT
grd2 : stop = FALSE
grd3 : preop flag = FALSE
grd4 : wl sensor failure = FALSE ∧

(pump failure = TRUE ∨ so sensor failure = TRUE)
grd5 : valve ctrl = CLOSED

grd6 : WL critical(min water level 7→ max water level) = FALSE

then

act1 : phase := PRED

28

act2 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
(pump failure = TRUE⇒ pump ctrl′ = pump ctrl) ∧
(pump failure = FALSE ∧min water level ≥M1 ∧
max water level < N1⇒ pump ctrl′ = ON) ∧
(pump failure = FALSE ∧min water level > N2 ∧
max water level ≤M2⇒ pump ctrl′ = OFF) ∧
(pump failure = FALSE ∧min water level ≥ N1 ∧
max water level ≤ N2⇒ pump ctrl′ = pump ctrl)

end
Event Rescue Operational =̂
refines Operational

when

grd1 : phase = CONT
grd2 : stop = FALSE
grd3 : preop flag = FALSE
grd4 : wl sensor failure = TRUE ∧

pump failure = FALSE ∧ so sensor failure = FALSE
grd5 : valve ctrl = CLOSED

grd6 : WL critical(min water level 7→ max water level) = FALSE
then

act1 : phase := PRED

act2 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
((min water level ≥M1 ∧max water level < N1)⇒
pump ctrl′ = ON) ∧
((min water level > N2 ∧max water level ≤M2)⇒
pump ctrl′ = OFF) ∧
((min water level ≥ N1 ∧max water level ≤ N2)⇒
pump ctrl′ = pump ctrl)

end
Event EmergencyStop =̂
refines EmergencyStop

when

grd1 : phase = CONT
grd2 : stop = FALSE

grd3 : (wl sensor failure = TRUE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE)) ∨
WL critical(min water level 7→ max water level) = TRUE

then

act1 : stop := TRUE
act2 : pump ctrl := OFF
act3 : valve ctrl := CLOSED

29

end
Event Prediction =̂
refines Prediction

when

grd1 : phase = PRED
grd2 : stop = FALSE

then

act1 : phase := ENV

act2 : min water level,max water level : |
min water level′ ∈ 0 .. C ∧max water level′ ∈ 0 .. C ∧
min water level′ ≤ max water level′

end
END

CONTEXT C2
EXTENDS C1
CONSTANTS

U1

U2

P

W

T

E

WL min

WL max

SO min

SO max

WL

SO
AXIOMS

axm1 : U1 ∈ N1

axm2 : U2 ∈ N1

axm3 : P ∈ N1

30

axm4 : W ∈ N1

axm5 : T ∈ N1

axm6 : E ∈ N1

axm7 : WL min ∈ N× N× N× N→ N
axm8 : ∀x, y,m, n·x ∈ N ∧ y ∈ N ∧m ∈ N ∧ n ∈ N⇒

WL min(x 7→ y 7→ m 7→ n) ∈ 0 .. C
axm9 : WL max ∈ N× N× N× N→ N
axm10 : ∀x, y,m, n·x ∈ N ∧ y ∈ N ∧m ∈ N ∧ n ∈ N⇒

WL max(x 7→ y 7→ m 7→ n) ∈ 0 .. C
axm11 : ∀x1, x2, y1, y2,m, n·x1 ∈ N ∧ x2 ∈ N ∧ x1 ≤ x2

∧ y1 ∈ N ∧ y2 ∈ N ∧m ∈ N ∧ n ∈ N⇒
WL min(x1 7→ y1 7→ m 7→ n) ≤
WL max(x2 7→ y2 7→ m 7→ n)

axm12 : SO min ∈ N→ N
axm13 : ∀x·x ∈ N⇒ SO min(x) ∈ 0 .. W

axm14 : SO max ∈ N→ N
axm15 : ∀x·x ∈ N⇒ SO max(x) ∈ 0 .. W

axm16 : ∀x1, x2·x1 ∈ N ∧ x2 ∈ N⇒ SO min(x1) ≤ SO max(x2)

axm17 : WL ∈ 0 .. C × 0 .. W × 0 .. P ∗ T × 0 .. E ∗ T → P1(0 .. C)

axm18 : ∀x, y,m, n·x ∈ 0 .. C ∧ y ∈ 0 ..W ∧m ∈ 0 .. P ∗ T ∧ n ∈ 0 .. E ∗ T ⇒
WL(x 7→ y 7→ m 7→ n) ⊆ 0 .. C

axm19 : SO ∈ 0 .. W → P1(0 .. W)

axm20 : ∀x·x ∈ 0 .. W ⇒ SO(x) ⊆ 0 .. W

axm21 : ∀x, y,m, n·x ∈ 0 .. C ∧ y ∈ 0 ..W ∧m ∈ 0 .. P ∗ T ∧ n ∈ 0 .. E ∗ T ⇒
(WL(x 7→ y 7→ m 7→ n) = {0}⇒ SO(y) = {0})

axm22 : ∀x, y,m, n·x ∈ 0 .. C ∧ y ∈ 0 .. W ∧
m ∈ 0 .. P ∗ T ∧ n ∈ 0 .. E ∗ T ⇒
((WL min(x 7→ y 7→ m 7→ n) = 0 ∧
WL max(x 7→ y 7→ m 7→ n) = 0)⇒
(SO min(y) = 0 ∧ SO max(y) = 0))

END

31

MACHINE M3 // The third refinement: unfolding physical environment
REFINES M2
SEES C2
VARIABLES

phase

stop

water level

steam output

pump

water output

pump ctrl

valve ctrl

wl sensor failure

pump failure

so sensor failure

min water level

max water level

min steam output

max steam output

preop flag

INVARIANTS

inv1 : pump ∈ (0 .. P ∗ T)
inv2 : water level ∈ Z
inv3 : water output ∈ 0 .. E ∗ T
inv4 : steam output ∈ Z
inv5 : min water level ∈ 0 .. C

inv6 : max water level ∈ 0 .. C

inv7 : min steam output ∈ 0 .. W

inv8 : max steam output ∈ 0 .. W

inv9 : min water level ≤ max water level

inv10 : min steam output ≤ max steam output

inv11 : phase = DET ⇒ (valve ctrl = OPEN ⇒ water output > 0)

inv12 : phase = DET ⇒ (valve ctrl = CLOSED⇒ water output = 0)

inv13 : phase = PRED⇒
(min water level < N1⇒ valve ctrl = CLOSED)

inv14 : (phase = PRED ∧ pump failure = FALSE)⇒
(min water level > N2⇒ pump ctrl = OFF)

32

inv15 : ((min water level > water level ∨
max water level < water level ∨ water level /∈ 0 .. C) ∧
phase = CONT ∧WL critical(min water level 7→
max water level) = FALSE)⇒ wl sensor failure = TRUE

inv16 : ((min steam output > steam output ∨
max steam output < steam output ∨ steam output /∈ 0 .. W ∨
(pump ctrl = ON∧pump = 0)∨(pump ctrl = OFF∧pump > 0))∧
phase = CONT ∧WL critical(min water level 7→
max water level) = FALSE)⇒
(so sensor failure = TRUE ∨ pump failure = TRUE)

inv17 : wl sensor failure = FALSE ∧ phase 6= DET ∧
WL critical(min water level 7→ max water level) = FALSE⇒
water level ∈ 0 .. C

inv18 : so sensor failure = FALSE ∧ phase 6= DET ∧
WL critical(min water level 7→ max water level) = FALSE⇒
steam output ∈ 0 .. W

EVENTS
Initialisation

begin

act1 : phase := ENV
act2 : stop := FALSE
act3 : pump := 0
act4 : water output := 0

act5 : pump ctrl := OFF
act6 : valve ctrl := CLOSED
act7 : wl sensor failure := FALSE
act8 : pump failure := FALSE
act9 : so sensor failure := FALSE

act10 : steam output,min steam output,max steam output : |
steam output′ ∈ 0 .. W ∧min steam output′ ∈ 0 .. W ∧
max steam output′ ∈ 0 .. W ∧
min steam output′ ≤ max steam output′ ∧
min steam output′ = steam output′ ∧
max steam output′ = steam output′

act11 : preop flag := TRUE

act12 : water level,min water level,max water level : |
water level′ ∈M1 .. M2 ∧min water level′ ∈M1 .. M2 ∧
max water level′ ∈M1 .. M2 ∧
min water level′ ≤ max water level′ ∧
min water level′ = water level′ ∧max water level′ = water level′

end

33

Event Environment =̂
refines Environment

when

grd1 : phase = ENV
grd2 : stop = FALSE

then

act1 : phase := DET
act2 : water level :∈ Z
act3 : pump :∈ (0 .. P ∗ T)
act4 : steam output :∈ Z
act5 : water output : |water output′ ∈ 0 .. E ∗ T ∧

(valve ctrl = OPEN ⇒ water output′ = E ∗ T) ∧
(¬(valve ctrl = OPEN)⇒ water output′ = 0)

end
Event Detection OK no F =̂
refines Detection OK

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = FALSE
grd4 : water level ∈ 0 .. C
grd5 : steam output ∈ 0 .. W
grd6 : min water level ≤ water level ∧ water level ≤ max water level
grd7 : min steam output ≤ steam output ∧

steam output ≤ max steam output
grd8 : (pump ctrl = ON ⇒ pump > 0)
grd9 : (pump ctrl = OFF ⇒ pump = 0)
grd10 : wl sensor failure = FALSE ∧ pump failure = FALSE ∧

so sensor failure = FALSE
then

act1 : phase := CONT

act2 : wl sensor failure, pump failure, so sensor failure : |
(wl sensor failure′ = FALSE ∧ pump failure′ = FALSE ∧
so sensor failure′ = FALSE)

end
Event Detection OK new F WL NoF p so =̂
refines Detection OK

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = FALSE

34

grd4 : steam output ∈ 0 .. W
grd5 : min water level > water level ∨

water level > max water level ∨ water level /∈ 0 .. C
grd6 : min steam output ≤ steam output ∧

steam output ≤ max steam output
grd7 : (pump ctrl = ON ⇒ pump > 0)
grd8 : (pump ctrl = OFF ⇒ pump = 0)
grd9 : pump failure = FALSE ∧ so sensor failure = FALSE
grd10 : wl sensor failure = FALSE

then

act1 : phase := CONT

act2 : wl sensor failure, pump failure, so sensor failure : |
wl sensor failure′ = TRUE ∧ pump failure′ = FALSE ∧
so sensor failure′ = FALSE

end
Event Detection OK det F WL NoF p so =̂
refines Detection OK

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = FALSE
grd4 : steam output ∈ 0 .. W
grd5 : min steam output ≤ steam output ∧

steam output ≤ max steam output
grd6 : (pump ctrl = ON ⇒ pump > 0)
grd7 : (pump ctrl = OFF ⇒ pump = 0)
grd8 : pump failure = FALSE ∧ so sensor failure = FALSE
grd9 : wl sensor failure = TRUE

then

act1 : phase := CONT

act2 : pump failure, so sensor failure : |
pump failure′ = FALSE ∧ so sensor failure′ = FALSE

end
Event Detection OK NoF WL F p =̂
refines Detection OK

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = FALSE
grd4 : water level ∈ 0 .. C
grd5 : min water level ≤ water level ∧ water level ≤ max water level

35

grd6 : min steam output ≤ steam output ∧
steam output ≤ max steam output ∧ steam output ∈ 0 .. W

grd7 : (pump ctrl = ON ∧ pump = 0) ∨ (pump ctrl = OFF ∧ pump > 0)
grd8 : wl sensor failure = FALSE

then

act1 : phase := CONT
act2 : pump failure := TRUE

end
Event Detection OK NoF WL F so =̂
refines Detection OK

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = FALSE
grd4 : water level ∈ 0 .. C
grd5 : min water level ≤ water level ∧ water level ≤ max water level

grd6 : (min steam output > steam output) ∨
(steam output > max steam output) ∨ steam output /∈ 0 .. W

grd7 : (pump ctrl = ON ⇒ pump > 0)
grd8 : (pump ctrl = OFF ⇒ pump = 0)
grd9 : wl sensor failure = FALSE

then

act1 : phase := CONT
act2 : so sensor failure := TRUE

end
Event Detection OK NoF WL F p so both =̂
refines Detection OK

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = FALSE
grd4 : water level ∈ 0 .. C
grd5 : min water level ≤ water level ∧ water level ≤ max water level

grd6 : (pump ctrl = ON ∧ pump = 0) ∨ (pump ctrl = OFF ∧ pump > 0)
grd7 : wl sensor failure = FALSE

grd8 : (min steam output > steam output) ∨
(steam output > max steam output) ∨ steam output /∈ 0 .. W

then

act1 : phase := CONT
act2 : pump failure := TRUE

36

act3 : so sensor failure := TRUE
end

Event Detection NOK new F WL F p =̂
refines Detection NOK

when

grd1 : phase = DET
grd2 : stop = FALSE
grd3 : min water level > water level ∨ water level > max water level ∨

water level /∈ 0 .. C
grd4 : (pump ctrl = ON ∧ pump = 0) ∨ (pump ctrl = OFF ∧ pump > 0)
grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : wl sensor failure = FALSE
grd7 : min steam output ≤ steam output ∧

steam output ≤ max steam output ∧ steam output ∈ 0 .. W
then

act1 : phase := CONT
act2 : wl sensor failure := TRUE
act3 : pump failure := TRUE

end
Event Detection NOK new F WL F so =̂
refines Detection NOK

when

grd1 : phase = DET
grd2 : stop = FALSE
grd3 : min water level > water level ∨ water level > max water level ∨

water level /∈ 0 .. C
grd4 : (min steam output > steam output) ∨

(steam output > max steam output) ∨ steam output /∈ 0 .. W
grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : wl sensor failure = FALSE

grd7 : (pump ctrl = ON ⇒ pump > 0)
grd8 : (pump ctrl = OFF ⇒ pump = 0)

then

act1 : phase := CONT
act2 : wl sensor failure := TRUE
act3 : so sensor failure := TRUE

end
Event Detection NOK new F WL F p so both =̂
refines Detection NOK

when

grd1 : phase = DET

37

grd2 : stop = FALSE
grd3 : min water level > water level ∨ water level > max water level ∨

water level /∈ 0 .. C
grd4 : (pump ctrl = ON ∧ pump = 0) ∨ (pump ctrl = OFF ∧ pump > 0)
grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : wl sensor failure = FALSE

grd7 : (min steam output > steam output) ∨
(steam output > max steam output) ∨ steam output /∈ 0 .. W

then

act1 : phase := CONT
act2 : wl sensor failure := TRUE
act3 : pump failure := TRUE
act4 : so sensor failure := TRUE

end
Event Detection NOK det F WL F p =̂
refines Detection NOK

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : (pump ctrl = ON ∧ pump = 0) ∨ (pump ctrl = OFF ∧ pump > 0)
grd4 : min steam output ≤ steam output ∧

steam output ≤ max steam output ∧ steam output ∈ 0 .. W
grd5 : WL critical(min water level 7→ max water level) = FALSE

grd6 : wl sensor failure = TRUE
then

act1 : phase := CONT
act2 : pump failure := TRUE

end
Event Detection NOK det F WL F so =̂
refines Detection NOK

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : (min steam output > steam output) ∨
(steam output > max steam output) ∨ steam output /∈ 0 .. W

grd4 : (pump ctrl = ON ⇒ pump > 0)
grd5 : (pump ctrl = OFF ⇒ pump = 0)
grd6 : WL critical(min water level 7→ max water level) = FALSE
grd7 : wl sensor failure = TRUE

then

38

act1 : phase := CONT
act2 : so sensor failure := TRUE

end
Event Detection NOK det F WL F p so both =̂
refines Detection NOK

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : (pump ctrl = ON ∧ pump = 0) ∨ (pump ctrl = OFF ∧ pump > 0)
grd4 : (min steam output > steam output) ∨

(steam output > max steam output) ∨ steam output /∈ 0 .. W
grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : wl sensor failure = TRUE

then

act1 : phase := CONT
act2 : pump failure := TRUE
act3 : so sensor failure := TRUE

end
Event Detection NOK safety bounds WL =̂
refines Detection NOK safety bounds

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = TRUE
then

act1 : phase := CONT
end

Event PreOperational1 =̂
refines PreOperational1

when

grd1 : phase = CONT

grd2 : ¬(wl sensor failure = TRUE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE))

grd3 : stop = FALSE
grd4 : max water level > N2 ∧min water level > N1

grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : preop flag = TRUE

then

act1 : valve ctrl := OPEN
act2 : phase := PRED

39

act3 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
(pump failure = FALSE⇒ pump ctrl′ = OFF) ∧
(pump failure = TRUE⇒ pump ctrl′ = pump ctrl)

end

Event PreOperational2 =̂
refines PreOperational2

when

grd1 : phase = CONT

grd2 : ¬(wl sensor failure = TRUE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE))

grd3 : stop = FALSE
grd4 : max water level ≤ N2

grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : preop flag = TRUE

then

act1 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
(pump failure = TRUE⇒ pump ctrl′ = pump ctrl) ∧
(pump failure = FALSE ∧min water level ≥ N1⇒
pump ctrl′ = OFF) ∧
(pump failure = FALSE ∧min water level < N1⇒
pump ctrl′ = ON)

act2 : phase := PRED
act3 : valve ctrl := CLOSED
act4 : preop flag := FALSE

end

Event Normal Operational =̂
refines Normal Operational

when

grd1 : phase = CONT
grd2 : stop = FALSE
grd3 : preop flag = FALSE
grd4 : wl sensor failure = FALSE ∧

pump failure = FALSE ∧ so sensor failure = FALSE
grd5 : valve ctrl = CLOSED

grd6 : WL critical(min water level 7→ max water level) = FALSE

then

act1 : phase := PRED

40

act2 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
((min water level ≥M1 ∧max water level < N1)⇒
pump ctrl′ = ON) ∧
((min water level > N2 ∧max water level ≤M2)⇒
pump ctrl′ = OFF) ∧
((min water level ≥ N1 ∧max water level ≤ N2)⇒
pump ctrl′ = pump ctrl)

end
Event Degraded Operational =̂
refines Degraded Operational

when

grd1 : phase = CONT
grd2 : stop = FALSE
grd3 : preop flag = FALSE
grd4 : wl sensor failure = FALSE ∧

(pump failure = TRUE ∨ so sensor failure = TRUE)
grd5 : valve ctrl = CLOSED

grd6 : WL critical(min water level 7→ max water level) = FALSE
then

act1 : phase := PRED

act2 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
(pump failure = TRUE⇒ pump ctrl′ = pump ctrl) ∧
(pump failure = FALSE ∧min water level ≥M1 ∧
max water level < N1⇒ pump ctrl′ = ON) ∧
(pump failure = FALSE ∧min water level > N2 ∧
max water level ≤M2⇒ pump ctrl′ = OFF) ∧
(pump failure = FALSE ∧min water level ≥ N1 ∧
max water level ≤ N2⇒ pump ctrl′ = pump ctrl)

end
Event Rescue Operational =̂
refines Rescue Operational

when

grd1 : phase = CONT
grd2 : stop = FALSE
grd3 : preop flag = FALSE
grd4 : wl sensor failure = TRUE ∧

pump failure = FALSE ∧ so sensor failure = FALSE
grd5 : valve ctrl = CLOSED

grd6 : WL critical(min water level 7→ max water level) = FALSE
then

act1 : phase := PRED

41

act2 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
((min water level ≥M1 ∧max water level < N1)⇒
pump ctrl′ = ON) ∧
((min water level > N2 ∧max water level ≤M2)⇒
pump ctrl′ = OFF) ∧
((min water level ≥ N1 ∧max water level ≤ N2)⇒
pump ctrl′ = pump ctrl)

end

Event EmergencyStop =̂
refines EmergencyStop

when

grd1 : phase = CONT
grd2 : stop = FALSE

grd3 : (wl sensor failure = TRUE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE)) ∨
WL critical(min water level 7→ max water level) = TRUE

then

act1 : stop := TRUE
act2 : pump ctrl := OFF
act3 : valve ctrl := CLOSED

end

Event Prediction =̂
refines Prediction

when

grd1 : phase = PRED
grd2 : stop = FALSE

then

act1 : phase := ENV

42

act2 : min water level,max water level : |
min water level′ ∈ 0 .. C ∧max water level′ ∈ 0 .. C ∧

((wl sensor failure = FALSE ∧ so sensor failure = FALSE)⇒
(min water level′ = WL min(water level 7→ steam output 7→
pump 7→ water output) ∧
max water level′ = WL max(water level 7→ steam output 7→
pump 7→ water output))) ∧

((wl sensor failure = TRUE ∧ so sensor failure = FALSE)⇒
(min water level′ = WL min(min water level 7→ steam output 7→
pump 7→ water output) ∧
max water level′ = WL max(max water level 7→ steam output 7→
pump 7→ water output))) ∧

((wl sensor failure = FALSE ∧ so sensor failure = TRUE)⇒
(min water level′ = WL min(water level 7→ min steam output 7→
pump 7→ water output) ∧
max water level′ = WL max(water level 7→ max steam output 7→
pump 7→ water output ∧

min water level′ ≤ max water level′

act3 : min steam output,max steam output : |
min steam output′ ∈ 0 .. W ∧max steam output′ ∈ 0 .. W ∧

(so sensor failure = FALSE⇒
(min steam output′ = SO min(steam output) ∧
max steam output′ = SO max(steam output))) ∧

(so sensor failure = TRUE⇒
(min steam output′ = SO min(min steam output) ∧
max steam output′ = SO max(max steam output))) ∧

min steam output′ ≤ max steam output′

end
END

43

CONTEXT C3
EXTENDS C2
SETS

MODE
CONSTANTS

Initialisation

Normal

Degraded

Rescue

Emergency Stop
AXIOMS

axm1 : partition(MODE, {Initialisation}, {Normal},
{Degraded}, {Rescue}, {Emergency Stop})

END

MACHINE M4 // The fourth refinement: introducing system modes
REFINES M3
SEES C3
VARIABLES

phase

stop

water level

steam output
pump

water output

pump ctrl

valve ctrl

wl sensor failure

pump failure

so sensor failure

mode

preop flag

44

min water level

max water level

min steam output

max steam output

INVARIANTS

inv1 : mode ∈MODE

inv2 : preop flag ∈ BOOL

inv3 : WL critical(min water level 7→
max water level) = FALSE ∧ wl sensor failure = FALSE ∧
pump failure = FALSE ∧ so sensor failure = FALSE⇒
mode = Initialisation ∨mode = Normal

inv4 : WL critical(min water level 7→
max water level) = FALSE ∧ wl sensor failure = TRUE ∧
pump failure = FALSE ∧ so sensor failure = FALSE⇒
mode = Initialisation ∨mode = Rescue

inv5 : WL critical(min water level 7→
max water level) = FALSE ∧ wl sensor failure = FALSE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE)⇒
mode = Initialisation ∨mode = Degraded

inv6 : mode = Normal⇒
wl sensor failure = FALSE ∧ pump failure = FALSE ∧
so sensor failure = FALSE // inv4.1

inv7 : mode = Degraded⇒
wl sensor failure = FALSE ∧ (pump failure = TRUE ∨
so sensor failure = TRUE) // inv4.2

inv8 : mode = Rescue⇒
wl sensor failure = TRUE ∧ pump failure = FALSE ∧
so sensor failure = FALSE // inv4.3

inv9 : mode = Emergency Stop⇒
((wl sensor failure = TRUE ∧ (pump failure = TRUE ∨
so sensor failure = TRUE)) ∨WL critical(min water level 7→
max water level) = TRUE) // inv4.4

inv10 : phase 6= ENV ∧ phase 6= DET ∧ ((wl sensor failure = TRUE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE)) ∨
WL critical(min water level 7→ max water level) = TRUE)⇒
mode = Emergency Stop // inv4.5

inv11 : WL critical(min water level 7→ max water level) = FALSE ∧
stop = FALSE ∧ (wl sensor failure = FALSE ∨
(pump failure = FALSE ∧ so sensor failure = FALSE))⇒
mode 6= Emergency Stop // inv4.6

45

inv12 : ∀p′ ·p′ ∈ {stop′ 7→ pump ctrl′ 7→ valve ctrl′|
stop′ ∈ BOOL ∧ pump ctrl′ ∈ PUMP MODE ∧
valve ctrl′ ∈ V ALV E MODE ∧
(∃phase, stop, pump ctrl, valve ctrl,mode·
phase ∈ PHASE∧stop ∈ BOOL∧pump ctrl ∈ PUMP MODE∧
valve ctrl ∈ V ALV E MODE ∧mode ∈MODE ∧
(phase = CONT ∧ stop = FALSE ∧mode = Emergency Stop) ∧
(stop′ = TRUE∧pump ctrl′ = OFF∧valve ctrl′ = CLOSED))}⇒

p′ ∈ {stop′ 7→ pump ctrl′ 7→ valve ctrl′|stop′ ∈ BOOL ∧
pump ctrl′ ∈ PUMP MODE ∧ valve ctrl′ ∈ V ALV E MODE ∧
(stop′ = TRUE)} // thm4.1

EVENTS
Initialisation

begin

act1 : phase := ENV
act2 : stop := FALSE
act3 : pump := 0
act4 : water output := 0

act5 : pump ctrl := OFF
act6 : valve ctrl := CLOSED
act7 : wl sensor failure := FALSE
act8 : pump failure := FALSE
act9 : so sensor failure := FALSE

act10 : steam output,min steam output,max steam output : |
steam output′ ∈ 0 .. W ∧min steam output′ ∈ 0 .. W ∧
max steam output′ ∈ 0 .. W ∧
min steam output′ ≤ max steam output′ ∧
min steam output′ = steam output′ ∧
max steam output′ = steam output′

act11 : preop flag := TRUE
act12 : mode := Initialisation

act13 : water level,min water level,max water level : |
water level′ ∈M1 .. M2 ∧min water level′ ∈M1 .. M2 ∧
max water level′ ∈M1 .. M2 ∧
min water level′ ≤ max water level′ ∧
min water level′ = water level′ ∧max water level′ = water level′

end
Event Environment =̂
extends Environment

when

grd1 : phase = ENV

46

grd2 : stop = FALSE
grd3 : mode = Initialisation

then

act1 : phase := DET
act2 : water level :∈ Z
act3 : pump :∈ (0 .. P ∗ T)
act4 : steam output :∈ Z
act5 : water output : |water output′ ∈ 0 .. E ∗ T ∧

(valve ctrl = OPEN ⇒ water output′ = E ∗ T) ∧
(¬(valve ctrl = OPEN)⇒ water output′ = 0)

end
Event Detection OK no F =̂
extends Detection OK no F

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = FALSE
grd4 : water level ∈ 0 .. C
grd5 : steam output ∈ 0 .. W
grd6 : min water level ≤ water level ∧ water level ≤ max water level
grd7 : min steam output ≤ steam output ∧

steam output ≤ max steam output
grd8 : (pump ctrl = ON ⇒ pump > 0)
grd9 : (pump ctrl = OFF ⇒ pump = 0)
grd10 : wl sensor failure = FALSE ∧ pump failure = FALSE ∧

so sensor failure = FALSE
grd11 : mode = Initialisation

then

act1 : phase := CONT

act2 : wl sensor failure, pump failure, so sensor failure : |
(wl sensor failure′ = FALSE ∧
pump failure′ = FALSE ∧ so sensor failure′ = FALSE)

act3 : mode := Normal
end

Event Detection OK new F WL NoF p so =̂
extends Detection OK new F WL NoF p so

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = FALSE
grd4 : steam output ∈ 0 .. W

47

grd5 : min water level > water level ∨ water level > max water level ∨
water level /∈ 0 .. C

grd6 : min steam output ≤ steam output ∧
steam output ≤ max steam output

grd7 : (pump ctrl = ON ⇒ pump > 0)
grd8 : (pump ctrl = OFF ⇒ pump = 0)
grd9 : pump failure = FALSE ∧ so sensor failure = FALSE
grd10 : wl sensor failure = FALSE
grd11 : mode = Initialisation

then

act1 : phase := CONT

act2 : wl sensor failure, pump failure, so sensor failure : |
wl sensor failure′ = TRUE ∧ pump failure′ = FALSE ∧
so sensor failure′ = FALSE

act3 : mode := Rescue
end

Event Detection OK det F WL NoF p so =̂
extends Detection OK det F WL NoF p so

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = FALSE
grd4 : steam output ∈ 0 .. W
grd5 : min steam output ≤ steam output ∧

steam output ≤ max steam output
grd6 : (pump ctrl = ON ⇒ pump > 0)
grd7 : (pump ctrl = OFF ⇒ pump = 0)
grd8 : pump failure = FALSE ∧ so sensor failure = FALSE
grd9 : wl sensor failure = TRUE
grd10 : mode = Initialisation

then

act1 : phase := CONT

act2 : pump failure, so sensor failure : |
pump failure′ = FALSE ∧ so sensor failure′ = FALSE

act3 : mode := Rescue
end

Event Detection OK NoF WL F p =̂
extends Detection OK NoF WL F p

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = FALSE

48

grd4 : water level ∈ 0 .. C
grd5 : min water level ≤ water level ∧ water level ≤ max water level
grd6 : min steam output ≤ steam output ∧

steam output ≤ max steam output ∧ steam output ∈ 0 .. W
grd7 : (pump ctrl = ON ∧ pump = 0) ∨ (pump ctrl = OFF ∧ pump > 0)
grd8 : wl sensor failure = FALSE
grd9 : mode = Initialisation

then

act1 : phase := CONT
act2 : pump failure := TRUE
act3 : mode := Degraded

end
Event Detection OK NoF WL F so =̂
extends Detection OK NoF WL F so

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = FALSE
grd4 : water level ∈ 0 .. C
grd5 : min water level ≤ water level ∧ water level ≤ max water level

grd6 : (min steam output > steam output) ∨
(steam output > max steam output) ∨ steam output /∈ 0 .. W

grd7 : (pump ctrl = ON ⇒ pump > 0)
grd8 : (pump ctrl = OFF ⇒ pump = 0)
grd9 : wl sensor failure = FALSE
grd10 : mode = Initialisation

then

act1 : phase := CONT
act2 : so sensor failure := TRUE
act3 : mode := Degraded

end
Event Detection OK NoF WL F p so both =̂
extends Detection OK NoF WL F p so both

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = FALSE
grd4 : water level ∈ 0 .. C
grd5 : min water level ≤ water level ∧ water level ≤ max water level

grd6 : (pump ctrl = ON ∧ pump = 0) ∨ (pump ctrl = OFF ∧ pump > 0)
grd7 : wl sensor failure = FALSE

49

grd8 : (min steam output > steam output) ∨
(steam output > max steam output) ∨ steam output /∈ 0 .. W

grd9 : mode = Initialisation
then

act1 : phase := CONT
act2 : pump failure := TRUE
act3 : so sensor failure := TRUE
act4 : mode := Degraded

end
Event Detection NOK new F WL F p =̂
extends Detection NOK new F WL F p

when

grd1 : phase = DET
grd2 : stop = FALSE
grd3 : min water level > water level ∨ water level > max water level ∨

water level /∈ 0 .. C
grd4 : (pump ctrl = ON ∧ pump = 0) ∨ (pump ctrl = OFF ∧ pump > 0)
grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : wl sensor failure = FALSE
grd7 : min steam output ≤ steam output ∧

steam output ≤ max steam output ∧ steam output ∈ 0 .. W
then

act1 : phase := CONT
act2 : wl sensor failure := TRUE
act3 : pump failure := TRUE
act4 : mode := Emergency Stop

end
Event Detection NOK new F WL F so =̂
extends Detection NOK new F WL F so

when

grd1 : phase = DET
grd2 : stop = FALSE
grd3 : min water level > water level ∨ water level > max water level ∨

water level /∈ 0 .. C
grd4 : (min steam output > steam output) ∨

(steam output > max steam output) ∨ steam output /∈ 0 .. W
grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : wl sensor failure = FALSE

grd7 : (pump ctrl = ON ⇒ pump > 0)
grd8 : (pump ctrl = OFF ⇒ pump = 0)

then

50

act1 : phase := CONT
act2 : wl sensor failure := TRUE
act3 : so sensor failure := TRUE
act4 : mode := Emergency Stop

end
Event Detection NOK new F WL F p so both =̂
extends Detection NOK new F WL F p so both

when

grd1 : phase = DET
grd2 : stop = FALSE
grd3 : min water level > water level ∨ water level > max water level ∨

water level /∈ 0 .. C
grd4 : (pump ctrl = ON ∧ pump = 0) ∨ (pump ctrl = OFF ∧ pump > 0)
grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : wl sensor failure = FALSE

grd7 : (min steam output > steam output) ∨
(steam output > max steam output) ∨ steam output /∈ 0 .. W

then

act1 : phase := CONT
act2 : wl sensor failure := TRUE
act3 : pump failure := TRUE
act4 : so sensor failure := TRUE
act5 : mode := Emergency Stop

end
Event Detection NOK det F WL F p =̂
extends Detection NOK det F WL F p

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : (pump ctrl = ON ∧ pump = 0) ∨ (pump ctrl = OFF ∧ pump > 0)
grd4 : min steam output ≤ steam output ∧

steam output ≤ max steam output ∧ steam output ∈ 0 .. W
grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : wl sensor failure = TRUE

then

act1 : phase := CONT
act2 : pump failure := TRUE
act3 : mode := Emergency Stop

end

51

Event Detection NOK det F WL F so =̂
extends Detection NOK det F WL F so

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : (min steam output > steam output) ∨
(steam output > max steam output) ∨ steam output /∈ 0 .. W

grd4 : (pump ctrl = ON ⇒ pump > 0)
grd5 : (pump ctrl = OFF ⇒ pump = 0)
grd6 : WL critical(min water level 7→ max water level) = FALSE
grd7 : wl sensor failure = TRUE

then

act1 : phase := CONT
act2 : so sensor failure := TRUE
act3 : mode := Emergency Stop

end
Event Detection NOK det F WL F p so both =̂
extends Detection NOK det F WL F p so both

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : (pump ctrl = ON ∧ pump = 0) ∨ (pump ctrl = OFF ∧ pump > 0)
grd4 : (min steam output > steam output) ∨

(steam output > max steam output) ∨ steam output /∈ 0 .. W
grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : wl sensor failure = TRUE

then

act1 : phase := CONT
act2 : pump failure := TRUE
act3 : so sensor failure := TRUE
act4 : mode := Emergency Stop

end
Event Detection NOK safety bounds WL =̂
extends Detection NOK safety bounds WL

when

grd1 : phase = DET
grd2 : stop = FALSE

grd3 : WL critical(min water level 7→ max water level) = TRUE
then

act1 : phase := CONT

52

act2 : mode := Emergency Stop
end

Event PreOperational1 =̂
extends PreOperational1

when

grd1 : phase = CONT

grd2 : ¬(wl sensor failure = TRUE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE))

grd3 : stop = FALSE
grd4 : max water level > N2 ∧min water level > N1

grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : preop flag = TRUE
grd7 : mode = Normal

then

act1 : valve ctrl := OPEN
act2 : phase := PRED

act3 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
(pump failure = FALSE⇒ pump ctrl′ = OFF) ∧
(pump failure = TRUE⇒ pump ctrl′ = pump ctrl)

act4 : mode := Initialisation
end

Event PreOperational2 =̂
extends PreOperational2

when

grd1 : phase = CONT

grd2 : ¬(wl sensor failure = TRUE ∧
(pump failure = TRUE ∨ so sensor failure = TRUE))

grd3 : stop = FALSE
grd4 : max water level ≤ N2

grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : preop flag = TRUE
grd7 : mode = Normal

then

act1 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
(pump failure = TRUE⇒ pump ctrl′ = pump ctrl) ∧
(pump failure = FALSE ∧min water level ≥ N1⇒
pump ctrl′ = OFF) ∧
(pump failure = FALSE ∧min water level < N1⇒
pump ctrl′ = ON)

act2 : phase := PRED
act3 : valve ctrl := CLOSED

53

act4 : preop flag := FALSE
act5 : mode := Initialisation

end

Event Normal Operational =̂
refines Normal Operational

when

grd1 : phase = CONT
grd2 : stop = FALSE
grd3 : preop flag = FALSE
grd4 : valve ctrl = CLOSED

grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : mode = Normal

then

act1 : phase := PRED

act2 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
((min water level ≥M1 ∧max water level < N1)⇒
pump ctrl′ = ON) ∧
((min water level > N2 ∧max water level ≤M2)⇒
pump ctrl′ = OFF) ∧
((min water level ≥ N1 ∧max water level ≤ N2)⇒
pump ctrl′ = pump ctrl)

act3 : mode := Initialisation

end

Event Degraded Operational =̂
refines Degraded Operational

when

grd1 : phase = CONT
grd2 : stop = FALSE
grd3 : preop flag = FALSE
grd4 : valve ctrl = CLOSED

grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : mode = Degraded

then

act1 : phase := PRED

54

act2 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
(pump failure = TRUE⇒ pump ctrl′ = pump ctrl) ∧
(pump failure = FALSE ∧min water level ≥M1 ∧
max water level < N1⇒ pump ctrl′ = ON) ∧
(pump failure = FALSE ∧min water level > N2 ∧
max water level ≤M2⇒ pump ctrl′ = OFF) ∧
(pump failure = FALSE ∧min water level ≥ N1 ∧
max water level ≤ N2⇒ pump ctrl′ = pump ctrl)

act3 : mode := Initialisation
end

Event Rescue Operational =̂
refines Rescue Operational

when

grd1 : phase = CONT
grd2 : stop = FALSE
grd3 : preop flag = FALSE
grd4 : valve ctrl = CLOSED

grd5 : WL critical(min water level 7→ max water level) = FALSE
grd6 : mode = Rescue

then

act1 : phase := PRED

act2 : pump ctrl : |pump ctrl′ ∈ PUMP MODE ∧
((min water level ≥M1 ∧max water level < N1)⇒
pump ctrl′ = ON) ∧
((min water level > N2 ∧max water level ≤M2)⇒
pump ctrl′ = OFF) ∧
((min water level ≥ N1 ∧max water level ≤ N2)⇒
pump ctrl′ = pump ctrl)

act3 : mode := Initialisation
end

Event EmergencyStop =̂
refines EmergencyStop

when

grd1 : phase = CONT
grd2 : stop = FALSE
grd3 : mode = Emergency Stop

then

act1 : stop := TRUE
act2 : pump ctrl := OFF
act3 : valve ctrl := CLOSED

end

55

Event Prediction =̂
extends Prediction

when

grd1 : phase = PRED
grd2 : stop = FALSE
grd3 : mode = Initialisation

then

act1 : phase := ENV

act2 : min water level,max water level : |
min water level′ ∈ 0 .. C ∧max water level′ ∈ 0 .. C ∧

((wl sensor failure = FALSE ∧ so sensor failure = FALSE)⇒
(min water level′ = WL min(water level 7→ steam output 7→
pump 7→ water output) ∧
max water level′ = WL max(water level 7→ steam output 7→
pump 7→ water output))) ∧

((wl sensor failure = TRUE ∧ so sensor failure = FALSE)⇒
(min water level′ = WL min(min water level 7→ steam output 7→
pump 7→ water output) ∧
max water level′ = WL max(max water level 7→ steam output 7→
pump 7→ water output))) ∧

((wl sensor failure = FALSE ∧ so sensor failure = TRUE)⇒
(min water level′ = WL min(water level 7→ min steam output 7→
pump 7→ water output) ∧
max water level′ = WL max(water level 7→ max steam output 7→
pump 7→ water output))) ∧
min water level′ ≤ max water level′

act3 : min steam output,max steam output : |
min steam output′ ∈ 0 .. W ∧max steam output′ ∈ 0 .. W ∧

(so sensor failure = FALSE⇒
(min steam output′ = SO min(steam output) ∧
max steam output′ = SO max(steam output))) ∧
(so sensor failure = TRUE⇒
(min steam output′ = SO min(min steam output) ∧
max steam output′ = SO max(max steam output))) ∧
min steam output′ ≤ max steam output′

end
END

56

Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku
Faculty of Mathematics and Natural Sciences
• Department of Information Technology
• Department of Mathematics
Turku School of Economics
• Institute of Information Systems Sciences

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

ISBN 978-952-12-2924-4
ISSN 1239-1891

