
Yuliya Prokhorova | Elena Troubitsyna | Linas Laibinis |
Dubravka Ilić | Timo Latvala

Formalisation of an Industrial Approach
to Monitoring Critical Data

TUCS Technical Report
No 1070, March 2013

Formalisation of an Industrial Approach
to Monitoring Critical Data

Yuliya Prokhorova
TUCS – Turku Centre for Computer Science,
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
yuliya.prokhorova@abo.fi

Elena Troubitsyna
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
elena.troubitsyna@abo.fi

Linas Laibinis
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
linas.laibinis@abo.fi

Dubravka Ilić
Space Systems Finland
Kappelitie 6 B, 02200 Espoo, Finland
dubravka.ilic@ssf.fi

Timo Latvala
Space Systems Finland
Kappelitie 6 B, 02200 Espoo, Finland
timo.latvala@ssf.fi

TUCS Technical Report

No 1070, March 2013

Abstract

A large class of safety-critical control systems contains monitoring subsystems that dis-
play certain system parameters to (human) operators. Ensuring that the displayed data are
sufficiently fresh and non-corrupted constitutes an important part of safety requirements.
However, the monitoring subsystems are typically not a part of a safety kernel and hence
often built of SIL1 and SIL2 components. In this paper, we formalise a recently imple-
mented industrial approach to architecting dependable monitoring systems that ensures data
freshness and integrity despite unreliability of their components. Moreover, we derive an
architectural pattern that allows us to formally reason about data freshness and integrity. The
proposed approach is illustrated by an industrial case study.

Keywords: Fault-tolerance, formal modelling, Event-B, data freshness, data integrity.

TUCS Laboratory
Distributed Systems Laboratory

1 Introduction
Data Monitoring Systems (DMSs) are typical for a wide range of safety-critical applica-
tions, spanning from nuclear power plant control rooms to individual healthcare devices.
Data monitoring is usually not a part of the system safety kernel and hence DMSs are often
developed using methods prescribed for SIL1 or SIL2 systems. However, data monitoring
might have serious indirect safety implications. Indeed, based on the displayed data the op-
erator should take appropriate and timely decisions. Therefore, we have to guarantee that a
DMS outputs data that are sufficiently fresh and non-corrupted.

One possible solution would be to build a DMS from highly reliable components and
formally verify its correctness. However, such a solution would be rather cost-inefficient.
Instead, another practical solution has been recently proposed in the industrial setting1. The
solution is based on building a networked DMS over (potentially unreliable) components and
utilising diversity and redundancy to guarantee dependability of a DMS.

In this paper, we aim at giving a formal justification for the proposed industrial solution.
We formally define the generic architecture of a networked DMS, formalise the expected data
freshness and integrity properties, and derive the constraints that a DMS should satisfy to
guarantee them. We use the Event-B [1] formalism and the associated RODIN platform [2]
to formally specify the system architecture and its properties. The proposed specification
can be seen as a pattern for designing a networked DMS. We believe that the presented work
not only defines a formal basis for constructing a dependable DMS but also gives a good
demonstration of how formal modelling can facilitate validation of an industrial solution.

The paper is organised as follows. In Section 2, we define a generic architecture of a
DMS. In Section 3, we briefly introduce our modelling framework – Event-B. In Section
4, we derive a generic specification of a DMS and formally define the data freshness and
integrity properties. In Section 5, we overview the industrial case study and lessons learnt.
Finally, in Section 6, we discuss the proposed approach and the related work.

2 Industrial Solution to Monitoring Critical Data
In this section, we present a generalised version of the proposed industrial solution to data
monitoring. The main purpose of the system is to display a certain system parameter (e.g.,
temperature, pressure, etc.). We start by defining a generic system architecture.

2.1 Overview of a Distributed DMS Architecture
The monitored parameter is measured by sensors. Each sensor is associated with the cor-
responding data processing unit (DPU) that periodically reads sensor data. The proposed
industrial solution is to build a networked DMS to achieve reliable monitoring of data. The
networked DMS contains two types of DPUs – the ones that are directly connected to the
sensors and the others that are not. Both types of DPUs output data to the displays connected

1We omit a reference to the actual product due to confidentiality reasons.

1

Processing
Unit1

Processing
Unit2

Processing
Unitk

DisplayDisplay

Display

Sensor Sensor

...

Figure 1: Distributed monitoring system

to them, i.e., the operator observes several versions of data (typically up to four). A generic
architecture of the system is shown in Fig. 1.

A network built over DPUs allows them to communicate with each other. The DPUs that
are connected to sensors periodically poll sensor data, process data received from sensors
and other DPUs, and output the result to the display as well as broadcast the own processed
data over the network. The DPUs that are not connected to sensors perform the same steps,
except reading and processing sensor data. The DPUs run different versions of software,
i.e., rely on software diversity to avoid common errors. The main goal of the system is to
guarantee that each DPU displays only the data that are sufficiently fresh and non-corrupted.
If a DPU cannot satisfy these properties, it should output a special predefined error value.

2.2 Data Freshness and Integrity
Let us now discuss the mechanism of achieving data freshness and integrity. Each DPU has
a data pool. In this pool the DPU records the processed sensor data (if the DPU is connected
to a sensor) as well as the data received from the other units. The DPU puts in the pool only
the data that have been checked to be non-erroneous. For sensor data, this means that the
obtained sensor reading has passed the reasonableness check and the sensor data processing
has completed successfully, i.e., no failure flag was raised. For the data received from the
other units, the check of their attached checksums has to be successful and the received data
packet should not contain an error message.

Each data processing unit has its own local clock. (The system periodically sends a
special clock adjusting signal to each DPU to prevent an unbounded local clock drift.) All
the data that are processed by the system are timestamped. Each unit timestamps every data
that it processes based on its local clock. To ensure freshness of the displayed data, before
displaying data, the DPU analyses its data pool and filters out the data that are not fresh
enough. To select or calculate the data item to be displayed, the DPU applies a predefined

2

function (e.g., maximum) to the set of fresh pool data.
The data are considered to be fresh if the difference between the current (local) DPU

time and the data timestamp is less than δ time units. Globally, the freshness property can be
formulated as follows: the displayed data are considered fresh if their timestamp differs by
no more that δ+ ε time units from the imaginary global clock, where ε is the upper bound of
the local clock drift.

Data freshness and correctness depend on several factors. If the DPU is connected to
a sensor, processing sensor data might take excessive time (e.g., due to a software error)
and hence the DPU’s own data might not be fresh anymore. Due to network delays or slow
processing in other DPUs, the received data might be old as well. Moreover, software errors
might corrupt the DPU’s own data. A received data packet might also get corrupted during
transmission. However, despite a potentially large number of various faults, an occurrence
of the system failure, making all DPUs to display an error message, is rather unlikely. Our
modelling formally defines the link between data freshness and data integrity that allows us
to validate this claim.

In the next section, we present our formal modelling framework – Event-B, while in
Section 4 we demonstrate how to apply it to model a networked DMS.

3 Overview of Event-B
Event-B [1, 2] is a state-based formalism for system level modelling and verification. It is an
extension of the B Method [3] that aims at facilitating modelling of parallel, distributed and
reactive systems.

In Event-B, system models are defined using the notion of an abstract state machine.
An abstract machine encapsulates the state (the variables) of a model and defines operations
(events) on its state. Each machine is uniquely identified by its name MachineName. The
state variables of the machine are declared in the Variables clause and initialised in the INI-
TIALISATION event. The variables are strongly typed by the constraining predicates given
in the Invariants clause. The data types and constants of the model are defined in CONTEXT
that also postulated their properties as axioms. The behaviour of the system is determined
by a number of atomic EVENTS. An event can be defined as follows:

evt =̂ any lv where g then R end

where lv is a list of local variables, the guard g is the conjunction of predicates defined
over the model variables, and the action R is a parallel composition of assignments over the
variables.

The guard defines when an event is enabled. If several events are enabled simultaneously
then any of them can be chosen for execution non-deterministically. If none of the events
is enabled then the system deadlocks. In general, the action of an event is a composition
of assignments executed simultaneously. Variable assignments can be either deterministic
or non-deterministic. The deterministic assignment is denoted as x := E(v), where x is a
state variable and E(v) is an expression over the state variables v. The non-deterministic

3

assignment can be denoted as x :∈ S or x :| Q(v, x′), where S is a set of values and Q(v, x′)
is a predicate. As a result of the non-deterministic assignment, x gets any value from S or it
obtains such a value x′ that Q(v, x′) is satisfied.

Event-B enables development of systems correct-by-construction. It allows the design-
ers to create and verify formal specifications of complex industrial-scale systems without
encountering state explosion problem. Event-B relies on the top-down refinement-based
approach to formal development. The development starts from an abstract specification of
the system that defines essential behaviour and properties of the system. In a number of
correctness-preserving transformations, refinements, we introduce implementation details
and arrive at the detailed system specification closely resembling an eventual implementa-
tion. Usually refinement steps result in introducing new variables and events into the model.
We can also perform data refinement that allowing us to replace some abstract variables of
the model with their concrete counterparts. In this case, the invariant of a refined model
formally defines the relationship between the abstract and concrete variables.

Event-B relies on theorem proving to verify correctness. Via discharging proof obliga-
tions we formally verify that the events preserve the invariant, the model is well-formed and
refinement does not introduce additional deadlocks. The detailed discussion of proof obliga-
tions can be found in [1]. The Rodin platform [2] provides an integrated modelling environ-
ment that among others supports automatic generation and proving of proof obligation. It
also provides facilities for interactive proving. In general the Rodin-platform achieves a high
degree of automation – usually over 80% of proof obligations are discharged automatically.
In the next section, we present our approach to modelling DMSs in Event-B.

4 Formal Generic Development of Distributed Monitoring
Systems in Event-B

Let us observe that the generic architecture of DMS described in Section 2 is a composition
of loosely coupled asynchronous components. Indeed, each DPU has its own display and
relies not only on the data received asynchronously from the other DPUs but also on its own
data to produce the displayed data. The system is modular and behaviour of its modules,
DPUs, follows the same generic pattern. Therefore, to reason about the overall system, it
is sufficient to model the behaviour of its single module and define its interactions with the
other modules as a part of the environment specification. One of the obvious benefits of such
an approach is clear reduction of the model complexity.

4.1 Abstract Model

Next we will present an Event-B development of a DPU – a generic module of a DMS.
Since it is based on the generic architecture of the system discussed above, the presented
development is also generic and thus can be instantiated to accommodate for specific details
of a concrete monitoring system.

4

Processing Unit

Display

Sensor

Reading sensor
values

Sending data to
other units

Displaying

Modelling progress
of local clock

Receiving data from
other units

Processing

Figure 2: Dynamics of a DPU

We employ the following refinement strategy. The initial abstract specification formally
describes the essential functional behaviour of DPU. Nevertheless, this allows us to formu-
late (as model invariants) and verify the desired freshness and correctness properties for the
displayed data. The next model (first refinement) introduces fault-tolerance mechanisms and
allows us to formulate and prove the required data integrity properties. Finally, the second
refinement step deals with the local clock adjustment.

Essentially, the behaviour of a DPU is cyclic. At each cycle, it reads and processes
sensor data, broadcasts the processed data to the other DPUs, possibly receives data from
the other units, and finally produces the value to display. These activities are modelled
by the events Environment, Processing, Sending Packet, and Displaying respectively. The
event Receiving Packets models interaction with the environment – asynchronous receiving
of data packets from the other DPUs. The event Time Progress models a progress of the local
clock and is also executed asynchronously. The dynamic behaviour of DPU is graphically
presented in Fig. 2. The solid lines show the passage of control between the cyclically
executed events. Enabledness of asynchronous events is depicted with the dashed lines. The
overall structure of the initial specification – the machine DPU – is shown in Fig. 3, while
Fig. 4 presents the specifications of the main events.

In the model, the variable main phase stores the current phase of DPU execution. The
type of main phase is defined the enumerated set MAIN PHASES of elements {ENV, PROC,
DISP}. Here, the ENV phase stands for environment (sensor readings), PROC – for data
processing, and DISP – for data displaying. Broadcasting data to the other units is modelled
as a part of the DISP phase.

5

machine DPU

variables main_phase, monitored_value, processed_value, timestamp, displayed_value, curr_time,

 time_progressed, packet_sent_flag

invariants

 main_phase ∈ MAIN_PHASES

 monitored_value ∈ ℕ

 processed_value ∈ 0 .. UNIT_NUM → MIN_VAL .. MAX_VAL

 timestamp ∈ 0 .. UNIT_NUM → ℕ

 displayed_value ∈ ℕ

 curr_time ∈ ℕ

 time_progressed ∈ BOOL

 packet_sent_flag ∈ BOOL

 // Freshness1 ∧ Freshness2 ∧ Correctness

// phases of the unit cyclic behaviour

// raw sensor readings

// collected processed data from all DPUs

// collected timestamp values from all DPUs

// the output data

// the current value of the local unit clock

// the flag to determine time progress

// the flag to determine sending of a packet

events
 INITIALISATION // initialising variables

 Environment // reading sensor values

 Processing // processing sensor data

 Sending_Packet // broadcasting data packet to other DPUs

 Displaying // outputting data to a display

 Receiving_Packets // receiving packets from other DPUs

 Time_Progress // modelling progress of local clock

end

Figure 3: Outline of the abstract specification

The Environment event models sensor reading. As a result, it updates the variable
monitored value. As a part of the environment action, we also model a possible adjustment
(synchronisation) of the local clock, the value of which is stored in the variable curr time.

As shown in Fig. 4, the Processing event specifies a conversion of the sensor data. We
use the abstract function Convert to model generic conversion process. The result of the
conversion is then used to update the DPU data pool. Implicitly, the event also models a
possibility of conversion failure. In this case, the corresponding data pool value remains
unchanged (i.e., the last good value is used instead).

To avoid unnecessary complex data structures, we represent the DPU’s data pool by
two array variables – processed value and timestamp. For each i ∈ 0..UNIT NUM,
the data item processed value(i) contains the data produced or received from the DPUi,
while timestamp(i) contains the corresponding data timestamp. Here the abstract constant
UNIT NUM stands for the maximal index value of these arrays (i.e., the number of the DPUs
of the system). The value of UNIT NUM can vary for different DMSs. Another generic
constants, MIN VAL and MAX VAL, specify the minimal and maximal valid values for the
processed measurements respectively.

The Sending Packet event models broadcasting the processed DPU data as data packets
to the other DPUs. Each DPU cycle finishes with the execution of the Displaying event that
calculates the value to be displayed. First it filters the data pool for fresh data and then applies
the abstract function Output Fun on the filtered data to produce the DPU output value to be
displayed. If there are no fresh data in the pool, a pre-defined error value (modelled by the
abstract constant ERR VAL) is displayed.

6

event Receiving_Packets

 any p

 where

 p ∈ PACKET

 packet_time(p) > timestamp(packet_unit_id(p))

 packet_data(p) ∈ MIN_VAL .. MAX_VAL

 main_phase ≠ ENV

 time_progressed = TRUE

 then

 time_progressed ≔ FALSE

 timestamp(packet_unit_id(p)) ≔ packet_time(p)

 processed_value(packet_unit_id(p)) ≔
 packet_data(p)

 end

 event Processing

 where
 main_phase = PROC

 time_progressed = TRUE

 then

 main_phase ≔ DISP

 time_progressed ≔ FALSE

 timestamp, processed_value :∣
 timestamp' ∈ 0 .. UNIT_NUM → ℕ ∧
 processed_value' ∈ 0 .. UNIT_NUM →

 MIN_VAL .. MAX_VAL ∧

 ((timestamp'(0) = curr_time ∧
 processed_value'(0) = Convert(monitored_value)) ∨

 (timestamp'(0) = timestamp(0) ∧
 processed_value'(0) = processed_value(0)))

 end

 event Sending_Packet

 any p

 where
 main_phase = DISP

 time_progressed = TRUE

 packet_sent_flag = FALSE

 p ∈ PACKET

 packet_unit_id(p) = 0

 packet_time(p) = curr_time

 packet_data(p) = Convert(monitored_value)

 then

 time_progressed ≔ FALSE

 packet_sent_flag ≔ TRUE

 end

 event Displaying

 any ss, DATA_SET

 where
 main_phase = DISP

 time_progressed = TRUE

 packet_sent_flag = TRUE

 DATA_SET ⊆ ℕ

 ss = {x↦y ∣ ∃i · i ∈ dom(timestamp) ∧ x = timestamp(i) ∧
 y = processed_value(i)}

 [curr_time−Fresh_Delta .. curr_time]

 (ss ≠ ∅ ⇒ DATA_SET = ss)

 (ss = ∅ ⇒ DATA_SET = {ERR_VAL})

 then

 main_phase ≔ ENV

 time_progressed ≔ FALSE

 packet_sent_flag ≔ FALSE

 displayed_value ≔ Output_Fun(DATA_SET)

 end

Figure 4: Events of the abstract model

Obviously, to reason about data freshness, we should model progress of time. The event
Time Progress forcefully alternates between any cyclic events of the model and changes the
value of the variable curr time modelling the local clock. Event alternation is enforced by
using the boolean variable time progressed.

Finally, let us discuss communication between DPUs. It is organised via sending and
receiving packets of data. At this level of abstraction, we assume that each packet includes
the following fields: (1) an id (i.e., the identification number) of DPU that sent the packet; (2)
a timestamp, indicating when the packet was sent; (3) the actual data. We further elaborate
of the packet structure, i.e., extend it with new fields, at the next refinement steps.

To access the packet fields, the introduce the following abstract functions:

packet unit id ∈ PACKET→ 0 ..UNIT NUM,
packet time ∈ PACKET→ N,
packet data ∈ PACKET→ MIN VAL ..MAX VAL.

7

They allow us to extract the corresponding packet fields. The incoming packets are mod-
elled as parameters of the event Receiving Packets. The extractor functions are then used to
decompose these packets. As a result of the event, the pool values processed value(j) and
timestamp(j) may get updated, where j is the index of the DPU that sent the data. How-
ever, the update occurs only if the received data are fresher than the previously stored values
and the packet did not contain an error flag.

Note that the outgoing packets are constructed (using the same functions to enforce the
correctness of the contained information) as the local variables of the event Sending Packet.

Our modelling allows us to formally define and verify the data freshness and integrity
properties. We define them as model invariants as follows:

Freshness 1: main phase = ENV ∧ displayed value = ERR VAL⇒
(∀i · i ∈ dom(timestamp)⇒
timestamp(i) /∈ curr time− Fresh Delta .. curr time)

Freshness 2: main phase = ENV ∧ displayed value 6= ERR VAL⇒
¬{x | ∃j · j ∈ dom(timestamp) ∧ x = timestamp(j)} ∩
curr time− Fresh Delta .. curr time = ∅

Correctness: main phase = ENV ∧ displayed value 6= ERR VAL⇒
displayed value = Output Fun({x 7→ y |
∃i · i ∈ dom(timestamp) ∧ x = timestamp(i) ∧
y = processed value(i)}[curr time− Fresh Delta .. curr time])

where dom and [...] are respectively the relational domain and image operators, while Fresh
Delta is the pre-defined constant standing for the maximum time offset while the data is still
considered to be fresh.

The first invariant states that the unit displays the pre-defined error value only when there
are no fresh data produced by at least one unit. The second invariant formulates the opposite
case, i.e., it requires that, if some data other than the pre-defined error value are displayed,
they are based on the fresh data from at least one unit. The third invariant formulates the
correctness of the displayed data – these data are always calculated by applying the pre-
defined function (modelled by Output Fun) to the filtered fresh data from the unit data pool.
The invariant properties are proved as a part of the model verification process.

4.2 Model Refinements
The first refinement. The aim of our first refinement step is to introduce modelling of
failures. The result of the fault tree analysis performed for the considered DMS is given
in Appendix A. We explicitly specify the effect of three types of failures: sensor failures,
sensor data processing failures, and communication errors. If the DPU experiences sensor
or sensor data processing failures, it does not update the value of its own data in the data
pool. Similarly, if the DPU detects a communication error, it does not update the data of the

8

sending process in the data pool. We also abstractly model the presence of software faults,
although do not introduce explicit mechanisms for diagnosing them. In all these cases, the
mechanism for tolerating the faults is the same: the DPU neglects erroneous or corrupted
data and relies on the last good values from the respective DPUs stored in the data pool to
calculate the displayed value (provided it is still fresh at the moment of displaying).

To implement these mechanisms, first we extend the data packet structure with two new
fields: the one containing the information about the status of the DPU that sent the packet,
and the other one storing a checksum for determining whether the packet was corrupted
during the transmission. The corresponding extractor functions are added to the model:

packet status ∈ PACKET→ STATUS,
packet checksum ∈ PACKET→ N,

where the set STATUS consists of two subsets NO FLT and FLT modelling the absence
or presence of faults of a unit, respectively. To calculate a checksum, we define the function

Checksum ∈ N×MIN VAL ..MAX VAL→ N.

The function takes as the input the transmitted timestamp and measurement data.
The communication between units is modelled by the event Receiving Packets shown in

Fig. 5. The event specifies a successful receiving of packets, i.e., when the sending DPU has
succeeded in producing fresh data and the corresponding packet was not corrupted during the
transmission. If it is not the case, the data pool of the receiving DPU is not getting updated,
i.e., this behaviour corresponds to skip.

The detection of sensor faults is modelled by the new event Pre Processing. An excerpt
from the specification of this event, shown in Fig. 5, illustrates detection of the sensor fault
“Value is out of range”. The event Pre Processing also introduces an implicit modelling of
the effect of software faults by non-deterministic update of the variable unit status.

In this refinement step, we split the abstract event Processing into two events: Process-
ing OK and Processing NOK. The event Processing OK models an update of the DPU’s data
pool with the new processed measurements, i.e., it is executed when no failure occurred. Cor-
respondingly, the event Processing NOK is executed when errors have been detected. In this
case, the DPU relies on the last good value in its further computations.

The performed refinement step allows us to formulate the data integrity property as the
following model invariants:

Integrity 1: ∀j · j ∈ 0 ..UNIT NUM⇒
Checksum(timestamp(j) 7→ processed value(j)) = checksum(j)

Integrity 2: ∀j · j ∈ 0 ..UNIT NUM⇒ status(j) ∈ NO FLT

These invariants guarantee that the displayed data are based only on the valid data stored
in the DPU data pool. In other words, neither corrupted nor faulty data are taken into account
to compute the data to be displayed.

9

 event Pre_Processing

 where
 main_phase = PROC

 time_progressed = TRUE

 pre_proc_flag = TRUE

 then

 pre_proc_flag ≔ FALSE

 sensor_fault :∣ sensor_fault' ∈ BOOL ∧

 ((monitored_value ≥ Sens_Lower_Threshold ∧
 monitored_value ≤ Sens_Upper_Threshold) ⇒
 sensor_fault' = FALSE) ∧

 (¬(monitored_value ≥ Sens_Lower_Threshold ∧
 monitored_value ≤ Sens_Upper_Threshold) ⇒
 sensor_fault' = TRUE)

 unit_status :∈ STATUS

 end

event Receiving_Packets refines Receiving_Packets

 any p

 where
 // other guards as in the abstract event

 p ∈ PACKET

 packet_status(p) ∈ NO_FLT

 Checksum(packet_time(p)↦packet_data(p)) =

 packet_checksum(p)

 then
 // other actions as in the abstract event

 status(packet_unit_id(p)) ≔ packet_status(p)

 checksum(packet_unit_id(p)) ≔
 packet_checksum(p)

 end

 event Processing_OK refines Processing

 where
 // other guards as in the abstract event

 pre_proc_flag = FALSE

 sensor_fault = FALSE ∧ unit_status ∈ NO_FLT

 then
 // other actions as in the abstract event

 pre_proc_flag ≔ TRUE

 processed_value (0) ≔ Convert(monitored_value)

 checksum(0) ≔
 Checksum(curr_time↦Convert(monitored_value))

 status :∣ status' ∈ 0 .. UNIT_NUM → STATUS ∧

 (∃x · x ∈ NO_FLT ∧ status' = status ⩤- {0↦x})

 end

 event Processing_NOK refines Processing

 where
 // other guards as in the abstract event

 pre_proc_flag = FALSE

 ¬(sensor_fault = FALSE ∧
 unit_status ∈ NO_FLT)

 then
 // other actions as in the abstract event

 pre_proc_flag ≔ TRUE

 end

Figure 5: Events of the first refinement model

The second refinement. The aim of our last refinement step is to refine the mechanism
of local clock adjustment. Every k cycles, the DPU receives the reference time signal and
adjust its local clock according to it. This prevents an unbounded local clock drift and allows
the overall system guarantee “global” data freshness as discussed in Section 2. For brevity,
we omit showing the details of this specification. The complete development can be found
in Appendix B.

Discussion of the development. Let us point out that the proposed approach is also
applicable to formal modelling and verification of DPUs that are not connected to a sensor
directly (e.g., Processing Unitk in Fig. 1). In this case, we we can assume that the DPU
operates in the presence of a permanent sensor fault and, therefore, only relies on the data
received from the other units. The phases related to sensor reading and processing then could
be excluded from the model of such a DPU.

In our development we have focused on the logical aspects of data monitoring – the data
freshness and integrity properties. Implicitly, we assume that the time-related constraints
have been obtained by the corresponding real-time analysis. The real-time analysis allows
us to derive the constraints on how often sensor data should be read, the DPU worst case
execution time, the upper bound of network delay and how often the local clocks should

10

be adjusted. Usually, this kind of analysis is performed when the system is implemented,
i.e., with hardware in the loop. In our previous work, we have also experimented with the
verification of real-time properties in Event-B [4] and demonstrated how to assess interde-
pendencies between timing constraints at the abstract specification level.

In the next section, we overview the industrial case study and then present the lessons
learnt from the development.

5 Validating an Industrial Solution

5.1 Overview of the Industrial Case Study
Our development presented in Section 4 generalises the architecture of a Temperature Mon-
itoring System (TMS). The TMS is a part of the data monitoring system typical for nuclear
power plants. The TMS consists of three DPUs connected to the operator’s display in the
control room (Fig. 6).

The TMS is an instantiation of the generic architecture described in Section 2 and for-
mally modelled in Section 4. DPUs of the TMS monitor readings of the temperature sensors
installed in a certain module of the plant.

The system is redundant with the architecture 1oo3 (one out of three). The actual temper-
ature signals are generated by two temperature sensors – Resistance Temperature Detectors

Unit A

 System System

IO Unit

Processing Unit

Displaying Unit

Unit B

IO Unit

Processing Unit

Displaying Unit

Sensor 1

Display BDisplay A

 Unit C

IO Unit Processing Unit Displaying Unit

Sensor 2

Display C

Figure 6: Temperature monitoring system

11

(RTDs). RTD is a thermal device containing a resistance element. The change of resistance
of this element indicates the change of the temperature. Therefore, by measuring the resis-
tance, the system can determine the temperature [5]. The temperature signal from the first
sensor is transmitted to two different DPUs – Unit A and Unit B. The temperature signal
from the second sensor is transmitted to the third DPU – Unit C.

After obtaining a temperature signal from the sensor, the DPU processes it and sends the
temperature data further to the other DPUs. Then, the trusted temperature is communicated
to the operator displays. Usually, each DPU gets all three temperature values. The temper-
ature to be shown to the operator is then chosen as the maximum of the valid temperature
values obtained. If no valid data is available, then the error message is shown to the operator
warning him about a TMS error.

To guarantee that the trusted temperature data is shown to the operator, the system has
to ensure integrity of the temperature data as well as its freshness. To model and verify the
described system, we instantiate the proposed generic models as follows:

• Variables: monitored value becomes temp sensor value, processed value – tempera-
ture, and displayed value – output. The rest of variables may remain unchanged, since
they are not application-specific.

• Constants: all constants are assigned the values specific for the TMS.

• Functions: we instantiate the function Output Fun with the function max because
the temperature to be displayed should be the highest among the valid measurements.
Moreover, the function Convert can be defined precisely, i.e., the actual physical law
can be provided to convert a raw reading into the temperature.

• Invariants: we instantiate the invariants that guarantee the preservation of data fresh-
ness and data integrity as follows:

Freshness 1: main phase = ENV ∧ output = ERR VAL⇒
(∀i · i ∈ dom(timestamp)⇒
timestamp(i) /∈ curr time− Fresh Delta .. curr time)

Freshness 2: main phase = ENV ∧ output 6= ERR VAL⇒
¬{x | ∃j · j ∈ dom(timestamp) ∧ x = timestamp(j)} ∩
curr time− Fresh Delta .. curr time = ∅

Integrity 1: ∀j · j ∈ 0 ..UNIT NUM⇒
Checksum(timestamp(j) 7→ temperature(j)) = checksum(j)

Integrity 2: ∀j · j ∈ 0 ..UNIT NUM⇒ status(j) ∈ NO FLT

12

5.2 Lessons Learnt

Next we discuss our experience in applying the proposed generic development pattern to an
industrial case study and describe the constraints that should be satisfied by the implementa-
tion to guarantee dependability of data monitoring.

Instantiating the generic development. Since the formal development proposed in Sec-
tion 4 is generic, to model and verify the TMS, we merely had to instantiate it. This simplified
the overall modelling task and reduced it to renaming the involved variables and providing
correct instances for generic constants and functions, while afterwards getting the proved es-
sential properties practically for free, i.e., without any additional proof effort. This illustrates
the usefulness of involved genericity, where the used abstract data structures (constants and
functions) become the parameters of the whole formal development.

In our case, this allowed us to model and verify a distributed system with an arbitrary
number of units and sensors. Moreover, the introduced constants became the parameters of
the system that may vary from one application to another. For instance, different sensors
may have different valid thresholds, while the error value to be displayed may also depend
on a particular type of a display. Furthermore, the software functions used to calculate the
temperature from the raw sensor readings as well as the functions utilised to calculate the
output value may differ from each other even within the same system. Nonetheless, the
derived formal proofs of the data freshness and data integrity properties for each unit hold
for the whole system for any valid values of the generic parameters. We believe that the
presented approach can also be used in other domains without major modifications.

Validating architectural solution. The proposed generic development approach has
allowed us not only to formally define two main properties of data monitoring systems –
data freshness and integrity but also gain a better insight on the constraints that the proposed
architecture should satisfy to guarantee dependability. Below we discuss them.

Compositionality and elasticity. Since DPUs should not produce one common reading,
a DMS can be designed by composing independent DPUs, that significantly simplifies sys-
tem design and verification. Firstly, the architecture enables an independent development
and verification of each particular DPU. Secondly, it facilitates reasoning about the overall
system behaviour, since interactions between the components can be verified at the interface
level. Finally, the proposed solution allows the system to achieve elasticity – since each
DPU has a pool of data, it can seamlessly adapt to various situations (errors, delays) without
requiring system-level reconfiguration.

Diversity and fault tolerance. The system has several layers of fault tolerance – operator
level, system level and unit level. Since the operator obtains several variants of data, (s)he
can detect anomalies and initiate manual error recovery (e.g., reconfiguration). At the system
level, the system exceeds its fault tolerance limit only if all N modules fail at once. Finally, at
the DPU level, even if all DPUs fail to produce fresh data, DPU keeps displaying data based
on the last good value until it remains fresh. At the same time, software diversity significantly
contributes to achieving data integrity – it diminishes the possibility of a common processing
error.

13

Constraints. Our formal analysis has allowed us to uncover a number of the constraints
that should be satisfied to guarantee dependability. Firstly, let us observe that if a DPU
keeps receiving data packets with corrupted or old data then after time δ it will start to rely
only on its own data, i.e., no redundant data would be available. Therefore, potentially the
system architecture can reduce itself to a single module. To avoid this, the designers should
guarantee that the WCET of each module is sufficiently short for the processed data to be
considered fresh by the other DPUs. Moreover, we also should guarantee that the network
delays are sufficiently short and the data do not become outdated while being transmitted
over the network. Furthermore, it should be verified that the successful transmission rate
is high enough for a sufficient number of packets to reach their destinations non-corrupted.
Finally, to guarantee “global” freshness, we have to ensure that the local clock drift is kept
within the limit, i.e., does not allow DPUs to display old data.

6 Related Work and Conclusions

Related work. Traditionally, the problem of data integrity is one of the main concerns in the
security domain, while data freshness is much sought after in the replicated databases. How-
ever, for our work, a more relevant is the research that focuses on achieving data integrity
“from input to output”, i.e., ensuring that a system does not inject faults in the data flow.

Data freshness has been studied by Sakurai et al. [6] in the context of time-triggered
architectures. They propose to introduce an additional communication layer that aligns data
between different replicas of an operation and define system properties using SAL. Unlike
our approach, their solution relies on a tightly fixed job schedule.

Hoang at al. [7] propose a set of Event-B design patterns including a pattern for asyn-
chronous message communication between a sender and a receiver. Each message is as-
signed a sequence number that is checked by a receiver. Though Hoang et al. rely on
the similar technique, timestamps. The goal of their modelling – ensuring correct order of
packet receiving – is different from ours. The packet ordering problem was insignificant
for our study, because DPU always checks freshness of received data irrespectively of the
order in which data packets are received. Westerlund and Plosila [8] treat data freshness
as packet ordering problem in the Timed Action Systems framework. Though the Action
System framework is similar to Event-B, it lacks an automated tool support that and hence
would make verification of complex industrial systems cumbersome.

Umezawa and Shimizu [9] explore the benefits of hybrid verification methodology for
ensuring data integrity. They focus on finding techniques that would be most suitable for
verifying error detection, soundness of system internal states and output data integrity. This
work can be seen as complementary to ours – it identifies techniques that can be used to
verify freshness and integrity properties that we have formulated.

14

Conclusions. In this paper, we have generalised an industrial architectural solution to data
monitoring and proposed a formal generic model of a data monitoring system. We formally
defined and verified (by proofs) the data freshness and integrity properties. We applied the
generic development pattern to verify an industrial implementation of a temperature moni-
toring system. Our formal modelling has also allowed us to derive the constraints that the
system should satisfy to ensure that trusted (fresh and correct) data are displayed. These
constraints can be seen as a guidelines facilitating design of data monitoring systems. The
proposed generic development pattern can be easily instantiated to verify data monitoring
systems from different domains. As a result of our modelling, we received formally grounded
assurance of dependability of the proposed industrial solution.

As a future work, it would be interesting to experiment with quantitative verification of
the system and propose a solution to optimising the performance-reliability ratio.

15

References
[1] Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge Uni-

versity Press, New York, NY, USA (2010)

[2] Event-B and the Rodin platform. [online] http://www.event-b.org/ (accessed
10 February 2013)

[3] Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA (1996)

[4] Iliasov, A., Laibinis, L., Troubitsyna, E., Romanovsky, A., and Latvala, T. Augmenting
Event-B Modelling with Real-Time Verification. In Proceedings of Workshop on Formal
Methods in Software Engineering: Rigorous and Agile Approaches (FormSERA 2012).

[5] Hashemian, H.M.: Measurement of Dynamic Temperatures and Pressures in Nuclear
Power Plants. University of Western Ontario – Electronic Thesis and Dissertation Repos-
itory (2011). [online] http://ir.lib.uwo.ca/etd/189 (accessed 19 February
2013)

[6] Sakurai, K., Bokor, P., and Suri, N.: Aiding Modular Design and Verification of
Safety-Critical Time-Triggered Systems by Use of Executable Formal Specifications.
In: Proceedings of the 11th IEEE High Assurance Systems Engineering Symposium
(HASE’08), pp. 261-270 (2008)

[7] Hoang, T.S., Furst, A., and Abrial, J.-R.: Event-B patterns and their tool support. In:
Software and Systems Modeling, Springer-Verlag, pp. 1-16 (2011)

[8] Westerlund, T., Plosila, J.: Formal Modelling of Multiclocked SoC Systems. In: Pro-
ceedings of International Symposium on System-on-Chip, pp.1-4 (2006)

[9] Umezawa, Y. and Shimizu, T.: A Formal Verification Methodology for Checking Data
Integrity. In: Proceedings of the conference on Design, Automation and Test in Europe
(DATE’05), pp.284-289 (2005)

16

Appendix A

Fault Tree of a DMS

System failure

Unit 1 failure

HW failure

No valid output
value is produced

No valid own data
are produced

No valid (fresh) data
are received from

other units

No valid data
from Unit 2

Transmission
failure

SW failure

Data delay

Sensor failure

Value is out of
range

Sensor stuck

No valid data
from Unit k
 (similar to

Unit 2)

Unit 2 failure
 (similar to Unit 1)

Data processing
failed

Timestamp is
old (last good
value is not

fresh)

No new data are
received

Timestamp is
old (last good
value is not

fresh)

Unit 2 failed to
process data
(failure flag is

raised)

...

...

Unit k failure

HW failure

No valid output
value is produced

No valid (fresh) data
from Unit 1

Transmission
failure

Data delay

No valid data
from Unit k-1

 (similar to
Unit 1)

No new data are
received

Timestamp is
old (last good
value is not

fresh)

Unit 1 failed to
process data
(failure flag is

raised)

...

17

Appendix B

Formal Generic Development of a DMS in Event-B

CONTEXT C0
SETS

MAIN PHASES

PACKET
CONSTANTS

ENV

PROC

DISP

Fresh Delta

MIN V AL

MAX V AL

UNIT NUM

ERR V AL

packet unit id

packet time

packet data

Convert

Output Fun
AXIOMS

axm1 : partition(MAIN PHASES, {ENV }, {PROC}, {DISP})
axm2 : Fresh Delta = 10

axm3 : MIN V AL ∈ N
axm4 : MAX V AL ∈ N
axm5 : MIN V AL < MAX V AL

axm6 : ERR V AL = 999

axm7 : MAX V AL < ERR V AL

axm8 : UNIT NUM > 0

axm9 : PACKET 6= ∅
axm10 : packet unit id ∈ PACKET → 0 .. UNIT NUM

axm11 : packet time ∈ PACKET → N
axm12 : packet data ∈ PACKET →MIN V AL .. MAX V AL

axm13 : Convert ∈ N→MIN V AL .. MAX V AL

axm14 : Output Fun ∈ P1(N)→ N
END

MACHINE M0
SEES C0
VARIABLES

main phase

time progressed

packet sent flag

monitored value

displayed value

curr time

processed value

timestamp
INVARIANTS

inv1 : main phase ∈MAIN PHASES

inv2 : time progressed ∈ BOOL
inv3 : packet sent flag ∈ BOOL
inv4 : monitored value ∈ N
inv5 : displayed value ∈ N
inv6 : curr time ∈ N
inv7 : processed value ∈ 0 .. UNIT NUM →MIN V AL .. MAX V AL

inv8 : timestamp ∈ 0 .. UNIT NUM → N
Freshness 1 : main phase = ENV ∧ displayed value = ERR V AL⇒

(∀i·i ∈ dom(timestamp)⇒
timestamp(i) /∈ curr time− Fresh Delta .. curr time)

Freshness 2 : main phase = ENV ∧ displayed value 6= ERR V AL⇒
¬{x | ∃j ·j ∈ dom(timestamp) ∧ x = timestamp(j)} ∩
curr time− Fresh Delta .. curr time = ∅

Correctness : main phase = ENV ∧ displayed value 6= ERR V AL⇒
displayed value = Output Fun({x 7→ y |
∃i·i ∈ dom(timestamp) ∧
x = timestamp(i) ∧ y = processed value(i)}
[curr time− Fresh Delta .. curr time])

EVENTS
Initialisation

begin

act1 : main phase := ENV
act2 : time progressed := FALSE
act3 : packet sent flag := FALSE
act4 : monitored value := 0

19

act5 : displayed value :=MIN V AL
act6 : curr time := 0

act7 : processed value := 0 .. UNIT NUM × {MIN V AL}
act8 : timestamp := 0 .. UNIT NUM × {0}

end
Event Environment =̂

any

sync t
where

grd1 : main phase = ENV
grd2 : sync t ∈ N

then

act1 : main phase := PROC
act2 : monitored value :∈ N
act3 : curr time := sync t

end
Event Receiving Packets =̂

any

p
where

grd1 : p ∈ PACKET
grd2 : packet time(p) > timestamp(packet unit id(p))
grd3 : packet data(p) ∈MIN V AL .. MAX V AL
grd4 : main phase 6= ENV
grd5 : time progressed = TRUE

then

act1 : time progressed := FALSE

act2 : timestamp(packet unit id(p)) := packet time(p)
act3 : processed value(packet unit id(p)) := packet data(p)

end
Event Processing =̂

when

grd1 : main phase = PROC
grd2 : time progressed = TRUE

then

act1 : main phase := DISP
act2 : time progressed := FALSE

20

act3 : timestamp, processed value :|
timestamp′ ∈ 0 .. UNIT NUM → N ∧
processed value′ ∈ 0 .. UNIT NUM →

MIN V AL .. MAX V AL ∧
((timestamp′(0) = curr time ∧
processed value′(0) = Convert(monitored value)) ∨
(timestamp′(0) = timestamp(0) ∧
processed value′(0) = processed value(0)))

end
Event Sending Packet =̂

any

p
where

grd1 : main phase = DISP
grd2 : time progressed = TRUE
grd3 : packet sent flag = FALSE
grd4 : p ∈ PACKET
grd5 : packet time(p) = curr time
grd6 : packet data(p) = Convert(monitored value)
grd7 : packet unit id(p) = 0

then

act1 : time progressed := FALSE
act2 : packet sent flag := TRUE

end
Event Displaying =̂

any

ss

DATA SET
where

grd1 : main phase = DISP
grd2 : time progressed = TRUE
grd3 : packet sent flag = TRUE
grd4 : DATA SET ⊆ N
grd5 : ss = {x 7→ y | ∃i·i ∈ dom(timestamp) ∧ x = timestamp(i) ∧

y = processed value(i)}[curr time− Fresh Delta .. curr time]
grd6 : (ss 6= ∅⇒DATA SET = ss)
grd7 : (ss = ∅⇒DATA SET = {ERR V AL})

then

act1 : main phase := ENV
act2 : time progressed := FALSE

21

act3 : packet sent flag := FALSE

act4 : displayed value := Output Fun(DATA SET)
end

Event Time Progress =̂
any

t
where

grd1 : t ∈ N
grd2 : t > curr time
grd3 : main phase 6= ENV

then

act1 : time progressed := TRUE
act2 : curr time := t

end
END

22

CONTEXT C1
EXTENDS C0
SETS

STATUS
CONSTANTS

NO FLT

FLT

Sens Lower Threshold

Sens Upper Threshold

packet status

packet checksum

Checksum
AXIOMS

axm1 : partition(STATUS,NO FLT, FLT)

axm2 : ¬NO FLT = ∅
axm3 : ¬FLT = ∅
axm4 : Sens Lower Threshold = 4

axm5 : Sens Upper Threshold = 20

axm6 : packet status ∈ PACKET → STATUS

axm7 : packet checksum ∈ PACKET → N
axm8 : Checksum ∈ N×MIN V AL .. MAX V AL→ N
axm9 : Checksum(0 7→MIN V AL) =MIN V AL

END

23

MACHINE M1
REFINES M0
SEES C1
VARIABLES

main phase

time progressed

packet sent flag

pre proc flag

monitored value

displayed value

curr time

processed value

timestamp

displayed mess

unit status

sensor fault

status

checksum
INVARIANTS

inv1 : pre proc flag ∈ BOOL
inv2 : displayed mess ∈ STATUS
inv3 : unit status ∈ STATUS
inv4 : sensor fault ∈ BOOL
inv5 : status ∈ 0 .. UNIT NUM → STATUS

inv6 : checksum ∈ 0 .. UNIT NUM → N
Integrity 1 : ∀j ·j ∈ 0 .. UNIT NUM ⇒

Checksum(timestamp(j) 7→ processed value(j)) =
checksum(j)

Integrity 2 : ∀j ·j ∈ 0 .. UNIT NUM ⇒ status(j) ∈ NO FLT

EVENTS
Initialisation

extended
begin

act1 : main phase := ENV
act2 : time progressed := FALSE
act3 : packet sent flag := FALSE
act4 : pre proc flag := TRUE

24

act5 : monitored value := 0
act6 : displayed value :=MIN V AL
act7 : curr time := 0

act8 : processed value := 0 .. UNIT NUM × {MIN V AL}
act9 : timestamp := 0 .. UNIT NUM × {0}
act10 : displayed mess :∈ NO FLT
act11 : sensor fault := FALSE
act12 : unit status :∈ NO FLT
act13 : status :∈ 0 .. UNIT NUM →NO FLT

act14 : checksum := 0 .. UNIT NUM × {MIN V AL}
end

Event Environment =̂
refines Environment

any

sync t
where

grd1 : main phase = ENV
grd2 : sync t ∈ N

then

act1 : main phase := PROC
act2 : monitored value :∈ N
act3 : curr time := sync t

end
Event Receiving Packets =̂
refines Receiving Packets

any

p
where

grd1 : p ∈ PACKET
grd2 : packet time(p) > timestamp(packet unit id(p))
grd3 : packet data(p) ∈MIN V AL .. MAX V AL
grd4 : main phase 6= ENV
grd5 : time progressed = TRUE

grd6 : packet status(p) ∈ NO FLT
grd7 : Checksum(packet time(p) 7→ packet data(p)) =

packet checksum(p)
then

act1 : time progressed := FALSE

act2 : timestamp(packet unit id(p)) := packet time(p)

25

act3 : processed value(packet unit id(p)) := packet data(p)
act4 : status(packet unit id(p)) := packet status(p)
act5 : checksum(packet unit id(p)) := packet checksum(p)

end
Event Pre Processing =̂

when

grd1 : main phase = PROC
grd2 : time progressed = TRUE
grd3 : pre proc flag = TRUE

then

act1 : pre proc flag := FALSE
act2 : unit status :∈ STATUS
act3 : sensor fault :| sensor fault′ ∈ BOOL ∧

((monitored value ≥ Sens Lower Threshold ∧
monitored value ≤ Sens Upper Threshold)⇒
sensor fault′ = FALSE) ∧
(¬(monitored value ≥ Sens Lower Threshold ∧
monitored value ≤ Sens Upper Threshold)
⇒ sensor fault′ = TRUE)

end
Event Processing OK =̂

refines Processing
when

grd1 : main phase = PROC
grd2 : time progressed = TRUE
grd3 : pre proc flag = FALSE
grd4 : sensor fault = FALSE ∧ unit status ∈ NO FLT

then

act1 : main phase := DISP
act2 : time progressed := FALSE
act3 : pre proc flag := TRUE

act4 : timestamp(0) := curr time
act5 : processed value(0) := Convert(monitored value)
act6 : status :| status′ ∈ 0 .. UNIT NUM → STATUS ∧

(∃x·x ∈ NO FLT ∧ status′ = statusC− {0 7→ x})
act7 : checksum(0) := Checksum(curr time 7→

Convert(monitored value))
end

Event Processing NOK =̂

refines Processing

26

when

grd1 : main phase = PROC
grd2 : time progressed = TRUE
grd3 : pre proc flag = FALSE

grd4 : ¬(sensor fault = FALSE ∧ unit status ∈ NO FLT)
then

act1 : main phase := DISP
act2 : time progressed := FALSE
act3 : pre proc flag := TRUE

end
Event Sending Packet =̂
refines Sending Packet

any

p

st0
where

grd1 : main phase = DISP
grd2 : time progressed = TRUE
grd3 : packet sent flag = FALSE
grd4 : p ∈ PACKET
grd5 : st0 ∈ STATUS
grd6 : (sensor fault = FALSE ∧ unit status ∈ NO FLT)⇒

st0 ∈ NO FLT
grd7 : ¬(sensor fault = FALSE ∧ unit status ∈ NO FLT)⇒

st0 ∈ FLT
grd8 : packet unit id(p) = 0
grd9 : packet time(p) = curr time
grd10 : packet data(p) = Convert(monitored value)
grd11 : packet status(p) = st0
grd12 : packet checksum(p) =

Checksum(curr time 7→ Convert(monitored value))
then

act1 : time progressed := FALSE
act2 : packet sent flag := TRUE

end
Event Displaying =̂

refines Displaying
any

ss

DATA SET

27

where

grd1 : main phase = DISP
grd2 : time progressed = TRUE
grd3 : packet sent flag = TRUE
grd4 : DATA SET ⊆ N
grd5 : ss = {x 7→ y | ∃i·i ∈ dom(timestamp) ∧ x = timestamp(i) ∧

y = processed value(i)}[curr time− Fresh Delta .. curr time]
grd6 : (ss 6= ∅⇒DATA SET = ss)
grd7 : (ss = ∅⇒DATA SET = {ERR V AL})

then

act1 : main phase := ENV
act2 : time progressed := FALSE
act3 : packet sent flag := FALSE

act4 : displayed value := Output Fun(DATA SET)
act5 : displayed mess :| displayed mess′ ∈ STATUS ∧

(sensor fault = FALSE ∧ unit status ∈ NO FLT ∧ ss 6= ∅⇒
displayed mess′ ∈ NO FLT) ∧
(¬(sensor fault = FALSE ∧ unit status ∈ NO FLT ∧ ss 6= ∅)⇒
displayed mess′ ∈ FLT)

end
Event Time Progress =̂
refines Time Progress

any

t
where

grd1 : t ∈ N
grd2 : t > curr time
grd3 : main phase 6= ENV

then

act1 : time progressed := TRUE
act2 : curr time := t

end
END

28

CONTEXT C2
EXTENDS C1
CONSTANTS

k the period of time synchronisation
AXIOMS

axm1 : k ∈ N
END

MACHINE M2
REFINES M1
SEES C2
VARIABLES

main phase

time progressed

packet sent flag

pre proc flag

monitored value

displayed value

displayed mess

curr time

processed value

timestamp

unit status

sensor fault

status

checksum

global time

cycle count
INVARIANTS

inv1 : global time ∈ N
inv2 : cycle count ∈ N

29

thm1 : ∀p′ ·p′ ∈ {main phase′ 7→ curr time′ 7→ cycle count′ |
main phase′ ∈MAIN PHASES ∧
curr time′ ∈ N ∧ cycle count′ ∈ N ∧
(∃main phase, cycle count·
main phase ∈MAIN PHASES ∧ cycle count ∈ N ∧
(main phase = ENV ∧ cycle count < k) ∧
(main phase′ = PROC ∧ (cycle count′ = cycle count+ 1) ∧
curr time′ = curr time))}⇒
p′ ∈ {main phase′ 7→ curr time′ 7→ cycle count′ |
main phase′ ∈MAIN PHASES ∧
curr time′ ∈ N ∧ cycle count′ ∈ N ∧ (curr time′ = curr time)}

thm2 : ∀p′ ·p′ ∈ {main phase′ 7→ curr time′ 7→ cycle count′ |
main phase′ ∈MAIN PHASES ∧
curr time′ ∈ N ∧ cycle count′ ∈ N ∧
(∃main phase, cycle count·
main phase ∈MAIN PHASES ∧ cycle count ∈ N ∧
(main phase = ENV ∧ cycle count = k) ∧
(main phase′ = PROC ∧ cycle count′ = 0 ∧
curr time′ = curr time+ (global time− curr time)))}⇒
p′ ∈ {main phase′ 7→ curr time′ 7→ cycle count′ |
main phase′ ∈MAIN PHASES ∧
curr time′ ∈ N ∧ cycle count′ ∈ N ∧
(curr time′ = curr time+ (global time− curr time))}

EVENTS
Initialisation

extended
begin

act1 : main phase := ENV
act2 : time progressed := FALSE
act3 : packet sent flag := FALSE
act4 : pre proc flag := TRUE
act5 : monitored value := 0
act6 : displayed value :=MIN V AL
act7 : curr time := 0

act8 : processed value := 0 .. UNIT NUM × {MIN V AL}
act9 : timestamp := 0 .. UNIT NUM × {0}
act10 : displayed mess :∈ NO FLT
act11 : sensor fault := FALSE
act12 : unit status :∈ NO FLT
act13 : status :∈ 0 .. UNIT NUM →NO FLT

act14 : checksum := 0 .. UNIT NUM × {MIN V AL}
act15 : global time := 0

30

act16 : cycle count := 0
end

Event Environment 1 =̂

refines Environment
where

grd1 : main phase = ENV
grd2 : cycle count < k

with

sync t : sync t = curr time
then

act1 : main phase := PROC
act2 : monitored value :∈ N
act3 : curr time := curr time
act4 : cycle count := cycle count+ 1

end
Event Environment 2 =̂

refines Environment
any

delta t
where

grd1 : main phase = ENV
grd2 : delta t = global time− curr time
grd3 : cycle count = k

with

sync t : sync t = curr time+ delta t
then

act1 : main phase := PROC
act2 : monitored value :∈ N
act3 : curr time := curr time+ delta t
act4 : cycle count := 0

end
Event Receiving Packets =̂
extends Receiving Packets

any

p
where

grd1 : p ∈ PACKET
grd2 : packet time(p) > timestamp(packet unit id(p))

31

grd3 : packet data(p) ∈MIN V AL .. MAX V AL
grd4 : main phase 6= ENV
grd5 : time progressed = TRUE

grd6 : packet status(p) ∈ NO FLT
grd7 : Checksum(packet time(p) 7→ packet data(p)) =

packet checksum(p)
then

act1 : time progressed := FALSE

act2 : timestamp(packet unit id(p)) := packet time(p)
act3 : processed value(packet unit id(p)) := packet data(p)
act4 : status(packet unit id(p)) := packet status(p)
act5 : checksum(packet unit id(p)) := packet checksum(p)

end
Event Pre Processing =̂

extends Pre Processing

when

grd1 : main phase = PROC
grd2 : time progressed = TRUE
grd3 : pre proc flag = TRUE

then

act1 : pre proc flag := FALSE
act2 : unit status :∈ STATUS
act3 : sensor fault :| sensor fault′ ∈ BOOL ∧

((monitored value ≥ Sens Lower Threshold ∧
monitored value ≤ Sens Upper Threshold)⇒
sensor fault′ = FALSE) ∧
(¬(monitored value ≥ Sens Lower Threshold ∧
monitored value ≤ Sens Upper Threshold)⇒
sensor fault′ = TRUE)

end
Event Processing OK =̂

extends Processing OK

when

grd1 : main phase = PROC
grd2 : time progressed = TRUE
grd3 : pre proc flag = FALSE
grd4 : sensor fault = FALSE ∧ unit status ∈ NO FLT

then

act1 : main phase := DISP

32

act2 : time progressed := FALSE
act3 : pre proc flag := TRUE

act4 : timestamp(0) := curr time
act5 : processed value(0) := Convert(monitored value)
act6 : status :| status′ ∈ 0 .. UNIT NUM → STATUS ∧

(∃x·x ∈ NO FLT ∧ status′ = statusC− {0 7→ x})
act7 : checksum(0) := Checksum(curr time 7→

Convert(monitored value))
end

Event Processing NOK =̂

extends Processing NOK

when

grd1 : main phase = PROC
grd2 : time progressed = TRUE
grd3 : pre proc flag = FALSE

grd4 : ¬(sensor fault = FALSE ∧ unit status ∈ NO FLT)
then

act1 : main phase := DISP
act2 : time progressed := FALSE
act3 : pre proc flag := TRUE

end
Event Sending Packet =̂

extends Sending Packet

any

p

st0
where

grd1 : main phase = DISP
grd2 : time progressed = TRUE
grd3 : packet sent flag = FALSE
grd4 : p ∈ PACKET
grd5 : st0 ∈ STATUS
grd6 : (sensor fault = FALSE ∧ unit status ∈ NO FLT)⇒

st0 ∈ NO FLT
grd7 : ¬(sensor fault = FALSE ∧ unit status ∈ NO FLT)⇒

st0 ∈ FLT
grd8 : packet unit id(p) = 0
grd9 : packet time(p) = curr time
grd10 : packet data(p) = Convert(monitored value)
grd11 : packet status(p) = st0

33

grd12 : packet checksum(p) =
Checksum(curr time 7→ Convert(monitored value))

then

act1 : time progressed := FALSE
act2 : packet sent flag := TRUE

end
Event Displaying =̂

extends Displaying
any

ss

DATA SET
where

grd1 : main phase = DISP
grd2 : time progressed = TRUE
grd3 : packet sent flag = TRUE
grd4 : DATA SET ⊆ N
grd5 : ss = {x 7→ y | ∃i·i ∈ dom(timestamp) ∧ x = timestamp(i) ∧

y = processed value(i)}[curr time− Fresh Delta .. curr time]
grd6 : (ss 6= ∅⇒DATA SET = ss)
grd7 : (ss = ∅⇒DATA SET = {ERR V AL})

then

act1 : main phase := ENV
act2 : time progressed := FALSE
act3 : packet sent flag := FALSE

act4 : displayed value := Output Fun(DATA SET)
act5 : displayed mess :| displayed mess′ ∈ STATUS ∧

(sensor fault = FALSE ∧ unit status ∈ NO FLT ∧ ss 6= ∅⇒
displayed mess′ ∈ NO FLT) ∧
(¬(sensor fault = FALSE ∧ unit status ∈ NO FLT ∧ ss 6= ∅)⇒
displayed mess′ ∈ FLT)

end
Event Time Progress =̂
extends Time Progress

any

t
where

grd1 : t ∈ N
grd2 : t > curr time
grd3 : main phase 6= ENV

34

then

act1 : time progressed := TRUE
act2 : curr time := t

end
Event Global Time Progress =̂

any

t
where

grd1 : t > global time
then

act1 : global time := t
end

END

35

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Information Technologies

Turku School of Economics
• Institute of Information Systems Sciences

ISBN 978-952-12-2864-3
ISSN 1239-1891

