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Abstract

A commonly used approach for solving unconstrained, highlymultimodal, dis-
tance geometry problems is to use an integral transformation to gradually trans-
form the objective function into a function with a smaller number of undesired
local minima. In many cases, an iterative tracing of minimizers of the transformed
functions back to the original function via continuation leads to a global minimum
of the original objective function. This paper gives a theoretical framework for
such a method that is applicable to box-constrained problems. By assuming de-
composability of the objective function (i.e. that it can bedecomposed into prod-
ucts of univariate functions), we prove the convergence of the proposed method
to a KKT point satisfying the first-order necessary and the second-order sufficient
optimality conditions of a box-constrained problem. We also give the conditions
that guarantee the convergence to the solution from the interior of the feasible
domain.

Keywords: global optimization, bounds for variables, continuation,Gaussian
transform, barrier method, KKT conditions
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1 Introduction

We describe a novel approach for solving the box-constrained minimization prob-
lem

min f(x)
s.t. x ∈ H,

(P)

where the objective functionf : H → R can be expressed in thedecomposable
form

f(x) =
m
∑

i=1

n
∏

j=1

fi,j(xj)

for a set of sufficiently smooth functionsfi,j : [aj , bj] → R. In addition, we
assume that the feasible domainH ⊂ R

n is then-dimensional hyperrectangle

H = {x ∈ R
n | ai ≤ xi ≤ bi, i = 1, . . . , n} (1)

with ai, bi ∈ R, ai < bi, i = 1, . . . , n. Various distance geometry problems,
where the objective function is typically highly multimodal, can be formulated as
this kind of a global optimization problem. Examples of these include distance-
constrained molecular conformation (see e.g. [2]), molecular embedding (see e.g.
[10]), distance matrix completion (see e.g. [25]), sensor network localization (see
e.g. [6]) and certain relaxed formulations of maximin distance problems (see e.g.
[19] and [24]).1

In this paper, we adapt the idea of using theGaussian transformto gradu-
ally transform the highly multimodal objective function into a function with a
smaller number of undesired local minima. The idea of using this parametrized
integral transformation has been applied in several different forms to distance
geometry problems appearing in molecular chemistry. The most prominent ap-
proaches include the diffusion equation method by Piela et al. [18], the effective
energy method by Coleman and Shalloway [7], the effective energy transforma-
tion method by Wu [26], the packet annealing method by Shalloway [22] and
the distance geometry optimization algorithm by Moré and Wu [16]. It is widely
known that in many cases, iteratively tracing the minimizers along a sequence of
transformed functions back to the original function leads to a global minimizer of
the original objective function. However, the developmentof thesecontinuation
methods has been so far confined to unconstrained optimization and to the field
of molecular chemistry. In order to fill this gap, our aim is toextend the theory
of the present methods to general box-constrained problemswhere the objective
function is decomposable.

The novelty of our approach is that we restrict the integration domain of
the Gaussian transform into the hyperrectangleH. This leads to a very natural

1Not all variables are necessarily bounded in general distance geometry problems, but our
approach can be extended to these cases in a straightforwardmanner.
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interior-point barrier function method exploiting an intrinsic barrier induced by
the Gaussian transform over the bounded domainH. In particular, this approach
allows utilization of an unconstrained method for minimizing the transformed
functions. Our approach is fundamentally different from the previously described
approaches to constrained optimization via integral transformations (see e.g. [1]).
In these approaches, the integration domain is the wholeR

n and constraints are
enforced in the local optimization method that is applied tothe transformed func-
tions.

As in the earlier unconstrained methods, we construct a sequence of iterates by
tracing the minimizers of the transformed functions. In ourapproach, however,
as the sequence of transformed functions converges to the original function, a
sequence of minimizers of the transformed functions can be proven to converge
to a solution of the box-constrained problem (P). Specifically, we give conditions
for the convergence of such a sequence to a KKT point of problem (P) satisfying
the first-order necessary and the second-order sufficient optimality conditions. In
addition, we give conditions for the convergence to the solution from the interior
of the feasible domainH.

The rest of the paper is organized as follows. In Section 2, wedefine the
integral transformation being applied to the objective function and describe the
continuation approach. We also give conditions ensuring that stationary points of
the transformed functions lie within the feasible domain. Conditions for the con-
vergence to a KKT point of problem (P) from the interior of thefeasible domain
H are given in Section 3. Finally, Section 4 summarizes the results presented in
this paper. Detailed proofs of the technical lemmata utilized in proving our main
results are provided in Appendix A.

2 Constrained Continuation Approach

In this section, we describe the basic ideas of transformingthe objective function
via the Gaussian transform and tracing minimizers of the transformed functions
via continuation. In particular, we give the conditions ensuring that stationary
points of the transformed functions lie in the interior of a bounded integration
domain.

2.1 Continuation via the Gaussian Transform

First, we consider the continuation approach using the Gaussian transform.

Definition 2.1. TheGaussian transformof a functionf : Ω → R, whereΩ ⊆ R
n

is nonempty, is

〈f〉σ,Ω(x) = Cσ

∫

Ω

f(y) exp

(

−‖y − x‖2
σ2

)

dy, (2)
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whereσ > 0 is a transformation parameterand

Cσ =





∫

Rn

exp

(

−‖y‖2
σ2

)

dy





−1

=

(

1√
πσ

)n

is a normalization constant.2

This integral transformation is essentially a distance-weighted average of the orig-
inal function, where the degree of averaging is controlled by the parameterσ.
Larger values ofσ produce a function with fewer local minima whereas the trans-
formed function〈f〉σ,Ω approaches the original one in the interior of the domain
Ω asσ approaches zero. In particular, this transformation tendsto reveal the un-
derlying trend of the original function and to remove local minima representing
small deviations from this trend. This property can be explained by the fact that
the transformation tends to remove the high-frequency components of the Fourier
transform and to preserve the low-frequency ones [26].

Figure 1: A univariate functionf and the lines connecting the minimizers of the
transformed functions〈f〉σ,Ω, whereΩ = [−4, 4], with different values ofσ.

The basic idea of the integral transformation methods (see e.g. [15] or [26])
is to gradually deform some ”smoothed” function〈f〉σ0,Ω with σ0 > 0 andΩ =
R

n back to the original functionf . This is done by letting the transformation
parameterσ approach zero. Local minimization procedures are then applied with
intermediate values ofσ, which gives rise to a sequence of minimizers of the
transformed functions. Starting the minimization of each function〈f〉σk,Ω from

2In what follows, we tacitly assume integrability off over its domain of definition.
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the (global) minimizer of the previous function〈f〉σk−1,Ω effectively carries the
minimization over undesired local minima that are present in the original function
and the transformed functions with small values ofσ. Thiscontinuationapproach
is illustrated in Figure 1. In addition, Figure 1 illustrates that our approach of
applying the Gaussian transform over a bounded domain induces the ”barrier” at
the boundaries of the integration domainΩ. This effectively forces any stationary
points of the functions〈f〉σ,Ω to lie withinΩ.

2.2 The Barrier Property

Now, we prove that if the the objective functionf attains either only strictly posi-
tive or only strictly negative values in a given domainΩ, then all stationary points
of the transformed functions〈f〉σ,Ω lie within the interior ofΩ. By virtue of this
rather strong assumption, the following result can be proven without assuming
decomposability off or restrict the integration domain of the Gaussian transform
to the hyperrectangleH.

Theorem 2.1. Let σ > 0, Ω ⊂ R
n be a convex set with nonempty interior and

f : Ω → R. Assume that eitherf(x) < 0 for all x ∈ Ω or f(x) > 0 for all
x ∈ Ω. Then the condition∇〈f〉σ,Ω(x) = 0 implies thatx ∈ int Ω.

Proof. First, we note that the gradient of the transformed function〈f〉σ,Ω is given
by

∇〈f〉σ,Ω(x) =
2Cσ

σ2

∫

Ω

f(y)(y − x) exp

(

−‖y − x‖2
σ2

)

dy. (3)

Let x ∈ R
n \ int Ω andσ > 0 and assume that∇〈f〉σ,Ω(x) = 0. SinceΩ

is a convex set with nonempty interior, it follows from the classical separating
hyperplane theorem ([3], p. 53–59) that there existsv ∈ R

n \ {0}, such that

vT (y − x) ≤ 0 for all y ∈ Ω, (4)

vT (y − x) < 0 for all y ∈ int Ω. (5)

Let z ∈ int Ω and letr > 0 such thatB(z; r) ⊂ Ω, whereB(z; r) denotes an
open ball of radiusr centered atz. Clearly,B(z; r) ⊂ int Ω, which implies that

vT (y − x) < 0 for all y ∈ B(z; r). (6)

Let us assume thatf(x′) < 0 for all x′ ∈ Ω. By this assumption, inequalities
(4)–(6) and the property thatexp (x′) > 0 for all x′ ∈ R, we obtain

f(y)vT (y − x) exp

(

−‖y − x‖2
σ2

)

≥ 0 for all y ∈ Ω,

f(y)vT (y − x) exp

(

−‖y − x‖2
σ2

)

> 0 for all y ∈ B(z; r).
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Hence, by equation (3) and the above two inequalities we conclude that

vT∇〈f〉σ,Ω(x) =
2Cσ

σ2

∫

Ω

f(y)vT (y − x) exp

(

−‖y − x‖2
σ2

)

dy

≥ 2Cσ

σ2

∫

B(z;r)

f(y)vT (y − x) exp

(

−‖y − x‖2
σ2

)

dy > 0

and the reverse inequality holds in the casef(x′) > 0 for all x′ ∈ Ω. This leads
to contradiction with the assumption that∇〈f〉σ,Ω(x) = 0. Since for allx ∈
R

n \ int Ω there existsv ∈ R
n \ {0} such that the above inequality or its reverse

holds, we conclude that the condition∇〈f〉σ,Ωf(x) = 0 impliesx ∈ int Ω.

3 Convergence Analysis

Recalling Section 1, we now formally state the assumptions on the integration
domain of the Gaussian transform and the objective function.

Assumption 3.1. The integration domain of the Gaussian transformΩ = H,
where the setH is defined as

H = {x ∈ R
n | ai ≤ xi ≤ bi, i = 1, . . . , n}

with ai, bi ∈ R, ai < bi, i = 1, . . . , n.

Assumption 3.2.The objective functionf : H → R is decomposable.3 That is, it
is of the form

f(x) =
m
∑

i=1

n
∏

j=1

fi,j(xj)

for a set ofC1,1 functions4 fi,j : [aj , bj ] → R.

Under the above assumptions, we will analyze convergence ofa sequence of
minimizers obtained by successively minimizing the transformed functions〈f〉σ,H
along the following sequence of transformation parametersσ.

Assumption 3.3.A sequence{σk} ⊂ R converges to zero.

Specifically, we will derive conditions for convergence of the sequence{xk} sat-
isfying the following assumption to a KKT point of problem (P).

3The assumption of decomposability off is not an essential restriction, sincef may always be
approximated by polynomials that are decomposable [9].

4Here a functionf : [a, b] → R isCn,n if it is Lipschitz continuous on[a, b] and has Lipschitz
continuous derivatives up ton-th order on some open intervalI ⊃ [a, b].
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Assumption 3.4.A sequence{xk} ⊂ R
n satisfies the condition∇〈f〉σk,H(xk) =

0 for all k = 1, 2, . . . .

A sequence{xk} satisfying the above assumption can be generated by ap-
plying any unconstrained minimization algorithm to the transformed functions
〈f〉σk,H . In what follows, we will consider such sequences converging to some
limiting point. Unfortunately, Assumption 3.4 is not strong enough to guarantee
convergence of the sequence{xk}. However, provided that the elementsxk lie
within the feasible domainH, by the Bolzano-Weierstrass theorem and compact-
ness ofH, any sequence{xk} satisfying Assumption 3.4 has a convergent sub-
sequence. Clearly, any such subsequence also satisfies Assumption 3.4 with the
corresponding subsequence of{σk}. By Theorem 2.1, the following assumption
guarantees that the elementsxk lie within the feasible domainH.

Assumption 3.5.The objective functionf : H → R satisfies either the condition
f(x) < 0 for all x ∈ H or f(x) > 0 for all x ∈ H.

Consequently, there exists a convergent sequence{xk} satisfying Assumption 3.4.
The property that the elementsxk lie in H is also essential for the following
convergence analysis when the limiting point is at the boundary ofH.

3.1 Convergence to a first-order KKT Point

Now, we prove that under Assumptions 3.1–3.5, if the sequence{xk} converges to
a limiting pointx∗ ∈ H from the interior ofH, thenx∗ is a first-order KKT point
of problem (P). Convergence of the gradients∇〈f〉σk,H(xk) to the limiting value
∇f(x∗) at the assumed limiting pointx∗ ∈ H is proven via technical lemmata
for the univariate Gaussian transform (see Appendix A for the proofs).

Lemma 3.1. Let h : [a, b] → R be Lipschitz continuous on[a, b]. Let {xk} and
{σk} be sequences such thatxk → x∗ ∈ [a, b] andσk → 0 ask → ∞. Then

lim
k→∞

〈h〉σk,[a,b](xk) = αh(x∗),

where
{

α = 1, if x∗ ∈]a, b[,
α ∈ [

1

2
, 1], if x∗ ∈ {a, b} and{xk} ⊂ [a, b].

Lemma 3.2. Leth : [a, b] → R beC1,1 on [a, b]. Let{xk} and{σk} be sequences
such thatxk → x∗ ∈ [a, b] andσk → 0 ask → ∞. If x∗ ∈]a, b[, then

lim
k→∞

〈h〉′σk,[a,b]
(xk) = h′(x∗).
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Otherwise, ifx∗ ∈ {a, b} and{xk} ⊂ [a, b], then

lim
k→∞

〈h〉′σk ,[a,b]
(xk) =















αh′(a) + βh(a), β = lim
k→∞

Cσk
exp

(

−(a− xk)
2

σ2
k

)

, if x∗ = a,

αh′(b) + βh(b), β = − lim
k→∞

Cσk
exp

(

−(b− xk)
2

σ2
k

)

, if x∗ = b,

whereα ∈ [1
2
, 1].

We will utilize the following result to prove that by tracingthe stationary
points of the transformed functions〈f〉σk,H(xk) ask → ∞, we obtain a sequence
converging to a first-order KKT point of problem (P). For thisresult, we define
the set ofactive coordinate indicesat the limiting pointx∗ as

Jx
∗ = {j ∈ {1, . . . , n} | x∗

j = aj} ∪ {j ∈ {1, . . . , n} | x∗
j = bj}. (7)

Lemma 3.3. Assume 3.1–3.4. If the sequence{xk} converges to a limiting point
x∗ ∈ H such thatxk ∈ H for all k = 1, 2, . . . , then

lim
k→∞

∂

∂xl

〈f〉σk,H(xk) =
∂f

∂xl

(x∗)

n
∏

j=1

αj + βlf(x
∗)

n
∏

j=1
j 6=l

αj (8)

for all l = 1, . . . , n, where

αj = 1 and βj = 0, if j /∈ Jx
∗ (9)

αj ∈ [
1

2
, 1] and βj ≥ 0, if j ∈ Jx

∗ andx∗
j = aj (10)

αj ∈ [
1

2
, 1] and βj ≤ 0, if j ∈ Jx

∗ andx∗
j = bj . (11)

In particular, if x∗ ∈ int H, then lim
k→∞

∇〈f〉σk,H(xk) = ∇f(x∗).

Proof. Let l ∈ {1, . . . , n}. By virtue of Lemma 3.1, we have

lim
k→∞

〈fi,j〉σk,[aj ,bj ](xk,j) = αjfi,j(x
∗
j )

for all i = 1, . . . , m andj 6= l, whereαj = 1 for all j /∈ Jx
∗ andαj ∈ [1

2
, 1] for

all j ∈ Jx
∗ . On the other hand, it follows from Lemma 3.2 that

lim
k→∞

〈fi,l〉′σk,[al,bl]
(xk,l) = αlf

′
i,l(x

∗
l ) + βlfi,l(x

∗
l ),

for all i = 1, . . . , m, where the constantsαl andβl are defined by conditions
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(9)–(11). With these properties, we obtain

lim
k→∞

∂

∂xl

〈f〉σk,H(xk) = lim
k→∞

m
∑

i=1

〈fi,l〉′σk,[al,bl]
(xk,l)

n
∏

j=1
j 6=l

〈fi,j〉σk,[aj ,bj ](xk,j)

=

m
∑

i=1

[

αlf
′
i,l(x

∗
l ) + βlfi,l(x

∗
l )
]

n
∏

j=1
j 6=l

αjfi,j(x
∗
j )

=









m
∑

i=1

f ′
i,l(x

∗
l )

n
∏

j=1
j 6=l

fi,j(x
∗
j )









n
∏

j=1

αj + βl

[

m
∑

i=1

n
∏

j=1

fi,j(x
∗
j )

]

n
∏

j=1
j 6=l

αj

=
∂f

∂xl

(x∗)

n
∏

j=1

αj + βlf(x
∗)

n
∏

j=1
j 6=l

αj ,

where the constantsαj , j = 1, . . . , n, andβl are defined by equations (9)–(11).

With Lemma 3.3, we are now ready to prove that under Assumptions 3.1–3.4,
a limiting point x∗ of a convergent sequence{xk} with f(x∗) < 0 is a first-
order KKT point of problem (P). We recall that the first-ordernecessary KKT
conditions of problem (P) with Lagrange coefficientsµi are

∇f(x∗) +
2n
∑

i=1

µi∇gi(x
∗) = 0, (12)

µi ≥ 0, i = 1, . . . , 2n, (13)

µigi(x
∗) = 0, i = 1, . . . , 2n, (14)

where the constraint functionsgi : Rn → R and their gradients are defined as

gi(x) =

{

ai − xi, i = 1, . . . , n
xi−n − bi−n, i = n+ 1, . . . , 2n,

(15)

∇gi(x) =

{

−êi, i = 1, . . . , n
êi−n, i = n + 1, . . . , 2n

(16)

andêi denotes a unit vector along theith coordinate axis.

Remark 3.1. If problem(P) is replaced with a maximization problem, condition
(12) is replaced with

∇f(x∗)−
2n
∑

i=1

µi∇gi(x
∗) = 0. (17)
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Theorem 3.1. Assume 3.1–3.4. Ifxk ∈ H for all k = 1, 2, . . . and the sequence
{xk} converges to a pointx∗ ∈ H and if f(x∗) < 0, thenx∗ is a KKT point of
problem(P)satisfying conditions(12)–(14). If f(x∗) > 0, thenx∗ is a KKT point
of the corresponding maximization problem.

Proof. With the above expressions for∇gi, conditions (12) are equivalently writ-
ten as

∂f

∂xi

(x∗)− µi + µi+n = 0, i = 1, . . . , n. (18)

By Lemma 3.3 and the assumption that∇〈f〉σk,H(xk) = 0 for all k = 1, 2, . . . ,
we obtain from equation (8) that5

∂f

∂xl

(x∗) +
βl

αl

f(x∗) = 0, l = 1, . . . , n,

where the constantsαl andβl are defined by equations (9)–(11). By equation (18),
this is equivalent to condition (12) for the components of the gradient∇f(x∗) by
choosing

µi =



















−βi

αi

f(x∗), if i = l andx∗
l = al

βi−n

αi−n

f(x∗), if i = l + n andx∗
l = bl

0, otherwise.

(19)

Sincef(x∗) < 0, we haveµi ≥ 0 for all i = 1, . . . , 2n by equations (9)–(11).
Similary, if f(x∗) > 0, condition (17) holds withµi ≥ 0 for all i = 1, . . . , 2n by
inverting the signs of the multipliersµi. On the other hand, by equation (15) we
have

gi(x
∗) =















0, if i ∈ {1, . . . , n} andx∗
i = ai

ai − bi < 0, if i ∈ {1, . . . , n} andx∗
i = bi

ai−n − bi−n < 0, if i ∈ {n+ 1, . . . , 2n} andx∗
i−n = ai−n

0, if i ∈ {n+ 1, . . . , 2n} andx∗
i−n = bi−n.

In view of equation (19), this implies thatµigi(x
∗) = 0 for all i = 1, . . . , 2n.

3.2 Convergence to a second-order KKT Point

Finally, we give conditions for a limiting point of a sequence {xk} satisfying
Assumption 3.4 to be a KKT point of problem (P) satisfying thesecond order suf-
ficient conditions. As in Subsection 3.1, we assume that the integration domain of
the Gaussian transform is the setH (Assumption 3.1) andf is decomposable (As-
sumption 3.2). We will restrict our analysis to the set ofstrongly activeconstraints
at the limiting pointx∗ defined as

I+
x
∗ = {i ∈ Ix∗ | µi > 0},

5The constantsβl are finite sinceαl ∈ [ 1
2
, 1] and| ∂f

∂xl

(x∗)| < ∞ for all l = 1, . . . , n.
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whereµi is the corresponding Lagrange multiplier andIx∗ denotes the set ofactive
constraintsatx∗ defined as

Ix∗ = {i ∈ {1, . . . , 2n} | gi(x∗) = 0}.
The main result of this subsection is based on the following additional assump-
tions on the objective function and the sequence{xk}.

Assumption 3.6.The component functionsfi,j of the objective functionf : H →
R areC2,2 on the intervals[aj, bj ].

Assumption 3.7.The sequence{xk} defined in Assumption 3.4 satisfies the con-
dition that∇2〈f〉σk,H(xk) is positive definite for allk = 1, 2, . . . .

A sequence{xk} satisfying Assumptions 3.4 and 3.7 can be generated, for in-
stance, by a trust region Newton or quasi-Newton method (seee.g. [14, 17, 23])
by successively minimizing the transformed functions〈f〉σk,H along the sequence
{σk}.

Now, we prove that under the above assumptions if the sequence {xk} con-
verges from the interior ofH to a limiting pointx∗ ∈ H with inactive and strongly
active constraints, thenx∗ satisfies the second order sufficient conditions of prob-
lem (P). Consequently,x∗ is a strict local minimizer of the objective functionf
in the feasible domainH. The analysis is carried out via a technical lemma con-
cerning the second derivative of the univariate Gaussian transform (see Appendix
A for the proof).

Lemma 3.4. Leth : [a, b] → R beC2,2 on [a, b], let {xk} and{σk} be sequences
such thatxk → x∗ ∈]a, b[ andσk → 0 ask → ∞. Then

lim
k→∞

〈h〉′′σk,[a,b]
(xk) = h′′(x∗).

Theorem 3.2.Assume 3.1–3.5 and 3.6–3.7 and define the set

D = {d ∈ R
n | ∇gi(x

∗)Td = 0 ∀i ∈ I+
x
∗}.

If xk ∈ H for all k = 1, 2, . . . , the sequence{xk} converges to a limiting point
x∗ ∈ H ask → ∞ and for all i = 1, . . . , 2n, eitheri ∈ I+

x
∗ or i /∈ Ix∗, thenx∗

satisfies the conditiondT∇2f(x∗)d > 0 for all d ∈ D.

Proof. Let J = {1, . . . , n}, d ∈ D and let the setJx
∗ be defined by equation (7).

By the definition of the setJx
∗, we havex∗

j ∈]aj , bj [ for all j ∈ J \ Jx
∗. Thus, by

Lemmata 3.1 and 3.4, for alll1, l2 ∈ J \ Jx
∗ such thatl1 = l2, we have

lim
k→∞

[

∇2〈f〉σk,H(xk)
]

l1,l2

= lim
k→∞

m
∑

i=1

〈fi,l1〉′′σk,Hl1
(xk,l1)

n
∏

j=1
j 6=l1

〈fi,j〉σk,Hj
(xk,j)

=
m
∑

i=1

f ′′
i,l1

(x∗
l1
)

n
∏

j=1
j 6=l1

αjfi,j(x
∗
j ) =

[

∇2f(x∗
k)
]

l1,l2

n
∏

j=1

αj , (20)
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whereHj = [aj , bj ] andαj ∈
[

1
2
, 1
]

, j = 1, . . . , n. Similarly, by Lemmata 3.1
and 3.2 for alll1, l2 ∈ J \ Jx

∗ such thatl1 6= l2, we have

lim
k→∞

[

∇2〈f〉σk,H(xk)
]

l1,l2

= lim
k→∞

n
∑

i=1

〈fi,l1〉′σk,Hl1
(xk,l1)〈fi,l2〉′σk ,Hl2

(xk,l2)
n
∏

j=1
j 6=l1
j 6=l2

〈fi,j〉σk,Hj
(xk,j)

=

n
∑

i=1

f ′
i,l1

(x∗
l1
)f ′

i,l2
(x∗

l2
)

n
∏

j=1
j 6=l1
j 6=l2

αjfi,j(x
∗
j) =

[

∇2f(x∗
k)
]

l1,l2

n
∏

j=1

αj , (21)

whereαj ∈
[

1
2
, 1
]

, j = 1, . . . , n. Furthermore, the definition of the setD and
equation (16) imply that the vectord satisfies

−êT
i d = 0, if i ∈ I+

x
∗ ∩ {1, . . . , n}

êT
i−nd = 0, if i ∈ I+

x
∗ ∩ {n+ 1, . . . , 2n}. (22)

By the definitions of the setsIx∗ andJx
∗, we observe that the conditionj ∈ Jx

∗

is equivalent to the conditionj ∈ Ix∗ or j + n ∈ Ix∗. The assumption that for all
i = 1, . . . , 2n, eitheri ∈ I+

x
∗ or i /∈ Ix∗ implies that ifj ∈ Jx

∗ , thenj ∈ I+
x
∗ or

j+n ∈ I+
x
∗ . In either case, from conditions (22) we deduce thatdj = 0 if j ∈ Jx

∗.
Thus, by equations (20) and (21) we obtain

lim
k→∞

dT∇2〈f〉σk,H(xk)d = lim
k→∞

∑

l1∈J\Jx∗

dl1
∑

l2∈J\Jx∗

[

∇2〈f〉σk,H(xk)
]

l1,l2
dl2

=
∑

l1∈J\Jx∗

dl1
∑

l2∈J\Jx∗

[

∇2f(x∗)
]

l1,l2
dl2

n
∏

j=1

αj

= dT∇2f(x∗)d
n
∏

j=1

αj > 0,

where the last inequality follows from the assumption that∇2〈f〉σk,H(xk) is pos-
itive definite for all k = 1, 2, . . . and the condition thatαj ∈

[

1
2
, 1
]

for all
j = 1, . . . , n.

By the second-order sufficient optimality conditions (see e.g. [3], p. 213–214),
we conclude the following.

Corollary 3.1. Let the assumptions of Theorems 3.1 and 3.2 hold withf(x∗) <
0. If the sequence{xk} converges to a pointx∗ ∈ H with strongly active and
inactive constraints, thenx∗ is a strict local minimizer off in H.
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Remark 3.2. If positive definiteness in Assumption 3.7 is replaced with negative
definiteness, then the result of Theorem 3.2 holds withdT∇2f(x∗)d < 0 for all
d ∈ D. Furthermore, if the assumptions of Theorem 3.1 hold withf(x∗) > 0,
thenx∗ is a strict local maximizer off in H.

Theorem 3.2 could be in principle extended to cover the set ofweakly active
constraints defined as

I0
x
∗ = {i ∈ Ix∗ | µi = 0}

and extending the setD by the set

D0 = {d ∈ R
n | ∇gi(x

∗)Td ≤ 0, i ∈ I0
x
∗}

as required by the second-order sufficient conditions for a KKT point (see [3],
p. 213–214). However, due to the inherent difficulty arisingfrom the analysis of
second derivatives of the functions〈fi,j〉σk,[aj ,bj ] as the iteratesxk converge to the
boundary of the feasible domainH, we are not considering this special case. In the
proof of Theorem 3.2, this problem is avoided since the termsdepending on the
problematic second derivatives〈fi,j〉′′σk,[aj ,bj ]

(xk) with active coordinate indicesj
vanish.

4 Conclusions and Future Research

The theoretical basis of a provably convergent integral transformation method for
box-constrained optimization of decomposable functions was developed in this
paper. The results represent a novel approach to constrained optimization via
integral transformations, which has so far received very little attention. These
results also have practical relevance since, for instance,many distance geometry
and embedding problems can be formulated as this kind of optimization problem.
Our approach utilizes the Gaussian transform in order to gradually deform the ob-
jective function into a function with a smaller number of undesired local minima.
Tracing minimizers of the transformed functions as the parameter of this transfor-
mation approaches zero gives rise to a sequence that converges to a solution of
the original problem. Specifically, conditions for convergence of such a sequence
to a KKT point satisfying the first- and second-order optimality conditions of a
box-constrained problem involving a decomposable function were derived. In ad-
dition, it was shown that the Gaussian transform over a bounded domain induces
a barrier that forces the iterates to converge to the KKT point from the interior of
the feasible domain. Thus, the proposed method can be considered as a special
type of an interior-point barrier method.

The emphasis of this paper has been on proving convergence ofthe proposed
method to a local minimum. Several open questions such as thechoice of start-
ing point will be addressed in a forthcoming paper. Convexity of the transformed

12



function with a sufficiently large transformation parameter σ, which has been in-
formally pointed out in some earlier papers (see e.g. [13] and [15]), is a funda-
mental property that needs further examination. In the presence of this condition,
the starting point for the method can be uniquely determined. Another important
point beyond the scope of this paper is that the continuationapproach described in
Section 2 can be formulated as a differential equation as in [26]. A detailed study
of the behaviour of solutions to this differential equationwould indeed provide
a better theoretical understanding of the method. Finally,determining conditions
that guarantee convergence of the proposed method to a global minimum is a dif-
ficult open problem. We are not aware of such convergence results for any integral
transformation method described in the literature. Numerical evidence, however,
supports the claim that this kind of unconstrained methods often converge to a
global minimum (or maximum) instead of a local one (see e.g. [1], [12], [15],
[20] or [21]).

We are aware that the results of this paper can be generalizedin several dif-
ferent ways. These results are restricted to decomposable functions in rectangular
domains, but probably they can be generalized to linearly constrained problems
with relaxed assumptions on the objective function. Also, the analysis of this pa-
per does not necessarily require differentiability or evencontinuity of the objective
function.6 Thus, we are looking forward to generalize of the proposed method to
nondifferentiable or discontinuous problems. The resultsby Ermoliev et al. [8]
for integral transformation methods with locally supported kernels provide some
understanding on this topic.7 However, the analysis of [8] does not directly apply
to our case, where the integration is done over the whole feasible domain. Thus,
an interesting topic of future research would be attemptingto bridge the gap be-
tween the global methods such as the methods of this paper, [15] and [26] and the
local method of [8] that is also applicable to nondifferentiable and discontinuous
problems.

Acknowledgements. The first author was financially supported by the TUCS
Graduate Programme and the Academy of Finland (project no. 127992).

6Extensions of the integration by parts formula for nondifferentiable functions have been given
in the literature [4, 5], which allows extension of results of Section 3 to nondifferentiable functions.

7In the method described in [8], the integral transformationwith a locally supported kernel
merely serves the purpose of evaluation of derivatives, andnot removing undesired local minima.
Thus, this kind of methods cannot be considered as global optimization methods.
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[20] S. Pulkkinen, M.M. Mäkelä, and N. Karmitsa. A continuation ap-
proach to mode-finding of multivariate Gaussian mixtures and kernel den-
sity estimates. Journal of Global Optimization, to appear, pages 1–29.
10.1007/s10898-011-9833-8.
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A Technical lemmata

In this appendix, we derive convergence results for the Gaussian transform of a univariate
function along a convergent sequence{xk} with a sequence of transformation parameters
σk converging to zero. These results are extensions of the classical results given in the
literature (see e.g. [11]) that concern convergence of univariate functions〈h〉σ,Ω(x) with
a fixedx asσ converges to zero. Since the extension of those results to our case wherex
is replaced with a sequence requires a more detailed analysis, we present the proofs here.

Lemma A.1. Let [a, b] ⊂ R andh : R → R. Assume that there existsM > 0 such that
|h(x)| ≤ M for all x ∈ R. Let{xk} and{σk} be sequences such thatxk → x∗ ∈]a, b[
andσk → 0 ask → ∞. Then there existsk0 ∈ N such that

∣

∣

∣

∣

∣

∣

∣

∫

R\[a,b]

h(y)
exp

(

− (y−xk)
2

σ2

k

)

√
πσk

dy

∣

∣

∣

∣

∣

∣

∣

< b− a

for all k ≥ k0.

Proof. Due to the assumption that there existsM > 0 such that|h(x)| ≤ M for all
x ∈ R, we have

∣

∣

∣

∣

∣

∣

∣

∫

R\[a,b]

h(y)
exp

(

− (y−xk)
2

σ2

k

)

√
πσk

dy

∣

∣

∣

∣

∣

∣

∣

≤
∫

R\[a,b]

|h(y)|
exp

(

− (y−xk)
2

σ2

k

)

√
πσk

dy

≤ M

∫

R\[a,b]

exp
(

− (y−xk)
2

σ2

k

)

√
πσk

dy (23)

for all k = 1, 2, . . . . The variable substitutionu = y−xk

σk
applied to the right hand side of

the above inequality yields

M

∫

R\[a,b]

exp
(

− (y−xk)
2

σ2

k

)

√
πσk

dy = M





∞
∫

b

exp
(

− (y−xk)
2

σ2

k

)

√
πσk

dy +

a
∫

−∞

exp
(

− (y−xk)
2

σ2

k

)

√
πσk

dy





= M











∞
∫

b−xk
σk

exp
(

−u2
)

√
π

du+

a−xk
σk
∫

−∞

exp
(

−u2
)

√
π

du











= M











∞
∫

b−xk
σk

exp
(

−u2
)

√
π

du+

∞
∫

xk−a

σk

exp
(

−u2
)

√
π

du











=
M

2

[

2− erf

(

b− xk

σk

)

− erf

(

xk − a

σk

)]

(24)
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for all k = 1, 2, . . . , where erf is theerror functiondefined as

erf(x) =
2√
π

x
∫

0

exp(−t2)dt

with the property that

1− erf(x) =
2√
π

∞
∫

x

exp(−t2)dt.

Let
ε∗ = min{|x∗ − a|, |x∗ − b|}.

By the assumption thatxk → x∗ ∈]a, b[, for all ε ∈]0, ε∗[ there existsk0 ∈ N such that
xk > a + ε andxk < b − ε for all k ≥ k0. Thus, for allε ∈]0, ε∗[ there existsk0 ∈ N

such that

M

2

[

2− erf

(

b− xk

σk

)

− erf

(

xk − a

σk

)]

<
M

2

[

2− erf

(

ε

σk

)

− erf

(

ε

σk

)]

(25)

for all k ≥ k0. Sinceσk → 0 and consequently,limk→∞ erf ( ε
σk
) = 1 for all ε > 0, the

right hand side of the above inequality satisfies the condition that for allε ∈]0, b−a[ there
existsk1 ∈ N such that

M

2

[

2− erf

(

ε

σk

)

− erf

(

ε

σk

)]

< ε < b− a

for all k ≥ k1. Choosingε ∈]0, ε∗[ and combining this property with (23)–(25) then
concludes the proof.

Lemma A.2. Let [a, b] ⊂ R andh : [a, b] → R and assume thath is Lipschitz continuous
on [a, b]. Let {xk} and {σk} be sequences such thatxk → x∗ ∈ [a, b] andσk → 0 as
k → ∞. Define

gk(y) = [h(y)− h(x∗)]
exp

(

− (y−xk)
2

σ2

k

)

√
πσk

, k = 1, 2, . . . .

Then for someC > 0, for all intervals [c, d] ⊆ [a, b] satisfying the condition

there existsk0 ∈ N such thatxk ∈ [c, d] for all k ≥ k0 (26)

there existsk1 ∈ N such that

∣

∣

∣

∣

∣

∣

d
∫

c

gk(y)dy

∣

∣

∣

∣

∣

∣

< C(d− c)

for all k ≥ k1.
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Proof. Let [c, d] ⊆ [a, b] satisfy condition (26). First, we note that the inequality
∣

∣

∣

∣

∣

∣

d
∫

c

gk(y)dy

∣

∣

∣

∣

∣

∣

≤
d

∫

c

|h(y)− h(x∗)|
exp

(

− (y−xk)
2

σ2

k

)

√
πσk

dy (27)

holds for allk = 1, 2, . . . . By the triangular inequality, the Lipschitz continuity ofh on
[a, b] and condition (26), we havex∗ ∈ [c, d], and thus

d
∫

c

|h(y)− h(x∗)|
exp

(

− (y−xk)
2

σ2

k

)

√
πσk

dy

≤
d

∫

c

L(|y − xk|+ |xk − x∗|)
exp

(

− (y−xk)
2

σ2

k

)

√
πσk

dy (28)

for all k ≥ k0, whereL > 0 denotes the Lipschitz constant ofh on the interval[a, b]. On
the other hand, due to the assumption thatxk → x∗, for all ε > 0 there existsk1 ∈ N

such that|xk − x∗| < ε for all k ≥ k1. In view of condition (26), this implies that for all
ε > 0 there existsk1 ∈ N such that

L(|y − xk|+ |xk − x∗|) < L(d− c+ ε)

for all y ∈ [c, d] andk ≥ max{k0, k1}. Consequently, for allε > 0 there existsk1 ∈ N

such that

d
∫

c

L(|y − xk|+ |xk − x∗|)
exp

(

− (y−xk)
2

σ2

k

)

√
πσk

dy

< L(d− c+ ε)

d
∫

c

exp
(

− (y−xk)
2

σ2

k

)

√
πσk

dy (29)

for all k ≥ max{k0, k1}. On the other hand, the variable substitutionu = y−xk

σk
yields

0 ≤
d

∫

c

exp
(

− (y−xk)
2

σ2

k

)

√
πσk

dy =

d−xk
σk
∫

c−xk
σk

exp
(

−u2
)

√
π

du ≤
∞
∫

−∞

exp
(

−u2
)

√
π

du = 1

for all k = 1, 2, . . . . In view of inequalities (27)–(29), this implies that for all ε ∈]0, d−c[
there existsk1 ∈ N such that

∣

∣

∣

∣

∣

∣

d
∫

c

gk(y)dy

∣

∣

∣

∣

∣

∣

< L(d− c+ ε) < C(d− c)

for all k ≥ max{k0, k1} by choosingC = 2L, which is independent of the choice ofc
andd.
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Lemma A.3. Leth : [a, b] → R be Lipschitz continuous on[a, b]. Let{xk} and{σk} be
sequences such thatxk → x∗ ∈]a, b[ andσk → 0 ask → ∞. Then

lim
k→∞

〈h〉σk ,[a,b](xk) = h(x∗).

Proof. Let χ[a,b] denote the characteristic function of the interval[a, b]. Since the Gaus-
sian transform〈h〉σk ,[a,b] is equivalent to the Gaussian transform of the functionh(·)χ[a,b](·)
overR and constant functions are invariant under the Gaussian transform overR, we have

〈h〉σk ,[a,b](xk)− h(x∗) =

∫

R\[x∗−ε,x∗+ε]

gk(y)dy +

x∗+ε
∫

x∗−ε

gk(y)dy (30)

with someε > 0 and

gk(y) =
[

h(y)χ[a,b](y)− h(x∗)
]

exp
(

− (y−xk)
2

σ2

k

)

√
πσk

, k = 1, 2, . . . .

By the triangular inequality, we have
∣

∣

∣

∣

∣

∣

∣

∫

R\[x∗−ε,x∗+ε]

gk(y)dy +

x∗+ε
∫

x∗−ε

gk(y)dy

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∫

R\[x∗−ε,x∗+ε]

gk(y)dy

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

x∗+ε
∫

x∗−ε

gk(y)dy

∣

∣

∣

∣

∣

∣

. (31)

The functionh(·)χ[a,b](·) is bounded onR due to the Lipschitz continuity ofh on [a, b].
Also, by noting thatxk → x∗ ∈]x∗ − ε, x∗ + ε[, Lemma A.1 implies that for allε > 0
there existsk0 ∈ N such that

∣

∣

∣

∣

∣

∣

∣

∫

R\[x∗−ε,x∗+ε]

gk(y)dy

∣

∣

∣

∣

∣

∣

∣

< 2ε (32)

for all k ≥ k0. On the other hand, the assumption thatxk → x∗ implies that for all
ε > 0 there existsk1 ∈ N such thatxk ∈]x∗ − ε, x∗ + ε[ for all k ≥ k1. Thus, by the
Lipschitz continuity ofh on the interval[a, b] and the assumption thatx∗ ∈]a, b[, Lemma
A.2 implies that for someC > 0, for all ε ∈]0, ε∗[, where

ε∗ = min{|x∗ − a|, |x∗ − b|},

there existsk2 ≥ k1 such that
∣

∣

∣

∣

∣

∣

x∗+ε
∫

x∗−ε

gk(y)dy

∣

∣

∣

∣

∣

∣

< 2Cε

for all k ≥ k2. In view of (30)–(32), this concludes the proof.
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Lemma A.4. Let [a, b] ⊂ R, [c, d] ⊂ R such thatc < d, d = a (or c = b) andh : [a, b] →
R. Let{xk} and{σk} be sequences such thatxk → x∗, wherex∗ = a (or x∗ = b) and
σk → 0 ask → ∞ and assume thatxk ≥ a (or xk ≤ b) for all k = 1, 2, . . . . Define

gk(y) =
[

h(y)χ[a,b](y)− h(x∗)
]

exp
(

− (y−xk)
2

σ2

k

)

√
πσk

, k = 1, 2, . . . ,

whereχ[a,b] denotes the characteristic function of the interval[a, b]. Then there exists
k0 ∈ N such that

∣

∣

∣

∣

∣

∣

d
∫

c

gk(y)dy − αh(x∗)

∣

∣

∣

∣

∣

∣

< d− c, whereα = −1

2

[

1− lim
k→∞

erf

( |xk − x∗|
σk

)]

,

for all k ≥ k0.

Proof. Due to symmetry it suffices to consider the casex∗ = a and xk ≥ a for all
k = 1, 2, . . . andd = a. The proof for the other case is identical. First, we note that

gk(y) = −h(x∗)
exp

(

− (y−xk)
2

σ2

k

)

√
πσk

for all y ∈ [c, d[ andk = 1, 2, . . . . By doing the variable substitutionu = y−xk

σk
, we

obtain
d

∫

c

gk(y)dy = −h(x∗)

d
∫

c

exp
(

− (y−xk)
2

σ2

k

)

√
πσk

dy

=− h(x∗)

d−xk
σk
∫

c−xk
σk

exp
(

−u2
)

√
π

du = −h(x∗)

2

[

erf

(

d− xk

σk

)

− erf

(

c− xk

σk

)]

. (33)

Furthermore, due to the assumption thatxk ≥ a = d > c for all k = 1, 2, . . . , we have

lim
k→∞

erf

(

c− xk

σk

)

= −1.

Thus, by the assumption thatxk → a = d ask → ∞ and the property that−erf(x) =
erf(−x) for all x ∈ R, we obtain

lim
k→∞

−h(x∗)

2

[

erf

(

d− xk

σk

)

− erf

(

c− xk

σk

)]

= αh(x∗),

where

α = −1

2

[

1− lim
k→∞

erf

(

xk − a

σk

)]

.

Consequently, for allε ∈]0, d − c[, there existsk0 ∈ N such that
∣

∣

∣

∣

−h(x∗)

2

[

erf

(

d− xk

σk

)

− erf

(

c− xk

σk

)]

− αh(x∗)

∣

∣

∣

∣

< ε < d− c

for all k ≥ k0. In view of equation (33), this concludes the proof.
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Lemma A.5. Leth : [a, b] → R be Lipschitz continuous on[a, b], let {xk} ⊂ [a, b] and
{σk} be sequences such thatxk → x∗, wherex∗ = a or x∗ = b, andσk → 0 ask → ∞.
Then

lim
k→∞

〈h〉σk ,[a,b](xk) = αh(x∗),

where

α = lim
k→∞

1

2

[

1 + erf

( |xk − x∗|
σk

)]

∈ [
1

2
, 1]. (34)

Proof. Due to symmetry, it suffices to consider the casex∗ = a. The proof for the case
x∗ = b is identical. Letχ[a,b] denote the characteristic function of the interval[a, b]. Since
the Gaussian transform〈h〉σk ,[a,b] is equivalent to the Gaussian transform of the function
h(·)χ[a,b](·) over R and constant functions are invariant under the Gaussian transform
overR, we have

〈h〉σk ,[a,b](xk)− h(a) =

∫

R\[a−ε,a+ε]

gk(y)dy +

a
∫

a−ε

gk(y)dy +

a+ε
∫

a

gk(y)dy (35)

with someε > 0 and

gk(y) =
[

h(y)χ[a,b](y)− h(a)
]

exp
(

− (y−xk)
2

σ2

k

)

√
πσk

, k = 1, 2, . . . .

The functionh(·)χ[a,b](·)− h(a) is bounded onR due to the Lipschitz continuity ofh on
the interval[a, b]. Thus, sincexk → a, by Lemma A.1 for allε > 0 there existsk0 ∈ N

such that
∫

R\[a−ε,a+ε]

gk(y)dy < 2ε (36)

for all k ≥ k0. On the other hand, the assumptions thatxk → a ask → ∞ andxk ∈ [a, b]
for all k = 1, 2, . . . imply that for allε > 0 there existsk1 ∈ N such thatxk ∈ [a, a+ ε]
for all k ≥ k1. Thus, by the Lipschitz continuity ofh on the interval[a, b], Lemma A.2
implies that for someC > 0, for all ε ∈]0, b− a[ there existsk2 ≥ k1 such that

∣

∣

∣

∣

∣

∣

a+ε
∫

a

gk(y)dy

∣

∣

∣

∣

∣

∣

< Cε (37)

for all k ≥ k2. Furthermore, by the assumptions thatxk → a ask → ∞ andxk ∈ [a, b]
for all k = 1, 2, . . . , Lemma A.4 implies that for allε > 0 there existsk3 ∈ N such that

∣

∣

∣

∣

∣

∣

a
∫

a−ε

gk(y)dy − βh(a)

∣

∣

∣

∣

∣

∣

< ε, whereβ = −1

2

[

1− lim
k→∞

erf

(

xk − a

σk

)]

(38)

for all k ≥ k3. By combining inequalities (36)–(38), we conclude that forall ε ∈]0, b−a[
there existsk4 ∈ N such that

−2ε+ βh(a) − ε− Cε < 〈h〉σk ,[a,b](xk)− h(a) < 2ε+ βh(a) + ε+ Cε
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for all k ≥ k4. This is equivalent the statement that for allε ∈]0, b−a[ there existsk4 ∈ N

such that
−(3 + C)ε+ αh(a) < 〈h〉σk ,[a,b](xk) < (3 + C)ε+ αh(a)

for all k ≥ k4, where

α = 1 + β =
1

2

[

1 + lim
k→∞

erf

(

xk − a

σk

)]

.

Furthermore, since erf(x) ∈ [−1, 1] for all x ∈ R, we observe thatα ∈ [12 , 1], which
concludes the proof.

In analogy with Lemmata A.3 and A.5, similar convergence results hold for the deriva-
tives of the Gaussian transform.

Lemma A.6. Leth : [a, b] → R beC1,1 on [a, b], let {xk} and{σk} be sequences such
thatxk → x∗ ∈]a, b[ andσk → 0 ask → ∞. Then

lim
k→∞

〈h〉′σk ,[a,b]
(xk) = h′(x∗).

Proof. Differentiation under the integral sign, the identity

∂

∂x
exp

(

−(y − x)2

σ2
k

)

= − ∂

∂y
exp

(

−(y − x)2

σ2
k

)

(39)

and integration by parts yield

〈h〉′σk ,[a,b]
(xk) =−Cσk

b
∫

a

h(y)
∂

∂y
exp

(

−(y − xk)
2

σ2
k

)

dy

=−Cσk

[

h(y) exp

(

−(y − xk)
2

σ2
k

)]
∣

∣

∣

∣

y=b

y=a

+

Cσk

b
∫

a

h′(y) exp

(

−(y − xk)
2

σ2
k

)

dy. (40)

Let
ε∗ = min{|x∗ − a|, |x∗ − b|}.

Sincexk → x∗ ∈]a, b[, for all ε ∈]0, ε∗[ there existsk0 ∈ N such thatxk < b − ε and
xk > a+ ε for all k ≥ k0. Thus, for someε ∈]0, ε∗[ we have

exp

(

−(a− xk)
2

σ2
k

)

< exp

(

− ε2

σ2
k

)

and

exp

(

−(b− xk)
2

σ2
k

)

< exp

(

− ε2

σ2
k

)
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for all k ≥ k0 for somek0 ∈ N. Consequently,

lim
k→∞

∣

∣

∣

∣

∣

Cσk
h(y) exp

(

−(y − xk)
2

σ2
k

)∣

∣

∣

∣

y=b

y=a

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
k→∞

Cσk
h(b) exp

(

−(b− xk)
2

σ2
k

)

− lim
k→∞

Cσk
h(a) exp

(

−(a− xk)
2

σ2
k

)
∣

∣

∣

∣

≤ lim
k→∞

∣

∣

∣

∣

Cσk
h(b) exp

(

−(b− xk)
2

σ2
k

)
∣

∣

∣

∣

+ lim
k→∞

∣

∣

∣

∣

Cσk
h(a) exp

(

−(a− xk)
2

σ2
k

)
∣

∣

∣

∣

≤ lim
k→∞

∣

∣

∣

∣

Cσk
h(b) exp

(

− ε2

σ2
k

)
∣

∣

∣

∣

+ lim
k→∞

∣

∣

∣

∣

Cσk
h(a) exp

(

− ε2

σ2
k

)
∣

∣

∣

∣

= 0 (41)

sinceσk → 0 ask → ∞. On the other hand, by the Lipschitz continuity ofh′ on the
interval [a, b] and the assumption thatxk → x∗ ∈]a, b[, Lemma A.3 implies that

lim
k→∞

Cσk

b
∫

a

h′(y) exp

(

−(y − xk)
2

σ2
k

)

dy = lim
k→∞

〈h′〉σk,[a,b](xk) = h′(x∗),

which combined with (40) and (41) concludes the proof.

Lemma A.7. Leth : [a, b] → R beC1,1 on [a, b], let{xk} ⊂ [a, b] and{σk} be sequences
such thatxk → x∗, wherex∗ = a or x∗ = b, andσk → 0 ask → ∞. Then

lim
k→∞

〈h〉′σk ,[a,b]
(xk) =















αh′(a) + βh(a), β = lim
k→∞

Cσk
exp

(

−(a− xk)
2

σ2
k

)

, if x∗ = a,

αh′(b) + βh(b), β = − lim
k→∞

Cσk
exp

(

−(b− xk)
2

σ2
k

)

, if x∗ = b,

andα ∈ [12 , 1] is defined by equation(34).

Proof. Due to symmetry, it suffices to consider the casexk → a. Differentiation under the
integral sign, identity (39) and integration by parts yieldequation (40). Sincexk → a < b,
by the arguments leading to inequality (41) we have

lim
k→∞

−Cσk
h(b) exp

(

−(b− xk)
2

σ2
k

)

= 0.

It then follows from equation (40), the Lipschitz continuity of h′ and Lemma A.5 that

lim
k→∞

〈h〉′σk ,[a,b]
(xk) = αh′(a) + βh(a),

whereα ∈ [12 , 1] is defined by equation (34) and

β = lim
k→∞

[

Cσk
exp

(

−(a− xk)
2

σ2
k

)]

.
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Remark A.1. The constantβ in Lemma A.7 is not guaranteed to be finite without addi-
tional assumptions on the sequences{xk} and{σk}.

Lemma 3.1 Let h : [a, b] → R be Lipschitz continuous on[a, b]. Let {xk} and{σk} be
sequences such thatxk → x∗ ∈ [a, b] andσk → 0 ask → ∞. Then

lim
k→∞

〈h〉σk ,[a,b](xk) = αh(x∗),

where
{

α = 1, if x∗ ∈]a, b[,
α ∈ [12 , 1], if x∗ ∈ {a, b} and{xk} ⊂ [a, b].

Proof. Follows directly from Lemmata A.3 and A.5.

Lemma 3.2 Let h : [a, b] → R beC1,1 on [a, b], let {xk} and{σk} be sequences such
thatxk → x∗ ∈ [a, b] andσk → 0 ask → ∞. If x∗ ∈]a, b[, then

lim
k→∞

〈h〉′σk ,[a,b]
(xk) = h′(x∗).

Otherwise, ifx∗ ∈ {a, b} and{xk} ⊂ [a, b], then

lim
k→∞

〈h〉′σk ,[a,b]
(xk) =















αh′(a) + βh(a), β = lim
k→∞

Cσk
exp

(

−(a− xk)
2

σ2
k

)

, if x∗ = a,

αh′(b) + βh(b), β = − lim
k→∞

Cσk
exp

(

−(b− xk)
2

σ2
k

)

, if x∗ = b,

whereα ∈ [12 , 1].

Proof. Follows directly from Lemmata A.6 and A.7.

Lemma 3.4 Let h : [a, b] → R beC2,2 on [a, b], let {xk} and{σk} be sequences such
thatxk → x∗ ∈]a, b[ andσk → 0 ask → ∞. Then

lim
k→∞

〈h〉′′σk ,[a,b]
(xk) = h′′(x∗).

Proof. The proof is a straightforward extension of the proof of Lemma A.6 with integra-
tion by parts applied twice.
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