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Abstract

Return words constitute a powerful tool for studying symbolic dynamical systems.
They may be regarded as a discrete analogue of the first returnmap in dynamical
systems. In this paper we investigate two abelian variants of the notion of return
word, each of them gives rise to a new characterization of Sturmian words. We
prove that a recurrent infinite word is Sturmian if and only ifeach of its factors has
two or three abelian (or semi-abelian) returns. We study thestructure of abelian
returns in Sturmian words and give a characterization of those factors having ex-
actly two abelian returns. Finally we discuss connections between abelian returns
and periodicity in words.
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1 Introduction

Let w ∈ AN be an infinite word with values in a finite alphabetA. The (factor)
complexity functionp : N → N assigns to eachn the number of distinct factors
of w of lengthn. A fundamental result of Hedlund and Morse [15] states that a
wordw is ultimately periodic if and only if for somen the complexityp(n) ≤ n.
Infinite words of complexityp(n) = n + 1 are calledSturmian words.The most
studied Sturmian word is the so-called Fibonacci word

01001010010010100101001001010010 . . .

fixed by the morphism0 7→ 01 and1 7→ 0. In [16] Hedlund and Morse showed
that each Sturmian word may be realized geometrically by an irrational rotation
on the circle. More precisely, every Sturmian word is obtained by coding the sym-
bolic orbit of a pointx on the circle (of circumference one) under a rotation by an
irrational angleα where the circle is partitioned into two complementary intervals,
one of lengthα and the other of length1 − α. And conversely each such coding
gives rise to a Sturmian word. The irrationalα is called theslopeof the Stur-
mian word. An alternative characterization using continued fractions was given
by Rauzy in [17] and [18], and later by Arnoux and Rauzy in [2].Sturmian words
admit various other types of characterizations of geometric and combinatorial na-
ture (see for instance [6]). For example they are characterized by the following
balanceproperty: A wordw is Sturmian if and only ifw is a binary aperiodic
(non-ultimately periodic) word and||u|i − |v|i| ≤ 1 for all factorsu andv of w of
equal length, and for each letteri. Here|u|i denotes the number of occurrences of
i in u.
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In this paper we develop and study two abelian analogues of the notion of re-
turn word and apply it to characterize Sturmian words. Return words constitute a
powerful tool for studying various problems in combinatorics on words, symbolic
dynamical systems and number theory. Given a factorv of an infinite wordw, by
a return word to v (in w) we mean a factoru of w such thatuv is a factor ofw
beginning and ending inv and having no other (internal) occurrence ofv. In other
words the set of all return words tov is the set of all distinct words beginning with
an occurrence ofv and ending just before the next occurrence ofv. The notion
of return words can be regarded as a discrete analogue of the first return map in
dynamical systems. Many developments of the notion of return words have been
given: For example, return words are used to characterize primitive substitutive
sequences [8, 10]. Return words are used in studying the transcendence of Stur-
mian or morphic continued fractions [1]. Return words were fruitfully studied in
the context of interval exchange transformations (see [21]). Words having a con-
stant number of return words were considered in [5]. In [9] a generalization of
the notion of balanced property for Sturmian words was introduced and the proof
is based on return words. Return words are also used to characterize periodicity
and Sturmian words. The following characterization was obtained by L. Vuillon
in [20]:

Theorem 1.1. [20] A binary recurrent infinite wordw is Sturmian if and only if
each factoru of w has two returns inw.

In [12] the proofs were simplified and return words were studied in the context of
episturmian words.

Two words are said to beabelian equivalentif they are permutations of each
other. It is readily verified that this defines an equivalencerelation on the set of
all factors of an infinite word. Various abelian properties of words have been ex-
tensively investigated including abelian powers and theiravoidance, abelian com-
plexity and abelian periods [3, 4, 7, 13, 19]. Given a factoru of an infinite word
w, let n1 < n2 < n3 < . . . be all integersni such thatwni

. . . wni+|u|−1 is abelian
equivalentu. Then we call eachwni

. . . wni+|u|−1 a semi-abelian returnto u. By
anabelian returnto u we mean an abelian class ofwni

. . . wni+1−1. We note that
in both cases these definitions depend only on the abelian class ofu. Each of these
notions of abelian returns gives rise to a new characterization of Sturmian words:

Theorem 1.2. A binary recurrent infinite wordw is Sturmian if and only if each
factoru of w has two or three abelian returns inw.

Surprisingly, Sturmian words admit exactly the same characterization in terms
of semi-abelian returns:

Theorem 1.3. A binary recurrent infinite wordw is Sturmian if and only if each
factoru of w has two or three semi-abelian returns inw.
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Although the above characterizations of Sturmian words aresimilar to the one
given in Theorem 1.1, our methods differ considerably from those used in [12, 20].

The paper is organized as follows: Section 2 is devoted to providing the neces-
sary background and terminology relevant to the subsequentsections. In Section
3 we investigate connections between abelian returns and periodicity. In Section 4
we study the structure of abelian returns in Sturmian words.We prove that every
factor of a Sturmian word has two or three abelian returns (Proposition 4.3) and
moreover, a factor has two abelian returns if and only if it issingular (Theorem
4.8). In Section 5 we prove the sufficiency of the condition onthe number of
abelian returns for a word to be Sturmian (Corollary 5.7). InSection 6 we prove
Theorem 1.3.

2 Preliminaries

2.1 Sturmian words and return words

We begin by presenting some background on Sturmian words andreturn words
and terminology which will be used later in the paper.

Given a finite non-empty setΣ (called the alphabet), we denote byΣ∗ andΣω,
respectively, the set of finite words and the set of (right) infinite words over the
alphabetΣ. A word v is a factor (resp. aprefix, resp. asuffix) of a wordw, if
there exist wordsx, y such thatw = xvy (resp.w = vy, resp.w = xv). The set
of factors of a finite or infinite wordw is denoted byF (w). Given a finite word
u = u1u2 . . . un with n ≥ 1 andui ∈ Σ, we denote the lengthn of u by |u|. The
empty word will be denoted byε and we set|ε| = 0. For eacha ∈ Σ, we let|u|a
denote the number of occurrences of the lettera in u. An infinite wordw is said
to bek-balancedif and only if ||u|a − |v|a| ≤ k for all factorsu, v of w of equal
length and all lettersa ∈ Σ. If w is 1-balanced, then we say thatw is balanced.

Two wordsu andv in Σ∗ are said to beabelian equivalent, denotedu ∼ab v,
if and only if |u|a = |v|a for all a ∈ Σ. It is easy to see that abelian equivalence is
indeed an equivalence relation onΣ∗.

We say that a (finite or infinite) wordw is periodic, if there existsT such that
wn+T = wn for everyn. A right infinite wordw is ultimately periodicif there
existT , n0 such thatwn+T = wn for everyn ≥ n0. A word w is aperiodic, if it is
not (ultimately) periodic. A factoru of w is calledright specialif both ua andub
are factors ofw for some pair of distinct lettersa, b ∈ Σ. Similarly u is calledleft
specialif both au andbu are factors ofw for some pair of distinct lettersa, b ∈ Σ.
The factoru is calledbispecialif it is both right special and left special.

Sturmian words can be defined in many different ways. For example, they are
infinite words having the smallest factor complexity among aperiodic words. By a
celebrated result due to Hedlund and Morse [15], a word is ultimately periodic if
and only if its factor complexityp(n) is uniformly bounded. In particular,p(n) <
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n for all n sufficiently large. Sturmian words are exactly words whose factor
complexityp(n) = n + 1 for all n ≥ 0. Thus, Sturmian words are those aperiodic
words having the lowest complexity. Sincep(1) = 2, it follows that Sturmian
words are binary words. In what follows, we denote the letters of a Sturmian
word by0 and1.

The conditionp(n) = n + 1 implies the existence of exactly one right special
and one left special factor of each length. The set of factorsof a Sturmian word
is closed under reversal, so for every length the right special factor is a reversed
left special factor, and bispecial factors are palindromes. Bispecial factors play a
crucial role in Sturmian words.Standard factorsof a Stumian wordw are letters
and factors of the formBab, wherea 6= b ∈ {0, 1} andB is a bispecial factor
of w. A factor of a Sturmian word is calledsingular if it is the only factor in its
abelian class. It is well known that singular factors have the formaBa, wherea is
a letter andB a bispecial factor. We will also use the notion ofChristoffel word.
One of the ways to define Christoffel words is the following: they are factors of a
Sturmian word of the formaBb and letters.

In [16] it is shown that each Sturmian word may be realized measure-
theoretically by an irrational rotation on the circle. Thatis, every Sturmian word
is obtained by coding the symbolic orbit of a pointx on the circle (of circumfer-
ence one) under a rotation by an irrational angleα, 0 < α < 1, where the circle
is partitioned into two complementary intervals, one of lengthα and the other of
length1−α. And conversely each such coding gives rise to a Sturmian word. The
quantityα gives the frequency of letter1 in the Sturmian word defined by such
rotation. Other widely used characterizations are via mechanical words, cutting
sequences, Sturmian morphisms etc., see [6] for further detail.

Let w = w1w2 . . . be an infinite word. The wordw is recurrent if each of
its factors occurs infinitely many times inw. In this case, foru ∈ F (w), let
n1 < n2 < . . . be all integersni such thatu = wni

. . . wni+|u|−1. Then the word
wni

. . . wni+1−1 is areturn word(or briefly return) of u in w. An infinite wordhas
k returns, if each of its factors hask returns. The following characterization of
Sturmian words via return words was established in [20]: A word is Sturmian if
and only if each of its factors has two returns (Theorem 1.1 inthe Introduction).

Also there exists a simple characterization of periodicityvia return words:

Proposition 2.1. [20] A recurrent infinite word is ultimately periodic if and only
if there exists a factor having exactly one return word.

2.2 Abelian and semi-abelian returns

In this subsection we define the basic notions for the abeliancase. In particular,
we introduce two abelian versions of the notion of return word, abelian return and
semi-abelian return.
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For an infinite recurrent wordw and foru ∈ F (w), let n1 < n2 < n3 < . . .
be all integersni such thatwni

. . . wni+|u|−1 ∼ab u. Then eachwni
. . . wni+|u|−1 is

called asemi-abelian returnto the abelian class ofu. By anabelian returnto the
abelian class ofu we mean an abelian class ofwni

. . . wni+1−1. So the number of
abelian returns is the number of distinct abelian classes ofsemi-abelian returns.
Hence for every factoru in an infinite wordw the number of abelian returns to
the abelian class ofu is less or equal to the number of semi-abelian returns to the
abelian class ofu. For brevity in the further text we often say (semi-)abelian return
to factoru meaning the abelian class ofu. We will often denote abelian returns
by an element from the abelian equivalence class, that is by asemi-abelian return
from the class.

Example 2.2.Consider the Thue-Morse word

t = 0110100110010110 . . .

fixed by the morphismµ: µ(0) = 01, µ(1) = 10. The abelian class of01 consists
of two words01 and10. Consider an occurrence of01 starting at positioni, i.e.,
ti = 0, ti+1 = 1. It can be followed by either0 or 10, i.e. we have eitherti+2 = 0
or ti+2 = 1, ti+3 = 0. In the first case we haveti+1ti+2 = 10, which is abelian
equivalent to01, and hence we have the semi-abelian returnti = 0. In the second
caseti+1ti+2 = 11, which is not abelian equivalent to01, so we consider the next
factor ti+2ti+3 = 10 ∼ab 01, which gives the semi-abelian returntiti+1 = 01.
Symmetrically,10 gives semi-abelian returns1 and 10. So the abelian class of
01 has four semi-abelian returns:{0, 1, 01, 10} and three abelian returns since
01 ∼ab 10.

For our considerations we will use the following definitions. We say that a
lettera is isolatedin a wordw ∈ Σω, if aa is not a factor ofw. A letter a ∈ Σ
appears inw in a block of lengthk > 0, if a word bakc is factor ofw for some
lettersb 6= a, c 6= a.

In this paper we establish a new characterization of Sturmian words analogous
to Theorem 1.1. Namely, we prove that a recurrent infinite word is Sturmian if and
only if each of its factors has two or three abelian returns (see Theorem 1.2 in the
Introduction). On the other hand, contrary to property of being Sturmian, abelian
returns do not give a simple characterization of periodicity analogous to Proposi-
tion 2.1. In terms of semi-abelian returns Sturmian words have exactly the same
characterization as in terms of abelian returns (see Theorem 1.3 in Introduction).

3 Abelian returns and periodicity

In this section we discuss relations between periodicity and numbers of abelian
and semi-abelian returns. We begin by proving a simple sufficient condition for
periodicity:
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Lemma 3.1. Let |Σ| = k. If each factor of a recurrent infinite word over the
alphabetΣ has at mostk abelian returns, then the word is periodic.

Proof. Let w be a recurrent word over ak-letter alphabet, and letv be a factor of
w containing all letters from the alphabet. Consider two occurrences ofv in w,
say in positionsm andn (with m < n). Then the abelian class ofwm . . . wn−1 has
all letters as abelian returns, and hence no more, because every factor ofw must
have at mostk abelian returns. Thusw is periodic with periodn − m.

Remark. Actually, this proves something stronger: Letw be any aperiodic word
over an alphabetΣ, |Σ| = k, and letu be any factor ofw containingk distinct
letters, and letvu be any factor ofw distinct fromu beginning inu. Then the
abelian class ofv must have at leastk abelian returns. It follows that if a word
is not periodic, then for every positive integerN there exists an abelian factor of
length> N having at leastk + 1 abelian returns. In other words, the valuek + 1
must be assumed infinitely often.

Remark. Notice that the condition given by Lemma 3.1 is not necessaryfor
periodicity. It is not difficult to construct a periodic wordsuch that some of its
factors have more thank abelian returns.

Notice also that a characterization of periodicity similarto Proposition 2.1 in
terms of abelian returns does not exist. Moreover, in the case of abelian returns
it does not hold in both directions. Consider an infinite aperiodic word of the
form {110010, 110100}ω. It is easy to see that the factor11 has one abelian return
110010 ∼ab 110100. So, the existence of a factor having one abelian return does
not guarantee periodicity. The converse is not true as well:there exist periodic
words such that each factor has at least two abelian returns.An example is given
by the following word with period 24:

w = (001101001011001100110011)ω. (1)

To check that every factor of this word has at least two abelian returns, one can
check the factors up to the length12. If we denote the period ofw by u, then
every factorv of length12 < l ≤ 24 has the same abelian returns as abelian class
of words of length24 − l obtained fromu by deletingv. For a factor of length
longer than24 its abelian returns coincide with abelian returns of part ofthis factor
obtained by shortening it byu.

Now we continue with relations between semi-abelian returns and periodic-
ity. In this connection semi-abelian returns show intermediate properties between
normal and abelian returns. E. g., normal returns admit the characterization of
periodicity given by Proposition 2.1, for abelian returns the proposition does not
hold in both directions, and in the case of semi-abelian returns the proposition
holds in one direction giving a sufficiency condition for periodicity:
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Proposition 3.2. If a recurrent infinite word has a factor with one semi-abelian
return, then the word is periodic.

Proof. It is readily verified that this unique semi-abelian return word gives the
period.

We note that this condition is not necessary for periodicity. One can take the
same example (1) of a periodic word as for abelian returns. Since each of its
factors has at least two abelian returns, it has at least two semi-abelian returns.

Lemma 3.1 holds also for semi-abelian returns (exactly the same proof works):

Lemma 3.3. Let |Σ| = k. If each factor of a recurrent infinite word over the
alphabetΣ has at mostk semi-abelian returns, then the word is periodic.

4 The structure of abelian returns of Sturmian
words

In this section we prove the “only if” part of Theorem 1.2, andin addition we
establish some properties concerning the structure of abelian returns of Sturmian
words.

The following proposition follows directly from definitions and basic proper-
ties of Sturmian words:

Proposition 4.1.Semi-abelian returns of factors of a Sturmian word are Christof-
fel words.

Proof. Consider semi-abelian return to a factorv of lengthn starting at positioni
of a Sturmian wordw. We should prove that its semi-abelian return is either a let-
ter or of the formaBb, wherea 6= b are letters,B is a bispecial factor ofw. If wi =
wi+n, then the letterwi is semi-abelian return. Ifwi = a, wi+n = b, a 6= b, then
there existsk ≥ 0, such thatwi+1 . . . wi+k = wi+1+n . . . wi+k+n, andwi+k+1 6=
wi+k+1+n. Sincew is balanced, we have thatwi+k+1 = b, wi+k+1+n = a. So,
wi+k+2 . . . wi+k+n+1 ∼ab v, andwi . . . wi+k+1 ∼ab wi+n . . . wi+k+n+1 is semi-
abelian return tov. By definition the factorwi+1 . . . wi+k = wi+1+n . . . wi+k+n is
bispecial.

Corollary 4.2. Fix l ≥ 2. Then each factoru of a Sturmian word has at most one
abelian return of lengthl.

Now we proceed to the ”only if” part of Theorem 1.2:

Proposition 4.3.Each factor of a Sturmian word has two or three abelian returns.
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The proof of this proposition is based on the characterization of balanced
words presented in [11]. We will need some notation from the paper.

Suppose1 ≤ p < q are positive integers such thatgcd(p, q) = 1. Let Wp,q

denote the set of all wordsw ∈ {0, 1}q with |w|1 = p. If w ∈ Wp,q then the
symbol1 occurs with frequencyp/q in w. Define theshift σ : {0, 1}ω → {0, 1}ω

by σ(w)i = wi+1. Similarly defineσ : {0, 1}q → {0, 1}q by σ(w0 . . . wq−1) =
w1 . . . wq−1w0.

Sincegcd(p, q) = 1, it follows that any element ofWp,q has the least periodq
under the shift mapσ. We will write w ∼ w′ if there exists0 ≤ k ≤ q − 1 such
thatw′ = σk(w). In this case we say thatw, w′ arecyclically conjugate, or that
w, w′ are cyclic shifts of one another. The equivalence class{σi(w) : 0 ≤ i < q}
of eachw ∈ Wp,q contains exactlyq elements. Let

Wp,q = Wp,q/ ∼

denote the corresponding quotient. Elements ofWp,q are called orbits. It will
usually be convenient to denote an equivalence class inWp,q by one of its elements
w.

Given an orbit[w] ∈ Wp,q, let

w(0) <L w(1) <L · · · <L w(q−1)

denote the lexicographic ordering of its elements. Define the lexicographic array
A[w] of the orbit[w] to be theq×q matrix whoseith row isw(i). We will index this
array by0 ≤ i, j ≤ q − 1, so thatA[w] = (A[w]ij)

q−1
i,j=0. For0 ≤ i, j ≤ q − 1, let

w(i)[j] denote the length-(j +1) prefix ofw(i); so thew(i)[j] are the length-(j +1)
factors ofw, counted with multiplicity. For eachj this induces the following
lexicographic ordering:

w(0)[j] ≤L w(1)[j] ≤L · · · ≤L w(q−1)[j].

Theorem 4.4. [11] Supposew ∈ {0, 1}q. The following are equivalent:
(1) w is a balanced word,
(2) |w(i)[j]|1 ≤ |w(i+1)[j]|1 for all 0 ≤ i ≤ q − 2 and0 ≤ j ≤ q − 1.

The following proposition from [11] gives a very practical way of writing
down the lexicographic array associated to a balanced word.

Proposition 4.5. [11] Let [w] be the unique balanced orbit inWp,q. Defineu ∈
Wp,q by

u = 0 . . . 0 1 . . . 1
︸ ︷︷ ︸

p

Then, for0 ≤ i, j ≤ q − 1,
(1) A[w]ij = (σjpu)i,
(2) Thejth column ofA[w] is (the vector transpose of) the wordσjpu
(3) w(i) = ui(σ

pu)i(σ
2pu)i . . . (σ

(q−1)pu)i.
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Example 4.6. Consider a balanced wordw = 0101001 ∈ Wp,q. The lexico-
graphic ordering of[w] is

0010101 <L 0100101 <L 0101001 <L 0101010 <L 1001010 <L 1010010 <L 1010100,

so the corresponding lexicographic array is

A[w] =













0 0 1 0 1 0 1
0 1 0 0 1 0 1
0 1 0 1 0 0 1
0 1 0 1 0 1 0
1 0 0 1 0 1 0
1 0 1 0 0 1 0
1 0 1 0 1 0 0













We now apply the above technique for studying abelian returns as follows:
Fix a Sturmian words and a factorv. First notice thatv cannot have only one

abelian return, otherwise we immediately get a contradiction with the irrationality
of letter frequencies ins. We consider a standard factorw of s of long enough
length to containv and all abelian returns tov. Let |w| = q, |w|1 = p. Then all
the conjugates ofw are factors ofs, they are pairwise distinct, andgcd(p, q) = 1
(see, e. g. [14]). Without loss of generality we can assume that v is ”poor” in 1-s,
i.e., it contains fewer1’s than the unique other abelian class of the same length.
Then if we consider inA[w] the wordsw(i)[j], we have that there existsn < q − 1
such thatw(i)[j] ∼ab v for 0 ≤ i ≤ n, andw(i)[j] 6∼ab v for n < i ≤ q − 1. Note
also thatA[w]im = A[w](i+q−p)(m+1); from now on the indices are taken modulo
q.

The lexicographic array allows us to find abelian returns tov as follows: For
a wordu denote byu[m, l] the factorum . . . ul. If for an i, 0 ≤ i ≤ n, we have
w(i)[k, k + j] ∼ab v, wherev is as above andk > 0 is the minimal such length,
then by definitionw(i)[k − 1] is a semi-abelian return tov. Notice also that if
A[w](i−1)k = 1 andA[w]ik = 0, thenw(m)[k, k + j] ∼ab v for m = i, . . . , i + n.
That is, we have exactlyn + 1 words from the abelian class ofv starting in every
column, and these words are in consecutiven + 1 rows (the first and the last row
are considered as consecutive).

Example 4.7.Consider abelian returns to the abelian class of001 in the Example
4.6. w(i)[2] ∼ab 001 for 0 ≤ i ≤ 4; w(i)[1, 3] ∼ab 001 for i = 4, 5, 6, 0, 1,
w(i)[2, 4] ∼ab 001 for i = 1, . . . , 5. So, the abelian returns arew(0)[0] = w(1)[0] =
0, w(4)[0] = 1, w(2)[1] = w(3)[1] = 01.

Proof of Proposition 4.3.Suppose that some factorv of lengthj + 1 has at least4
abelian returns. Without loss of generality we may assume thatv is poor in1, and
in the lexicographic array, rows0 . . . n start with factors from the abelian class
of v. By Corollary 4.2 there can be at most one abelian return of a fixed length
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greater than1 (length1 will be considered separately), so in a lexicographic array
we must have one of the following situations:

1) there existk1 < k2 andn1 < n2 < n such thatwi[j] has semi-abelian returns
of lengthk1 for i = 1, . . . , n1, wi[j] has semi-abelian returns of lengthk2 for
i = n1 + 1, . . . , n2, andwn2+1[j] has semi-abelian returns of length greater than
k2;

2) symmetric case: there existk1 < k2 andn1 < n2 < n such thatwi[j] has
semi-abelian returns of lengthk2 for i = n1 + 1, . . . , n2, wi[j] has semi-abelian
returns of lengthk1 for i = n2 + 1, . . . , n, andwn1

[j] has semi-abelian returns of
length greater thank2.

We consider only case 1) as the proof of case 2) is similar. First, in case 1)
one can notice that the wordswn1

[k1, k1 + q] andwn2
[k2, k2 + q] coincide. So

if we consider semi-abelian returns ”to the left” of the words wn1
[k1, k1 + j] and

wn2
[k2, k2 + j], they should be the same, but they are not: the first one is of length

k1, the second one is of lengthk2.
It remains to consider the case whenv has both letters as abelian returns. It

can be seen directly from the lexicographic array, that the third and the last return
is 01 (in this case after a word not from abelian class ofv we will necessarily have
a word from abelian class ofv, i.e., the longest possible length of abelian return is
2).

Theorem 4.8. A factor of a Sturmian word has two abelian returns if and onlyif
it is singular.

Proof. The method of proof is similar to the proof of Proposition 4.3and relies
upon the characterization of balanced words from [11].

If a factor is singular, then it is the only word in its abelianclass, so its semi-
abelian returns coincide with usual returns. Since every factor of a Sturmian word
has two returns [20], then a singular factor has two semi-abelian returns, and hence
two abelian returns.

Now we will prove the converse, i.e., that if a factorv of a Sturmian words of
lengthj + 1 has two abelian returns, then it is singular.

As in the proof of Proposition 4.3, we consider a standard factor w of s of
long enough length to containv and all abelian returns tov, and denote|w| = q,
|w|1 = p. Without loss of generality we again assume thatv is ”poor” in 1-s, so
that there existsn < q−1 such thatw(i)[j] ∼ab v for 0 ≤ i ≤ n, andw(i)[j] 6∼ab v
for n < i ≤ q − 1.

It is not difficult to see that two abelian returns are possible in one of the
following cases:

Case 1) there exist0 ≤ m < n, 0 < k1, k2 < q such thatw(i)[k1 − 1] is semi-
abelian return for all0 ≤ i ≤ m, w(i)[k2−1] is semi-abelian return for allm+1 ≤
i ≤ n;
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Case 2) there exist0 ≤ m1 < m2 < n, 0 < k1 < k2 < q such thatw(i)[k1 − 1]
is semi-abelian return for all0 ≤ i ≤ m1 andm2 + 1 ≤ i ≤ n; w(i)[k2 − 1] is
semi-abelian return for allm1 + 1 ≤ i ≤ m2.

Case 1)In case 1) we will assume thatk1 < k2, the proof in casek2 < k1 is
symmetric. We will consider two subcases:

Case 1a)A[w]mk2
= 1, A[w](m+1)k2

= 0. This means thatw(i)[k2, k2 + j] ∼ab v
for i = m+1, . . . , m+n+1, andA[w]m(k2−1) = 0, A[w](m+1)(k2−1) = 1. So, the
elementA[w](m+1)k2

is a left-upper element of a block of abelian class ofv, and
A[w]m(k2−1) is a right-lower element of another such block. It is easy to see that
the latter block starts in columnk1. Therefore,|v| = j + 1 = k2 − k1 < k2.

In case 1a) we will prove that the abelian class ofv consists of a single word,
i.e., w(i)[j] = v for i = 0, . . . , n. Suppose thatw(i)[j] 6= w(i+1)[j] for some
i ∈ {0, . . . , n−1}. Since the rows grow lexicogaphically, it means that there exists
0 ≤ l < j < k2 − 1 such thatA[w]il = 0, A[w](i+1)l = 1. HenceA[w]i(l+1) = 1,
A[w](i+1)(l+1) = 0, and sow(i+1)[l + 1, l + 1 + j] ∼ab v. If m < i + 1 ≤ n,
then the wordw(i+1)[j] has returnw(i+1)[l], which is impossible, because it has
returnw(i)[k2]. Similarly we get that the case0 ≤ i + 1 ≤ m andl + 1 < k1 is
impossible.

In case0 ≤ i+1 ≤ m andk1 ≤ l+1 < k2 we get that the wordw(i+1)[k1, k1+
j] has returnw(i+1)[k1, l] of lengthl−k1+1. But in this casew(t)[l+1, l+1+j] ∼ab

v for t = i+1, . . . , i+1+n. Contradiction with the condition thatw(t)[k2 − 1] is
semi-abelian return tow(t)[j]. So, the case0 ≤ i + 1 ≤ m andk1 ≤ l + 1 < k2 is
impossible. Hencew(i)[j] = w(i+1)[j] for i = 0, . . . , n − 1, i.e., the abelian class
of v consists of a single word.

Case 1b)A[w]mk2
= 0 or A[w](m+1)k2

= 1. This means thatw(m)[k2, k2 + j] ∼ab

v. Hence the wordw(n)[j] has semi-abelian returnw(n)[k2] of lengthk2 + 1, and
the wordw(m)[k1, k1+j] has semi-abelian returnw(m)[k1, k2] of lengthk2−k1+1,
so the returns are different. This is impossible sincew(n) = w(m)[k1, k1 + q − 1].

Case 2)In case 2) the fact thatw(i)[k1] is semi-abelian return for all0 ≤ i ≤ m1−1
andm2 + 1 ≤ i ≤ n implies thatn > q/2. So,k1 = 1, i.e., we necessarily have
return(s) of length1. Since there are two abelian returns totally, we can have
only one return of length1, and this return is0. It means thatA[w]i0 = 0 for
0 ≤ i ≤ n. Sincew(m2)[1, j + 1] 6∼ab v andw(m2+1)[1, j + 1] ∼ab v, we have
A[w]m21 = 1, A[w](m2+1)1 = 0, and henceA[w]m20 = 0, A[w](m2+1)0 = 1. We
get a contradiction withA[w]i0 = 0 for 0 ≤ i ≤ n.

So, the converse is proved, i.e., every factor of a Sturmian word having two
abelian returns is singular.
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5 Proof of Theorem 1.2: the sufficiency

Here we prove the ”if” part of Theorem 1.2, i.e., we establishthe condition on
the number of abelian returns forcing a word to be Sturmian, i.e., we prove that
a binary recurrent word with each factor having two or three abelian returns is
Sturmian.

Proposition 5.1. If each factor of a binary recurrent infinite word has at most
three abelian returns and at least two semi-abelian returns, then the word is bal-
anced.

Notice that we formulate and prove auxiliary lemmas and propositions in a bit
stronger way than we need for sufficiency in Theorem 1.2: instead the condition
“each factor has two or three abelian returns” we put a weakercondition “each
factor has at most three abelian and at least two semi-abelian returns”. Using this
condition we will be able to prove the sufficiency in both Theorems 1.2 and 1.3:
since both words with two or three abelian returns and words with two or three
semi-abelian returns satisfy this condition, we solve two problems at once.

The proof of this proposition is rather technical, it is based on considering
abelian returns to different possible factors of the infinite word and consecutively
restricting the possible form of the word. Denote the binaryword with at most
three abelian returns byw ∈ {0, 1}ω. In the rest of this section instead of abelian
returns ”to the left” we consider abelian returns ”to the right”: if vu is a factor
having v′ ∼ab v as its suffix, andvu does not contain as factors other words
abelian equivalent tov besides suffix and prefix, then the abelian class ofu is
abelian return to the abelian class ofv. It is easy to see that regardless of the
definition, the set of abelian returns to each abelian factoris the same. We will
refer to the wordu asright semi-abelian returnof the abelian class ofv, so normal
semi-abelian returns can be regarded as left semi-abelian returns. Right semi-
abelian returns do not necessarily coincide with left semi-abelian returns, but their
abelian classes also give the set of abelian returns. Thoughthis does not make any
essential difference, this modification of the definition ismore convenient for our
proof of this proposition.

We will make use of the following key lemma:

Lemma 5.2. If each factor of a binary recurrent infinite wordw has at most three
abelian and at least two semi-abelian returns, then one of the letters is isolated.

Proof. Considering abelian returns to letters, we get that every letter can appear
in blocks of at most three different lengths. Denote these lengths for blocks of0’s
by l1, l2, l3, wherel1 < l2 < l3, for blocks of1’s by j1, j2, j3, wherej1 < j2 < j3.
Notice that a letter can appear in blocks of only two or one lengths, then the third
length or the third and the second lengths are missing.

Consider right semi-abelian returns of the word10l1: they are1, 0l−l11 for
l = l2, l3 (if 0 appears in blocks of corresponding lengths),1j−10l1 for j = j1 >

12



1, j2, j3 (if 1 appears in blocks of corresponding lengths) and0 for j1 = 1. Some
of these returns should be missing or abelian equivalent to others in order to have
at most three abelian returns totally. So we have the following cases:

– j2, j3, l3 are missing, i.e.,w ∈ {0l11j1, 0l21j1}ω. In this case abelian returns are
1, 0l2−l11, and1j1−10l1 for j1 > 1 or 0 for j1 = 1.
– l2, l3, j3 are missing, i.e.,w ∈ {0l11j1, 0l11j2}ω. Abelian returns are1, 1j2−10l1 ,
and1j1−10l1, if j1 > 1, or 0, if j1 = 1.
– j2, j3 are missing,j1 = 2, l2 = 2l1 or l3 = 2l1, i.e., w ∈ ({0l1 , 02l1, 0l}1j2)ω.
Abelian returns are1, 0l11, 0l−l11.
– l3, j3 are missing,l2 = 2l1, j1 = 2 or j2 = 2, w ∈ ({0l1, 02l1}{12, 1j})ω. Abelian
returns are1, 0l11, 1j−10l1 (if j > 1) or 0 (if j = 1).
– j2, l2, j3, l3 are missing, thenw = (0l11j)ω is periodic. This case is impossible
since0l1 has only one semi-abelian return.

Notice that the first two cases are symmetric. Considering abelian returns to
the word1j10, we get symmetric cases (0 change places with1, jk change places
with lk, k = 1, 2, 3). Combining the cases obtained by considering abelian returns
to 10l1 with the cases obtained by considering abelian returns to1j10, we finally
get the following remaining cases (up to renaming letters):

1) j2, j3, l3 are missing, i.e.w is of the formw ∈ {0l11j1, 0l21j1}ω.

2) l3, j3 are missing,l1 = 1, l2 = 2, j1 = 2, j2 = 4, i.e. w ∈ ({0, 02}{12, 14})ω.

3) l3, j3 are missing,l1 = 1, l2 = 2, j1 = 1, j2 = 2, i.e. w ∈ ({0, 02}{1, 12})ω.

4) l3, j3 are missing,l1 = 2, l2 = 4, j1 = 2, j2 = 4. i.e. w ∈ ({02, 04}{12, 14})ω.

Case 1): w ∈ {0l11j
1, 0

l21j
1}

ω.
In the first case we should prove thatj1 = 1. We omit the index1 for brevity:

j = j1. Suppose thatj > 1. Consider right abelian returns to the word10l2 . They
are1, 1j−1(0l11j)k0l2 for all k ≥ 0 such that the word0l21j(0l11j)k0l2 is a factor
of w. Therefore, we have at most two values ofk (probably, including0).

Right abelian returns to the word1j0l11 are1, (0l21j)m0l11 for all m ≥ 0 such
that the word10l11j(0l21j)m0l11 is a factor ofw. So, we have at most two values
of m (probably, including0).

Notice that we cannot have only one value ofk and only one value ofm si-
multaneously, since in this case we have periodic wordw = ((0l11j)k1(0l21j)m1)ω,
and the word(0l211j

)m1−10l2 has only one semi-abelian return.
Taking into account conditions form andk, which we have just obtained from

considering abelian returns to both10l2 and 1j0l11, we find that there are two
opportunities:

Case 1a)w ∈ ({(0l11j)k1 , (0l11j)k2}0l21j)ω, 0 < k1 < k2. The word0l21j0l11j−1

has returns1, 0l11, 0l2(1j0l1)k−11 for all k such that the word0l21j(0l11j)k0l2 is
a factor ofw. To provide at most three abelian returns,w should admit only one
value of k. In this case there is also only one value ofm, so the case 1a) is
impossible.
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Case 1b)w ∈ (0l11j, {(0l21j)m1 , (0l21j)m2})ω, 0 < m1 < m2. The word
1j0l11j0l21 has returns1, 10l2 , 10l1(1j0l2)m−1 for all m such that the word
10l11j(0l21j)m0l11 is a factor ofw. To provide at most three abelian returns,w
should admit only one value ofm. In this case there is also only one value ofk,
so the case 1b) is impossible.

Thus, in case 1)1’s are isolated.

In cases 2)–4) we need to consider words containing all four blocks, otherwise
we get into conditions of case 1) in which we proved that1-s are isolated. The
proof is similar for the three cases, and is based on studyingabelian returns of
certain type. When we examinew ∈ ({0l1, 0l2}, {1j1, 1j2})ω, we consider abelian
returns to the words0l11j2 and0l21j1 , and with a technical case study obtain that
if both words have at most three abelian returns, thenw is periodic of a certain
form, and then find its factor having one semi-abelian return.

Case 2): w ∈ ({02, 04}{1, 12})ω.
Consider abelian returns of the word0212. Factors ofw from the abelian class

of 0212 are the following:0212, 1202, 0110, 1001. Notice that each of these words
is necessarily a factor ofw. Consider right semi-abelian returns to each factor:

• 0212, 0120 have right semi-abelian return0

• 1202 has right semi-abelian returns of the formα1 = (02102)i11 and/or
α2 = (02102)i20212 for somei1, i2 ≥ 0

• 1021 has right semi-abelian returns of the formα3 = (041)i31 and/orα4 =
(041)i4021 for somei3, i4 ≥ 0

We will also use abelian returns of the word041:

• 041 could have right semi-abelian returns0, returns of the formsα′
1 =

(1021)j102 with j1 > 0 andα′
2 = (1021)j2104 for somej2 ≥ 0

• 0310, 0103 (not necessarily factors ofw) have right semi-abelian return0

• 02102 could have right semi-abelian returns0, returns of the formsα′
3 =

(1202)j302 with j3 > 0 andα′
4 = (1202)j4102 for somej4 ≥ 0

• 104 has right semi-abelian return1.

These are summarized in the table below:
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abelian class word possible right semi-abelian returns

0212

0212, 0120 0

1202 α1 = (02102)i11, α2 = (02102)i20212

for somei1, i2 ≥ 0

1021
α3 = (041)i31, α4 = (041)i4021
for somei3, i4 ≥ 0

041
041

0, α′
1 = (1021)j102 with j1 > 0,

α′
2 = (1021)j2104 for somej2 ≥ 0

0310, 0103 0

02102 0, α′
3 = (1202)j302 with j3 > 0,

α′
4 = (1202)j4102 for somej4 ≥ 0

104 1

Notice thatα1 ∼ab α3 wheni1 = i3, andα′
1 ∼ab α′

3 whenj1 = j3.

If factors from the abelian class of0212 have only letters as abelian returns,
then we obtain periodic wordw = (0212)ω, and this word does not contain all
four blocks. So, a factor from the abelian class of0212 should contain an abelian
return of length longer than1 (referred to aslong returnsin the further text), so
we consider the four cases corresponding to returnsα1 throughα4.

Case 2a)let 1202 have a returnα1 with i1 > 0. Thenw contains a factoru =
1202(02102)i11. Now consider right semi-abelian returns to the abelian class of
041. One can find right semi-abelian returns0 (in the factor0410 of u) and 1
(in 1041). Sinceu has a prefix1204, it means that there is a long right semi-
abelian return ending in1204, i.e., we have right semi-abelian returnα′

2 or α′
3.

A suffix 021021 of u implies that there is a long right semi-abelian returnα′
3 or

α′
4. So, the only possibility is that an abelian class of041 has abelian returns0,

1 andα′
3 ∼ab α′

1 with j1 = j3 > 0, and hence nothing else. The factoru has
a suffix 021021, so the factor02102 here has right semi-abelian returnα′

3, and
thereforeu is continued in the unique way:u′ = 1202(02102)i1(1202)j302. One
can find here two right semi-abelian returns0 and1 to the abelian class of0212,
and we started with the first long right semi-abelian returnα1, so the three returns
to 0212 are0, 1 andα1 ∼ab α3. The factoru′ has a suffix1204, so the factor
1202 here has right semi-abelian returnα1, therefore it is continued in the unique
way: u′′ = 1202(02102)i1(1202)j3(02102)i11. Continuing this line of reasoning,
we obtain a periodic word. One can find a factor having one semi-abelian return,
e. g.,(1202)j3−112. Hence1202 has no long right semi-abelian returns of the form
α1.

Case 2b) let 1202 have a returnα3 with i3 > 0. Then w contains a factor
u = 1021(041)i31. Now consider right semi-abelian returns to the abelian class
of 041. One can find right semi-abelian returns0 (in the factor0410 of u) and1
(in 1041). Sinceu has a prefix102102, it means that there is a long right semi-
abelian return ending in102102, i.e., we have right semi-abelian returnα′

1 or α′
4.

A suffix 0412 of u implies that there is a long right semi-abelian returnα′
1 or α′

2.
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So, the only possibility is that an abelian class of104 has abelian returns0, 1
andα′

1 ∼ab α′
3 with j1 = j3 > 0. The factoru has a suffix0412, so the factor

041 here has right semi-abelian returnα′
1, sou is continued in the unique way:

u′ = 1021(041)i3(1021)j102. This factor has a suffix102102, so the factor1021
here has right semi-abelian returnα3, and therefore it is continued in the unique
way: u′′ = 1021(041)i3(1021)j1(041)i31. Continuing this line of reasoning, we
obtain a periodic word. One can find a factor having one semi-abelian return, e.
g., (041)i3−104. Hence1021 has no long right semi-abelian returns of the formα3.

Case 2c)let 1202 have a returnα2 with i2 ≥ 0. Notice that if1202 has only
returnα2, thenw = (1202(02102)i202)ω, andw does not contain the block02.
We proved that there is no long right semi-returns of the forms α1 andα3, so
the only possibility is that1202 has two returnsα2 and1, and1021 always has
return1, otherwise this abelian class has more than3 abelian returns. So,1202 is
followed by either(02102)i20212 or 1. In both cases we can determine several next
letters: in the first case the next symbols are00 (becausew contains maximum two
consecutive1-s), in the second case the next symbols are100 (since1021 always
has return1, and11 is always followed by00). So, 1202 is followed by either
(02102)i2021202 or 1202. Both continuations have suffix1202, which is followed
by either1 or α2, etc:

1202 ¡
¡

@
@

(02102)i2021202 ¡
@

(02102)i2021202 ¡
@

1202 ¡
@

1202 ¡
@

1202 ¡
@

(02102)i2021202 ¡
@

. . .

. . .

. . .

. . .

Thusw ∈ {(02102)i2021202, 1202}ω. We are interested in the case when all four
blocks are contained inw, so we geti2 > 0, otherwisew does not contain the
block11, and we get into case 1), which we proved is impossible.

So,w contains a factoru = 1202(02102)i20212 for somei2 > 0. Now consider
abelian returns to the abelian class of041. One can find right semi-abelian returns
0 (in the factor0410 of u) and1 (in 1041). Sinceu has a prefix1204, it means
that there is a long right semi-abelian return ending in1204, i.e., we have right
semi-abelian returnα′

2 or α′
3. A suffix 0412 of u implies that there is a long right

semi-abelian returnα′
1 or α′

2. The only possibility is that an abelian class of1202

has abelian returns0, 1 andα′
2 with j2 ≥ 0, and nothing else. The set of abelian

returns0, 1 andα′
1 ∼ab α′

3 is impossible since in this case the abelian class1202

has other abelian returns than0, 1, α2. The factoru has a suffix0412, so the factor
041 here has right semi-abelian returnα′

2, sou is continued in the unique way:
u = 1202(02102)i2021(1021)j202. This factor has a suffix102102, but we proved
above that in the case 2c) the factor1021 is always followed by1, so we get a
contradiction. Hence1202 has no returns of the formα2.

Case 2d)let 1021 have a returnα4 with i4 ≥ 0. Notice that if1021 has only return
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α4, thenw = (021(041)i4)ω, andw does not contain the block12. We proved that
there is no long returns of the formsα1, α2 andα3, so the only possibility is that
1021 has two returnsα4 and1, and1202 always has return1. So,1021 is followed
by either(041)i4021 or 1. In the second case we can determine several next letters
to be001 (because and11 is always followed by00, and1202 always has return
1). So,1021 is followed by either(041)i4021 or 1021. Both continuations have
suffix 1021, which is followed by either(041)i4021 or 1:

1021 ¡¡

@@

(041)i4021 ¡
@

1021 ¡
@

. . .

. . .

Thusw ∈ {(041)i4021, 1021}ω. We are interested in the case when all four blocks
are contained inw, so we geti4 > 0, otherwisew does not contain the block04.

Thusw contains a factoru = 1021(041)i4021. Now consider abelian returns
to the abelian class of041. One can find right semi-abelian returns0 (in a factor
02103 of u) and1 (in 1041). Sinceu has a prefix102102, we have a long right semi-
abelian return ending in102102, i.e.,α′

1 or α′
4. A suffix 021021 of u implies that

there is a long right semi-abelian returnα′
3 or α′

4 with j4 ≥ 0. The only possibility
is that an abelian class of041 has abelian returns0, 1 andα′

4 with j4 ≥ 0. The set
of abelian returns0, 1 andα′

1 ∼ab α′
3 is impossible since is this case the abelian

class of0212 has other abelian returns than0, 1 andα4. Considering the suffix
021021 of u, we get that the factor02102 here has right semi-abelian returnα′

4, so
u is continued in the unique way:u′ = 1021(041)i402(1202)j4102. The factoru′

has a suffix102102, so the factor1021 here has right semi-abelian returnα4, so it is
continued in the unique way:u′′ = 1021(041)i402(1202)j41(041)i4021. Continuing
this line of reasoning, we obtain a periodic wordw. Its factor(041)i4−104 has only
one semi-abelian return. Hence1021 has no long returnsα4.

So, we are done with the case 2)

Case 3): w ∈ ({0, 02}{1, 12})ω.
Consider abelian returns for the word021. Factors ofw from the abelian class

of 021 could be the following:102, 021, 010, and each of them necessarily appears
in w.

• 102 has right semi-abelian return1

• 021 has right semi-abelian returns of the formα1 = (101)i10 and/orα2 =
(101)i2102 for somei1, i2 ≥ 0.

• 010 has right semi-abelian returns of the formα3 = (110)i30 and/orα4 =
(110)i410 for somei3, i4 ≥ 0.

Symmetrically, we get possible abelian returns for120:

• 012 has right semi-abelian return0
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• 120 has right semi-abelian returns of the formα′
1 = (010)j11 and/orα′

2 =
(010)j2012 for somej1, j2 ≥ 0.

• 101 has right semi-abelian returns of the formα′
3 = (001)j31 and/orα′

4 =
(001)j401 for somej3, j4 ≥ 0.

These are summarized in the table below:

abelian class word possible right semi-abelian returns

021
102 1
021 α1 = (101)i10, α2 = (101)i2102 for somei1, i2 ≥ 0
010 α3 = (110)i30, α4 = (110)i410 for somei3, i4 ≥ 0

120
012 0
120 α′

1 = (010)j11, α′
2 = (010)j2012 for somej1, j2 ≥ 0

101 α′
3 = (001)j31, α′

4 = (001)j401 for somej3, j4 ≥ 0

Notice thatα1 ∼ab α3 wheni1 = i3, andα′
1 ∼ab α′

3 whenj1 = j3. In this case
the lengths of blocks of0’s and1’s are the same, so we can use symmetry in the
proofs.

If factors from the abelian class of021 have only letters as abelian returns,
thenw = (021)ω, and this word does not contain all four blocks. So, a factor from
the abelian class of021 should contain a long abelian return (of length longer than
1), so we consider the four cases corresponding to long returnsα1–α4.

Case 3a)let 021 have a returnα1 with i1 > 0. Thenw contains a factoru =
021(101)i10. Now consider abelian returns to the abelian class of120. One can
find right semi-abelian returns1 (in a factor1101) and0 (in 0110). Sinceu has a
prefix 0012, it means that there is a long right semi-abelian return ending in0212,
i. e., α′

2 or α′
3. A suffix 1010 of u implies that there is a long right semi-abelian

returnα′
3 or α′

4. So, the only possibility is that an abelian class of120 has abelian
returns0, 1 andα′

3 ∼ab α′
1 with j1 = j3 > 0. Considering the suffix1010 of u,

we get that the factor101 here has right semi-abelian returnα′
3, sou is continued

in the unique way:u′ = 021(101)i1(001)j31. One can find inu′ abelian returns0
and1 to the abelian class of021, and we started with the long returnα1 ∼ab α3.
The factoru′ has a suffix0212, so the factor001 here has right semi-abelian return
α1, and henceu′ is continued in the unique way:u′′ = 021(101)i1(001)j3(101)i10.
Continuing this line of reasoning, we obtain a periodic word, in which the abelian
class of1(101)i1 has one semi-abelian return. Hence021 has no long returnsα1,
and symmetrically120 has no long returnsα′

1.

Case 3b)let 010 have a returnα3 with i3 > 0. Thenw contains a factoru =
010(110)i30. Now consider abelian returns to the abelian class of120. One can
find right semi-abelian returns1 (in a factor1011) and0 (in 0110). Due to the
prefix 0101 of u, there is a long right semi-abelian return ending in0101, i.e.,α′

1

or α′
4. The suffix1100 of u implies that there is a long right semi-abelian return

α′
1 or α′

2. We proved that there are no long returns of the formα′
1, so 120 has
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right semi-abelian returns0, 1, α′
4, α′

2. None of them are abelian equivalent, a
contradiction. Hence021 has no returns of the formα3, and symmetrically120
has no returnsα′

3.

Case 3c)let 021 have a returnα2. The abelian class of001 always has abelian
return1. If 021 has only returnα2, thenw = ((101)i21021)ω, and the factor02

has only one abelian return. So,021 has also other abelian returns. Taking into
account that there are no long returns of the formsα1 andα3, andα2 is never
abelian equivalent toα4, we get that there should be abelian return0. Hence,
there is no abelian returnα4 and010 is always followed by0, 021 is followed by
either0 or α2. So,w contains a factoru = 021(101)i2102, i2 ≥ 0. Now consider
abelian returns to the abelian class of120. Sinceu has a prefix0212, it means
that there is a long right semi-abelian return ending in0212, i.e., we have right
semi-abelian returnα′

2 or α′
3. A suffix 1202 of u implies that there is a long right

semi-abelian returnα′
1 or α′

2. We proved that we never have long returnα′
1, so

we have right semi-abelian returnα′
2. Symmetrically to what we proved above,

we get that101 is always followed by1, 110 is followed by either1 or α′
2. So,

the last occurrence of110 in u is extended byα′
2, i.e. we get the unique extention

of u: u′ = 021(101)i210(010)j2012. Considering the last occurrence of the factor
001 in u′, we get that it should have right semi-abelian returnα2, i.e. we get the
unique extention:u′′ = 021(101)i210(010)j201(101)i2102. Continuing this line
of reasoning, we get a periodic word, in which the factor0(010)j20 has only one
semi-abelian return. Hence we have no returns of the formα2 andα′

2.

Case 3d)In the remaining case the word010 has returns0 andα4 with i4 ≥ 0,
and the word101 has returns1 andα′

4 with j4 ≥ 0. So, w contains a factor
u = 010(110)i410. Considering the last occurrence of101 in u, we see that it has
returnα′

4, sou is extended in the following way:010(110)i41(001)j401. The last
occurrence of010 in this word necessarily has right semi-abelian returnα4, so the
word is extended uniquely as follows:010(110)i41(001)j40(110)i410. Continuing
this line of reasoning, we get a periodic word. In this wordi4 > 0, otherwise we
do not have occurrences of the block12, and the abelian class of(110)i41 has only
one semi-abelian return.

So, we are done with the case 3)

Case 4)w ∈ ({02, 04}{12, 14})ω

This case is considered in exactly the same way as the case 3) by considering
abelian returns to0412 and0214. The only changes which should be done are
doubling0’s and1’s everywhere except returns of length1 (letters).

Lemma 5.3. If w ∈ {0l11, 0l21}ω, 0 < l1 < l2 is a recurrent word such that
each of its factors has at most three abelian returns and at least two semi-abelian
returns, thenl2 = l1 + 1.

Proof. Suppose thatl2 > l1 + 1. Consider abelian returns to the word0l1+1: it
has right abelian returns0 and1(0l11)k10l1+1 for all k ≥ 0 such that0l

21(0l11)k0l2
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is a factor ofw, thus there could be at most two different values ofk (probably,
including 0). Consider abelian returns to the word10l110: it has right abelian
returns0 and(0l2−110)j0l1−11 for all j ≥ 0 such that10l11(0l21)j0l11 is a factor
of w, thus there could be at most two different values ofj (probably, including
0). If we have only one value ofk and one value ofj simultaneously, thenw is
periodic,w = ((0l11)k1(0l21)j1)ω. In this periodic word ifk1 = 0, then the factor
0l

2 has one semi-abelian return, ifk1 > 0, then the abelian class of1(0l11)k1 has
only one semi-abelian return. So, we have two cases:

Case I:w ∈ (0l21{(0l11)k1, (0l11)k2})ω, 0 < k1 < k2. In this case one can find
four abelian returns to0l210l1−1: 0, 10l1−1, (10l1)k1−110l2−1, (10l1)k2−110l2−1.

Case II:w ∈ (0l11{(0l21)j1, (0l21)j2})ω, 0 < j1 < j2. In this case one can find four
abelian returns to10l210l110: 0, 0l2−11, (0l2−110)j1−10l1−11, (0l2−110)j2−10l1−11.

The proofs of Lemma 5.2 and Lemma 5.3 immediately imply

Corollary 5.4. If each factor of an infinite binary recurrent wordw has at
most three abelian returns and at least two semi-abelian returns, thenw ∈
{0l11, 0l1+11}ω.

Lemma 5.5. If each factor of a recurrent infinite binary wordw has at most three
abelian returns and at least two semi-abelian returns, thenw is 2-balanced.

Proof. For a lengthn, consider abelian classes of factors of lengthn of w. Denote
by A the abelian class of factors containing the smallest numberof 1-s: A = {u ∈
Fn(w) : |u|1 = minv∈Fn(w) |v|1}. The next class we denote byB: B = {u ∈
Fn(w) : |u|1 = minv∈Fn(w) |v|1 +1}, the next one byC. If w has only two abelian
classes, then it is Sturmian, so we are interested in the casewhenw has at least
three abelian classes. For a lengthn, we associate to a wordw a wordξ(n) over
the alphabet of abelian classes ofw of lengthn as follows: for an abelian classM
of words of lengthn, ξ

(n)
k = M iff wk . . . wk+n−1 ∈ M . In other words,(ξ(n)

k )k≥0

is the sequence of abelian classes of consecutive factors oflengthn in w.
It is easy to see thatξ(n) contains the following sequence of classes:

CBj1Aj2B for somej1, j2 ≥ 1, i.e. for somei we haveξ
(n)
i . . . ξ

(n)
i+j1+j2+1 =

CBj1Aj2B. Then we have

wi = 1, wi+n = 0,

wk = wk+n for k = i + 1, . . . , i + j1 − 1,

wi+j1 = 1, wi+j1+n = 0,

wk = wk+n for k = i + j1 + 1, . . . , i + j1 + j2,

wi+j1+j2 = 0, wi+j1+j2+n = 1.

I. e.,wi . . . wi+j1+j2 = 1u1v0, wi+n . . . wi+j1+j2+n = 0u0v1.
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By Corollary 5.4 we havew ∈ {0l11, 0l1+11}ω, so |u| ≥ 2l1 + 1; u contains
both letters0 and1 and has a suffix0l1. It follows thatj2 = 1. So, the classB has
the following3 abelian returns:0, 1, 01. All the returns are of length at most2, so
if after an occurrence ofB we haveC, then the next class isB again, otherwise
we will get a longer return. So there are no other classes thanthese. In addition,
we proved that if for lengthn there are three abelian classes, then inξ(n) lettersA
andC are isolated.

Proof of Proposition 5.1.By Corollary 5.4 and Lemma 5.5, we have thatw is 2-
balanced and it is of the form{0l11, 0l1+11}ω for some integerl1. Suppose thatw
is not balanced. Then there existsn for which there exist three classes of abelian
equivalence inFn(w); as above, denote these classes byA, B andC. Arguing as
in the proof of Lemma 5.5, consider a sequence of classesBCBjAB which we
necessarily have inξ(n) for some integerj, denote its starting position byi − 1.
Corresponding factor inw is

wi−1 = 0, wi−1+n = 1,

wi = 1, wi+n = 0,

wk = wk+n for k = i + 1, . . . i + j − 1,

wi+j = 1, wi+j+n = 0,

wi+j+1 = 0, wi+j+1+n = 1.

I. e., wi . . . wi+j+1 = 1u10, wi+n . . . wi+j+1+n = 0u01. Remark thatu =
wi+1 . . . wi+j has prefix0l110.

Now consider abelian returns to an abelian classB0 = A1 of lengthn + 1.
The factor starting from the positioni + 1 is of the formB0 so it belongs to this
class, and has an abelian return0. The word starting from the positioni + j is
of the formB0 and has an abelian return1. The word starting from the position
i + l1 − 1 belongs to this class, and has an abelian return10. So we have at least
three returns0, 1 and10. Now consider the occurrence of classB0 = A1 to the
left from the positioni + 1. One can see that the positionsi andi − 1 are from
the classB1 = C0, so the preceding occurrence ofB0 = A1 has an abelian
return of length greater than2, which is a fourth return, though there should be
at most three. So we cannot have more than two classes of abelian equivalence
in a binary word having two or three abelian returns, i.e., such word should be
balanced. Proposition 5.1 is proved.

Lemma 5.6. Let w ∈ {0, 1}ω be a recurrent balanced word. Thenw is either
Sturmian or periodic. In the latter case there exists a (possibly empty) bispecial
factorB of ω and a lettera ∈ {0, 1} such thataBa is a factor ofw having exactly
one first return inw. SinceaBa is the unique element in its abelian class, it follows
that if w is periodic thenw contains a factor having only one semi-abelian return.
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Proof. Sincew is assumed balanced,w contains at most one right special factor
for each lengthn. If w is not Sturmian, thenw is ultimately periodic, and hence pe-
riodic since it is recurrent. From here on we shall assume that w is periodic. Thus
w has only a finite number of right special factors. Asw is recurrent, the longest
right special factor ofw is also a bispecial factor ofw. Let ε = B0, B1, . . . , Bn

denote the bispecial factors ofw in order of increasing length. ThusBn is also the
longest right special factor ofw. SetB = Bn−1. Then there exists a unique letter
a ∈ {0, 1} such thataB is a right special factor. In particular bothaBa andbBa
are factors ofw wherea 6= b ∈ {0, 1}. We claim that the only right special factor
of w which begins inBa is Bn. Clearly,Bn is a right special factor beginning in
Ba (sinceBa is left special and hence must coincide with the prefix ofBn of its
same length). To see that no other right special factor ofw begins inBa, let R
denote the shortest right special factor ofw beginning inBa. ThenR is also left
special and hence bispecial. It follows thatR = Bn. SinceBn is also the longest
right special factor ofw the claim is established. Having established the claim, it
follows thataBa has a unique first return inw. If not, there would exist a right
special factor beginning inaBa. From the previous claim it would follow thataBn

is right special contradicting thatBn is the longest right special factor.

We are now ready to prove the sufficiency condition:

Corollary 5.7. If each factor of a binary recurrent infinite word has two or three
abelian returns, then the word is Sturmian.

Proof. Follows from Proposition 5.1 and Lemma 5.6.

Corollary 5.8. An aperiodic recurrent infinite wordw is Sturmian if and only if
each factoru of w has two or three abelian returns inw.

Proof. Lemma 3.1 implies that an aperiodic word with2 or 3 abelian returns must
necessarily be binary.

6 Proof of Theorem 1.3

In this section we prove the characterization of Sturmian words in terms of semi-
abelian returns.

Proof of Theorem 1.3.We have that for every factor in an infinite word the number
of its semi-abelian returns is not less than the number of abelian returns. So,
Proposition 5.1 and Lemma 5.6 imply that if each factor of an infinite binary
recurrent word has two or three semi-abelian returns, then the word is Sturmian.

Now we prove that each factor of a Sturmian word has at most three semi-
abelian returns. Suppose that a factorv of a Sturmian word has more than three
semi-abelian returns. By Proposition 4.3 this factor has atmost three abelian
returns, so there are at least two semi-abelian returns which are abelian equivalent.
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Due to Proposition 4.1, semi-abelian returns to factors of Sturmian words are
Christoffel words, i.e., letters or words of the formaBb, so if we have more than
three semi-abelian returns tov, then there should be both returns0B1 and1B0.

In the case|v| ≥ |0B1| the return0B1 is given by a factor0B1x1B0 for some
x ∈ {0, 1}∗, where0B1x is abelian equivalent tov. The return1B0 is given by a
factor1B0y0B1 for somey ∈ {0, 1}∗, where1B0y is abelian equivalent tov. So,
we have factors1x1 and0y0, wherex andy are abelian equivalent, a contradiction
with balance.

In the case1 < |v| < |0B1| we have a factorz whose (intersecting) prefix
and suffix are0B1 and1B0, resp., and another factorz′ of the same length whose
prefix and suffix are1B0 and0B1, resp. SoB should have1 and0 at the same
position.

If |v| = 1, i.e.,v is a letter, it is easy to see thatv has two semi-abelian returns.
Thus, two different semi-abelian returns of the same lengthgreater than1 are

impossible. This concludes the proof.

Similarly to Corollary 5.8, we get

Corollary 6.1. An aperiodic recurrent infinite wordw is Sturmian if and only if
each factoru of w has two or three semi-abelian returns inw.
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Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi



University of Turku
• Department of Information Technology

• Department of Mathematics
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