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Abstract

Return words constitute a powerful tool for studying syniddynamical systems.
They may be regarded as a discrete analogue of the first nei@prin dynamical
systems. In this paper we investigate two abelian variaftseonotion of return
word, each of them gives rise to a new characterization ain8&n words. We
prove that a recurrent infinite word is Sturmian if and onlgath of its factors has
two or three abelian (or semi-abelian) returns. We studysthecture of abelian
returns in Sturmian words and give a characterization ofg¢Hfactors having ex-
actly two abelian returns. Finally we discuss connectiatg/ben abelian returns
and periodicity in words.
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1 Introduction

Letw € AN be an infinite word with values in a finite alphabét The (factor)
complexity functiom : N — N assigns to each the number of distinct factors
of w of lengthn. A fundamental result of Hedlund and Morse [15] states that a
word w is ultimately periodic if and only if for some the complexityp(n) < n.
Infinite words of complexityp(n) = n + 1 are calledSturmian wordsThe most
studied Sturmian word is the so-called Fibonacci word

01001010010010100101001001010010. . .

fixed by the morphisnd — 01 and1 — 0. In [16] Hedlund and Morse showed
that each Sturmian word may be realized geometrically byrrational rotation
on the circle. More precisely, every Sturmian word is ok#diby coding the sym-
bolic orbit of a pointz on the circle (of circumference one) under a rotation by an
irrational anglex where the circle is partitioned into two complementaryivgs,
one of lengthn and the other of length — «. And conversely each such coding
gives rise to a Sturmian word. The irrationalis called theslopeof the Stur-
mian word. An alternative characterization using contahfractions was given
by Rauzy in [17] and [18], and later by Arnoux and Rauzy in Rfurmian words
admit various other types of characterizations of geomatd combinatorial na-
ture (see for instance [6]). For example they are charaeterby the following
balanceproperty: A wordw is Sturmian if and only ifw is a binary aperiodic
(non-ultimately periodic) word angl|; — |v|;| < 1 for all factorsu andwv of w of
equal length, and for each letteHere|u|; denotes the number of occurrences of
iinu.



In this paper we develop and study two abelian analoguesaidkion of re-
turn word and apply it to characterize Sturmian words. Retuords constitute a
powerful tool for studying various problems in combinatsron words, symbolic
dynamical systems and number theory. Given a factaran infinite wordw, by
areturn wordto v (in w) we mean a factou of w such thaww is a factor ofw
beginning and ending inand having no other (internal) occurrencevofn other
words the set of all return words tas the set of all distinct words beginning with
an occurrence of and ending just before the next occurrence ofThe notion
of return words can be regarded as a discrete analogue ofsheeturn map in
dynamical systems. Many developments of the notion of neteords have been
given: For example, return words are used to characteripgtpme substitutive
sequences [8, 10]. Return words are used in studying thedeadence of Stur-
mian or morphic continued fractions [1]. Return words wetatfully studied in
the context of interval exchange transformations (se€) [2¥prds having a con-
stant number of return words were considered in [5]. In [9faegalization of
the notion of balanced property for Sturmian words was dused and the proof
is based on return words. Return words are also used to ¢baracperiodicity
and Sturmian words. The following characterization wasiigtd by L. Vuillon
in [20]:

Theorem 1.1.[20] A binary recurrent infinite wordo is Sturmian if and only if
each factor: of w has two returns inv.

In [12] the proofs were simplified and return words were stddn the context of
episturmian words.

Two words are said to babelian equivalenif they are permutations of each
other. It is readily verified that this defines an equivaleretation on the set of
all factors of an infinite word. Various abelian propertiésvords have been ex-
tensively investigated including abelian powers and themidance, abelian com-
plexity and abelian periods [3, 4, 7, 13, 19]. Given a factaf an infinite word
w, letn; < ny <ng < ... be allintegersy; such thatw,, ... wy,4,—1 iS abelian
equivalentu. Then we call eacl,, . .. w,, |, -1 asemi-abelian returrio u. By
anabelian returnto « we mean an abelian class©f, . .. w,, ;. We note that
in both cases these definitions depend only on the abelias ofa. Each of these
notions of abelian returns gives rise to a new charactésizatf Sturmian words:

Theorem 1.2. A binary recurrent infinite wordv is Sturmian if and only if each
factor v of w has two or three abelian returns in.

Surprisingly, Sturmian words admit exactly the same chareation in terms
of semi-abelian returns:

Theorem 1.3. A binary recurrent infinite wordv is Sturmian if and only if each
factoru of w has two or three semi-abelian returns:in
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Although the above characterizations of Sturmian wordsandar to the one
givenin Theorem 1.1, our methods differ considerably froose used in [12, 20].

The paper is organized as follows: Section 2 is devoted tagiryg the neces-
sary background and terminology relevant to the subsemasetibns. In Section
3 we investigate connections between abelian returns armatipsty. In Section 4
we study the structure of abelian returns in Sturmian wovds prove that every
factor of a Sturmian word has two or three abelian returnefd@sition 4.3) and
moreover, a factor has two abelian returns if and only if girsgular (Theorem
4.8). In Section 5 we prove the sufficiency of the conditiontib@ number of
abelian returns for a word to be Sturmian (Corollary 5.7)Séttion 6 we prove
Theorem 1.3.

2 Preliminaries

2.1 Sturmian words and return words

We begin by presenting some background on Sturmian wordseinch words
and terminology which will be used later in the paper.

Given a finite non-empty sét (called the alphabet), we denote By andX*,
respectively, the set of finite words and the set of (rightinite words over the
alphabet:. A word v is afactor (resp. aprefix resp. asuffiy of a wordw, if
there exist words;, y such thatv = xvy (resp.w = vy, resp.w = xv). The set
of factors of a finite or infinite wordv is denoted byF'(w). Given a finite word
u = uuy . .. u, Withn > 1 andu; € X, we denote the length of u by |u|. The
empty word will be denoted by and we sefs| = 0. For eactu € ¥, we let|ul,
denote the number of occurrences of the leiter . An infinite wordw is said
to bek-balancedif and only if ||u|, — |v|,| < & for all factorsu, v of w of equal
length and all lettera € . If w is 1-balanced, then we say thatis balanced

Two wordsu andv in X* are said to babelian equivalentdenoted: ~;, v,
if and only if |u|, = |v|, for all a € ¥. Itis easy to see that abelian equivalence is
indeed an equivalence relation &n.

We say that a (finite or infinite) word is periodic if there existsl” such that
wper = w, for everyn. A right infinite word w is ultimately periodicif there
existT', ny such thatv,, . = w, for everyn > nq. A word w is aperiodig if it is
not (ultimately) periodic. A facton of w is calledright specialif both ua andub
are factors ofv for some pair of distinct letters, b € 3. Similarly « is calledleft
specialif both au andbu are factors ofv for some pair of distinct letters b € X..
The factoru is calledbispecialif it is both right special and left special.

Sturmian words can be defined in many different ways. For @kathey are
infinite words having the smallest factor complexity amopgraodic words. By a
celebrated result due to Hedlund and Morse [15], a word isately periodic if
and only if its factor complexity(n) is uniformly bounded. In particulap(n) <
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n for all n sufficiently large. Sturmian words are exactly words whaesetdr
complexityp(n) = n+ 1 for all n > 0. Thus, Sturmian words are those aperiodic
words having the lowest complexity. Sinpél) = 2, it follows that Sturmian
words are binary words. In what follows, we denote the Ist#ra Sturmian
word by0 and1.

The conditiorp(n) = n + 1 implies the existence of exactly one right special
and one left special factor of each length. The set of faaibes Sturmian word
is closed under reversal, so for every length the right sppéactor is a reversed
left special factor, and bispecial factors are palindranBaspecial factors play a
crucial role in Sturmian wordsStandard factor®f a Stumian wordo are letters
and factors of the fornBab, wherea # b € {0,1} and B is a bispecial factor
of w. A factor of a Sturmian word is callesingularif it is the only factor in its
abelian class. It is well known that singular factors haweefthma Ba, wherea is
a letter andB a bispecial factor. We will also use the notionG@ifristoffel word
One of the ways to define Christoffel words is the followinlgey are factors of a
Sturmian word of the forma Bb and letters.

In [16] it is shown that each Sturmian word may be realized susa
theoretically by an irrational rotation on the circle. Thgtevery Sturmian word
is obtained by coding the symbolic orbit of a poinbn the circle (of circumfer-
ence one) under a rotation by an irrational angl® < « < 1, where the circle
is partitioned into two complementary intervals, one ofgig and the other of
lengthl — «. And conversely each such coding gives rise to a Sturmiad widre
guantity« gives the frequency of lettarin the Sturmian word defined by such
rotation. Other widely used characterizations are via raeal words, cutting
sequences, Sturmian morphisms etc., see [6] for furthaildet

Let w = wyw, ... be an infinite word. The wora is recurrentif each of
its factors occurs infinitely many times . In this case, foru € F(w), let
n1 < ng < ... be allintegersy; such thatu = w,, ... wy,44-1. Then the word
W, - .. Wy, ,—1 IS areturn word(or briefly return) of « in w. An infinite wordhas
k returns if each of its factors hak returns. The following characterization of
Sturmian words via return words was established in [20]: Adne Sturmian if
and only if each of its factors has two returns (Theorem 1thénntroduction).

Also there exists a simple characterization of periodigiyreturn words:

Proposition 2.1. [20] A recurrent infinite word is ultimately periodic if and only
if there exists a factor having exactly one return word.

2.2 Abelian and semi-abelian returns

In this subsection we define the basic notions for the abekae. In particular,
we introduce two abelian versions of the notion of returndyabelian return and
semi-abelian return.



For an infinite recurrent word and foru € F(w), letn; < ny < ng < ...
be all integersy; such thatw,, . .. wy, +ju-1 ~a u. Then eachu,, . .. wy,4ju-1 IS
called asemi-abelian returrio the abelian class af. By anabelian returnto the
abelian class of: we mean an abelian class®f, . .. w,, 1. So the number of
abelian returns is the number of distinct abelian classewofi-abelian returns.
Hence for every factot in an infinite wordw the number of abelian returns to
the abelian class af is less or equal to the number of semi-abelian returns to the
abelian class of. For brevity in the further text we often say (semi-)abeliaturn
to factoru meaning the abelian class of We will often denote abelian returns
by an element from the abelian equivalence class, that isseyra-abelian return
from the class.

Example 2.2. Consider the Thue-Morse word
t =0110100110010110. ..

fixed by the morphism: 1(0) = 01, (1) = 10. The abelian class dfl consists
of two words01 and 10. Consider an occurrence 0fi starting at position, i.e.,

t; =0,t;.1 = 1. It can be followed by either or 10, i.e. we have eithef;,, =0
ortio = 1, t;o 3 = 0. In the first case we hawg,t;.» = 10, which is abelian
equivalent td)1, and hence we have the semi-abelian rettyra 0. In the second
caset; 1t;,o = 11, which is not abelian equivalent i, so we consider the next
factor t;,ot;13 = 10 ~4 01, which gives the semi-abelian retutyt;,; = 01.
Symmetrically,10 gives semi-abelian returnsand 10. So the abelian class of
01 has four semi-abelian returnsf0, 1,01, 10} and three abelian returns since
01 ~ 10.

For our considerations we will use the following definitiond/e say that a
letter a is isolatedin a wordw € ¥, if aa is not a factor ofw. A lettera € 3
appears inw in a block of lengtht > 0, if a word ba*c is factor ofw for some
lettersb # a, ¢ # a.

In this paper we establish a new characterization of Sturmviards analogous
to Theorem 1.1. Namely, we prove that a recurrent infinitedi®Sturmian if and
only if each of its factors has two or three abelian retureg (Bheorem 1.2 in the
Introduction). On the other hand, contrary to property ahgeSturmian, abelian
returns do not give a simple characterization of periogiaitalogous to Proposi-
tion 2.1. In terms of semi-abelian returns Sturmian wordselexactly the same
characterization as in terms of abelian returns (see Thetra in Introduction).

3 Abelian returns and periodicity

In this section we discuss relations between periodicity mmmbers of abelian
and semi-abelian returns. We begin by proving a simple sefficondition for
periodicity:



Lemma 3.1. Let |X| = k. If each factor of a recurrent infinite word over the
alphabet: has at most abelian returns, then the word is periodic.

Proof. Let w be a recurrent word over/aletter alphabet, and letbe a factor of
w containing all letters from the alphabet. Consider two o@mnces ofv in w,
say in positiongn andn (with m < n). Then the abelian class of,, . . . w,,_; has
all letters as abelian returns, and hence no more, becaasgfactor ofw must
have at most abelian returns. Thus is periodic with perioch — m. O

Remark. Actually, this proves something stronger: kete any aperiodic word
over an alphabet, || = k, and letu be any factor ofw containingk distinct
letters, and lebu be any factor ofw distinct fromw« beginning inu. Then the
abelian class of must have at least abelian returns. It follows that if a word
is not periodic, then for every positive integ&rthere exists an abelian factor of
length> N having at least + 1 abelian returns. In other words, the value- 1
must be assumed infinitely often.

Remark. Notice that the condition given by Lemma 3.1 is not neces$ary
periodicity. It is not difficult to construct a periodic woslich that some of its
factors have more thanabelian returns.

Notice also that a characterization of periodicity simt@Proposition 2.1 in
terms of abelian returns does not exist. Moreover, in the casbelian returns
it does not hold in both directions. Consider an infinite améc word of the
form {110010,110100}“. It is easy to see that the factbr has one abelian return
110010 ~4 110100. So, the existence of a factor having one abelian return does
not guarantee periodicity. The converse is not true as wiedre exist periodic
words such that each factor has at least two abelian retAmsxample is given
by the following word with period 24:

w = (001101001011001100110011)~. 1)

To check that every factor of this word has at least two abekdurns, one can
check the factors up to the length. If we denote the period of by u, then
every factor of length12 < [ < 24 has the same abelian returns as abelian class
of words of length24 — [ obtained fromu by deletingv. For a factor of length
longer thark4 its abelian returns coincide with abelian returns of pathif factor
obtained by shortening it by.

Now we continue with relations between semi-abelian retamd periodic-
ity. In this connection semi-abelian returns show interiatdproperties between
normal and abelian returns. E. g., normal returns admit bagacterization of
periodicity given by Proposition 2.1, for abelian returhe proposition does not
hold in both directions, and in the case of semi-abelianrnstthe proposition
holds in one direction giving a sufficiency condition for joelicity:
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Proposition 3.2. If a recurrent infinite word has a factor with one semi-abglia
return, then the word is periodic.

Proof. It is readily verified that this unique semi-abelian returare gives the
period. O

We note that this condition is not necessary for periodiddye can take the
same example (1) of a periodic word as for abelian returnsiceSeach of its
factors has at least two abelian returns, it has at leastéwn-abelian returns.

Lemma 3.1 holds also for semi-abelian returns (exactlyangesproof works):

Lemma 3.3. Let |X| = k. If each factor of a recurrent infinite word over the
alphabet: has at most semi-abelian returns, then the word is periodic.

4 The structure of abelian returns of Sturmian
words

In this section we prove the “only if” part of Theorem 1.2, andaddition we
establish some properties concerning the structure ofeabedturns of Sturmian
words.

The following proposition follows directly from definiti@and basic proper-
ties of Sturmian words:

Proposition 4.1. Semi-abelian returns of factors of a Sturmian word are Qbfis
fel words.

Proof. Consider semi-abelian return to a factoof lengthn starting at position
of a Sturmian wordv. We should prove that its semi-abelian return is either-a let
ter or of the formu Bb, wherea # b are lettersB is a bispecial factor ob. If w; =
w;n, then the lettetw; is semi-abelian return. b, = a, w;,, = b, a # b, then
there exists: > 0, such thatw; 1 ... w1 x = Witi4n ... Witkin, ANAW; x11 #
Wirki1en. SlNCew is balanced, we have that. .., = b, Wi pr14n = a. SO,
Witht2 - Withintl ~ab Uy @ANAW; . Wigpy1 ~ap Wign - Withiny1 IS SEMI-
abelian return te. By definition the factotw; 1 ... w; i r = Wit14n - - - Wisgin IS
bispecial. O

Corollary 4.2. Fix [ > 2. Then each facton of a Sturmian word has at most one
abelian return of lengtfa.

Now we proceed to the "only if” part of Theorem 1.2:

Proposition 4.3. Each factor of a Sturmian word has two or three abelian return
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The proof of this proposition is based on the charactenmatf balanced
words presented in [11]. We will need some notation from tueep.

Supposel < p < q are positive integers such thatd(p,q) = 1. Let %},
denote the set of all words < {0,1}? with |w|; = p. If w € #,, then the
symboll occurs with frequency/q in w. Define theshifto : {0,1}* — {0,1}¥
by o(w); = w;4:. Similarly defines : {0,1}7 — {0,1}9 by o(wp ... w,—1) =
W1 ... Wy—1Wo-

Sinceged(p, ¢) = 1, it follows that any element o¥,, , has the least periog
under the shift map. We will write w ~ w’ if there exist9) < k£ < ¢ — 1 such
thatw' = o*(w). In this case we say that, v’ arecyclically conjugateor that
w, w’ are cyclic shifts of one another. The equivalence claséw) : 0 < i < ¢}
of eachw € %, , contains exactly elements. Let

Wp,q = p,q/ ~

denote the corresponding quotient. Elementd\f, are called orbits. It will
usually be convenient to denote an equivalence clags,inby one of its elements
w.

Given an orbifw| € W, ,, let

W) <L W(1) <L+ <L W(g-1)

denote the lexicographic ordering of its elements. Defiedekicographic array

Alw] of the orbit[w] to be they x ¢ matrix whoseth row isw;). We will index this
array by0 < i,j < ¢ — 1, so thatA[w] = (A[w];;)?;2,. For0 <4,j < ¢ —1, let
w(;)[j] denote the lengtlij + 1) prefix ofw,; so thew; [j] are the lengthy + 1)
factors ofw, counted with multiplicity. For each this induces the following

lexicographic ordering:

woy[j] <o wwlil <o - <o wg-nlJ)-

Theorem 4.4.[11] Supposev € {0, 1}%. The following are equivalent:
(1) w is a balanced word,
(2) lwiy ]l < Jwesp ]l forall0 < i <g—2and0 < j <q— 1.

The following proposition from [11] gives a very practicabw of writing
down the lexicographic array associated to a balanced word.

Proposition 4.5. [11] Let [w] be the unique balanced orbit W, ,. Defineu €
Wp.q BY

u=20...01...1
S——

p
Then, for0 <i,5 < ¢ —1,
(1) A[U}]Z] = (O’jpu)i,
(2) Thejth column ofA[w] is (the vector transpose of) the waréFu
(3) wiiy = wi(oPu)i(o?u); . .. (69~ VPy),.
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Example 4.6. Consider a balanced wordr = 0101001 € %, ,. The lexico-
graphic ordering offw] is

0010101 <y, 0100101 <y, 0101001 <7, 0101010 <y, 1001010 <, 1010010 <y, 1010100,

so the corresponding lexicographic array is

0010101
0100101
0101001

Awl=] 0101010
10010710
10100710
1010100

We now apply the above technique for studying abelian retaafollows:

Fix a Sturmian words and a factow. First notice thav cannot have only one
abelian return, otherwise we immediately get a contraatictvith the irrationality
of letter frequencies in. We consider a standard facterof s of long enough
length to contairv and all abelian returns to. Let |w| = ¢, |w|; = p. Then all
the conjugates of are factors of, they are pairwise distinct, angdd(p, q) = 1
(see, e. g. [14]). Without loss of generality we can assuraetls "poor” in 1-s,
i.e., it contains fewet’s than the unique other abelian class of the same length.
Then if we consider im[w] the wordsw(;[7], we have that there exists< ¢ — 1
such thatvg)[j] ~u v for 0 < i < n, andw[j] #a vforn <i < ¢—1. Note
also thatA[w];, = A[w](i+q—p)m+1); from now on the indices are taken modulo
q.

The lexicographic array allows us to find abelian returns &s follows: For
a wordu denote byu[m, (] the factoru,, ...w,. If forani, 0 < i < n, we have
weyk, k + j] ~a v, wherev is as above anét > 0 is the minimal such length,
then by definitionw; [k — 1] is a semi-abelian return to. Notice also that if
Alw]i—1ye = LandAjwly, = 0, thenwg,y [k, k + j] ~p vform =i,... i+ n,
That is, we have exactly + 1 words from the abelian class ofstarting in every
column, and these words are in consecutive 1 rows (the first and the last row
are considered as consecutive).

Example 4.7.Consider abelian returns to the abelian clas$)0f in the Example
4.6. w()[2] ~q 001 for 0 < i < 4; we[1,3] ~q 001 for i = 4,5,6,0,1,
w2, 4] ~q 001 fori =1,...,5. So, the abelian returns are,)[0] = wq)[0] =
0, ’LU(4) [0] = 1, w(g)[l] = w(3)[1] = 01.

Proof of Proposition 4.3Suppose that some factoof length; + 1 has at least
abelian returns. Without loss of generality we may assuraesitts poor inl, and
in the lexicographic array, rows. . .n start with factors from the abelian class
of v. By Corollary 4.2 there can be at most one abelian return ofealfiength
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greater thari (length1 will be considered separately), so in a lexicographic array
we must have one of the following situations:

1) there exist; < ky andn; < ny < n such thatw,[j] has semi-abelian returns
of lengthk, for i = 1,...,ny, w;[j] has semi-abelian returns of length for

i =mny+1,...,n9, andw,, 1[j] has semi-abelian returns of length greater than
ko,

2) symmetric case: there exiBf < ky andn; < ny, < n such thatw;[j] has
semi-abelian returns of length for i = n; + 1,...,ng, w;[j] has semi-abelian
returns of lengttk, for i = ny + 1,...,n, andw,, [j] has semi-abelian returns of
length greater thahs,.

We consider only case 1) as the proof of case 2) is similast,Aim case 1)
one can notice that the words,, [k1, k1 + ¢] andw,,, ks, k2 + ¢| coincide. So
if we consider semi-abelian returns "to the left” of the werd,, [k1, k1 + j] and
W, ke, ko + 7], they should be the same, but they are not: the first one isgtle
k1, the second one is of lengih.

It remains to consider the case wheihas both letters as abelian returns. It
can be seen directly from the lexicographic array, thathirel and the last return
is 01 (in this case after a word not from abelian class ofe will necessarily have
a word from abelian class of i.e., the longest possible length of abelian return is
2). O

Theorem 4.8. A factor of a Sturmian word has two abelian returns if and ahly
itis singular.

Proof. The method of proof is similar to the proof of Proposition 4r8l relies
upon the characterization of balanced words from [11].

If a factor is singular, then it is the only word in its abeligass, so its semi-
abelian returns coincide with usual returns. Since evatpfaf a Sturmian word
has two returns [20], then a singular factor has two semiiaieeturns, and hence
two abelian returns.

Now we will prove the converse, i.e., that if a factoof a Sturmian word: of
length; + 1 has two abelian returns, then it is singular.

As in the proof of Proposition 4.3, we consider a standartbfae of s of
long enough length to containand all abelian returns te, and denoteéw| = ¢,
lw|; = p. Without loss of generality we again assume thét "poor” in 1-s, so
that there exists < ¢ — 1 such thatw;)[j] ~a v for 0 < i < n, andw [j] #aw v
forn<i<gq-—1.

It is not difficult to see that two abelian returns are possibl one of the
following cases:

Case 1) there exist < m < n, 0 < ki, ks < ¢ such thatw [k, — 1] is semi-
abelian return for ald <14 < m, w; [k — 1] is semi-abelian return for ath +1 <
1< n,;
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Case 2) there exist < m; < my < n, 0 < ki < ko < ¢ such thatw; [k — 1]
is semi-abelian return for all < i < my andmsy + 1 < i < n; wlke — 1] is
semi-abelian return for ath; +1 < i < ms.

Case 1)In case 1) we will assume that < ko, the proof in casé, < k; is
symmetric. We will consider two subcases:

Case 1a)A[w|mr, = 1, Alw|m+1)k, = 0. This means that;)[ks, ks + j] ~a v

fori =m+ 1,....m+n+1, andA[w]m(kz_l) =0, A[w](m+1)(k2_1) = 1. So, the
elementA[w]+1)k, IS @ left-upper element of a block of abelian class pand
Alw]m,—1) is a right-lower element of another such block. It is easyet® that
the latter block starts in columin. Therefore|v| = j + 1 = ko — k1 < ko.

In case 1a) we will prove that the abelian clas® @bnsists of a single word,

i.e., wylj] = vfori = 0,...,n. Suppose thatv[j] # w41 |j] for some

i € {0,...,n—1}. Since the rows grow lexicogaphically, it means that therste

0 <1< j<ky—1suchthatA[w]; = 0, Alw]it1y = 1. HenceAwl;g1) = 1,
A[w](i+1)(l+1) = 0, and SOW(;+1) [l + 1, [+1+ j] ~ab U. fm<i+1<n,
then the wordw ;1) [j] has returnw(iﬂ)[l], which is impossible, because it has
returnw;[ko]. Similarly we get that the case< i+ 1 < mandl+ 1 < k; is
|mp055|ble

Incase) < i+1 < mandk; < [+1 < ky, we get that the word) ;4.1 k1, k;1+
Jj] hasreturnu(;1)[k1, [] of lengthl—k; +1. Butin this casev, [[+1, [+1+j] ~
vfort =i+1,...,i+1+n. Contradiction with the condltlon that [k, — 1] |s
semi-abelian return to, [j]. So, the case <i+1<mandk; <[+ 1<kyis
impossible. Hencev;)[j] = w41 [j] fori = 0,...,n — 1, i.e., the abelian class
of v consists of a single word.

Case 1b)A[w|mi, = 0 0r A[w](m41)k, = 1. This means thab,,)[k2, k2 + j] ~ap
v. Hence the wordy,,[j] has semi-abelian return,,[k,] of lengthk, 4 1, and
the wordw,,,)[k1, k1 + j] has semi-abelian retum(m [k1, ko] of lengthky — k1 +1,
so the returns are different. This is impossible singg = w(n) k1, k1 + ¢ — 1].

Case 2)in case 2) the fact thadt ;) [k:] is semi-abelian return for &l < i < m;—1
andms + 1 < i < nimplies thatn > q/2. S0,k = 1, i.e., we necessarily have
return(s) of lengthl. Since there are two abelian returns totally, we can have
only one return of length, and this return i$). It means thatd[w],, = 0 for

0 <@ < n. SINCEW(m, (1,7 + 1] #ap v andw(m,41)[1,7 + 1] ~q v, We have
Alw]pm1 = 1, Alw]my411 = 0, and henced[w],,,o = 0, Alw]|m,+10 = 1. We

get a contradiction witd[w];y = 0 for 0 < i < n.

So, the converse is proved, i.e., every factor of a Sturmiardvaaving two
abelian returns is singular. O
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5 Proof of Theorem 1.2: the sufficiency

Here we prove the "if” part of Theorem 1.2, i.e., we estabtis@ condition on
the number of abelian returns forcing a word to be Sturmian, we prove that
a binary recurrent word with each factor having two or thrbelian returns is
Sturmian.

Proposition 5.1. If each factor of a binary recurrent infinite word has at most
three abelian returns and at least two semi-abelian retuthen the word is bal-
anced.

Notice that we formulate and prove auxiliary lemmas and psitjons in a bit
stronger way than we need for sufficiency in Theorem 1.2essthe condition
“each factor has two or three abelian returns” we put a weagrdition “each
factor has at most three abelian and at least two semi-abreliarns”. Using this
condition we will be able to prove the sufficiency in both Thexas 1.2 and 1.3:
since both words with two or three abelian returns and words two or three
semi-abelian returns satisfy this condition, we solve twabfems at once.

The proof of this proposition is rather technical, it is kg considering
abelian returns to different possible factors of the inéimitord and consecutively
restricting the possible form of the word. Denote the binagrd with at most
three abelian returns by € {0, 1}“. In the rest of this section instead of abelian
returns "to the left” we consider abelian returns "to thentig if vu is a factor
havingv’ ~,, v as its suffix, andvu does not contain as factors other words
abelian equivalent te besides suffix and prefix, then the abelian class @
abelian return to the abelian class«of It is easy to see that regardless of the
definition, the set of abelian returns to each abelian fastthhe same. We will
refer to the word: asright semi-abelian returof the abelian class of, so normal
semi-abelian returns can be regarded as left semi-abadtams. Right semi-
abelian returns do not necessarily coincide with left sabetian returns, but their
abelian classes also give the set of abelian returns. Thibiggloes not make any
essential difference, this modification of the definitiomsre convenient for our
proof of this proposition.

We will make use of the following key lemma:

Lemma 5.2. If each factor of a binary recurrent infinite word has at most three
abelian and at least two semi-abelian returns, then one ®fetters is isolated.

Proof. Considering abelian returns to letters, we get that evdtgriean appear
in blocks of at most three different lengths. Denote thesgtles for blocks of)’s
by 11, I5, I3, wherel; <[5 < I3, for blocks ofl’s by ji, j2, 73, Wherej; < js < 7js.
Notice that a letter can appear in blocks of only two or ongtles, then the third
length or the third and the second lengths are missing.

Consider right semi-abelian returns of the wasd:: they arel, 0'~"1 for
[ = 1y, I3 (if 0 appears in blocks of corresponding lengthg),'0* for j = j; >
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1, 72, j3 (if 1 appears in blocks of corresponding lengths) arior j;, = 1. Some
of these returns should be missing or abelian equivaleritiers in order to have
at most three abelian returns totally. So we have the foligweases:

— ja, j3, I3 are missing, i.eaq € {04171 02171}« In this case abelian returns are
1,071, and1/1~10" for j; > 1 or0for j; = 1.

— 1y, I3, j3 are missing, i.eq € {0171 01172}«. Abelian returns are, 1/2-10",
and1/1=104 if 5, > 1, or0, if j; = 1.

— jo, j3 @re missingy; = 2, lo = 2l orlz = 2y, i.e.,w € ({0",0%,01}152)«,
Abelian returns are, 01, 0'~%1.,

—I3, js are missingly = 211, j; = 20rj, = 2, w € ({01, 0%1}{12,17})~. Abelian
returns ard, 011, 17710 (if 5 > 1) or 0 (if j = 1).

— ja, I3, j3, I3 are missing, them = (0"119)* is periodic. This case is impossible
since0” has only one semi-abelian return.

Notice that the first two cases are symmetric. Considerimdjai returns to
the word1710, we get symmetric case8 ¢hange places with, j, change places
with [, k£ = 1,2, 3). Combining the cases obtained by considering abelianmgtu
to 10" with the cases obtained by considering abelian returrg tp we finally
get the following remaining cases (up to renaming letters):

1) jo, j3, I3 are missing, i.ew is of the formw € {0171 '2171},

2) 13, jsaremissingly = 1,1, = 2, j; = 2, jo = 4, i.e.w € ({0,02}{12, 1})~.
3) I3, jsaremissingl; = 1,1, =2, j; = 1, jo = 2, i.e.w € ({0,0%}{1, 12})~.
4) 13, jz are missingl; = 2,1, = 4, j; = 2, jo = 4. i.e.w € ({0%,01}{12, 14})~.

Case 1) w € {0"1],0217}~,

In the first case we should prove that= 1. We omit the index for brevity:

j = j1. Suppose that > 1. Consider right abelian returns to the wai@?. They
arel, 1771(0"17)k0" for all k > 0 such that the wor@17 (0" 17)*0% is a factor
of w. Therefore, we have at most two valuescdprobably, including)).

Right abelian returns to the wotd0' 1 are1, (0217)™0" 1 for all m > 0 such
that the wordL0117(0"219)™0" 1 is a factor ofw. So, we have at most two values
of m (probably, including)).

Notice that we cannot have only one valuekadind only one value ofn si-
multaneously, since in this case we have periodic woee ((07117)% (0'217)m1)«,
and the word 01" )™ ~10%2 has only one semi-abelian return.

Taking into account conditions for andk, which we have just obtained from
considering abelian returns to both” and 170" 1, we find that there are two
opportunities:

Case layw € ({(0"19)% (01179)*}0217), 0 < ky < ko. The word02170/1 17~
has returnd, 01, 0"2(170")*~*1 for all k such that the wor@">17 (0" 17)%0" is
a factor ofw. To provide at most three abelian returnsshould admit only one
value of k. In this case there is also only one valuerof so the case 1la) is
impossible.
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Case lb)w € (019, {(0%219)™ (0219)™2})*, 0 < m; < my. The word
1701117021 has returnsl, 10", 10" (1702)™~1 for all m such that the word
10117(0217)m0" 1 is a factor ofw. To provide at most three abelian returas,
should admit only one value of.. In this case there is also only one valuekof
so the case 1b) is impossible.

Thus, in case 1)’s are isolated.

In cases 2)—4) we need to consider words containing all fmokls, otherwise
we get into conditions of case 1) in which we proved that are isolated. The
proof is similar for the three cases, and is based on studfdjan returns of
certain type. When we examinee ({0",0'2}, {171, 172})~, we consider abelian
returns to the wordg/* 172 and0217t, and with a technical case study obtain that
if both words have at most three abelian returns, tla@s periodic of a certain
form, and then find its factor having one semi-abelian return

Case 2) w € ({02, 0 }{1,1%})~.

Consider abelian returns of the wditl 2. Factors ofw from the abelian class
of 0212 are the following:0%12, 1202, 0110, 1001. Notice that each of these words
is necessarily a factor af. Consider right semi-abelian returns to each factor:

e 0212, 0120 have right semi-abelian retufn

e 1202 has right semi-abelian returns of the form = (02102)"*1 and/or
ap = (0210%)%20212 for someiy, iy > 0

e 10?1 has right semi-abelian returns of the form = (0%1)"1 and/ora, =
(01)%021 for someis, iy > 0

We will also use abelian returns of the wart:

e 01 could have right semi-abelian returfis returns of the formsy, =
(1021)7102 with j; > 0 anda), = (1021)7210* for somej, > 0

e 0210, 010 (not necessarily factors af) have right semi-abelian retufn

e 0%10% could have right semi-abelian returfisreturns of the forms/;, =
(120%)730? with j; > 0 anda/, = (120%)7+10? for somej, > 0

¢ 10* has right semi-abelian retuin

These are summarized in the table below:
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abelian class  word possible right semi-abelian returns
0%1%2,01%20 | 0
0212 1202 oq = (0210%)71, ap = (0710%)20712
for someiq, i, > 0
02 | o= (071, 0y = (0T1)70°1
for someis, iy > 0
01 0, af = (10%1)710* with j >0,
041 ab, = (10%1)7210* for somej, > 0
0310, 0103 | 0
oy = (1?0%)7410? for somejy > 0
10% 1

Notice thato; ~,, a3 wheni; = i3, anda) ~, o whenj, = js.

If factors from the abelian class 6f12? have only letters as abelian returns,
then we obtain periodic word = (0%*1?)~, and this word does not contain all
four blocks. So, a factor from the abelian clas®8i? should contain an abelian
return of length longer thai (referred to asong returnsin the further text), so
we consider the four cases corresponding to retagrtiroughay.

Case 2a)let 120% have a returny; with i; > 0. Thenw contains a facton =
120%(0%10%)™1. Now consider right semi-abelian returns to the abeliasscizt
0*1. One can find right semi-abelian returdigin the factor0*10 of «) and 1
(in 10*1). Sincew has a prefixi?0?, it means that there is a long right semi-
abelian return ending in%0%, i.e., we have right semi-abelian retusify or .

A suffix 0210%1 of « implies that there is a long right semi-abelian retufnor
o. So, the only possibility is that an abelian clas9)6f has abelian returng,

1 anda} ~q o) with j; = j3 > 0, and hence nothing else. The factohas

a suffix 0210%1, so the factor0?10? here has right semi-abelian retuss, and
thereforeu is continued in the unique way’ = 120%(0%10%)(120%)730%. One
can find here two right semi-abelian retuthand1 to the abelian class @F12,
and we started with the first long right semi-abelian retuynso the three returns
to 0212 are0, 1 anda; ~, «3. The factoru’ has a suffix120?, so the factor
1202 here has right semi-abelian return, therefore it is continued in the unique
way: v’ = 1%20%(0%210%)"(1%02)73(0*10%)"1. Continuing this line of reasoning,
we obtain a periodic word. One can find a factor having one sdraiian return,
e. g.,(120%)3~112, Hencel?0? has no long right semi-abelian returns of the form
.

Case 2b)let 120% have a returmys with i3 > 0. Thenw contains a factor
u = 10%1(0%1)1. Now consider right semi-abelian returns to the abeliascla
of 0*1. One can find right semi-abelian returi¢in the factor0?10 of u) and1

(in 10*1). Sinceu has a prefix10210%, it means that there is a long right semi-
abelian return ending in0%10?, i.e., we have right semi-abelian retuf or /).

A suffix 0712 of u implies that there is a long right semi-abelian retufnor o,
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So, the only possibility is that an abelian class16f has abelian returng, 1
anda) ~, af with j; = j3 > 0. The factoru has a suffix)*12?, so the factor
011 here has right semi-abelian retusf), sou is continued in the unique way:
v’ = 10%1(0%1)"(10%1)7*02. This factor has a suffix0?10?, so the factorl0*1
here has right semi-abelian retusg, and therefore it is continued in the unique
way: v’ = 10%1(0*1)%(10%*1)7*(0*1)"*1. Continuing this line of reasoning, we
obtain a periodic word. One can find a factor having one sdrali@n return, e.
g., (0*1)=710%. Hencel0?1 has no long right semi-abelian returns of the farm

Case 2c)let 120% have a returnv, with i, > 0. Notice that if120? has only
return ay, thenw = (120%(0210%)20?)~, andw does not contain the blodk.
We proved that there is no long right semi-returns of the form and as, so
the only possibility is that 20 has two returnsy, and1, and10%1 always has
return1, otherwise this abelian class has more tBaelian returns. Sd20% is
followed by either(0210?)?20%12 or 1. In both cases we can determine several next
letters: in the first case the next symbols@iébecauser contains maximum two
consecutive -s), in the second case the next symbolsléxe(since10?1 always
has returnt, and11 is always followed by00). So, 120? is followed by either
(0210?)202120% or 120%. Both continuations have suffi¥0?, which is followed
by eitherl or as, etc:

. (02102)1'2021202 <
(02102y2021202<i
1202 < Ce

1202 '
1202<i (02102y2021202<i -

1202

Thusw € {(0%10%)2021%02, 120*}*. We are interested in the case when all four
blocks are contained i, so we geti, > 0, otherwisew does not contain the
block 1!, and we get into case 1), which we proved is impossible.

So,w contains a factor, = 120%(0210?)?20%12 for somei, > 0. Now consider
abelian returns to the abelian clas9)6f. One can find right semi-abelian returns
0 (in the factor0*10 of u) and1 (in 10*1). Sinceu has a prefix120%, it means
that there is a long right semi-abelian return endingot, i.e., we have right
semi-abelian return), or . A suffix 0*12 of « implies that there is a long right
semi-abelian return/ or of,. The only possibility is that an abelian class1é6?
has abelian return 1 andaj, with j, > 0, and nothing else. The set of abelian
returns0, 1 anda) ~,, o} is impossible since in this case the abelian cl6s
has other abelian returns theyl, a». The factor: has a suffix)*12, so the factor
011 here has right semi-abelian retuf), sowu is continued in the unique way:
u = 120%(0210?)"20%1(10?1)720%. This factor has a suffix0*102, but we proved
above that in the case 2c) the fact®@1 is always followed byl, so we get a
contradiction. Hencé&?0? has no returns of the form,.

Case 2d)et 10%1 have a return, with i, > 0. Notice that if10%1 has only return
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ay, thenw = (021(011)%)«, andw does not contain the block. We proved that
there is no long returns of the forms, a, andas, so the only possibility is that
1021 has two returns,, and1, and120? always has returih. So,10%1 is followed

by either(0*1)™021 or 1. In the second case we can determine several next letters
to be001 (because and1 is always followed by0, and120? always has return

1). So,10%1 is followed by either(0*1)*40%1 or 10°1. Both continuations have
suffix 1021, which is followed by eithef0*1)0%1 or 1:

(041)i4021<
1021 <

Thusw € {(011)0%1,10%1}*. We are interested in the case when all four blocks
are contained inv, so we get, > 0, otherwisew does not contain the blodK.
Thusw contains a factor, = 1021(0*1)*0%*1. Now consider abelian returns
to the abelian class of'1. One can find right semi-abelian returh¢in a factor
0%10% of u) and1 (in 10*1). Sinceu has a prefix 02102, we have a long right semi-
abelian return ending in0%102, i.e., o or afy. A suffix 02101 of v implies that
there is a long right semi-abelian returfor o/, with j, > 0. The only possibility
is that an abelian class 6f1 has abelian returrg 1 and«/, with j, > 0. The set
of abelian returng, 1 anda) ~, a3 is impossible since is this case the abelian
class of0?12 has other abelian returns thanl anda,. Considering the suffix
021021 of u, we get that the factdi*10? here has right semi-abelian retutf), so
w is continued in the unique way! = 10%1(0*1)™0%(120%)7#10. The factoru’
has a suffixt0%10?, so the factoit0?1 here has right semi-abelian returp, soitis
continued in the unique way:” = 1021(01)%0%(120%)7+1(0*1)*0%1. Continuing
this line of reasoning, we obtain a periodic wardIts factor(01)%~10* has only
one semi-abelian return. Hent@’1 has no long returns,.

So, we are done with the case 2)

Case 3) w € ({0,0%}{1,1%})~.

Consider abelian returns for the waitll. Factors ofw from the abelian class
of 021 could be the following102, 0%1, 010, and each of them necessarily appears
inw.

e 102 has right semi-abelian retuin

e 021 has right semi-abelian returns of the form = (101)%0 and/ora, =
(101)%210? for someiy, i > 0.

e 010 has right semi-abelian returns of the form = (110)%0 and/ora, =
(110)%10 for someis, iy > 0.

Symmetrically, we get possible abelian returnsifér:

e 012 has right semi-abelian retufn
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e 120 has right semi-abelian returns of the forrth = (010)’*1 and/ora), =
(010)72012 for somejy, j» > 0.

e 101 has right semi-abelian returns of the forrh = (001)’31 and/ora), =
(001)7+01 for someyjs, j4 > 0.

These are summarized in the table below:

abelian class word | possible right semi-abelian returns
102 1
0%1 0’1 | aq = (101)"0, ay = (101)™107 for someiy, iy > 0
010 | a3 = (110)%0, cy = (110)™10 for someis, 14 > 0
012 0
120 1?0 | o} = (010)7'1, o}, = (010)2012 for somejy, jo > 0
101 | a4 = (001)21, o/, = (001)7+01 for somejs, j, > 0

Notice thato; ~, as wheni; = i3, anda) ~, of whenyj; = js. In this case
the lengths of blocks af’'s and1’s are the same, so we can use symmetry in the
proofs.

If factors from the abelian class 6f1 have only letters as abelian returns,
thenw = (0%1)~, and this word does not contain all four blocks. So, a factamf
the abelian class @1 should contain a long abelian return (of length longer than
1), so we consider the four cases corresponding to long returry,.

Case 3a)let 0?1 have a returny; with i; > 0. Thenw contains a factor =
021(101)™0. Now consider abelian returns to the abelian class’6f One can
find right semi-abelian returnis(in a factor1101) and0 (in 0110). Sinceu has a
prefix 0012, it means that there is a long right semi-abelian returnremiti 0212,

i. e, b oraj. Asuffix 1010 of u implies that there is a long right semi-abelian
returnaj, or oj. So, the only possibility is that an abelian clasd4f has abelian
returns0, 1 anda) ~, o} with j; = j3 > 0. Considering the suffix010 of «,
we get that the factor01 here has right semi-abelian retuzf), sou is continued
in the unique wayz’ = 021(101)(001)71. One can find in/ abelian return®
and1 to the abelian class @f1, and we started with the long retuen ~;, as.
The factoru’ has a suffix)?12, so the factof01 here has right semi-abelian return
a1, and hence/ is continued in the unique way” = 021(101)(001)7(101)™0.
Continuing this line of reasoning, we obtain a periodic wandvhich the abelian
class of1(101)" has one semi-abelian return. Heri¢é¢ has no long returna;,
and symmetricallyt>0 has no long returna’.

Case 3b)let 010 have a returnvs with i3 > 0. Thenw contains a factor, =
010(110)%0. Now consider abelian returns to the abelian clast®*6f One can
find right semi-abelian returns (in a factor1011) and0 (in 0110). Due to the
prefix 0101 of w, there is a long right semi-abelian return endin@i01, i.e., o}

or oj. The suffix1100 of w implies that there is a long right semi-abelian return
o) or of,. We proved that there are no long returns of the ferinso 120 has
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right semi-abelian returng, 1, «, of. None of them are abelian equivalent, a
contradiction. Henc®?1 has no returns of the forms, and symmetricallyl0
has no returnss.

Case 3c)let 0?1 have a returnv,. The abelian class df01 always has abelian
return1. If 021 has only returmy, thenw = ((101)210?1)~, and the factof?
has only one abelian return. Sl has also other abelian returns. Taking into
account that there are no long returns of the formsand a3, and s, is never
abelian equivalent ta,, we get that there should be abelian retGrnHence,
there is no abelian retum, and010 is always followed by, 0%1 is followed by
either0 or a,. So,w contains a facton = 021(101)2102, i, > 0. Now consider
abelian returns to the abelian class1é6. Sinceu has a prefix)?12, it means
that there is a long right semi-abelian return endin@it?, i.e., we have right
semi-abelian return), or of. A suffix 120? of « implies that there is a long right
semi-abelian retura, or of,. We proved that we never have long returp so
we have right semi-abelian retury. Symmetrically to what we proved above,
we get thatl01 is always followed byl, 110 is followed by eitherl or o}. So,
the last occurrence dfl0 in u is extended by, i.e. we get the unique extention
of u: v/ = 0?1(101)210(010)’201%. Considering the last occurrence of the factor
001 in u/, we get that it should have right semi-abelian retusni.e. we get the
unique extention” = 021(101)210(010)7201(101)210%. Continuing this line
of reasoning, we get a periodic word, in which the fa¢t@10)’20 has only one
semi-abelian return. Hence we have no returns of the forandas,.

Case 3d)In the remaining case the wofd0 has return$) and a4 with 74, > 0,
and the wordl01 has returnsl and ), with j; > 0. So,w contains a factor
u = 010(110)*10. Considering the last occurrenceldfl in «, we see that it has
returnc, sou is extended in the following wayi10(110)*1(001)7*01. The last
occurrence 0010 in this word necessarily has right semi-abelian retuyso the
word is extended uniquely as follow&10(110)*1(001)740(110)*10. Continuing
this line of reasoning, we get a periodic word. In this woyd> 0, otherwise we
do not have occurrences of the black and the abelian class 0f10)*1 has only
one semi-abelian return.

So, we are done with the case 3)

Case 4yw € ({0%,0*}{12,14})~

This case is considered in exactly the same way as the cagec8hpbidering
abelian returns t®*1? and 0%1. The only changes which should be done are
doubling0's and1’s everywhere except returns of lengtlfletters). O

Lemma 5.3. If w € {0"1,021}*, 0 < I; < [, is a recurrent word such that
each of its factors has at most three abelian returns andasdtlevo semi-abelian
returns, therl, = [; + 1.

Proof. Suppose that, > I, + 1. Consider abelian returns to the ward*!: it
has right abelian returrisand1 (0" 1)*10%+* for all £ > 0 such thab}1(01)*0%
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is a factor ofw, thus there could be at most two different values: ¢probably,
including 0). Consider abelian returns to the wart10: it has right abelian
returns0 and (027110)70"~!1 for all ; > 0 such thatl0"1(0%1)/0"1 is a factor
of w, thus there could be at most two different valueg gprobably, including
0). If we have only one value of and one value of simultaneously, thew is

periodic,w = ((0"1)*(0'21)71)~. In this periodic word ifc; = 0, then the factor
04, has one semi-abelian return Aif > 0, then the abelian class 0f0"'1)** has
only one semi-abelian return. So, we have two cases:

Case Lw € (021{(0%1)% (041)*2}), 0 < k; < ko. In this case one can find
four abelian returns t6'210-1: 0, 10471, (104)k~1102-1, (100 )k2—110k21,
Case ll:w € (041{(0%21)7 (021)2})*,0 < j; < jo. In this case one can find four
abelian returns ta@0"210"10: 0, 0211, (027110)71 =10 11, (0'27110)%2~ 100 11,
]

The proofs of Lemma 5.2 and Lemma 5.3 immediately imply

Corollary 5.4. If each factor of an infinite binary recurrent word has at
most three abelian returns and at least two semi-abelianrres, thenw €
{0h1, 01},

Lemma 5.5. If each factor of a recurrent infinite binary word has at most three
abelian returns and at least two semi-abelian returns, thdn 2-balanced.

Proof. For a lengthn, consider abelian classes of factors of lengtif w. Denote
by A the abelian class of factors containing the smallest numibkes: A = {u €
Fo(w) : |uly = minyep,w)|v)1}. The next class we denote . B = {u €
Fo(w) : [uly = min,ep, ) [v|1 + 1}, the next one by If w has only two abelian
classes, then it is Sturmian, so we are interested in thewlaserw has at least
three abelian classes. For a lengthwe associate to a word a word£™ over
the alphabet of abelian classes©0bf lengthn as follows: for an abelian clasg
of words of lengthn, £ = M iff wy, . .. wysn_y € M. In other words(¢\™),=0
is the sequence of abelian classes of consecutive factteagthn in w.

It is easy to see that™ contains the following sequence of classes:
CB?IA??B for somej,,jo > 1, i.e. for somei we havegl.(") . '52‘(@1+;’2+1 =
CB’* A2 B. Then we have

w; = 17wi+n = 07
wk:wk+nf0rk:i+1,...,i+j1—1,
Wi+tj, = 17wi+j1+n = 07

W = Wyp fOrk =i+ 1 +1,... i+ j1 + Jo,

Witjy+j2 = 07 Witjy+jo+n = L.

e, w;.. . witj 45 = 1ulv0, Wity ... Witj,4jotn = 0uOVL,
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By Corollary 5.4 we havev € {0"1,0" 11}, so|u| > 2I; + 1; u contains
both letter®) and1 and has a suffig’:. It follows thatj, = 1. So, the clas® has
the following3 abelian returnsd, 1, 01. All the returns are of length at moatso
if after an occurrence oB we haveC, then the next class iB again, otherwise
we will get a longer return. So there are no other classesttiese. In addition,
we proved that if for length there are three abelian classes, thegl'ihletters A
andC are isolated. O

Proof of Proposition 5.1By Corollary 5.4 and Lemma 5.5, we have thats 2-
balanced and it is of the forq011, 04+11}« for some integel;. Suppose that

is not balanced. Then there exist$or which there exist three classes of abelian
equivalence in, (w); as above, denote these classesiby3 andC'. Arguing as

in the proof of Lemma 5.5, consider a sequence of clagses’ AB which we
necessarily have ia™ for some integeyj, denote its starting position by— 1.
Corresponding factor iw is

wi—1 = 0, wi—14p =1,

w; = 1, Wi, =0,

wp =wgapfork=i+1,...014+75—1,
Wiy = 1, Wit jn =0,

Witj+1 = 0, Wit jp14n = 1.

le, w;...wiyj11 = 1ul0, Wity ... Wirjp14n = O0u0l. Remark thatu =
wiy1 ... wip; has prefixo™ 10.

Now consider abelian returns to an abelian clB8s= A1 of lengthn + 1.
The factor starting from the positiort 1 is of the form B0 so it belongs to this
class, and has an abelian ret@rnThe word starting from the positioin+ j is
of the form B0 and has an abelian retuin The word starting from the position
1+ [, — 1 belongs to this class, and has an abelian retarrSo we have at least
three return®), 1 and10. Now consider the occurrence of claB8 = Al to the
left from the positioni + 1. One can see that the positionand: — 1 are from
the classB1 = (0, so the preceding occurrence Bff = Al has an abelian
return of length greater thay which is a fourth return, though there should be
at most three. So we cannot have more than two classes ohalagjuivalence
in a binary word having two or three abelian returns, i.echsword should be
balanced. Proposition 5.1 is proved. O

Lemma 5.6. Letw € {0,1}* be a recurrent balanced word. Thenis either
Sturmian or periodic. In the latter case there exists a (f@gempty) bispecial
factor B of w and a lettera € {0, 1} such thatBa is a factor ofw having exactly
one first return inw. Sincea Ba is the unique element in its abelian class, it follows
that if w is periodic thenw contains a factor having only one semi-abelian return.
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Proof. Sincew is assumed balanced, contains at most one right special factor
for each length. If w is not Sturmian, thew is ultimately periodic, and hence pe-
riodic since it is recurrent. From here on we shall assumttha periodic. Thus
w has only a finite number of right special factors. /Ass recurrent, the longest
right special factor ofv is also a bispecial factor af. Lete = By, By, ..., B,
denote the bispecial factors @fin order of increasing length. Thus, is also the
longest right special factor af. SetB = B,,_;. Then there exists a unique letter
a € {0,1} such thauB is a right special factor. In particular bottBa andbBa
are factors ofv wherea # b € {0, 1}. We claim that the only right special factor
of w which begins inBa is B,,. Clearly, B, is a right special factor beginning in
Ba (sinceBa is left special and hence must coincide with the prefixBgfof its
same length). To see that no other right special factar degins inBa, let R
denote the shortest right special factornobeginning inBa. ThenR is also left
special and hence bispecial. It follows tat= B,,. SinceB,, is also the longest
right special factor ofv the claim is established. Having established the claim, it
follows thataBa has a unique first return iw. If not, there would exist a right
special factor beginning imBa. From the previous claim it would follow that3,,

is right special contradicting thd,, is the longest right special factor. O

We are now ready to prove the sufficiency condition:

Corollary 5.7. If each factor of a binary recurrent infinite word has two ordh
abelian returns, then the word is Sturmian.

Proof. Follows from Proposition 5.1 and Lemma 5.6. 0J

Corollary 5.8. An aperiodic recurrent infinite worab is Sturmian if and only if
each factoru of w has two or three abelian returns in.

Proof. Lemma 3.1 implies that an aperiodic word witlor 3 abelian returns must
necessarily be binary. O

6 Proof of Theorem 1.3

In this section we prove the characterization of Sturmiandsan terms of semi-
abelian returns.

Proof of Theorem 1.3MNe have that for every factor in an infinite word the number
of its semi-abelian returns is not less than the number ofiabeeturns. So,
Proposition 5.1 and Lemma 5.6 imply that if each factor of mfnite binary
recurrent word has two or three semi-abelian returns, thembrd is Sturmian.
Now we prove that each factor of a Sturmian word has at mosetbemi-
abelian returns. Suppose that a factaf a Sturmian word has more than three
semi-abelian returns. By Proposition 4.3 this factor hamast three abelian
returns, so there are at least two semi-abelian returndwvanecabelian equivalent.
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Due to Proposition 4.1, semi-abelian returns to factors tafrian words are
Christoffel words, i.e., letters or words of the foub, so if we have more than
three semi-abelian returns tothen there should be both retuim81 and1 B0.

In the casdv| > |0B1| the return) B1 is given by a factof B121 B0 for some
x € {0,1}*, where0B1z is abelian equivalent to. The returnl B0 is given by a
factor1B0y0B1 for somey € {0, 1}*, wherel By is abelian equivalent to. So,
we have factor$x1 and0y0, wherer andy are abelian equivalent, a contradiction
with balance.

In the casel < |v| < |0B1| we have a factor whose (intersecting) prefix
and suffix aré) B1 and1 B0, resp., and another facterof the same length whose
prefix and suffix ard B0 and0B1, resp. SoB should havel and0 at the same
position.

If || =1, i.e.,vis aletter, it is easy to see thahas two semi-abelian returns.

Thus, two different semi-abelian returns of the same leggtater tharl are
impossible. This concludes the proof. O

Similarly to Corollary 5.8, we get

Corollary 6.1. An aperiodic recurrent infinite wora is Sturmian if and only if
each factor of w has two or three semi-abelian returnsuin
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