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Abstract

Finding a low-dimensional embedding of a graph of n nodes in Rd is an essential
task in many applications. For instance, maximum variance unfolding (MVU) is a
well-known dimensionality reduction method that involves solving this problem.
The standard approach is to formulate the embedding problem as a semidefinite
program (SDP). However, the SDP approach does not scale well to large graphs.
In this paper, we exploit the fact that many graphs have an intrinsically low di-
mension, and thus the optimal matrix resulting from the solution of the SDP has
a low rank. This observation leads to a quadratic reformulation of the SDP that
has far fewer variables, but on the other hand, is a difficult convex maximization
problem. We propose an approach for obtaining a solution to the SDP by solving
a sequence of smaller quadratic problems with increasing dimension. By utilizing
an interior-point algorithm for solving the quadratic problems, we demonstrate by
numerical experiments on MVU problems that our approach scales well to very
large graphs.

Keywords: graph embedding; dimensionality reduction; maximum variance un-
folding; semidefinite programming; concave quadratic programming; interior-
point methods
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1 Introduction
Let G = (V,E) be an undirected graph with nodes V = {1, 2, . . . , n} and edges
E ⊂ V × V . The problem of isometrically embedding the graph G into some
d-dimensional space Rd is to assign each node i a point yi ∈ Rd such that (eu-
clidean) distances between adjacent nodes are preserved. That is, given the lengths
Dij for each edge {i, j} ∈ E, the points yi are required to satisfy the condition
‖yi − yj‖ = Dij . In particular, we are interested in finding an embedding that
reveals the intrinsic, possibly low dimension of the graph. As discussed, for in-
stance in [12], [28] and [24], such an embedding can be obtained by maximizing
pairwise distances between the points yi under the above neighbour distance con-
straints.

In this paper, we consider relaxed graph embeddings that maximize pairwise
distances of the output points yi under two constraints. First, rather than ex-
actly preserving the distances, which would in general be impossible, we only im-
pose upper bounds on the distances between adjacent nodes. Second, we require
that the barycenter of the points yi is at the origin. Maximization of pairwise
point distances under these two constraints leads to the quadratically constrained
quadratic program (QCQP)

max
y1,y2,...,yn∈Rd

n∑
i=1

n∑
j=1

‖yi − yj‖2 (1a)

s.t.
n∑
i=1

yi = 0, (1b)

‖yi − yj‖2 ≤ D2
ij, {i, j} ∈ E (1c)

with some embedding dimension d. We will show that under mild assumptions,
this relaxed graph embedding problem has a well-defined solution.

For solving graph embedding problems of the form (1), the standard approach
is to consider a semidefinite reformulation as, for instance, in [28]. By introducing
the matrix K = Y Y T with Y =

[
y1, y2, . . . , yn

]T ∈ Rn×d, problem (1)
can be reformulated as the semidefinite program (SDP)

max
K∈Sn

tr(K) (2a)

s.t. K � 0, (2b)
Kii − 2Kij +Kjj ≤ D2

ij, {i, j} ∈ E, (2c)
n∑
i=1

n∑
j=1

Kij = 0, (2d)

where Sn denotes the cone of symmetric n× n matrices.
Problem (1) and its semidefinite formulation (2) appear in pattern recogni-

tion and machine learning (see e.g. [22] and [28]). Namely, based on the above
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ideas, Weinberger and Saul [28] developed the well-known maximum variance un-
folding (MVU) method for dimensionality reduction. Given a set of input points
{xi}ni=1 ⊂ Rd, a relaxed form of the MVU method described in [28] solves a
special case of problem (1). In the MVU problem, the edge set E is constructed
by adding an edge between each input point xi and its k-nearest neighbours and
also between the k-nearest neighbours of each input point. An example of such a
graph is given in Figure 1. The distances Dij in the MVU problem are distances
between adjacent input points (i.e. Dij = ‖xi − xj‖ for {i, j} ∈ E).

Figure 1: k-nearest neighbour graph of an example dataset.

Reformulation of the difficult convex maximization problem (1) as the SDP
(2) has the advantage that it is a concave maximization problem over a convex
set, and thus any local maximum is a global one. Moreover, the SDP formulation
eliminates the need of knowing the embedding dimension d a priori. Once the
SDP has been solved, an embedding can be obtained from the eigenvectors of
the matrix K corresponding to few largest eigenvalues, as shown for instance
in [28]. The standard interior-point SDP solvers are applicable to this problem
(see e.g. [5], [6], [23], [25] and [33]). Unfortunately, they scale poorly to large
problems since the SDP (2) hasO(n2) variables. Moreover, the interior-point SDP
solvers involve factorization and storage of a dense Schur complement matrix of
size m × m, where m is the number of constraints in the problem. Since the
number of edges can be significantly larger than the number of nodes in the graph
(see e.g. Table 1 in Section 4), this step incurs a major computational bottleneck
particularly when solving the MVU problem.

In this paper we develop a scalable approach for solving the graph embedding
SDP (2). Based on the theory of semidefinite programs and their low-rank for-
mulations developed in [9], [10], [11] and [15], we show that problem (1) is in
fact a low-rank formulation of problem (2). Motivated by this fact, we develop an
incremental low-rank method for solving the SDP (2). The idea of the method is
to solve a sequence of small quadratic problems (1) with increasing dimension d
until a solution to the SDP is obtained. Furthermore, we show that such a solution
is globally optimal for (1) with dimension d that gives an upper bound for the rank
of the optimal solution of (2). Due to zero duality gap, which we will establish for
the SDP (2) and its dual under mild assumptions, we also obtain a solution to the
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dual problem.
Theoretically, the incremental low-rank approach has computational advan-

tages over the interior-point SDP solvers and the low-rank SDP solver by Burer
and Monteiro [9,10] and Burer and Choi [8]. The former methods attempt to solve
the SDP directly, and the latter solves quadratic problems of larger dimension and
reduces the dimension as necessary. Hence, the advantage is particularly large
when solving the SDP (2) for a graph having a low-dimensional embedding. As
a solver for the quadratic problems, we use IPOPT, an interior point filter-based
line search algorithm by Wächter and Biegler [30, 31]. As we will show, another
major factor contributing to the good performance of our approach is the ability of
IPOPT to exploit second-order information and sparsity in the highly structured
graph embedding problem.

Utilizing IPOPT in our low-rank framework, we conduct a series of numerical
experiments on MVU problems of the form (2) constructed from synthetically
generated datasets. By these experiments, we demonstrate that by formulating the
MVU problem (and also more general graph embedding problems) as a sequence
of smaller quadratic problems, the solution can be obtained far more efficiently
than by using traditional SDP solvers. We also show that the IPOPT algorithm
incorporated into our low-rank framework is more efficient than the first-order
L-BFGS algorithm used in the low-rank method of Burer et al. Previously, the
method by Burer et al. has been applied to the MVU problem in [16] and [27].

The remainder of this paper is organized as follows. In Section 2, we provide
the theoretical results for the incremental approach to solving the SDP (2) via
a sequence of low-dimensional problems (1). A practical implementation based
on the results of Section 2 and the IPOPT algorithm is described in Section 3.
Section 4 is devoted to numerical tests demonstrating the computational efficiency
of our approach. Finally, in Section 5 we conclude the paper and point out some
directions of future research.

2 Low-Rank Approach and Optimality Conditions
In this section, we recall the main results concerning the relation between optimal
solutions of semidefinite programs and their low-rank reformulations. We will
show that problem (1) is a low-rank reformulation of problem (2), which allows
us to apply the standard results. These results will be utilized in Section 3, where
we develop an algorithm that is guaranteed to give a solution of the SDP (2) by
solving a sequence of smaller problems (1).

2.1 Optimality Conditions

In what follows, we recall the main results by Burer and Monteiro [9,10], Grippo
et al. [11] and Journée at al. [15]. These results give necessary and sufficient
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conditions that a (local) solution to the QCQP

min
Y ∈Rn×d

C • (Y Y T )

s.t. Ai • (Y Y T ) = bi, i = 1, 2, . . . ,m
(3)

arising from the change of variables K = Y Y T with Y ∈ Rn×d such that d ≤ n
is also a solution to the standard form SDP

min
K∈Sn

C •K

s.t. K � 0,

Ai •K = bi, i = 1, 2, . . . ,m.

(4)

Here the operator • between two n× n matricesA andB is defined as

A •B = tr(ATB) =
n∑

i,j=1

aijbij.

A key assumption made in [11] is that problem (4) and its dual have nonempty
solution sets and the gap between the primal and dual solutions of the SDP (4) is
zero. The dual of problem (4) is

max
λ∈Rm

bTλ

s.t. C −
m∑
i=1

λiAi � 0.
(5)

Assumption 2.1. Problem (4) and its dual (5) have nonempty solution sets. In
addition, ifK∗ ∈ Rn×n is a solution of (4) and λ∗ ∈ Rm is a solution of the dual
problem (5), then C •K∗ = bTλ∗.

In the following, we shall interchangeably use the matrix Y ∗ and the vector
y∗ that are related according to

Y ∗ =


y∗1 y∗n+1 · · · y∗nd−n+1

y∗2 y∗n+2 · · · y∗nd−n+2
...

... . . . ...
y∗n y∗2n · · · y∗nd

 ∈ Rn×d. (6)

For a vector y∗ ∈ Rnd obtained by stacking the columns of the matrix Y ∗ de-
fined by equation (6), we shall use the notation vec(Y ∗), and for a matrix Y ∗

obtained from a vector y∗ ∈ Rnd according to equation (6) we shall use the nota-
tion mat(y∗).
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In order to state the optimality conditions for the QCQP (3) in the standard
vector notation, we consider the problem

min
y∈Rnd

yT (Id ⊗C)y

s.t. yT (Id ⊗Ai)y = bi, i = 1, 2, . . . ,m.
(7)

Here Id denotes the d×d identity matrix and the symbol⊗ denotes the Kronecker
product

A⊗B =

 a11B · · · a1nB
... . . . ...
am1B · · · anmB

 ∈ Rmp×nq

between two matrices A ∈ Rm×n and B ∈ Rp×q. Problems (3) and (7) are
equivalent by the identity

A • (BBT ) = bT (Im ⊗A)b (8)

for any matricesA ∈ Sn,B ∈ Rn×m and the vector b = vec(B).
Under Assumption 2.1, Grippo et al. [11] give the following sufficient condi-

tion for a solution of (7) to be a solution of the SDP (4) and also a global solution
to (7). For the KKT optimality conditions, we refer to [4].

Theorem 2.1. Under Assumption 2.1, if y∗ ∈ Rnd is a first-order KKT point of
(7) with Lagrange multipliers λ∗ ∈ Rm and the condition

C +
m∑
i=1

λ∗iAi � 0 (9)

holds, then the matrix K∗ = Y ∗Y ∗
T

, where Y ∗ = mat(y∗), is a solution to (4)
and y∗ is a global solution to (7).

Conversely, the following necessary condition is established in [11].

Theorem 2.2. Under Assumption 2.1, if y∗ ∈ Rnd is a global optimum of (7) with
Lagrange multipliers λ∗ ∈ Rm and the matrixK∗ = Y ∗Y ∗

T

with Y ∗ = mat(y∗)
is a solution to (4), then condition (9) holds.

Journée et al. [15] derive an alternative sufficient condition for a solution of
problem (7) to be a solution to the SDP (4). By generalizing earlier results derived
in [9] and [11], they show that if the matrix Y ∗ = mat(y∗), where y∗ ∈ Rnd is
a solution to problem (7), is rank deficient (i.e. rank(Y ∗) < d), then the matrix
K∗ = Y ∗Y ∗

T

is a solution to (4). The result holds under the assumption that the
constraint gradients at the optimal solution are linearly independent.

Assumption 2.2. If y∗ ∈ Rnd is a solution to (7), then the constraint gradients
2(Id ⊗Ai)y

∗, i = 1, 2, . . . ,m, are linearly independent.
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Theorem 2.3. Let y∗ ∈ Rnd be a second-order KKT point of (7) such that the
matrix Y ∗ = mat(y∗) ∈ Rn×d satisfies the condition rank(Y ∗) < d. Then the
matrixK∗ = Y ∗Y ∗

T

is a solution to (4).

Finally, Burer and Monteiro [10] give a lower bound for d ensuring that any
local solution Y ∗ of (3) yields a solution K∗ = Y ∗Y ∗

T

of (4). They show that
this holds when

d ≥ d̄ = max{d ∈ N | d(d+ 1)

2
≤ m+ 1}. (10)

As we will see in Section 4, this bound is rather conservative for the MVU prob-
lem (and likely for most graph embedding problems), and optimal solutions of
problem (2) can in practice be obtained by solving problems (1) with a much
smaller dimension d. Nevertheless, this result gives a theoretical guarantee of
finite termination for the algorithm described in Section 3.

2.2 Matrix Formulation of the Embedding Problem
Problems (1) and (2) are not in the standard forms (3) and (4), but they can be
stated in this form. To this end, let G = (V,E) be a graph with n nodes and nE
edges and let

E = ((i1, j1), (i2, j2), . . . , (inE
, jnE

)) (11)

denote an ordered sequence of the edges. Further, let us define the matrices

C = −In and Ak = aka
T
k , k = 1, 2, . . . , nE, (12)

where the vectors ak ∈ Rn are defined as

ak,l =


1, if l = ik,
−1, if l = jk,
0, otherwise.

(13)

In addition, let us denote by 1n a vector of ones having length n and define bk =
D2
ik,jk

for k = 1, 2, . . . , nE . Then by a straightforward calculation we obtain
the following results. The proof of Proposition 2.1 is given in Appendix B, and
Proposition 2.2 follows directly from the above definitions.

Proposition 2.1. A set of vectors {yi}ni=1 ⊂ Rd is feasible for problem (1) if
and only if the matrix Y =

[
y1, y2, . . . , yn

]T ∈ Rn×d is feasible for the
problem

min
Y ∈Rn×d

C • (Y Y T ) (14a)

s.t. Ai • (Y Y T ) ≤ bi, i = 1, 2, . . . , nE, (14b)

(1n1
T
n ) • (Y Y T ) = 0. (14c)
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Furthermore, for any feasible Y we have

C • (Y Y T ) = − 1

2n

n∑
i=1

n∑
j=1

‖yi − yj‖2

and the constraint functions of problems (14) and (1) have the same values.

Proposition 2.2. A matrix K ∈ Sn is feasible for problem (2) if and only if it is
feasible for the problem

min
K∈Sn

C •K

s.t. K � 0,

Ai •K ≤ bi, i = 1, 2, . . . , nE,

(1n1
T
n ) •K = 0.

(15)

Furthermore, for any feasible K we have C •K = −tr(K) and the constraint
functions of problems (15) and (2) have the same values.

Propositions 2.1 and 2.2 essentially state that the QCQP (1) is a low-rank
formulation of the SDP (2). Furthermore, in Appendix C we show that problems
(14) and (15) can be equivalently stated in the equality-constrained forms (3) and
(4), respectively, by introducing slack variables. Finally, in Appendix A we show
that under mild assumptions problem (2) and its dual have nonempty solution
sets, and the optimal objective function values of the primal and dual problems
coincide. By this fundamental property, Assumption 2.1 is satisfied and the results
of this section are applicable to the SDP (2) and the QCQP (1).

3 The Algorithm and Implementation
Based on the theoretical discussion of Section 2, we now describe the algorithmic
framework for obtaining a solution to the graph embedding SDP (2) by means
of the smaller QCQP (1). The idea is to successively solve problem (1) with
increasing dimension d until a solution of problem (2) is attained. We also give
a short introduction to the IPOPT algorithm by Wächter and Biegler [30, 31] and
discuss how to employ it in the proposed framework.

In order to solve problem (1) via the low-rank formulation (14) by a nonlin-
ear optimization algorithm, we need to state problem (14) in the standard vector
notation. By identity (8), we can equivalently state this problem as

min
y∈Rnd

yT (Id ⊗C)y (16a)

s.t. yT (Id ⊗Ai)y ≤ bi, i = 1, 2, . . . , nE, (16b)

yT [Id ⊗ (1n1
T
n )]y = 0. (16c)
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Unfortunately, the Hessian of the Lagrangian of problem (16) is dense due to
the dense matrix 1n1

T
n appearing in the constraint (16c). Thus, it is essential to

note that constraint (16c) can be formulated as a (small) set of linear constraints.
This property can be observed by using the identity

Id ⊗ (1n1
T
n ) = (Id ⊗ 1n)(Id ⊗ 1n)T ,

which yields

yT [Id ⊗ (1n1
T
n )]y = ‖(Id ⊗ 1n)Ty‖2 =

d∑
i=1

(yTcdi )
2 = 0 (17)

with

cdi,j =

{
1, if j = (i− 1)n+ 1, (i− 1)n+ 2, . . . , (i− 1)n+ n,
0, otherwise (18)

for i = 1, 2, . . . , d. From equation (17), we then observe that condition (16c) is
equivalent to the condition that yTcdi = 0 for all i = 1, 2, . . . , d.

By the above remarks, Proposition 2.1 and the equivalence between problems
(14) and (16), we can now state problem (1) in the standard NLP form as

min
y∈Rnd

f(y)

s.t. gdi (y) ≤ bi, i = 1, 2, . . . , nE,

hdi (y) = 0, i = 1, 2, . . . , d,

(NLPd)

where
f(y) = −‖y‖2,
gdi (y) = yT (Id ⊗Ai)y, i = 1, 2, . . . , nE,

hdi (y) = yTcdi , i = 1, 2, . . . , d.

(19)

This problem is equivalent to problem (1) up to the scaling of the objective func-
tion (cf. Proposition 2.1). This is a concave minimization problem under convex
constraints, and thus the feasible set is convex. Furthermore, in Appendix A we
state the assumptions under which the feasible set is bounded.

3.1 Incremental Low-Rank Algorithm
In this subsection, we describe an algorithm that successively solves a sequence
of low-rank quadratic problems (NLPd) starting with some small dimension d =
d0 ≥ 1 and increasing d if the solution is not optimal to the graph embedding SDP
(2). Derivation of the algorithm involves some technical considerations that we
defer to Appendix B.
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The following theorem, whose proof is given in Appendix B, gives a compu-
tationally convenient form of the stopping criterion (9) adapted to the graph em-
bedding SDP (2) and its quadratic low-rank formulation (NLPd). For the sequel,
we introduce the function κ : Sn → R to denote the second smallest eigenvalue
(among the n, not necessarily distinct eigenvalues) of a symmetric n× n matrix.

Theorem 3.1. Let y∗ ∈ Rnd be a solution to (NLPd) with Lagrange multipliers
λ∗ ∈ RnE corresponding to the constraints gdi (y

∗) ≤ bi. The matrix K∗ =

Y ∗Y ∗
T

with Y ∗ = mat(y∗) is a solution to (2) and y∗ is a global solution of
(NLPd) if and only if the condition

κ(L(λ∗)) ≥ 1 (20)

is satisfied, where

L(λ) =

nE∑
i=1

λiAi

and the matricesAi are defined according to equations (12) and (13).

Adapting condition (9) to the graph embedding problem is computationally
more convenient than adapting the rank deficiency condition provided by Theorem
2.3. Unlike the rank deficiency condition, condition (9) does not require solving
problem (NLPd) with d greater than the rank of the optimal solution of the SDP
(2). Furthermore, when the matrix L(λ∗) appearing in condition (20) is sparse
(which is the case for MVU graphs), an efficient Lanczos-type algorithm (see
e.g. [18]) can be used to compute its second smallest eigenvalue.

If by solving problem (NLPd) we obtain a vector y∗ ∈ Rnd for which the
matrix K∗ = Y ∗Y ∗

T

with Y ∗ = mat(y∗) is not a solution of the SDP (2)
by condition (20), then we increase the dimension d by one and solve problem
(NLPd+1). A natural choice is to augment the vector y∗ with zeros and choose
ỹ∗ = [y∗

T
0Tn ]T as the starting point for the solution of problem (NLPd+1). The

following theorem, whose proof is given in Appendix B, states that ỹ∗ is a saddle
point of problem (NLPd+1) and gives a descent direction from ỹ∗. This direction
is also feasible (i.e. it is orthogonal to the constraint gradients at ỹ∗).

Theorem 3.2. Let y∗ ∈ Rnd be a first-order KKT point of problem (NLPd) with
Lagrange multipliers λ∗ ∈ RnE , λ∗ ≥ 0, and µ∗ ∈ Rd corresponding to the
constraints gdi (y

∗) ≤ bi and hdi (y) = 0, respectively. If condition (20) is not
satisfied, then the vectors

ỹ∗ =

[
y∗

0n

]
, λ∗ and µ̃∗ =

[
µ∗

0

]
satisfy the first-order KKT conditions of problem (NLPd+1). Furthermore, the
eigenspace corresponding to the eigenvalue κ(L(λ∗)) contains an eigenvector

9



v∗ such that 1Tnv
∗ = 0. With such a vector v∗, the Hessian of the Lagrangian

L(y;λ;µ) of problem (NLPd+1 ) satisfies the condition dT∇2
yL(ỹ∗;λ∗; µ̃∗)d < 0

with

d =

[
0nd
v∗

]
.

In addition, the direction d satisfies the conditions

∇gd+1
i (ỹ∗)Td = 0, i = 1, 2, . . . , nE,

∇hd+1
i (ỹ∗)Td = 0, i = 1, 2, . . . , d+ 1.

Hence, from a saddle point ỹ∗ a solution to problem (NLPd+1) can be ob-
tained by perturbing the solution along the descent direction d and using a descent
method from the starting point

y0 = ỹ + ε
d

‖d‖
, where ỹ =

[
y∗

0n

]
and d =

[
0nd
v∗

]
with some small ε > 0.

The meta-algorithm for solving the SDP (2) by the incremental low-rank ap-
proach is listed as Algorithm 1. The algorithm shares some similarities with the
generic incremental low-rank algorithm of [15], but we have derived it under less
restrictive assumptions and specifically for the graph embedding problem. In par-
ticular, our algorithm only requires Assumption 2.1 that is satisfied by the graph
embedding problem (2) and its dual under mild assumptions. Finally, we note that
by the bound (10), Algorithm 1 is guaranteed to give a solution to the SDP (2)
after a finite number of steps.

Algorithm 1: Incremental Low-Rank Graph Embedding.
input : graph matrices {Ai}nE

i=1 ⊂ Rn×n
squared edge lengths b ∈ RnE such that b > 0
initial solution dimension d0 > 0
initial solution Y 0 ∈ Rn×d0
perturbation parameter ε > 0

output: embedding Y ∗ ∈ Rn×d with some d ≥ d0
d← d0
y0 ← vec(Y 0); λ0 ← 0

Starting from y0 ∈ Rnd and λ0 ∈ RnE , obtain y∗, a second-order KKT point of
(NLPd) with Lagrange multipliers λ∗.
L∗ ←

∑nE
i=1 λ

∗
iAi

Compute eigenvalue κ(L∗) and eigenvector v∗ according to Theorem 3.2.
if κ(L∗) ≥ 1 then

Terminate with Y ∗ = mat(y∗).
else

d← [0Tnd v∗
T
]T

y0 ← [y∗
T

0Tn ]
T + ε d

‖d‖ ; λ0 ← λ∗

d← d+ 1
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3.2 The IPOPT Interior-Point Algorithm
IPOPT implements a primal-dual interior point method that uses a filter-based
line-search strategy [30,31]. For an overview of nonlinear interior-point and filter
methods, we refer to [19]. IPOPT is particularly designed for solving large-scale
nonlinear optimization problems with second-order derivatives and with a known
sparsity structure. Internally, IPOPT transforms a given NLP into the form

min
y∈Rn

f(y)

s.t. h(y) = 0,

li ≤ yi ≤ ui, i ∈ I

(21)

with constraints h : Rn → Rm, some index set I ⊂ {1, 2, . . . ,m} and lower and
upper bounds li and ui, respectively. For instance, problem (NLPd) with inequality
constraints can be reformulated in this way by introducing nE additional slack
variables.

IPOPT enforces bound constraints via a logarithmic barrier function. In order
to solve the NLP (21), the algorithm (approximately) solves a sequence of barrier
problems

min
y∈Rn

ϕµ(y)

s.t. h(y) = 0
(22)

with
ϕµ(y) = f(y)− µ

∑
i∈I

ln(yi)

and a sequence of parameters µ > 0 converging to zero.
For solving the barrier problem (22), IPOPT uses a linearization of its KKT

conditions. With the current primal and dual iterates yk and λk for the solution of
(21), a linear approximation of the KKT conditions yields the system[

W k + Σk + δwI Jk
JTk −δcI

] [
dyk
dλk

]
= −

[
∇ϕµ(yk) + Jkλk

h(yk)

]
(23)

for the primal and dual search directions dyk and dλk . These search directions are
used in a filter-based line search algorithm.

In the KKT system (23), the matrix W k = ∇2
yL(yk;λ) denotes the Hessian

of the Lagrangian with respect to y. For problem (NLPd), the Hessian of the
Lagrangian

L(y;λ) = −‖y‖2 +

nE∑
i=1

λi[y
T (Id ⊗Ai)y − bi] +

d∑
i=1

λnE+iy
Tcdi

is the nd× nd-matrix

∇2
yL(y;λ) = −2Ind + 2

nE∑
i=1

λi(Id ⊗Ai). (24)
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The matrix Σk is a diagonal matrix with nonnegative elements, and Jk =
J(yk) denotes the Jacobian of the constraints at yk. For the constraint functions
defined according to (19), the Jacobian is the (nE + d)× nd-matrix

J(y) = 2

[
B(y)
C

]
, B(y) =


[(Id ⊗A1)y]

T

[(Id ⊗A2)y]
T

...
[(Id ⊗AnE )y]

T

 , C =


(cd1)

T

(cd2)
T

...
(cdd)

T

 . (25)

The parameters δw ≥ 0 and δc ≥ 0 control the amount of regularization that is
needed to ensure nonsingularity of the matrix of the KKT system (23).

Typically, either solution of the KKT system (23) or evaluation of the objec-
tive function is the computationally most expensive step in the IPOPT algorithm.
Fortunately, both steps can be carried out at a low computational cost when solv-
ing problem (NLPd). Due to the structure of the matrices Ai, we observe from
equation (24) that the Hessian W k has at most (n + nE)d distinct nonzero ele-
ments. Having at most (n + 2nE)d nonzero elements, the Jacobian Jk defined
by equation (25) is also sparse when nE , the number of edges depends linearly
on n, the number of nodes in the graph. As seen from Table 1 in Section 4, in
MVU problems nE depends linearly on n. Consequently, the KKT system (23)
can be efficiently solved due to sparsity of the Hessian and Jacobian matrices. As
demonstrated in Section 4, this reflects to the good scalability of IPOPT when
applied to large MVU problems. On the other hand, as evaluation of the objective
function f(y) = −‖y‖2 requires only O(nd) operations, its computational cost
is negligible compared to the solution of the KKT system.

4 Numerical Results

In this section, we demonstrate the computational efficiency of our incremental
low-rank approach for solving (relaxed) MVU problems that are special cases of
the general graph embedding problem (2). We compare our method to the interior-
point SDP solvers CSDP [6] and SDPA [33] as well as to SDPLR [9,10] that is an
earlier method based on a quadratic low-rank reformulation.

4.1 Datasets and Test Setup

For eight synthetically generated datasets with n points, we constructed a k-
neighbourhood graph as in the MVU method (see [28]). The k-neighbourhood
of a given point picked from a point set in Rd contains the point itself and its k
nearest neighbours (measured in Euclidean distance).

Definition 4.1. Let X = {x1,x2, . . . ,xn} ⊂ Rd. The k-neighbourhood of a
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point x ∈X is

Nx,k = {{xi1 ,xi2 , . . . ,xik+1
} ⊂X | ij 6= il ∀j 6= l,

‖y − x‖ ≥ ‖xij − x‖ ∀y ∈X \ Nx,k, j = 1, 2, . . . , k + 1}.

In the k-neighbourhood graph of a given point set in Rd, two points are con-
nected by an edge if the other is a k-nearest neighbour of the other one, or if they
lie in the k-neighbourhood of another point.

Definition 4.2. LetX = {x1,x2, . . . ,xn} ⊂ Rd. The k-neighbourhood graph of
X is the graph GX,k = (V,E) with V = {1, 2, . . . , n} and

E = {{i, j} ⊂ V | ∃z ∈X : {xi,xj} ∈ Nz,k}.

The test datasets and their low-dimensional representations obtained by solv-
ing problem (2) for their k-neighbourhood graphs are shown in Appendix D.
The values of k for the test datasets and the number of edges nE for the k-
neighbourhood graphs with some values of n are listed in Table 1. All tests were
run on a 3.0GHz Core 2 Duo processor running a 64-bit Linux operating system
and with 6GB of system memory. For the SDP solvers that implement paralleliza-
tion, we used both cores of the dual-core processor in our test system, and for
SDPLR and IPOPT we used one core.

k n nE k n nE

Helix 6

800 4800

Incomplete tire 6

800 5702
1600 9600 1600 11548
2500 15000 2500 18457
4000 24000 4000 29764

S-roll 6

800 5933

Spiral 15

800 14899
1600 11839 1600 32354
2500 18741 2500 52408
4000 29690 4000 65605

Swiss roll 6

800 5807

Trefoil knot 9

800 6611
1600 11653 1600 13083
2500 18451 2500 20607
4000 29560 4000 32695

Trefoil ribbon 9

800 8065

Twin peaks 6

800 5889
1600 17665 1600 11688
2500 28137 2500 18582
4000 46001 4000 29666

Table 1: Neighbourhood sizes k and the number of edges nE in the k-neighbourhood
graphs constructed from the test datasets.

13



4.2 Solvers
In this subsection, we give a brief description of the solvers included in our nu-
merical tests. We also describe our modifications to their default parameters and
consider some implementation details.

4.2.1 IPOPT-MVU

In the following, we refer to as IPOPT-MVU Algorithm 1 with IPOPT version
3.10.2 as the solver for problems (NLPd). In all tests, we set the initial dimension
d0 to one and chose the starting point y0 ∈ Rnd randomly such that

y0,i ∈ [−a, a], where a = min
i=1,2,...,nE

√
bi

2

in order to guarantee a feasible starting point. Due to the random choice of the
starting point, all computation times for IPOPT-MVU reported in the following
are measured as an average from ten repeated test runs. For the IPOPT algorithm,
we set all stopping criterion thresholds to 10−5.

According to our observations, the choice of the algorithm for solving the
KKT system (23) largely determines the performance of the overall algorithm. For
solving the KKT system, we used Harwell MA57 [1] which in our preliminary ex-
periments was faster than its predecessor MA27 used by Wächter and Biegler [31]
and the default solver MUMPS [2] used by IPOPT. In order to improve perfor-
mance of MA57, we disabled automatic scaling of the linear system by setting the
parameters linear system scaling and ma57 automatic scaling to
none and no, respectively.

Instead of using the default Fiacco-McCormick strategy for updating the bar-
rier parameter µ, we set the parameter mu strategy to adaptive to accel-
erate convergence. The adaptive update strategy implemented in IPOPT is de-
scribed in detail in [20]. In addition, we used the warm-start strategy provided by
the algorithm to initialize solution of (NLPd+1) from a solution of (NLPd) with
the current Lagrange multipliers. We implemented the calculation of the second
smallest eigenvalue of the matrix appearing in the stopping criterion (20) by using
ARPACK in the shift invert mode [17].

4.2.2 Interior-point SDP Solvers

CSDP [6] is an interior-point method for solving general semidefinite programs of
the form (4). The algorithm, whose theoretical background is explained in [13],
solves the original problem via a sequence of barrier problems by taking succes-
sive predictor and corrector steps. In our tests, we used CSDP version 6.1.1. Since
the main application of the MVU method is to produce low-dimensional represen-
tations for visualization purposes, we slightly modified the default parameters of
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CSDP to improve performance at some expense of solution accuracy. Thus, we
relaxed the stopping thresholds from their default values and set

axtol = 10−4, atytol = 10−4 and objtol = 10−4,

where the meaning of these parameters is explained in the CSDP manual. We also
set the parameter fastmode to 1 in order to improve performance at the expense
of some solution accuracy.

SDPA [33] is another variant of an interior-point SDP solver using a Mehrotra-
type primal-dual predictor-corrector method. In our tests we used version 7.3.8.
As with CSDP, we relaxed the default stopping criterion and set epsilonStar =
10−4, where the meaning of this parameter is explained in the SDPA manual.

Theoretically, the interior-point SDP solvers have very high computational
complexity and storage requirements, which is consistent with our experiments in
Subsection 4.3. For instance, the computational cost of each iteration of CSDP for
a problem with sparse constraint matrices with O(1) nonzero elements (as in the
MVU problem) isO(mn2 +m2 +m3 +n3), where m is the number of constraints
and n is the size of the matrix to be solved (see [6]). This is even without the
matrix 1n1

T
n appearing in the constraints of problem (15). Since neither of the

solvers can exploit low-rank structure in the constraints, they treat this matrix
as a dense one, which also contributes to their poor scalability. The high storage
requirements, in turn, stem from the fact that the interior-point SDP solvers require
storage of a dense m×m Schur complement matrix.

4.2.3 SDPLR

In addition to the standard SDP solvers, we compare the performance of our ap-
proach with the SDPLR algorithm by Burer and Monteiro [9] with improvements
by Burer and Choi [8]. As our method, SDPLR solves a given SDP of the form
(4) by solving a sequence of quadratic low-rank problems (3).

Differently to our approach that uses an interior-point method, SDPLR solves
the constrained problem (3) by solving a sequence of unconstrained problems,
where the objective function is the augmented Lagrangian

L(Y ;λ;σ) = C • (Y Y T ) + λT [b−A(Y Y T )] +
σ

2
‖b−A(Y Y T )‖2 (26)

with some penalty parameter σ > 0. Here the operator A : Rn×n → Rm for a
matrixB ∈ Rn×n is defined as

[A(B)]i = Ai •B, i = 1, 2, . . . ,m.

At each main iteration with fixed λk and σk, SDPLRminimizes the augmented
Lagrangian L(Y ;λk;σk) with respect to the matrix Y . For solving this sub-
problem, the algorithm uses the L-BFGS method. The L-BFGS method is im-
plemented so that it exploits both sparsity and low-rank structure present in the
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problem to improve performance. As a result, the computational complexity of
one iteration of SDPLR for solving the MVU problem is linear with respect to
n (see [9] for complexity analysis of SDPLR). Furthermore, as shown in [8], the
minima of the quartic function (26) along a given search line have a closed-form
expression, which allows the algorithm to use an exact line search. After each
minimization of the augmented Lagrangian, the Lagrange multipliers λk and the
penalty parameter σk are then updated by a heuristic method based on an infeasi-
bility measure. Convergence analysis for the SDPLR algorithm is given in [10].

For minimization of the augmented Lagrangian (26) with given λ and σ,
SDPLR uses the stopping criterion

‖∇Y L(Y k;λ;σ)‖F
1 + Cmax

≤ ρc
σ

with some ρc > 0, where

Cmax = max
i,j=1,2,...,n

|Cij|

and k denotes iteration index of the L-BFGS method in the inner loop of the
algorithm. For the MVU problem, we have Cmax = 1. As a stopping criterion for
the main iteration, SDPLR uses the scaled infeasibility measure

‖b−A(Y kY
T
k )‖

1 + |bmax|
≤ ρf

with some ρf > 0, where
bmax = max

i=1,2,...,m
|bi|.

As for the SDP solvers, we modified the default threshold for the main stop-
ping criterion ρf . Furthermore, we observed that a significant performance in-
crease can be obtained by relaxing the threshold value ρc for the inner loop iter-
ations. Thus, we chose ρf = 10−2 and ρc = 105, and for the L-BFGS Hessian
approximation we used the six most recent iterations. In our tests we used SDPLR
version 1.03-beta.

For choosing the dimension d of the matrix Y in the augmented Lagrangian
subproblems, Burer and Monteiro propose an approach where d is initially chosen
as d̄ defined by equation (10). In [8], Burer and Choi describe a heuristic method
for reducing d, which is motivated by a rank deficiency condition similar to the one
provided by Theorem 2.3. However, since this heuristic for choosing d is rather
conservative for our application, for each test run of SDPLR we solved problem
(3) with fixed dimension d = 4. This choice reflects the best-case situation where
an estimate of the intrinsic dimension of the input data is known a priori. It is
also motivated by our observation that SDPLR performs better when d is slightly
larger than the rank of the optimal solution (see Table 4 in Subsection 4.4). The
solutions obtained in this way are not guaranteed to be solutions of the SDP (2),
but we numerically verified that all computation times reported in the following
correspond to solutions that are close to the SDP solution.
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4.2.4 Other Implementation Details

It is essential to use optimized linear algebra packages to achieve the best per-
formance with the interior-point SDP solvers. Thus, for the dense linear algebra
involved in CSDP and SDPA, we used ATLAS (Automatically Tuned Linear Al-
gebra Software) version 3.8.4 [29] and LAPACK version 3.4.1 [3]. In addition, for
CSDP, SDPA and SDPLR, we converted the inequality-constrained problems (15)
into equality-constrained form by introducing nE additional slack variables. For
CSDP and SDPA, the test problems were supplied in the sparse SDPA format, and
for SDPLR the test problems were supplied in the SDPLR format that extends the
SDPA format by adding support for low-rank constraint matrices.

4.3 Performance Comparison

The computation times used by the tested solvers on the eight datasets are listed in
Table 2 with dataset sizes n = 800, 1600, 2500 and 4000. The times are measured
in seconds, and they represent wall-clock times (excluding the time consumed for
reading the problem file). From the results of Table 2 we can clearly observe that
the solvers fall in three performance classes, which becomes more apparent when
the dataset size n is large.

First of all, these results clearly reveal the inherent limitations of the SDP ap-
proach. Despite the highly optimized linear algebra packages and parallelization
available in our test system, the interior-point SDP solvers CSDP and SDPA are
clearly the slowest. Unfolding many datasets with only 2500 points took sev-
eral hours with both solvers, which cannot be considered an acceptable perfor-
mance for real-world applications. Moreover, these solvers have high memory
requirements. As a result, we were not able to run the tests for these solvers with
n = 4000 because our test system ran out of memory. We can also observe that
SDPA is generally slightly faster than CSDP. However, a detailed inspection of the
solver outputs revealed that SDPA had numerical difficulties especially for larger
datasets, which led to premature termination in several cases. This problem did
not appear as often with CSDP, which indicates that it is more reliable.

SDPLR performs significantly better than the interior-point SDP solvers. How-
ever, on some datasets, the computation times of SDPLR seem to grow rapidly as
the dataset size n is increased. This could be explained by slow convergence
due to the fact that SDPLR does not use second-order information even when it is
available in the test problems. Furthermore, it does not implement as sophisticated
machinery to prevent ill-effects due to numerical instability as IPOPT does. This
may cause SDPLR to run into numerical difficulties especially when n is large.
On the other hand, IPOPT-MVU that uses a robust second-order algorithm, is sig-
nificantly faster, which can be seen with all dataset sizes n. The additional cost
of solving the KKT system and computing the Hessian of the Lagrangian and the
constraint Jacobian, which is low due to their sparsity, is seemingly compensated
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Algorithm
Dataset n CSDP SDPA SDPLR IPOPT-MVU

Helix

800 70.70 73.92 13.62 6.10
1600 1022.38∗1 499.43∗ 8.85 15.12
2500 6003.98 3067.02∗ 19.31 19.93
4000 -2 - 116.93 91.38

Incomplete tire

800 233.28 196.37 13.40 2.62
1600 2086.04 1575.87 39.79 8.89
2500 9030.10 7794.99 267.70 15.14
4000 - - 1284.64 18.57

S-roll

800 293.89 213.85 7.86 2.72
1600 2175.45 1675.20 17.42 7.63
2500 9605.56 6925.95 58.44 21.23
4000 - - 251.11 42.94

Spiral

800 5060.78 2217.75∗ 16.86 11.54
1600 - - 140.19 44.23
2500 - - 917.11 125.93
4000 - - 6222.59 69.88

Swiss roll

800 279.52 209.26 18.09 4.03
1600 2262.69 1514.16∗ 56.83 10.36
2500 10898.32 6053.26∗ 311.31 18.35
4000 - - 1740.16 32.98

Trefoil knot

800 726.50∗ 203.20∗ 4.62 3.61
1600 5298.22∗ 1421.72∗ 23.29 9.31
2500 - 5255.61∗ 79.89 20.75
4000 - - 1043.15 45.98

Trefoil ribbon

800 816.47 483.68 30.38 3.60
1600 6866.26 5970.95∗ 472.91 11.12
2500 - - 1992.96 20.04
4000 - - 7231.15 44.81

Twin peaks

800 242.64 207.46 4.47 2.76
1600 1886.06 1774.86 15.08 11.13
2500 8783.87 6771.08 44.75 19.85
4000 - - 359.10 26.43

1 ”*” means that the solution was obtained with reduced accuracy due to premature
termination.

2 ”-” means that the solver either ran out of memory or failed to reach the stopping
criterion in five hours.

Table 2: Computation times used by the solvers for unfolding the test datasets.
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by the faster convergence of IPOPT. Moreover, differently to SDPLR we observe
that IPOPT-MVU has consistent performance on all datasets. Another point of
interest is that the computation time used by IPOPT-MVU does not always in-
crease with n. This is because the ranks of the optimal MVU solutions may vary
depending on n (cf. Table 4 in Subsection 4.4).

In order to test the scalability of IPOPT-MVU to very large datasets, we mea-
sured its computation times on the test datasets1 with n up to 75000. The wall-
clock times used by IPOPT-MVU (in seconds) are listed in Table 3. They are
computed as average values of successful runs (stopping criterion reached in five
hours) from ten repeated attempts. No computation time is given for datasets
where IPOPT-MVU either ran out of memory or did not succeed in any of the ten
test runs. For three datasets with n = 75000, IPOPT-MVU was able to solve the
MVU problem in less than one hour, which is a remarkable achievement.

n
Dataset 2500 5000 12500 25000 50000 75000
Helix 19.93 147.17 763.37 1680.82 - -
Incomplete tire 15.14 36.94 149.91 294.99 1711.94 1184.98
S-roll 21.23 66.03 352.63 404.63 3037.08 -
Spiral 125.93 105.10 910.69 - - -
Swiss roll 18.35 44.38 171.68 395.13 820.17 2984.63
Trefoil ribbon 20.04 52.28 238.01 589.64 1819.24 -
Twin peaks 19.85 59.69 217.86 922.71 1458.66 3246.52

Table 3: Computation times used by IPOPT-MVU for unfolding the test datasets with
large number of samples n.

We again emphasize that IPOPT-MVU has superior performance compared to
the other solvers, since unfolding datasets with over 4000 points turned out to be
computationally intractable for them. By using the interior-point SDP methods,
solution of large MVU problems would not be possible due to the high compu-
tational complexity and memory requirements, and by using SDPLR it would not
be possible because of the apparent failure to converge (at least when an accurate
solution is required).

When carrying out a numerical comparison of optimization algorithms, it is
important to keep in mind that the performance of the solvers may crucially de-
pend on the chosen stopping criterion threshold. This point is particularly rel-
evant considering that MVU is typically used for visualization purposes where
approximate solutions may be sufficient. In order to shed more light on the con-
vergence behaviour of the tested solvers, Figure 2 shows their objective function
values plotted as a function of computation (wall-clock) time on the Swiss roll

1The Trefoil knot dataset is not included in these tests since the corresponding MVU problem
did not have a bounded solution with large n.
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Figure 2: Convergence rates of CSDP, SDPA and SDPLR on the Swiss roll dataset with
n = 1600. The dashed line represents the optimal objective function value obtained by
IPOPT-MVU.
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dataset with n = 1600. The optimal optimal objective function value obtained
with IPOPT-MVU is plotted as a dashed line. This line can be considered to
represent the ”exact” solution since IPOPT-MVU generally gives very accurate
solutions with our stopping criterion thresholds. The convergence plots obtained
for the other datasets follow similar trends, and since the observations discussed
below apply to them as well, we do not show the other plots here.

From Figure 2 we can draw two conclusions. The first observation is that
performance of the interior-point SDP solvers cannot be significantly improved
by relaxing the stopping criterion. The primal and dual objective function values
for both CSDP and SDPA stabilize only after 1200 and 600 seconds, respectively.
These times are already significantly larger than the times used by SDPLR and
IPOPT-MVU for the Swiss roll dataset with n = 1600 (cf. Table 2).

The second observation is that SDPLR converges rapidly to an approximate so-
lution, but its convergence rate severely degrades when the solution is approached.
This observation motivates our choice for a rather loose stopping criterion ρf =
10−2 for SDPLR since it may be nevertheless competitive with IPOPT-MVUwhen
only an approximate solution to the MVU problem is sought. However, choosing
a stopping criterion that yields a ”satisfactory” solution seems to be a matter of
trial and error. On the other hand, due to the inability of SDPLR to produce ac-
curate solutions, it cannot be used directly in our low-rank framework. This is
because our approach in practice requires accurate solutions to problems (NLPd)
with accurate Lagrange multiplier estimates.

4.4 Ranks of MVU Solutions
Finally, we numerically verify our hypothesis that solution of the MVU problem
has low rank when the input dataset is intrinsically low-dimensional. To this end,
we give the ranks of the optimal solutions obtained by IPOPT-MVU for all the
test datasets with four different sizes. Another point of interest is the maximum
value of the dimension d used by IPOPT-MVU. Namely, the strategy for escaping
a saddle point of (NLPd) may involve solution of the problem with d greater than
the actual rank of the optimal solution.

The ranks of the optimal solutions of problems (2) obtained with IPOPT-MVU
for each dataset are listed in Table 4. For all datasets, the rank r∗ of the optimal
solution of the SDP (2) is close to, if not exactly, the intrinsic dimensionality of
the dataset, which is two (cf. Appendix D). We also observed from our numerical
experiments that the maximum dimension d used by IPOPT-MVU is in all cases
the same as r∗. Consequently, a solution of the SDP (2) can be efficiently obtained
by our low-rank method when the intrinsic dimension of the input data is low.

Our finding about the maximum dimension d is quite surprising considering
the fact that as a concave minimization problem, for a given d, problem (NLPd) is
expected to have a large number of local minima that are not necessarily global.
A more extensive testing with a large number of different starting points and with
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d ≥ r∗ revealed, though, that the IPOPT solver can in some cases, but rarely, con-
verge to a non-global minimum of problem (NLPd) such that the corresponding
matrixK∗ is not a solution to the SDP (2).

Dataset n r∗ Dataset n r∗

Helix

800 4

Incomplete tire

800 2
1600 4 1600 3
2500 4 2500 3
4000 4 4000 2

S-roll

800 2

Spiral

800 3
1600 2 1600 3
2500 3 2500 3
4000 3 4000 2

Swiss roll

800 3

Trefoil knot

800 2
1600 3 1600 2
2500 3 2500 2
4000 3 4000 2

Trefoil ribbon

800 2

Twin peaks

800 2
1600 2 1600 3
2500 2 2500 3
4000 2 4000 2

Table 4: Ranks r∗ of the optimal solutions of the MVU problems for the test datasets.

σ1 σ2 σ3 σ4
Helix 233.71 233.71 4.82 · 10−2 4.82 · 10−2

Incomplete tire 146.88 40.23 4.74 · 10−2 −
S-roll 105.49 57.85 − −
Spiral 48.36 1.03 0.17 −
Swiss roll 1059.82 191.17 2.73 −
Trefoil knot 155.82 131.55 − −
Trefoil ribbon 146.43 136.75 − −
Twin peaks 34.68 26.98 6.84 · 10−4 −

Table 5: The four largest nonzero singular values of the MVU solution matrices for the
test datasets with n = 1600.

Finally, to gain further insight on the dimensionality of the solutions of the
MVU problem, we examine the eigenvalues of the solution matrices K∗ of prob-
lem (2) for the test datasets. Instead of computing the eigenvalues for the full
matrices, we list the singular values of the smaller matrices Y ∗ resulting from
the solutions of the quadratic reformulations of problem (2) with IPOPT-MVU
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in Table 5. These singular values are square roots of the eigenvalues of the SDP
solution matricesK∗ = Y ∗Y ∗

T

.
Though the MVU solutions do not exactly reveal the intrinsic dimension of

all datasets (which would be the case if only the first two singular values were
nonzero), there is a clearly distinguishable gap between the second and third
largest singular value in all test cases. The small nonzero singular values are
expected in practice due to noise or numerical inaccuracy in the input data. This
is also due to the fact that distance measurements from insufficiently sampled or
incomplete data do not exactly represent the (geodesic) distances on the manifold
containing the input points. For this reason the solution rank of the MVU problem
seems to depend somewhat arbitrarily on n depending on the random sampling of
the dataset and possible sampling artifacts.

The gap between the principal singular values representing the intrinsic di-
mensions of the input data and the remaining ones suggests an idea for obtaining
approximate solutions of the MVU problem (2) at a lower computational cost.
Namely, if we know the intrinsic dimension of the data a priori, we can solve
problem (1) just once by setting d directly to this value. Unfortunately, the theo-
retical results of Section 2 do not guarantee that such solutions are either global
solutions of (1) or solutions of the SDP (2). However, in our experience such
solutions are usually satisfactory for visualization purposes. This ability to ex-
ploit a priori information about the intrinsic dimension is unique to the low-rank
approach, and it is not available when using the standard SDP solvers.

5 Conclusions

The graph embedding problem (1) is relevant for many practical applications. For
instance, maximum variance unfolding (MVU) is a well-known dimensionality
reduction method that solves a special case of problem (1). The standard approach
to solving problem (1) is to reformulate it as the semidefinite program (2) and
use an interior-point SDP solver. This approach is not, however, computationally
tractable for larger datasets (say n > 2500).

We developed an incremental low-rank method that solves a sequence of smaller
quadratic problems (1) with increasing dimension d instead of solving the SDP (2)
directly. Utilizing the existing theory on the relation between semidefinite pro-
grams and their quadratic low-rank reformulations, we rigorously guaranteed that
after a finite number of steps, the low-rank method yields a solution to the SDP.
Furthermore, such a solution is a global solution to the QCQP (1) with dimen-
sion d∗ that gives an upper bound for the rank of the optimal solution of the SDP.
We also derived a necessary and sufficient condition for testing these properties.
Though not guaranteed by the theoretical results, our numerical experiments show
that in practice it suffices to solve the QCQP only up to dimension that is the rank
of the optimal solution to the SDP. This observation makes the incremental low-
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rank approach particularly efficient when the input graph has a low-dimensional
embedding.

In our numerical experiments, we considered the MVU problem that is a spe-
cial case of the graph embedding SDP (2). We demonstrated that for solving this
problem, the incremental low-rank approach coupled with the IPOPT solver is
highly efficient. We were able to solve the MVU problem for three test datasets
with up to 75000 points in less than an hour on an average workstation, which is
by no means possible with the previously proposed methods. Our method is not
only more efficient than the interior-point SDP solvers but also more efficient than
SDPLR, an earlier low-rank method that uses a first-order L-BFGS algorithm for
solving the quadratic subproblems.

Since we showed the gap between the primal and dual solutions of the SDP
(2) being zero under mild assumptions, by solving the primal problem we obtain
an optimal solution to the dual problem as well. The dual problem is equivalent
to determining the fastest mixing Markov process on a graph (see e.g. [24]), and
similar problems also appear in graph theory (see e.g. [12]). Thus, our low-rank
approach is likely to be computationally efficient for many optimization problems
that can be formulated as the dual of the graph embedding problem.

An important topic of future research is to incorporate the noise reduction
method developed in [21] as a preprocessing step for MVU. Combined with the
low-rank approach proposed in this paper, such a method, being scalable to large
datasets and tolerant to noise, would address two of the most important shortcom-
ings of the original MVU method. However, both in [21] and this paper we have
considered only low-dimensional datasets. Efficient implementation of the den-
sity estimation method of [21] and finding the k-nearest neighbours of each data
point in the MVU method for high-dimensional point sets is a very challenging
problem.
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[12] F. Göring, C. Helmberg, and M. Wappler. Embedded in the shadow of the
separator. SIAM Journal on Optimization, 19(1):472–501, 2008.

[13] C. Helmberg, F. Rendl, R. Vanderbei, and H. Wolkowicz. An interior-
point method for semidefinite programming. SIAM Journal on Optimization,
6(2):342–361, 1996.

25

http://www.hsl.rl.ac.uk


[14] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University
Press, 1985.

[15] M. Journée, F. Bach, P. Absil, and R. Sepulchre. Low-rank optimization on
the cone of positive semidefinite matrices. SIAM Journal on Optimization,
20(5):2327–2351, 2010.

[16] B. Kulis, A.C. Surendran, and J.C. Platt. Fast low-rank semidefinite pro-
gramming for embedding and clustering. In International Conference on
Artificial Intelligence and Statistics, AISTATS 2007, pages 512–521, 2007.

[17] R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solu-
tion of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi
Methods. SIAM, Philadelphia, 1998.

[18] G. Meurant. The Lanczos and Conjugate Gradient Algorithms - From Theory
to Finite Precision Computations. SIAM, Philadelphia, 2006.

[19] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York,
second edition, 2006.
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[31] A. Wächter and L.T. Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathe-
matical Programming, 106(1):25–57, 2006.

[32] L. Xiao, J. Sun, and S. Boyd. A duality view of spectral methods for dimen-
sionality reduction. In Proceedings of the 23rd international conference on
Machine learning, ICML ’06, pages 1041–1048, 2006.

[33] M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evalua-
tion of SDPA 6.0 (Semidefinite Programming Algorithm 6.0). Optimization
Methods and Software, 18(4):491–505, 2003.

27



A Strong Duality of the Graph Embedding SDP
In this appendix we establish strong duality for primal-dual solution pairs of the graph
embedding SDP (2). That is, we show that the primal problem and its dual have nonempty
solution sets and their objective function values at an optimal solution pair coincide. This
property, when it holds, is called zero duality gap. For the dual of problem (2), we use the
formulation given by Sun et al. [24] and Xiao et al. [32]. They show that the dual problem
can be written as

min
λ≥0

bTλ

s.t. κ(

nE∑
i=1

λiAi) ≥ 1,
(27)

where nE denotes the number of edges in the edge set E of the graph G, the function
κ(·) denotes the second smallest eigenvalue of a matrix and the matrices Ai are defined
according to equations (12) and (13). As in Subsection 2.2, we assume that the edges of
the graph G can be ordered according to (11) and define the vector b as bk = D2

ik,jk
for

k = 1, 2, . . . , nE .
We will establish our main results under two mild assumptions on the input graph G.

The first assumption is a nondegeneracy condition that excludes zero edge lengths.

Assumption A.1. The edge lengths Dij of the graph G = (V,E) satisfy the condition
Dij > 0 for all {i, j} ∈ E.

The second assumption is connectedness of the graph. For the MVU problem, this
can be in practice guaranteed either by choosing a sufficiently large neighbourhood size k
or by considering distinct components of the graph separately.

Assumption A.2. The graph G = (V,E) is connected. That is, for any pair {i, j} ⊂
V there exists a sequence of indices k1, k2, . . . , km such that k1 = i, km = j and
{ki, ki+1} ∈ E for all i = 1, 2, . . . ,m− 1.

Next, we show that problem (2) has a bounded and nonempty feasible set under As-
sumption A.2.

Theorem A.1. Under Assumption A.2, the feasible set of problem (2) is bounded and
nonempty.

Proof. LetK ∈ Sn be a feasible matrix for problem (2) and let us denote by

τ = max
{i,j}∈E

Dij

the maximum edge length of the graph G. By condition (2d) we obtain that

tr(K) =

n∑
i=1

Kii =
1

2n

 n∑
i=1

n∑
j=1

Kii − 2

n∑
i=1

n∑
j=1

Kij +

n∑
i=1

n∑
j=1

Kjj

 . (28)
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On the other hand, as a positive semidefinite matrix K admits the factorization K =

Y Y T with some Y =
[
y1, y2, . . . , yn

]T ∈ Rn×d such that d ≤ n. By Assump-
tion A.2, for all i, j ∈ {1, 2, . . . , n}, the triangular inequality and conditions (2c) we then
obtain

Kii − 2Kij +Kjj = y
T
i yi − 2yTi yj + y

T
j yj

= ‖yi − yj‖2 ≤

(
m−1∑
l=1

‖ykl+1
− ykl‖

)2

≤ n2τ2

with some sequence {kl} satisfying the conditions stated in Assumption A.2. Substituting
the above inequality into equation (28) yields the upper bound

tr(K) ≤ n3τ2

2
. (29)

As a positive semidefinite matrixK satisfies the inequality

|Kij | ≤
Kii +Kjj

2
≤ tr(K)

2
, i, j = 1, 2, . . . , n

(see e.g. [14], p. 398), which together with inequality (29) shows that the elements of K
are bounded. Finally, the feasible set of problem (2) is nonempty since the matrixK = 0
trivially satisfies conditions (2b)–(2d).

Since problem (14) is obtained from problem (15) by the variable substitution K =
Y Y T that yields a positive semidefinite matrix, any feasible matrix Y for problem (14)
with any dimension d clearly yields a feasible matrix K = Y Y T for problem (15).
This implies that also the feasible set of (NLPd), which is equivalent to (14), is bounded
under Assumption A.2. The feasible set is also nonempty since for any dimension d, the
zero vector 0nd is feasible. Hence, any solution algorithm applied to problem (NLPd)
in Algorithm 1 is guaranteed to give a bounded solution whenever Assumption A.2 is
satisfied. Furthermore, these properties apply to problem (1) via Proposition 2.1.

Corollary A.1. Under Assumption A.2, the feasible set of problems (1), (14) and (NLPd)
is bounded for all d.

By using Theorem A.1, we will now show that the feasible set of the dual problem
(27) has nonempty interior under Assumption A.2.

Theorem A.2. Under Assumption A.2, the feasible set of problem (27) has nonempty
interior.

Proof. The proof is obtained by contradiction. Let Assumption A.2 be satisfied and as-
sume that the interior of the feasible set of problem (27) is empty. From definitions (12)
and (13), we note that for any choice of λ ≥ 0 the matrix

∑nE
i=1 λiAi is positive semidef-

inite and its smallest eigenvalue is zero with eigenvector 1n. Thus, it suffices to consider
eigenvectors lying in the subspace

V = {v ∈ Rn | ‖v‖ = 1,vT1n = 0}.
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Then by our assumption about emptiness of the interior of the feasible set of problem
(27), for all λ ≥ 0 there exists a vector v ∈ V such that

vT (

nE∑
i=1

λiAi)v = vT (

nE∑
i=1

λiaia
T
i )v =

nE∑
i=1

λi(v
Tai)

2 ≤ 1.

Since the above inequality holds for λ = α1nE for any α > 0, we deduce that for all
α > 0 there exists a vector v ∈ V such that

vT (

nE∑
i=1

Ai)v =

nE∑
i=1

(vTai)
2 ≤ 1

α
.

Consequently, since α is unbounded from above and the set V is compact, this implies
that there exists v ∈ V such that vTai = 0 for all i = 1, 2, . . . , nE . Let us then define
the matrix K(α) = αvvT with such a vector v. Then by expressing constraints (2c) in
terms of the vectors ai, using the identity

(aaT ) • (vvT ) = (aTv)2

for any vectors a,v ∈ Rn and the property that aTi 1n = 0 for all i = 1, 2, . . . , nE we
obtain that

Kik,ik(α)− 2Kik,jk(α) +Kjk,jk(α) = (aka
T
k ) •K(α)

= (aka
T
k ) • (αvvT )

= α(aTk v)
2 = 0

for all k = 1, 2, . . . , nE . Thus, the matrix K(α) satisfies conditions (2c). Furthermore,
by the definition ofK(α) and the fact that v ∈ V we have

n∑
i=1

n∑
j=1

Kij(α) =
n∑
i=1

n∑
j=1

αvivj =
n∑
i=1

αviv
T1n = 0,

and thus K(α) satisfies condition (2d). In addition, the matrix K(α) is clearly positive
semidefinite, which together with the above observations implies that it is feasible for
problem (2) with any α ≥ 0. This leads to contradiction with the result of Theorem A.1,
which states that under Assumption A.2 the feasible set of problem (2) is bounded.

We shall now show that problem (2) and its dual (27) have nonempty solution sets and
their objective function values coincide at these optimal solutions. In order to show this
via the standard duality results, we need to transform problem (2) into a problem whose
feasible set has nonempty relative interior (i.e. there exists a feasibleK such thatK � 0).
As shown in [24], problem (2) can be reformulated as

max
K∈Sn

tr[(I − 1

n
1n1

T
n )K]

s.t. K � 0,

Kii − 2Kij +Kjj ≤ D2
ij , {i, j} ∈ E

(30)

by lifting the constraint (2d) into the objective function.
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Remark A.1. The feasible set of problem (2) does not have a nonempty relative interior.
Namely, any positive semidefinite matrix K can be factorized as K = Y Y T for some
Y ∈ Rd. This implies that if K satisfies condition (2d), then condition (14c) holds. By
using the properties of the operator •, we then obtain that (1n1Tn )•(Y Y T ) = ‖1TY ‖2 =
0. This implies that K = Y Y T has eigenvalue zero with eigenvector 1n, and thus K
cannot be positive definite.

Remark A.2. Problem (30) has the same dual problem with problem (2), that is problem
(27). Furthermore, it can be shown that the solution set of problem (2) is in the solution
set of problem (30), and the objective function values of these two problems coincide at a
solution that is optimal for both problems. Thus, by showing that the primal problem (30)
and its dual (27) have zero gap, we also establish this property for problems (2) and (27).

For problem (30) we can show that its feasible set has nonempty relative interior.

Theorem A.3. Under Assumption A.1, the feasible set of problem (30) has nonempty
relative interior.

Proof. Let us define the matrixK = αI , where α ∈]0, β] with

β =
1

2
min
{i,j}∈E

D2
ij .

By Assumption A.1 such choice is possible. Clearly, the matrixK is positive definite (i.e.
K � 0) and satisfies the condition Kii − 2Kij +Kjj ≤ D2

ij for all {i, j} ∈ E.

Finally, by using Theorems A.2 and A.3 and Remark A.2, we can show that the gap
between the solutions of the primal problem (2) and its dual (27) is zero. This guarantees
that Assumption 2.1 is satisfied by the primal problem (2) and its dual once the primal
problem has been transformed into the standard form (4).

Theorem A.4. Under Assumptions A.1 and A.2, the primal problem (2) and its dual
(27) have nonempty solution sets. Furthermore, if K∗ ∈ Rn×n is a solution to (2) and
λ∗ ∈ RnE is a solution to (27), then tr(K∗) = bTλ∗.

Proof. By virtue of Theorems A.2 and A.3, the feasible sets of problems (30) and (27)
have nonempty relative interior. Furthermore, problem (30) is convex since it has a linear
objective function and linear constraints and the convex nonlinear constraint K � 0.
Convexity of the positive semidefiniteness constraint K � 0 is shown, for instance, in
[26]. On the other hand, convexity of problem (27) follows from the fact that its objective
function is linear and the second smallest eigenvalue of the matrix

∑nE
i=1 λiAi is a concave

function of λ (see e.g. [24] for concavity of this function).
Hence, we have shown that problems (30) and its dual (27) are convex and their

feasible sets have nonempty relative interior. The claim for the original problem (2) and
its dual (27) then follows from Remark A.2 and the fact that under these conditions the
primal and dual problems have nonempty solution sets and the objective function values
of the primal and dual solutions coincide (see e.g. [7] and [26]).
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B Proofs of Technical Results
In this appendix we prove some technical results used in Sections 2 and 3. We begin with
the proof of Proposition 2.1.

Proof of Proposition 2.1. First, we observe that by condition (1b) all feasible points {yi}ni=1 ⊂
Rd of problem (1) satisfy

n∑
i=1

n∑
j=1

yTi yj = ‖
n∑
i=1

yi‖2 = 0.

Thus, the objective function of problem (1) can be equivalently stated as

n∑
i=1

n∑
j=1

‖yi − yj‖2 =
n∑
i=1

n∑
j=1

‖yi‖2 − 2
n∑

i,j=1

yTi yj +
n∑
i=1

n∑
j=1

‖yj‖2

= 2n
n∑
i=1

‖yi‖2 = 2n · tr(Y Y T ) = −2n ·C • (Y Y T )

with C = −In.
On the other hand, by equations (12) and (13) and the properties of the operator • we

obtain that
Ak • (Y Y T ) = (aka

T
k ) • (Y Y T ) = ‖aTkY ‖2

and
aTkY = [yik,1 − yjk,1, yik,2 − yjk,2, . . . , yik,d − yjk,d] ∈ Rd,

and thus
Ak • (Y Y T ) = ‖yik − yjk‖

2, k = 1, 2, . . . , nE .

Finally, we observe that the condition

(1n1
T
n ) • (Y Y T ) =

n∑
i=1

n∑
j=1

yTi yj = ‖
n∑
i=1

yi‖2 =
d∑
j=1

‖
n∑
i=1

yi,j‖2 = 0

is equivalent to the condition that
∑n

i=1 yi,j = 0 for all j = 1, 2, . . . , d. This in turn is
equivalent to condition (1b).

For the proof of Theorem 3.1, we use a technical lemma for the optimal Lagrange
multipliers of problem (14).

Lemma B.1. If Y ∗ ∈ Rn×d is a solution to (14) with Lagrange multiplier µ∗ correspond-
ing to the constraint (14c), then µ∗ = 1

n .

Proof. The Lagrangian of problem (14) is given by

L(Y ;λ;µ) = −tr(Y Y T ) +

nE∑
i=1

[λi(Ai • (Y Y T )− bi] + µ(1n1
T
n ) • (Y Y T ).
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Let Y ∗ ∈ Rn×d be a solution to problem (14) with Lagrange multipliers λ∗ ∈ RnE and
µ∗ ∈ R. This implies the first-order necessary KKT condition

∇Y L(Y ∗;λ∗;µ∗) = −2Y ∗ + 2

nE∑
i=1

λ∗iAiY
∗ + 2µ∗1n1

T
nY
∗ = 0.

Premultiplying this condition by Y ∗
T
1n1

T
n yields

nµ∗Y ∗
T
1n1

T
nY
∗ = Y ∗

T
1n1

T
nY
∗

by noting that 1TnAi = 1Tnaia
T
i = 0 for all i = 1, 2, . . . , nE and that 1Tn1n = n. This is

equivalent to the condition that µ∗ = 1
n .

Proof of Theorem 3.1. Assume first that y∗ ∈ Rnd is a solution to problem (NLPd) with
Lagrange multipliers λ∗ ∈ RnE and

κ(L(λ∗)) = κ(

nE∑
i=1

λ∗iAi) ≥ 1.

By the elementary property of eigenvalues that

κ(αI +A) = α+ κ(A), (31)

for any α ∈ R this implies that

κ(−In +
nE∑
i=1

λ∗iAi) ≥ 0. (32)

On the other hand, we have the identities

(

nE∑
i=1

λ∗iAi)1n = 0 and (−In +
1

n
1n1

T
n )1n = 0, (33)

where the first identity follows from equations (12) and (13). These identities imply that
the eigenvector 1n corresponds to the zero eigenvalue of the matrix

− In +
nE∑
i=1

λ∗iAi +
1

n
1n1

T
n , (34)

and hence this matrix is positive semidefinite by inequality (32). By the assumption that
y∗ ∈ Rnd is a solution to problem (NLPd), the matrix Y ∗ = mat(y∗) is a solution to the
equivalent problem (14). Since by Lemma B.1 the Lagrange multiplier µ∗ corresponding
to the constraint (14c) is 1

n , Theorem 2.1 applied to problems (14) and (15) then implies
that K∗ = Y ∗Y ∗

T
with Y ∗ = mat(y∗) is a solution to (2) and y∗ is a global solution to

(NLPd).
Conversely, assume then that y∗ ∈ Rnd is a global solution to (NLPd) and the matrix

K∗ = Y ∗Y ∗
T

with Y ∗ = mat(y∗) is a solution to (2). Then Propositions 2.1 and 2.2
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imply that Y ∗ is a solution to (14) and K∗ is a solution to (15). Consequently, Theorem
2.2 applied to problems (14) and (15) implies that the condition

−In +
nE∑
i=1

λ∗iAi + µ∗(1n1
T
n ) � 0

holds with the optimal Lagrange multipliers λ∗ ∈ RnE and µ∗ ∈ R. On the other hand,
by Lemma B.1 we have µ∗ = 1

n . Thus, the above condition and identities (33) imply that

κ(−In +
nE∑
i=1

λ∗iAi) ≥ 0

since the remaining eigenvectors of the symmetric matrix (34) are orthogonal to the eigen-
vector 1n. By equation (31), this in turn implies that

κ(

nE∑
i=1

λ∗iAi) = κ(L(λ∗)) ≥ 1.

Finally, we prove Theorem 3.2 by using a technical lemma for the optimal Lagrange
multipliers of problem (NLPd).

Lemma B.2. If y∗ ∈ Rnd is a first-order KKT point of problem (NLPd) with Lagrange
multipliers µ∗ ∈ Rd corresponding to the constraints hdi (y

∗) = 0, then µ∗ = 0.

Proof. Let y∗ ∈ Rnd be a first-order KKT point of problem (NLPd) with Lagrange mul-
tipliers λ∗ ∈ RnE and µ∗ ∈ Rd. This implies the first-order necessary KKT condition

∇yLd(y∗;λ∗;µ∗) = −2y∗ + 2

nE∑
i=1

λ∗i (Id ⊗Ai)y
∗ +

d∑
i=1

µ∗i c
d
i = 0. (35)

On the other hand, we note that

(cdj )
T (Id ⊗Ai)y

∗ = (cdj )
T (Id ⊗ ai)(Id ⊗ ai)Ty∗ = 0

for all j = 1, 2, . . . , d. This is because we have (Id⊗ai)Tcdj = 0 for all i = 1, 2, . . . , nE
and j = 1, 2, . . . , d by equation (18) and the fact that 1Tnai = 0 for all i = 1, 2, . . . , nE .
On the other hand, we have (cdj )

Ty∗ = 0 by the feasibility of y∗ for problem (NLPd). By
equation (18), premultiplying equation (35) by (cdj )

T for any j = 1, 2, . . . , d then yields

−2(cdj )Ty∗ + 2

nE∑
i=1

λ∗i (c
d
j )
T (Id ⊗Ai)y

∗ +

d∑
i=1

µ∗i (c
d
j )
Tcdi =

{
nµ∗i , if i = j
0, if i 6= j.

This shows that the first-order necessary KKT condition (35) can only be satisfied when
µ∗i = 0 for all i = 1, 2, . . . , d.
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Proof of Theorem 3.2. First, we note that the Lagrangian of problem (NLPd) with a given
dimension d has gradient

∇yLd(y;λ;µ) = −2y + 2

nE∑
i=1

λi(Id ⊗Ai)y +

d∑
i=1

µ∗i c
d
i

and Hessian

∇2
yLd(y;λ;µ) = −2Ind + 2

nE∑
i=1

λi(Id ⊗Ai).

Then, let y∗ ∈ Rnd be a first-order KKT point of problem (NLPd) with Lagrange multi-
pliers λ∗ ∈ RnE , λ∗ ≥ 0, and µ∗ ∈ Rd such that condition (20) is not satisfied.

The vector ỹ∗ is feasible for problem (NLPd+1) since clearly

gd+1
i (ỹ∗) = ỹ∗

T
(Id+1 ⊗Ai)ỹ

∗ = y∗
T
(Id ⊗Ai)y

∗ = gdi (y
∗) ≤ bi

for all i = 1, 2, . . . , nE ,

hd+1
i (ỹ∗) = (cd+1

i )T ỹ∗ = (cdi )
Ty∗ = hdi (y

∗) = 0

for all i = 1, 2, . . . , d and

hd+1
d+1(ỹ

∗) = (cd+1
d+1)

T ỹ∗ = 0Tndy
∗ + 1Tn0n = 0.

Furthermore, by Lemma B.2 we have µ∗i = 0 for all i = 1, 2, . . . , d. Consequently,

∇yLd+1(ỹ
∗;λ∗; µ̃∗) = −2ỹ∗+2

nE∑
i=1

λ∗i (Id+1⊗Ai)ỹ
∗ =

[
∇yLd(y∗;λ∗;µ∗)

0

]
= 0,

which shows that ỹ∗ is a first-order KKT point of problem (NLPd+1) with Lagrange
multipliers λ∗ and µ̃∗.

On the other hand, let v∗ ∈ Rn be an eigenvector corresponding to the eigenvalue

κ(L(λ∗)) = κ(

nE∑
i=1

λ∗iAi).

Without loss of generality, we can assume that ‖v∗‖ = 1. Then, by the assumption that
κ(L(λ∗)) < 1 we have

v∗
T
(

nE∑
i=1

λ∗iAi)v
∗ < 1,

which by the definition of the Kronecker product ⊗ implies that

dT [

nE∑
i=1

λ∗i (Id+1 ⊗Ai)]d < 1

with

d =

[
0nd
v∗

]
.
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This in turn implies that

dT [−In(d+1) +

nE∑
i=1

λ∗i (Id+1 ⊗Ai)]d =
1

2
dT∇2

yLd+1(ỹ
∗;λ∗; µ̃∗)d < 0.

Finally, for the constraint gradients of problem (NLPd+1) we obtain

∇gd+1
i (ỹ∗)Td = 2ỹ∗

T
[Id+1 ⊗Ai]d = 2

[
y∗

T
0Tn

]
[Id+1 ⊗Ai]

[
0nd
v∗

]
= 2

[
y∗

T
0Tn

] [ 0nd
(Id+1 ⊗Ai)v

∗

]
= 0

for i = 1, 2, . . . , nE and similarly

∇hd+1
i (ỹ∗)Td = (cd+1

i )T
[
0nd
v∗

]
= 0

for i = 1, 2, . . . , d. Finally, assuming that 1Tnv
∗ = 0, we have

∇hd+1
d+1(ỹ

∗)Td = (cd+1
d+1)

T

[
0nd
v∗

]
=
[
0Tnd 1

T
n

] [ 0nd
v∗

]
= 1Tnv

∗ = 0.

It is always possible to choose an eigenvector v∗ satisfying the condition 1Tnv
∗ = 0.

Namely, if κ(L(λ∗)) 6= 0, then due to orthogonality of the eigenvectors of the symmetric
matrix L(λ∗), any eigenvector in the eigenspace κ(L(λ∗)) is orthogonal to the vector
1n. Namely, by equations (12) and (13) the vector 1n is an eigenvector of L(λ∗) corre-
sponding to the eigenvalue zero. Otherwise, if κ(L(λ∗)) = 0, by the orthogonality of the
eigenvectors the eigenspace of κ(L(λ∗)) contains an eigenvector that is orthogonal to the
eigenvector 1n.

C Equality-Constrained Formulation With Slack Vari-
ables

Semidefinite programs with inequality constraints can be equivalently transformed into
the standard form SDP (4), and similarly, their low-rank formulations can be equivalently
transformed into the standard form (3). To this end, we define the matrices

C̃ =

[
C 0n×m1

0m1×n 0m1×m1

]
, (36)

Ãi =

[
Ai 0n×m1

0m1×n eie
T
i

]
, i = 1, 2, . . . ,m1 (37)

B̃i =

[
B 0n×m1

0m1×n 0m1×m1

]
, i = 1, 2, . . . ,m2, (38)
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where ei denotes a unit vector along the i-th coordinate axis. With these definitions, a
straightforward calculation shows that for any feasible matrixK for the problem

min
K∈Rn×n

C •K

s.t. K � 0

Ai •K ≤ bi, i = 1, 2, . . . ,m1,

Bi •K = ci, i = 1, 2, . . . ,m2

(39)

there exists an augmented matrix

K̃ =

[
K U

UT S

]
∈ R(n+m1)×(n+m1)

with any U ∈ Rn×m1 and some S ∈ Rm1×m1 that is feasible for the standard form
problem

min
K̃∈R(n+m1)×(n+m1)

C̃ • K̃

s.t. K̃ � 0

Ãi • K̃ = bi, i = 1, 2, . . . ,m1,

B̃i • K̃ = ci, i = 1, 2, . . . ,m2

(40)

with the same objective and constraint function values. This equivalence also holds con-
versely.

Similarly, for any feasible matrix Y for the problem

min
Y ∈Rn×d

C • (Y Y T )

s.t. Ai • (Y Y T ) ≤ bi, i = 1, 2, . . . ,m1,

Bi • (Y Y T ) = ci, i = 1, 2, . . . ,m2

(41)

there exists an augmented matrix

Ỹ =

[
Y
S

]
∈ R(n+m1)×d

with some S ∈ Rm1×d that is feasible for the standard form problem

min
Ỹ ∈R(n+m1)×d

C̃ • (Ỹ Ỹ T
)

s.t. Ãi • (Ỹ Ỹ
T
) = bi, i = 1, 2, . . . ,m1,

B̃i • (Ỹ Ỹ
T
) = ci, i = 1, 2, . . . ,m2

(42)

with the same objective and constraint function values. This equivalence also holds con-
versely.

In particular, the necessary and sufficient optimality condition (9) provided by The-
orems 2.1 and 2.2 is directly applicable to the inequality-constrained problems (39) and
(41). This follows from definitions (36)–(38) and the following well-known properties
about eigenvalues and eigenvectors of block-diagonal matrices.
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Lemma C.1. Assume that the matrices A ∈ Rn×n and B ∈ Rm×m have eigenvalues
{λi}ni=1 and {µi}mi=1 and eigenvectors {vi}ni=1 and {wi}mi=1, respectively. Then the ma-
trix

C =

[
A 0
0 B

]
has eigenvalues {λ1, λ2, . . . , λn, µ1, µ2, . . . , µm} and eigenvectors

{
[
v1
0m

]
,

[
v2
0m

]
, . . . ,

[
vn
0m

]
,

[
0n
w1

]
,

[
0n
w2

]
, . . . ,

[
0n
wm

]
}.

By Lemma C.1, for any nonnegative Lagrange multipliers λ∗ ∈ Rm1 the condition

C +

m1∑
i=1

λ∗iAi +

m2∑
i=1

µ∗iBi � 0

is clearly equivalent to the condition

C̃ +

m1∑
i=1

λ∗i Ãi +

m2∑
i=1

µ∗i B̃i � 0,

where the matrices C̃, Ãi and B̃i are defined according to (36)–(38).
Furthermore, optimal solutions to the inequality-constrained problems (39) and (41)

have nonnegative Lagrange multipliers corresponding to the inequality constraints. This
follows from the definition of KKT conditions for inequality-constrained problems (see
e.g. [4]). It is also clear from the KKT conditions of problems (40) and (42) that their op-
timal solutions always have nonnegative Lagrange multipliers corresponding to the con-
straints involving the matrices Ãi.
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D The Test Datasets and the MVU Results

(a) Helix

(b) Incomplete tire

(c) Spiral
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(a) S-roll

(b) Swiss roll

(c) Trefoil knot
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(a) Trefoil ribbon

(b) Twin peaks
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