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Abstract

Extraction of curvilinear structures from noisy data is an essential task in many
application fields such as data analysis, pattern recognition and machine vision.
The approach considered in this paper assumes a random process in which the
samples are obtained from a generative model. The model specifies a set of gen-
erating functions describing curvilinear structures as well as sampling noise and
background clutter. It is shown that ridge curves of the marginal density induced
by the model can be used to estimate the generating functions. Given a Gaus-
sian kernel density estimate for the marginal density, ridge curves of the density
estimate are parametrized as the solution to a differential equation. Finally, a
predictor-corrector algorithm for tracing the ridge curve set of such a density es-
timate is developed. Efficiency and robustness of the algorithm are demonstrated
by numerical experiments on synthetic datasets as well as observational datasets
from seismology and cosmology.

Keywords: principal curve; filament; generative model; ridge curve; density esti-
mation; predictor-corrector method
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1 Introduction

Detection and extraction of curvilinear structures from noisy data is an essential
task in many practical applications: extraction of blood vessels that form filament-
and tree-like structures is an important task in medical imaging (see e.g. [6], [27]
and [36]); in cosmological data, stars and galaxies form filament-like patterns (see
e.g. [41] and [49]), and in astronomy, detection of solar flares involves finding
filaments from solar images (see e.g. [47] and [53]). Identification of curvilinear
structures from noisy data with background clutter is a typical task in remote sens-
ing (see e.g. [5]) and seismology (see e.g. [17] and [50]). Real-time applications,
where fitting curves into noisy data is an important task, include freeway traffic
modeling (see e.g. [13] and [25]) and process monitoring (see e.g. [20]).

One of the most well-known approaches to extract curvilinear structures from
noisy data is to use the so-called principal curves. This approach dates back to
Hastie [32] and Hastie and Stuetzle [33]. A principal curve is defined as a curve
passing through the ”middle” of the data in a certain sense. Further variations
of the principal curve approach have been developed, for instance, by Kégl and
Krzyzak [37, 38] and Tibshirani [51]. All of these approaches, however, make
rather restrictive assumptions. For instance, they attempt to fit a single curve with
no self-intersections, or as the method of [37], require complicated parameter
adjustments when intersecting or multiple curves are sought from the data.

In order to overcome the limitations of the original principal curve definition,
locally defined variants of a principal curve have been proposed (see e.g. [18],
[19], [26], [28–30] and [43]). This paper extends an earlier paper by the author
[45] refining the ideas presented in [43]. The key idea in these two papers is to
estimate the probability density from given data and extract curvilinear structures
from the data from ridge curves of the density estimate. Since the definition of a
ridge is based only on local derivative information, this approach does not suffer
from the limitations of the earlier approaches. For projection of a sample point
onto a ridge, a subspace-constrained variant of the standard mean-shift method
(see e.g. [14] and [15]) is proposed in [43]. An improved Newton-based method
for this purpose is developed in [45]. Recently, some extensions of ridge-based
methods have been made for the more difficult problem of parametrization of
principal curves by iteratively tracing ridge curves of the density (see e.g. [6–8]).

In [45] the author proposes a generative model for describing a random process
that generates a noisy point set containing curvilinear structures. In the model, the
data points are assumed to be sampled from a set of generating functions with
additive noise. In this paper the model is extended to include background clutter
that is often present in practical applications. Furthermore, it is shown in [45] that
ridge curves of the marginal density induced by the model can be used to estimate
the underlying generating functions. Differently to the earlier local principal curve
approaches, where no statistical assumptions are made about the data-generating
process, the proposed model provides a more disciplined approach.
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For a computational implementation of the ridge curve approach, we consider
nonparametric estimation of the marginal density by using Gaussian kernels (see
e.g. [46]). This approach allows to estimate the density directly from the sam-
ples with no prior knowledge on the data-generating process, which is often the
case in real-world tasks. We also discuss how to automatically choose the kernel
bandwidth since this step is crucial for the practical applicability of the method.

The main contribution of this paper is the development of a computationally
efficient and robust algorithm for tracing ridge curves of a Gaussian kernel density
estimate. Adapting the theory of gradient extremals from theoretical chemistry
(see e.g. [35]), it is shown that a ridge curve can be parametrized by tracing a
solution curve of a differential equation. A predictor-corrector algorithm is de-
veloped for this purpose. The algorithm first finds a set of modes (maxima) of
the density, and starting from each mode iteratively traces the ridge curve passing
through it. Since the choice of the mode-finding and corrector methods largely
determines the performance of the algorithm, the trust region Newton method de-
veloped in [45] is utilized for these purposes. This choice is motivated by the
results of [45] showing that the Newton-based method is not only more efficient
than the mean-shift method and its subspace-constrained variant previously pro-
posed in [6–8] and [43] but also converges to a ridge point or mode under mild
assumptions.

The main difficulty in tracing ridge curves is that they can have a very complex
structure. Differently to the earlier ridge-based principal curve methods of [6–8],
where this issue was not considered in detail, a detailed treatment for detection
of different types of singular points along a ridge curve is given. The analysis
is based on the theory of ridge curves from digital image processing (see e.g.
[24]). In addition, we discuss some strategies for choosing the starting points.
These considerations arise when the input data has multiple, possibly intersecting
curvilinear structures.

The remaining of this paper is organized as follows. In Section 2 we describe
the generative model and discuss how to use the ridge curves to estimate the gen-
erating functions. Sections 3 and 4 are devoted to the development of the ridge
tracing algorithm. In Section 5 we demonstrate the performance and reliability of
the proposed algorithm on synthetically generated point sets as well as two obser-
vational datasets from seismology and cosmology. Finally, Section 6 summarizes
this paper with concluding remarks.

2 Probabilistic Model and Density Estimation

In this section we recall the probabilistic model describing a noisy point set con-
taining curvilinear structures mixed with background clutter. The model is es-
sentially the one described in [45], and it is closely related to the one described
in [28–30].
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Given a point set sampled from the model, our aim is to estimate the curvi-
linear structures directly from the data with no prior assumptions on the model
parameters. To this end, we consider the marginal density induced by the model.
For estimation of the curvilinear structures from the marginal density, we define
the concept of a ridge curve. Finally, for a computational implementation of this
approach, we consider nonparametric estimation of the marginal density by using
Gaussian kernels.

2.1 The Model
In the model, the sample points are assumed to belong to some compact domain
Ω ⊂ Rd, and they fall into two distinct categories. A sample either belongs to
some curvilinear structure, that we call a filament, or is background clutter. The
type of a sample point is modeled by the random variable

T =

{
1, if the sample belongs to a filament,
0, if the sample is background clutter

having probabilities

P (T = 1) = ρ and P (T = 0) = 1− ρ (1)

with some ρ ∈]0, 1].
We define the random variable X to represent the sample points. When a

sample drawn from X is background clutter (i.e. when T = 0), it is assumed to
be uniformly distributed in the domain Ω. That is,

X | (T = 0) ∼ U(Ω). (2)

On the other hand, when a sample drawn from X belongs to some filament
(i.e. when T = 1), we assume that it is sampled in a random process from
some generating function parametrizing the filament. The generating functions
{f i}ni=1 : Di → Rd, where n is the number of filaments, are defined as contin-
uous mappings from some compact and connected domains Di ⊂ R. Given the
condition that T = 1, the outcome of the random variable X depends on three
random variables: I , Θ and ε. The random variable I with domain {1, 2, . . . , n}
specifies which filament the sample belongs into, and the random variable Θ gives
coordinate along the specified filament. In addition, we assume that the sample
is obtained from the generating function with additive noise represented by the
random variable ε.

Furthermore, we assume that the random variables I and ε are distributed
according to

P (I = i) = wi and ε ∼ Nd(0, σ2) (3)

with w > 0 such that
∑n

i=1wi = 1 and with Nd(0, σ2) denoting a d-dimensional
normal distribution with zero mean and variance σ2. We also assume that given
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i ∈ {1, 2, . . . , n}, the conditional variable Θ | (I = i) follows some distribution
defined in the domain Di.

The above assumptions yield the conditional random variable

X | (T = 1, I = i,Θ = θ) = f i(θ) + ε

having the density

pX(x | T = 1, I = i,Θ = θ) =
1

(
√

2πσ)d
exp

(
−‖x− f i(θ)‖

2

2σ2

)
. (4)

The above model is in fact a generative model, since it specifies a random
process for obtaining the samples from a set of generating functions. When the
generating functions are known a priori, the reliability of a filament extraction
algorithm can be evaluated by comparing the estimates to the known functions.
An example point set sampled from the model is plotted in Figure 1.
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Figure 1: Filaments parametrized by two generating functions f1 : D1 → R2 and
f2 : D2 → R2 with D1 ⊂ R and D2 ⊂ R, noisy samples and background clutter.

Given a set of samples drawn from the above model, our aim is to estimate
the functions f i parametrizing the filaments. A typical situation arising in many
real-world tasks is that there is not enough prior information to make paramet-
ric assumptions on the data-generating process. Therefore, in the following we
consider nonparametric estimation of these functions directly from the samples
represented by the observed random variableX . To this end, we need to obtain a
density forX that does not depend on the latent variables I , Θ and ε.

By using the conditional random variables defined above, we can form the
joint density and marginalize it to obtain a density that depends only on the ran-
dom variableX . Namely, by successively applying the relation between the joint
and conditional densities we obtain

pX,T,I,Θ(x, 1, i, θ) = pX(x | T = 1, I = i,Θ = θ)pT,I,Θ(1, i, θ)

= pX(x | T = 1, I = i,Θ = θ)pΘ(θ | I = i)pT,I(1, i)

= pX(x | T = 1, I = i,Θ = θ)pΘ(θ | I = i)P (I = i)P (T = 1)

and
pX,T,I,Θ(x, 0, i, θ) = pX(x | T = 0)P (T = 0).

4



Then summing the joint density pX,T,I,Θ(x, t, i, θ) over the domains of the dis-
crete random variables T and I and integrating over the domain of the continuous
variable Θ together with equations (1)-(4) yields the marginal density

pX(x) =
ρ

(
√

2πσ)d

n∑
i=1

wi

∫
Di

exp

(
−‖x− f i(θ)‖

2

2σ2

)
pΘ(θ | I = i)dθ +

1− ρ
V (Ω)

, (5)

where V (Ω) denotes the volume of the domain Ω.
The above density represents the observed density from a given set of samples

from the model, and it depends only on X . By marginalizing the joint density
in this way we lose some information. As a result, ridge curves of the marginal
density pX give somewhat biased estimates of the generating functions f i. Nev-
ertheless, as we shall see in the following, this approach allows a computationally
tractable way of estimating the generating functions with a reasonably small bias.

2.2 Ridge Curves
Let us now define the concept of a ridge curve in order to estimate the generating
functions f i from the marginal density (5). A point on a ridge curve of a d-
variate probability density is a (local) maximum on the cross-section of the density
with respect to the hyperplane spanned by a subset of the Hessian eigenvectors.
The eigenvectors in this subset correspond to the d − 1 algebraically smallest
eigenvalues of the Hessian matrix.

Definition 2.1. A point x ∈ Rd belongs to Rp, the set of ridge curves of a twice
differentiable probability density p : Rd → R if

∇p(x)Tvi(x) = 0, for all 1 < i ≤ d, (6a)
λ2(x) < 0, (6b)

λ2(x) < λ1(x), (6c)

where λ1(x) > λ2(x) ≥ · · · ≥ λd(x) and {vi(x)}di=1 denote the eigenvalues and
the corresponding eigenvectors of∇2p(x), respectively.

A ridge curve is a connected set of ridge points lying on top of the density, as
illustrated in Figure 2. As we shall see in Section 3, the ridge curve setRp gener-
ally consists of set of multiple curves that are not connected to each other. From
Definition 2.1 and Figure 2 we observe that a ridge curve passes through a set of
modes (i.e. maxima) of the density. This property will be utilized in Sections 3 and
4, where an algorithm for obtaining the set Rp is developed. The algorithm starts
tracing each ridge curve component from a mode, and each component curve of
the setRp is identified according to the modes it passes through.

The following result ensures that when we have a single generating function
that parametrizes a line segment and no background clutter, the image of the gen-
erating function lies on the ridge curve of the marginal density (5). For the more
general m-dimensional ridge set this result has been proven in [45].
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Figure 2: Ridge curve of a bivariate probability density.

Theorem 2.1. Let D = [a, b] with some a < b and let f : D → Rd be defined as
f(θ) = x0 + θv with some x0 ∈ Rd and v ∈ Rd \ {0}. If p is defined by equation
(5) with n = 1, ρ = 1, f 1 = f and Θ ∼ U([a, b]), then {f(θ) | θ ∈ D} ⊆ Rp.

The property that the ridge curves of the marginal density coincide with the
generating functions does not generally hold when n > 1 or when one or more
of the generating functions are nonlinear. Nevertheless, as we demonstrate by
examples in Section 5, the ridge curves give accurate estimates of the generat-
ing functions when the data is sampled from the model with a sufficiently small
amount of noise. To shed more light on this issue, in Appendix A we consider a
special case where the model bias can be explicitly computed.

2.3 Kernel Density Estimation

For a computational implementation we consider estimation of the marginal den-
sity (5) from a given set of samples nonparametrically by using a kernel density
estimate. The advantage of this approach is that it can be done directly from the
data with no prior knowledge on the data-generating process. A widely used non-
parametric estimation method is to use Gaussian kernels (see e.g. [46]). In such a
density estimate, one Gaussian function is assigned for each sample point. The es-
timate requires choosing the matrix H , for which a number of robust data-driven
methods have been developed (see e.g. [11], [12], [22] and [23]).

Definition 2.2. The Gaussian kernel density estimate p̂ obtained by drawing a
set of samples Y = {yi}Ni=1 ⊂ Rd from some (unknown) probability density
p : Rd → R is

p̂(x) =
1

N

N∑
i=1

KH(x− yi), (7)
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where the kernel KH : Rd →]0,∞[ is the Gaussian function

KH(x) =
1√

(2π)d|H|
exp

(
−1

2
xTH−1x

)
(8)

with a symmetric and positive definite kernel bandwidth matrixH .

The Gaussian kernel density estimate has a very favorable property of being a
C∞-function (i.e. infinitely many times continuously differentiable). As we shall
see in the following section, the definition of a ridge curve of such a function is
well-posed, and the set Rp̂ indeed defines a set of curves. With an appropriate
choice of the bandwidth matrix H , ridge curves of a Gaussian kernel density
estimate give good estimates of the generating functions. To illustrate this fact, a
Gaussian kernel density estimate obtained from a point set and the ridge curve of
the density estimate are plotted in Figure 3.
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Figure 3: Contour lines and the ridge curve of a Gaussian kernel density estimate ob-
tained from a point set generated from the model described in Subsection 2.1.

3 Theory of Ridge Curves
In this section we develop the necessary theory for extracting the ridge curve set
Rp̂ of a given Gaussian kernel density estimate p̂ : Rd → R. Based on the
mathematical theory of ridge curves from digital image processing (see e.g. [24]),
we first show that the definition of a ridge curve is well-posed for Gaussian ker-
nel density estimates. Adapting the theory of gradient extremals from theoretical
chemistry (see e.g. [35]), we then show that a ridge curve can be parametrized as
the solution to a differential equation.

3.1 Existence of Ridge Curves
First of all, we need to ensure that Definition 2.1 is well-posed and that the setRp̂

defines a set of curves. Furthermore, when this is the case and the curves have
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endpoints, it is in our interest to analyze the behaviour of these curves at such
points. This is essential in order to develop a ridge tracing algorithm that properly
terminates when the followed ridge curve ends.

Motivated by applications in digital image processing, Damon [16] and Miller
[40] give a rigorous analysis for ridge curves of C∞-functions in a differential
geometric framework. In [16] and [40], ridge curves are treated as a special case
of the more general critical curves.

Definition 3.1. Let p ∈ C∞(Rd,R) and let {vj}dj=1 : Rd → Rd denote the
eigenvectors of ∇2p corresponding to the eigenvalues λ1(·) ≥ λ2(·) ≥ · · · ≥
λd(·). The set of critical curves of p of index i ∈ {1, 2, . . . , d} is

Cip = {x ∈ Rd | ∇p(x)Tvj(x) = 0 and λj(x) 6= λi(x) for all j 6= i}.

Furthermore, the following definitions for different types of critical points are
given in [16] and [40].

Definition 3.2. Let p ∈ C∞(Rd,R) and let λ1(·) ≥ λ2(·) ≥ · · · ≥ λd(·) denote
the eigenvalues of the Hessian∇2p. If x ∈ Cip for some index i, then x is a

(i) ridge point of p if i = 1 and λ2(x) < 0.

(ii) valley point of p if i = d and λd−1(x) > 0.

(iii) r-connector point of p if i = 1 and λ2(x) > 0.

(iv) v-connector point of p if i = d and λd−1(x) < 0.

(v) m-connector point of p if i > 1 and i < d.

It is not trivial to show when the setRp defined by conditions (6a)-(6c) defines
a set of curves. Fortunately, by generalizing the earlier results of [16] for bivariate
functions, it has been shown in [40] that this property holds generically for C∞-
functions in higher dimensions as well. One of the main results of [40] is that
the following properties hold generically in the sense that if some function p ∈
C∞(Rd,R) does not satisfy some property, then an arbitrarily small perturbation
of p measured in the L2-norm yields a function for which these properties are
satisfied. Consequently, for any Gaussian kernel density estimate obtained from
a point set generated from some random process, the following properties hold
almost always. For a rigorous definition of genericity, we refer to [16] and [40].

Theorem 3.1. For p ∈ C∞(Rd,R), the following properties are generically sat-
isfied.

(i) The set Cp =
⋃d
i=1 Cip consists of a discrete (i.e. finite or countably infinite)

set of C∞-curves. The curves in Rp, which is a subset of Cp, may have
endpoints.

(ii) The curves inRp do not intersect at any point and have no self-intersections.
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(iii) A connected component curve of Rp can have an endpoint x only when
λ1(x) = λ2(x) or λ2(x) = 0.

(iv) When a ridge curve ends at a point x such that λ2(x) = 0, it is smoothly
continued by an r-connector curve.

(v) When a ridge curve ends at a point x such that λ1(x) = λ2(x), it is smoothly
continued by an m-connector curve.

Remark 3.1. When d = 2, the set C1
p ∪ C2

p contains no m-connector points. Fur-
thermore, property (v) in the above list then states that the ridge curve is continued
by a v-connector curve.

Figure 4: Critical curves (the set Cp̂) of a Gaussian kernel density estimate p̂ obtained
from a point set (light red). Critical curves belonging to Rp̂, the set of ridge curves, are
plotted in dark green.

To illustrate the properties listed above, a point set and the set of critical and
ridge curves of its Gaussian kernel density estimate p̂ are plotted in Figure 4.
The ridge curves in this case have endpoints and they are smoothly connected to
critical curves. This figure also illustrates that in our application, only ridge curves
are of interest since they give meaningful estimates for the generating functions
of the data. Furthermore, it is apparent that the ridge tracing algorithm should be
terminated when it enters a critical curve that is not in the setRp̂.

3.2 Differential Equation Formulation
Given a function p ∈ C3(Rd,R) with a nonempty ridge curve set Rp and a point
x0 ∈ Rp, we now derive the differential equation defining a ridge curve that
passes through x0. Recalling Definition 2.1, the assumption that x0 ∈ Rp implies
that

∇p(x0)Tvi(x0) = 0 for all 1 < i ≤ d, (9)

where {vi(x0)}di=1 denote the normalized eigenvectors of the Hessian ∇2p(x0)
corresponding to the eigenvalues λ1(x0) > λ2(x0) ≥ · · · ≥ λd(x0). Since
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∇2p(x0) is symmetric, its eigenvectors are orthogonal, and consequently the gra-
dient is parallel to the first eigenvector v1(x0). Thus, equation (9) implies that

∇2p(x0)∇p(x0) = λ1(x0)∇p(x0), (10)

which is equivalent to [
∇2p(x0)− λ1(x0)I

]
∇p(x0) = 0.

Again, by utilizing the property that the gradient∇p(x0) is the first eigenvec-
tor of the Hessian∇2p(x0) and normalizing the gradient, we obtain[

∇2p(x0)− ∇p(x0)T∇2p(x0)∇p(x0)

‖∇p(x0)‖2
I

] ∇p(x0)

‖∇p(x0)‖ = 0.

By introducing the matrix

P (x) = I − ∇p(x)∇p(x)T

‖∇p(x)‖2
(11)

projecting a given vector onto the subspace orthogonal to the gradient∇p(x), this
equation is equivalently written as

P (x0)∇2p(x0)
∇p(x0)

‖∇p(x0)‖ = 0. (12)

Defining x : [0,∞[→ Rd as a curve passing through x0 and requiring that
condition (12) holds along this curve yields the initial value problem

d

dθ

[
P (x(θ))∇2p(x(θ))

∇p(x(θ))

‖∇p(x(θ))‖

]
= 0, x(0) = x0. (13)

Numerical solution of this initial value problem necessitates determining the tan-
gent vector x′(θ) for the solution curve. This can be done by utilizing the theory
of gradient extremal curves developed in theoretical chemistry (see e.g. [9], [10],
[34] and [35]). This is due to the fact that equation (10), and thus equation (13),
are equivalent to the equations defining a gradient extremal curve passing through
x0.1 It has been shown, for instance, in [9] and [10] that calculating the derivative
with respect to θ in equation (13) yields the equation

P (x(θ))A(x(θ))x′(θ) = 0 (14)

with

A(x) = ∇3p(x)∇p(x) + [∇2p(x)]2 − ∇p(x)T∇2p(x)∇p(x)

‖∇p(x)‖2
∇2p(x). (15)

1A gradient extremal point of a function f : Rd → R is defined as a critical point of the
gradient norm ‖∇f‖ in a level set of f . A gradient extremal curve passes through such points.
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Here we define the third derivative tensor as

[∇3p(x)]i,j,k =
∂3p

∂xi∂xj∂xk
(x)

and the tensor-vector product∇3p(x)∇p(x) as

[∇3p(x)∇p(x)]i,k =
d∑
j=1

[∇3p(x)]i,j,k[∇p(x)]j.

Whenever the matrix P (x(θ))A(x(θ)) has one-dimensional null space, the
tangent vector x′(θ) can be uniquely determined from equation (14) up to a scalar
factor. When this is the case, the following result gives a formula for the tangent
vector. In the following theorem and its proof given in Appendix B, we rephrase
the result of [9] in our notation.

Theorem 3.2. Let p ∈ C3(Rd,R), x0 ∈ Rd and let

P (x0) = U(x0)U(x0)T , where U(x0) ∈ Rd×(d−1) (16)

be the eigendecomposition of the matrix P (x0) defined by equation (11). If
∇p(x0) 6= 0 and the matrix C(x0) = U(x0)TA(x0)U (x0), where A(·) is de-
fined according to equation (15), is nonsingular, then the vector

u∗ =
∇p(x0)

‖∇p(x0)‖ −U(x0)C(x0)−1b(x0) (17)

with

b(x) = U (x)T [∇3p(x)∇p(x)]
∇p(x)

‖∇p(x)‖ (18)

and its scalar multiples are the only solutions to the equation

P (x0)A(x0)u = 0. (19)

The tangent vector given by equation (17) is not defined at a critical point (i.e.
when ∇p(x) = 0). However, the following result covers this case. It shows that
when an isolated critical point x0 of p (i.e. a critical point with a neighbourhood
containing no other critical points of p) belonging to Rp is approached along a
ridge curve, the tangent becomes parallel to the eigenvector v1(x0), and the lim-
iting direction is well-defined. The proof of this result is given in Appendix B.

Theorem 3.3. Let p ∈ C3(Rd,R) and assume that there exists a continuous curve
x : D → Rd defined on some domain D ⊂ R such that condition (6a) is satisfied
for all x(θ) with θ ∈ D. Further, assume that x(0) = x0 for some isolated critical
point x0 ∈ Rp. If we define

u(θ) =
∇p(x(θ))

‖∇p(x(θ))‖ −U(x(θ))C(x(θ))−1b(x(θ)), (20)
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where the matrix U(·) is defined according to (16) and the vector b(·) is defined
according to (18), then

lim
θ→0

∣∣∣∣ u(θ)T

‖u(θ)‖v1(x0)

∣∣∣∣ = 1.

On the other hand, singularity of the matrix C(·) may occur in two distinct
ways, as shown in the following theorem. This result, whose proof is given in
Appendix B, is a generalization from [9], where only the case when the matrix
C(·) has exactly one zero eigenvalue is considered.

Theorem 3.4. Let p ∈ C3(Rd,R), x0 ∈ Rd and let the matrices U(·), A(·) and
C(·) be defined as in Theorem 3.2 and assume that the matrix C(x0) is singular
with eigenvalues λi = 0 for i ∈ I , where I ⊂ {1, 2, . . . , d− 1}. Let

C(x0) = WDW T

with W = [w1,w2, . . . ,wd−1] ∈ R(d−1)×(d−1) and the diagonal matrix D ∈
R(d−1)×(d−1) be the eigendecomposition of C(x0) and define the vector b(·) ac-
cording to equation (18). If wT

i b(x0) 6= 0 for some i ∈ I , then solutions to
equation (19) with respect to u are of the form

u(β) = U(x0)
∑
i∈I

βiwi (21)

with β ∈ R|I|. Otherwise, ifwT
i b(x0) = 0 for all i ∈ I , then solutions to equation

(19) lie in the subspace spanned by the vector u(β) defined by equation (21) and
the vector

ũ =
∇p(x0)

‖∇p(x0)‖ −U(x0)
d−1∑
i=1
i/∈I

wT
i b(x0)

dii
wi. (22)

Theorem 3.4 gives rise to the following definition adapted from [9].

Definition 3.3. Given the definitions of Theorem 3.4 and a function p ∈ C3(Rd,R)
and x0 ∈ Rp, if the matrix C(x0) is singular and wT

i b 6= 0 for some i ∈ I , then
x0 is a turning point . Otherwise, ifC(x0) is singular andwT

i b = 0 for all i ∈ I ,
then x0 is a bifurcation point.

Theorem 3.4 shows that the tangent vector for the solution curve of (13) can-
not be usually uniquely determined when the matrix C(x(θ)) becomes singular.
Fortunately, this is not an issue in our application, since by Theorem 3.1 the ridge
curve is smooth at such points for almost all Gaussian kernel density estimates.

It is important to note that according to Theorem 3.4 the ridge curve tangent
becomes orthogonal to the gradient ∇p at at a turning point. Considering our ap-
plication, Theorem 2.1 suggests that in this case the underlying generating func-
tion of the model deviates significantly from a linear function. Consequently, the
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ridge curve is unlikely to give any meaningful estimate of any generating func-
tion, which gives a stopping criterion for tracing a ridge curve. On the other hand,
bifurcation points seem to occur very rarely, and thus they are not an issue in
practice.

4 Algorithm for Extracting the Ridge Curve Set
With the mathematical theory in place, we now develop an algorithm for obtaining
the ridge curve set Rp̂ of a Gaussian kernel density estimate p̂. Motivated by the
fact that ridge curves of p̂ pass through a set of its modes (cf. Definition 2.1),
the algorithm first finds the modes (maxima) of p̂. Then, by using these modes as
starting points the algorithm constructs the setRp̂ by tracing its component curves
passing through these modes.

4.1 Definitions and Overview of the Algorithm
In practice, we are interested in ridge curves lying in areas of high probability den-
sity and consider two ridge curves separated when a low-density area lies between
them. Low-density areas are of less interest because they are likely to represent
background clutter or insignificant features in the data. Thus, we consider the set
of ε-separated ridge curves

Rp̂,ε = Rp̂ ∩ {x ∈ Rd | p̂(x) > ε}

that is a collection of ridge curve components separated by areas where the density
p̂ is smaller than some given threshold ε > 0. Given an ε > 0 and a mode
x0 ∈ Rp̂,ε, we then define the corresponding component of the ε-separated ridge
curve setRp̂,ε as the set

Rp̂,ε,x0 = {y ∈ Rd | ∃x ∈ C∞([0, 1],Rd) : x(θ) ∈ Rp̂ ∀θ ∈ [0, 1],

x(0) = x0 and y = x(1)} ∩ Rp̂,ε

containing points on some ridge curve in the set Rp̂,ε passing through x0. This
definition is justified by Theorem 3.1 which guarantees that generically each mode
of p̂ belonging to the setRp̂,ε lies exactly on one smooth ridge curve.

RCURVES RSPROJRCCOMP RCSEGMENT
Extract a ridge curve segment. Projection onto ridge 

curve / mode-finding.
Extract a part of a ridge 
curve component.

Figure 5: Components of the algorithm for extraction of the ridge curve setRp̂,ε.

The algorithmic framework for constructing the setRp̂,ε consists of four algo-
rithms, as shown in Figure 5. The main algorithm RCURVES first finds the modes
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of p̂ by starting a local maximization method from each sample point. Then, by
using these modes as starting points, it constructs the setRp̂,ε by successively ap-
plying the RCCOMP algorithm to extract its components. The RCCOMP algorithm,
in turn, constructs a part of a ridge curve component originating from a given
mode by successively invoking the RCSEGMENT algorithm. The RCSEGMENT
algorithm traces ridge curve segment (i.e. a part of a ridge curve connecting at
most two modes of the density) by using a predictor-corrector method adapted to
the initial value problem (13). The RCURVES, RCCOMP and RCSEGMENT algo-
rithms will be described in Subsections 4.2, 4.3 and 4.4, respectively.

The RSPROJ algorithm lies in the core of the algorithmic framework. Im-
plementing the Newton-based method developed in [45], it projects a given point
onto the m-dimensional ridge set of the density estimate p̂. The ridge set of p̂
is a generalization of its set of modes. Namely, ridge curves of p̂ belong to its
one-dimensional ridge set, and they pass through modes belonging to its zero-
dimensional ridge set. Therefore the RSPROJ algorithm is used in the RCURVES
algorithm for finding the modes of p̂ and also in the RCSEGMENT algorithm as
a corrector method that projects the predictor estimate back to the traced ridge
curve.

For a numerical implementation of the algorithms, we consider a scaled ver-
sion of the Gaussian kernel density estimate in order to avoid dependency on scal-
ing of the data. By utilizing the Cholesky factorization H = LLT , the density
estimate p̂ defined by equations (7) and (8) can be written as

p̃(x) =
1

N
√
|H|

N∑
i=1

KI(x−L−1yi),

where I denotes the d×d identity matrix. The scaled density estimate p̃ is related
to the original one via the identity p̃(L−1x) = p̂(x).

In the following, we assume that the algorithms are supplied with a set of
sample points Y = {yi}Ni=1 ⊂ Rd, a scaled Gaussian kernel density estimate
p̃ : Rd → R obtained from the point set and a low density threshold ε > 0.

4.2 The Main Algorithm (RCURVES)
The RCURVES algorithm (Algorithm 1) is the main algorithm for constructing the
setRp̃,ε. It produces a collection of discrete approximations of component curves
ofRp̃,ε that we shall denote asX ⊂ P(Rp̃,ε).

The first step of the algorithm is to find a set of modes Z∗ ⊂ Rp̃,ε that are
used as starting points for extracting the ridge curves. Starting from each sample
point y ∈ Y , the RSPROJ algorithm is invoked to find a mode y∗ (i.e. a point
y∗ ∈ Rp̃,ε such that λ1(y∗) < 0). The maximum trust region radius is chosen as
∆max = 1

2
, and the stopping criterion threshold is chosen as εcorr = 10−6, where

the meaning of these parameters is explained in [45]. The setZ∗ is constructed so
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Algorithm 1: RCURVES (extract ridge curve set).
input : point set Y = {yi}Ni=1 ⊂ Rd

Gaussian kernel density estimate p̃ : Rd → R
low probability density threshold ε > 0
parameters εa, εc, εe and εr (see Algorithm 3)

output: collection of approximate ridge curvesX ⊂ P(Rp̃,ε)
Z∗ ← ∅
for y ∈ Y do
y∗ ← RSPROJ(p̃, 0,y, 1

2
, 10−6)

if ‖y∗ − z‖ > 10−5 for all z ∈ Z∗, y∗ ∈ Rp̃,ε and λ1(y∗) < 0 then
Z∗ ← Z∗ ∪ {y∗}

X ← ∅
M ← ∅
for z∗ ∈ Z∗ do

if ‖z∗ − x‖ > 10−5 for all x ∈M then
X+,M ← RCCOMP(p̃,M , z∗, 1, ε, εa, εc, εe, εr)
if ‖x+

|x+|−1 − z∗‖ > 10−5 then
X−,M ← RCCOMP(p̃,M , z∗,−1, ε, εa, εc, εe, εr)

Construct the sequence X̃ according to (23) and setX = X ∪ X̃ .

that duplicate modes (within numerical precision) are not included. This is done
in the RCURVES algorithm by adding y∗ to the set of modes Z∗ only when the
condition

‖y∗ − z‖ > 10−5 for all z ∈ Z∗

is satisfied and y∗ is in the setRp̃,ε such that λ1(y∗) < 0.

Remark 4.1. When the computational budget is limited and the aim is to find a
single significant curve from the data, an alternative approach could be to use the
method developed in [44]. Based on a homotopy continuation method, it finds
a significant mode of a Gaussian kernel density estimate at a low computational
cost. As demonstrated in [44], such a mode usually represents a region with
a significant concentration of sample points that is clearly distinguishable from
background clutter.

From each starting point z∗ in the set of modes Z∗, RCURVES then calls the
RCCOMP algorithm (Algorithm 2) twice to extract both parts of the ridge curve
component Rp̃,ε,z∗ originating from z∗ into two opposite directions. Recalling
Theorem 3.3, these directions are parallel to the eigenvector v1(z∗). Calling
RCCOMP yields the sequences

X+ = (x+
0 ,x

+
1 , . . . ) ⊂ Rp̃,ε,z∗ and X− = (x−0 ,x

−
1 , . . . ) ⊂ Rp̃,ε,z∗
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representing successive points along the ridge curve component.
Since the RCURVES algorithm extracts ridge curve components by using mul-

tiple starting points, it is essential to identify components that have already been
extracted. Recalling that a ridge curve passes through a set of modes, a compu-
tationally convenient way to do this is to test whether the mode z∗ chosen as the
current starting point belongs to some already extracted component. Therefore,
the algorithm maintains the set M ⊂ Rd containing the modes visited during the
executions of RCCOMP.

Before starting extraction of a ridge curve component corresponding to the
sequence X+ from the starting point z∗, the RCURVES algorithm tests whether
z∗ already belongs to the set of visited modes M (within numerical precision).
The algorithm does this by testing the condition

‖z∗ − x‖ > 10−5 for all x ∈M

and skips ridge curve extraction from z∗ when this condition is not satisfied.
Before starting the extraction of the second ridge curve component corre-

sponding to the sequence X−, the RCURVES algorithm again tests whether the
mode z∗ has been visited. Namely, this can occur during the first call of RCCOMP
if the ridge curve component forms a closed loop (that is when x+

|x+|−1 = z∗).
Taking into account the limited numerical precision, the algorithm tests this by
the condition

‖x+
|X+|−1

− z∗‖ > 10−5

and skips extraction of the second part of the ridge curve component when this
condition is not satisfied.

In order to obtain a consistent ordering of points along the current ridge curve
component, the sequences X+ and X− representing the two parts of the compo-
nent curve are at the end of the second loop in the RCURVES algorithm collected
in the sequence X̃ = (x̃0, x̃1, . . . ) defined as

x̃i =

{
x−|X−|−i−1

, i = 0, 1, . . . , |X−| − 1,

x+
i−|X−|, i = |X−|, |X−|+ 1, . . . , |X−|+ |X+| − 1.

(23)

Finally, the sequence X̃ representing a discrete approximation of the ridge curve
componentRp̃,ε,z∗ is added to the setX .

4.3 Extraction of a Ridge Curve Component (RCCOMP)
Given a mode x∗0 ∈ Rp̃,ε and a sign parameter s∗ ∈ {−1, 1}, the RCCOMP al-
gorithm (Algorithm 2) traces a part of a component curve of the set Rp̃,ε passing
through x∗0 (i.e. a subset ofRp̃,ε,x∗

0
). That is, starting from x∗0, the algorithm gener-

ates a sequence X = (x0,x1, . . . ) ⊂ Rp̃,ε,x∗
0

along the component curve Rp̃,ε,x∗
0
.

The parameter s∗ specifies whether tracing of the ridge curve is initiated along
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the positive or negative tangent direction, which by Theorem 3.3 is parallel to the
eigenvector v1(x∗0).

The RCCOMP algorithm constructs the ridge curve component by successively
extracting and connecting its segments (i.e. parts of the curve connecting at most
two modes). At the beginning of each iteration of RCCOMP, a segment starting
from the current mode x∗ along the direction specified by the sign parameter s∗ is
extracted by invoking the RCSEGMENT algorithm (Algorithm 3). This algorithm
returns the sequence of points X∗∗ = (x∗∗0 ,x

∗∗
1 , . . . ) ⊂ Rp̃,ε,x∗ , where x∗∗0 =

x∗, along the segment, the endpoint of the segment x∗∗ ∈ Rp̃,ε,x∗ , a scalar c
indicating the type of the endpoint and the sign parameter s∗∗ at the endpoint x∗∗

(see Subsection 4.4). The sequence X∗∗ is then appended to the sequence X
representing the whole ridge curve component. In addition, the current mode x∗

is marked as visited by adding it to the set of visited modes M . When invoked
from the RCURVES algorithm, RCCOMP takes the set M as input argument and
upon termination returns the updated setM back to RCURVES.

Algorithm 2: RCCOMP (extract a part of a ridge curve component).
input : Gaussian kernel density estimate p̃ : Rd → R

visited modesM ⊂ Rd

a mode x0 ∈ Rp̃,ε (i.e. a point x0 ∈ Rp̃,ε such that λ1(x0) < 0)
sign parameter s∗ ∈ {−1, 1}
low probability density threshold ε > 0
parameters εa, εc, εe and εr (see Algorithm 3)

output: subset of a ridge curve componentX ⊂ Rp̃,ε,x∗
0

visited modesM ⊂ Rd

X ← ∅
x∗ ← x∗0
while not terminated do
X∗∗,x∗∗, c, s∗∗ ← RCSEGMENT(p̃,x∗, s∗, ε, εa, εc, εe, εr)
X ← (x0,x1, . . . ,x|X|−1,x

∗∗
0 ,x

∗∗
1 , . . . ,x

∗∗
|X∗∗|−1)

M ←M ∪ {x∗}
if c = 0 then

if ‖x∗∗ − x‖ > 10−5 for all x ∈M then
x∗ ← x∗∗; s∗ ← s∗∗

else Terminate.
else Terminate.

When RCSEGMENT terminates at a point x∗∗ that is a mode, it returns with
c = 0. When c = 0, and the mode x∗∗ has not been visited, that is, taking into
account the limited numerical precision,

‖x∗∗ − x‖ > 10−5 for all x ∈M , (24)
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RCCOMP initiates tracing of a new ridge curve segment. To this end, the current
mode x∗ is set to x∗∗. In order to ensure progress along the ridge curve, extraction
of the next segment from x∗∗ is started along the direction s∗∗ returned upon
termination of RCSEGMENT by setting the current direction s∗ to s∗∗.

On the other hand, when c = 0 and the endpoint x∗∗ is a mode that has already
been visited (i.e. when condition (24) is not satisfied), the RCCOMP algorithm
terminates. This situation occurs when the ridge curve component forms a closed
loop. Also, when RCSEGMENT terminates by some other stopping criterion than
crossing a mode (e.g. when it leaves a ridge curve or the density p̃ becomes smaller
than ε), it returns with c = 1 and RCCOMP terminates.

Remark 4.2. In principle, it would be sufficient to test that the mode x∗∗ does not
coincide with the starting point x∗0 since a ridge curve generally cannot intersect
any other ridge curve and can only intersect itself when forming a closed loop (cf.
Theorem 3.1). However, the more restrictive criterion (24) prevents extracting
the same component curves of Rp̃,ε multiple times when RCCOMP jumps from a
component curve to another. This may happen when the step size τk is large and
two curves are close to each other (cf. Figure 4).

4.4 Tracing a Ridge Curve Segment (RCSEGMENT)
Finally, we describe the RCSEGMENT algorithm for tracing a ridge curve segment
originating from a mode x0 ∈ Rp̃,ε. A ridge curve segment ends when it crosses
another mode or leaves the set Rp̃,ε. The latter case occurs when the conditions
defining a ridge curve become violated or when the ridge curve enters a region of
low probability density. For tracing such a segment, RCSEGMENT implements a
predictor-corrector method that traces a solution curve of the differential equation
(13) satisfying the initial condition x(0) = x0 until either of these termination
conditions is met.

4.4.1 Predictor-Corrector Algorithm

The algorithm generates a sequence of points X = (x0,x1, . . . ) ⊂ Rp̃,ε along
the ridge curve segment. At each iteration the algorithm takes a predictor step

x̃k = xk + τkskuk

along the normalized solution curve tangent uk or its approximation with some
step size τk > 0 and sign parameter sk ∈ {−1, 1} in order to proceed along the
solution curve.

The tangent vector uk is chosen according to the rule

uk =

{
v1(xk), if k = 0,
wk

‖wk‖
, otherwise, (25)
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where

wk =
∇p̃(xk)
‖∇p̃(xk)‖

−U(xk)C(xk)
−1b(xk)

with b(·) defined according to (18). The latter choice in (25) is given by equation
(17), and by the first choice, the algorithm avoids unnecessary computation of the
third derivatives∇3p̃(xk) for the first iteration. Namely, by Theorem 3.3 the ridge
curve tangent near a mode is approximately parallel to the eigenvector v1(xk).
For the predictor estimate x̃k, the algorithm then tests the stopping criteria (27)
given in Subsection 4.4.2. These criteria test whether the iteration has entered into
a region where either of conditions (6a)-(6c) become violated.

The purpose of the sign parameter sk is to ensure that the iteration proceeds
forward along the solution curve. This is necessary since the orientation of the
tangent vector uk is not uniquely determined in either of the two cases in equation
(25). At the first iteration k = 0, the sign is chosen as the user-supplied parameter
s0 ∈ {−1, 1}. For the subsequent iterations k = 1, 2, . . . , sk is chosen so that

sk =

{
1, if sk−1u

T
k−1uk > 0,

−1, otherwise. (26)

After the predictor step, a corrector step is applied to project the predictor esti-
mate back to the ridge curve. For this purpose, the algorithm uses the RSPROJ al-
gorithm with ridge dimension m = 1. At each iteration of the predictor-corrector
algorithm, the maximum trust region radius for RSPROJ is chosen as ∆max = τk

4
.

4.4.2 Step Size Adaptation and Stopping Criteria

The ridge tracing algorithm uses an adaptive strategy for adjusting the predictor
step size τk. Initially, τ0 is set to 1

10
. For k > 0, after the predictor step the

algorithm tests the conditions

|∇p̃(x̃k)Tv1(x̃k)|
‖∇p̃(x̃k)‖

> 1− εr and λ2(x̃k) < 0 (27)

with some small εr ∈]0, 1[, where the first condition correponds to (6a), and the
second condition corresponds to (6b). If either one of conditions (27) is not
satisfied, the algorithm sets τk to 1

2
τk and updates the predictor estimate x̃k ac-

cordingly. This is repeated as long as either of conditions (27) is not satisfied or
τk < 10−6. The latter case indicates that the current iterate is near an endpoint of
the ridge curve, and the algorithm terminates. On the other hand, when conditions
(27) are both satisfied for the first predictor estimate x̃k, then the step size can be
safely increased, and for the next iteration the algorithm chooses τk+1 = 1.1τk.

In addition to the predictor conditions (27), the ridge tracing algorithm uses
the stopping criteria

p̃(xk) < ε,
λ1(xk)

λ2(xk)
> 1− εe and uTk v1(xk) < 1− εa,
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Algorithm 3: RCSEGMENT (extract ridge curve segment).
input : Gaussian kernel density estimate p̃ : Rd → R

a mode x0 ∈ Rp̃,ε (i.e. a point x0 ∈ Rp̃,ε such that λ1(x0) < 0)
initial sign parameter s0 ∈ {−1, 1}
low probability density threshold ε > 0
threshold parameters εa, εc, εe, εr ∈]0, 1[

output: pointsX = (x0,x1, . . . ) ⊂ Rp̃,ε,x0 on a ridge curve segment
stopping criterion type c ∈ {0, 1}
(0=mode, 1=low density or iteration has left a ridge curve)
Returned when terminated at a mode:
the mode x∗ ∈ Rp̃,ε,x0

the current sign parameter s∗ ∈ {−1, 1}
X ← (x0)
u0 ← v1(x0)
τ0 ← 1

10

for k = 0, 1, . . . do
if p̃(xk) < ε or λ1(xk)

λ2(xk)
> 1− εe then Terminate with c = 1.

if k > 0 then
if ‖∇p̃(xk)‖ < 10−5 then
uk ← v1(xk)

else
uk ← wk

‖wk‖
, where wk is defined by (25)

if uTk v1(xk) < 1− εa then Terminate with c = 1.

if sk−1u
T
k−1uk > 0 then sk ← 1 else sk ← −1

if conditions (28) are satisfied then
x∗ ← RSPROJ(p̃, 0, (xk + xk−1)/2, τk/2, 10−6)
X ← (x0, . . . ,xk−1,x

∗)
if sk−1u

T
k−1v1(x∗) > 0 then s∗ ← 1 else s∗ ← −1

Terminate with c = 0.

x̃k ← xk + τkskuk
j ← 0

while |∇p̃(x̃k)T v1(x̃k)|
‖∇p̃(x̃k)‖ ≤ 1− εr or λ2(x̃k) ≥ 0 do

if τk > 10−6 then
τk ← 1

2
τk

x̃k ← xk + τkskuk
else Terminate with c = 1.
j ← j + 1

if j = 0 then τk+1 ← 1.1τk else τk+1 ← τk
xk+1 ← RSPROJ(p̃, 1, x̃k, τk/4, 10−6).
X ← (x0,x1, . . . ,xk,xk+1)

20



to detect if the iteration is leaving the set Rp̃,ε,x0 . The first stopping criterion,
where ε > 0, follows from the definition of the set Rp̃,ε,x0 . The second stopping
criterion with some εe ∈]0, 1[ tests whether the first and second eigenvalue of the
Hessian become identical. When this is the case, the algorithm is near an endpoint
of the ridge curve (cf. condition (6c) and Theorem 3.1). The third stopping crite-
rion, where εa ∈]0, 1[, measures the cosine of the angle between the current ridge
curve tangent uk and the eigenvector v1(xk). When this measure is below the
given threshold, the ridge curve tangent deviates significantly from the eigenvec-
tor v1(xk), which indicates that the iteration is approaching a turning point. As
pointed out in Subsection 3.2, the estimate of the underlying generating function
given by the ridge curve cannot be considered reliable in this case.

The last stopping criteria test whether the iteration has crossed a mode of the
density estimate. This can be detected by testing if the gradient changes direc-
tion along the ridge curve. Namely, before crossing a mode, the curve tangent is
approximately parallel to the gradient and after crossing the mode approximately
parallel to the negative gradient (cf. Theorem 3.3 and equation (10)). For k > 0,
this yields the criteria

sk−1
∇p̃(xk−1)Tuk−1

‖∇p̃(xk−1)‖ > 1− εc and sk
∇p̃(xk)Tuk
‖∇p̃(xk)‖

< −(1− εc) (28)

with some small εc ∈]0, 1[. When these criteria are met, the algorithm terminates
and returns the mode x∗ found by RSPROJ started from the midpoint of the cur-
rent iterate xk and the previous iterate xk−1. In analogy with equation (26), the
algorithm also determines the sign parameter s∗ at the mode x∗ by comparing the
directions of the previous tangent vector sk−1uk−1 and the Hessian eigenvector
v1(x∗) corresponding to the greatest Hessian eigenvalue at x∗.

5 Numerical Tests
This section is devoted to demonstrating the applicability of the RCURVES al-
gorithm (Algorithm 1) for extraction of curvilinear structures from noisy data.
Illustrative examples on a representative selection of synthetic as well as two ob-
servational datasets from seismology and cosmology will be given. Some numer-
ical results will also be provided to assess the computational performance of the
algorithm.

5.1 Datasets
The RCURVES algorithm was run on kernel density estimates obtained from ten
synthetic datasets and two observational datasets from seismology and cosmol-
ogy. The synthetic datasets were generated from the model described in Section 2
with ρ = 1 (i.e. with no background clutter). The two- and three-dimensional test
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datasets contain curvilinear structures having various shapes as well as intersec-
tions and closed loops. Most of the synthetic datasets are adapted from Kégl [3],
and they were also used in [45]. The sample sizes N and the noise standard devi-
ations σ for the synthetic datasets are listed in Table 1.

Dataset N σ Dataset N σ
Arcs 2000 0.02 Circle 800 0.075
DistortedHalfCircle 800 0.02 DistortedSShape 800 0.015
HalfCircle 800 0.05 Jakob1 300 -
Ladder 3000 0.004 Spiral 1400 0.035
Spiral3d 1200 0.02 Zigzag 800 0.015

1 The Jakob dataset does not have a known generating function or noise distribution.

Table 1: Sample sizesN and noise standard deviations σ used for generating the synthetic
datasets.

5.1.1 The New Madrid Earthquake Dataset

Earthquake epicenters are typically clustered around seismic faults with a small
number of ”randomly” occurring earthquakes that can be considered as back-
ground clutter. Due to this fact, identification of faults from earthquake catalogs
is a potential application for the proposed method (see e.g. [50] for an earlier ap-
proach to this problem). To illustrate this, a seismological dataset was obtained
from the Center for Earthquake Research and Information (CERI) [2]. The dataset
covers the New Madrid seismic region extending from Illinois to Arkansas. It con-
tains the locations of observed earthquakes in this region from 1974 to 2013 with
magnitude one and above, consisting of 6157 samples.

5.1.2 The Shapley Galaxy Dataset

In cosmology, galaxies typically form clusters and filamentary structures, and thus
identification of such structures from galactic surveys is an important task. One
of the most well-known example of this in our nearby universe is the Shapley
Supercluster containing a rich variety of different galactic formations [21]. To
illustrate the applicability of the proposed method to cosmological data, a dataset
for the Shapley supercluster was obtained from the Center of Astrostatistics of
Pennsylvania State University (CASt) [1]. The dataset consists of the angular
sky coordinates and recession velocities of 4215 galaxies in the supercluster. As
a preprocessing step, the original data was transformed into three-dimensional
cartesian coordinates by utilizing the fact that recession velocities of galaxies are
proportional to their radial distances [21].
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5.2 Test Setup and Algorithm Parameters
All test runs were carried out on a machine with a 3.0GHz Core 2 Duo processor
and 6Gb system memory running a 64-bit Linux operating system. The RCURVES
algorithm and its subalgorithms were implemented in Fortran 95. Both cores of
the test system were utilized for evaluating the kernel density estimate (7) because
this operation can be trivially parallelized. In order to improve performance and
numerical stability of the algorithm, the objective function was chosen as the log-
arithm of the density estimate (see [45] for additional justification of this choice).
The algorithm was run with the experimentally chosen parameters

ε = −1, εcorr = 10−6, εa = 0.3, εc = 0.25, εe = 10−4 and εr = 0.01.

For each dataset, the marginal density (5) was estimated nonparametrically by
using Gaussian kernels. The kernel bandwidth matricesH were computed by us-
ing the Hpi function implemented in the ks package [22] for the R software [4].
This function implements a multivariate generalization of the well-known univari-
ate plug-in bandwidth selector by Wand and Jones [52]. The pilot bandwidth was
chosen as the unconstrained bandwidth by Chacón and Duong [11], and the initial
bandwidth was chosen as the normal scale bandwidth by Chacón et al. [12]. Since
the ks package is capable of estimating derivatives of a density, the bandwidth
matrix H was estimated for the first derivatives of the density p rather than the
density itself. This choice is justified by the fact that modes and ridge curves are
defined in terms of derivatives of the density (cf. Definition 2.1).

The numerical tests were carried out by applying the RCURVES algorithm in
the scaled coordinate system as described in Subsection 4.1. This was done by ap-
plying the algorithm to the density estimate p̃ corresponding to the scaled samples
ỹi = L−1yi, where the matrix L was obtained from the Cholesky factorization
H = LLT . For each ridge curve point x̃ in the scaled coordinate system, the
corresponding point x in the original coordinate system was then obtained by
applying the inverse transformation x = Lx̃.

5.3 Illustrative Examples
Some of the synthetic datasets having curvilinear structures with various shapes,
closed loops and intersections are shown in Figures 6–8 (for the remaining datasets,
see [45]). For all datasets, the ridge curves extracted by the RCURVES algorithm
from kernel density estimates with bandwidths obtained from the Hpi bandwidth
chooser seemed to generally give very good estimates of the underlying generat-
ing functions.

The deviations between the kernel density ridge curves and the generating
functions shown in Figures 6–7 seem to be consistent with the error estimate given
in Appendix A. The deviation is indeed proportional to the ratio between the noise
variance and the curvature radius of the generating function. Furthermore, this
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deviation is towards the center of curvature. The deviation is generally small, but
as seen from Figures 6b and 6d, it can grow large when the generating function
has sharp turns.
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Figure 6: Kernel density ridge curves (red) and generating functions (green) of the two-
dimensional datasets having a single generating function.
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Figure 7: Kernel density ridge curves of the Jakob dataset.

The Jakob dataset plotted in Figure 7 is a good example showing that the
RCURVES algorithm handles intersections properly and terminates ridge curve
tracing when the followed ridge curve ends (cf. Figure 4). The only exception is
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the point located near (−0.25, 1.2), where the termination point of the lower ridge
curve is very close to the upper one. However, it was verified that the algorithm
terminated tracing of the lower ridge curve at the mode located near an endpoint
of the lower ridge curve (cf. Remark 4.2).

However, when the generating functions have intersections, their complete
parametrization cannot be recovered by the algorithm. This is a fundamental lim-
itation of the ridge-curve based approach. Namely, by Theorem 3.1 we have the
generic property that two connected ridge curve components cannot intersect each
other. As a result, there can be exactly one connected ridge curve component pass-
ing through an intersection point, and the other components passing through such
point are split into two parts.

Another potential, but not serious shortcoming of the ridge curve-based ap-
proach is that ridge curves have a rather poor ability to extrapolate the estimates
of the generating functions beyond the data. This can be seen from the arbitrary
shape of the extracted curves beyond the endpoints of the generating functions es-
pecially in Figures 6d and 8c. Here the locality of the ridge curve definition, that
gives the advantage of having an additional degree of freedom compared to most
earlier principal curve approaches, seems to be a disadvantage. To the knowledge
of the author, there does not seem to be a straightforward way to overcome this
inherent limitation.

Finally we present the results for the earthquake and galaxy datasets. The New
Madrid dataset and the extracted faults obtained by the RCURVES algorithm are
plotted in Figure 9. The algorithm does an excellent job here, revealing all the
visually distinguishable structures that could be interpreted as faults. Moreover,
the result is not affected by the background clutter present in the data. This is due
to the local nature of Gaussian kernels and the fact that samples with no significant
concentration are automatically rejected by filtering out ridge curves lying on low-
density areas.

The Shapley dataset and the filamentary structures extracted by the RCURVES
algorithm in the transformed three-dimensional coordinates are plotted in Figure
10 for three different recession velocity ranges. In these examples, clustering of
the points around filaments is not as obvious as in the previous examples, and
there is some room for interpretation. Nevertheless, the algorithm seems to do a
fairly good job in extracting the highly nonlinear shapes of the most prominent
galaxy clusters. Finally, a subset of the Shapley dataset in the original sky coor-
dinates is plotted in Figure 11. We can again observe that the algorithm identifies
all the visually distinguishable galaxy concentrations despite the large amount of
background clutter (i.e. galaxies not belonging to any cluster or filament).

5.4 Performance Evaluation
To assess its computational performance, the RCURVES algorithm was compared
to a variant where the Newton-based mode-finding and corrector methods were
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replaced with the mean-shift method [14, 15] and its subspace-constrained vari-
ant [43], respectively. Apart from its more sophisticated stopping criteria, step
size adaptation and the use of third derivatives of the objective function, this vari-
ant of the RCURVES algorithm is comparable to the earlier ridge-based principal
curve methods proposed in [6–8]. The comparison with the mean-shift -based
variant is also motivated by the fact that the mean-shift method is the most widely
used approach to finding modes of Gaussian kernel density estimates, and more
recently, finding ridges of such functions as in [43].

In the following, we refer to the Newton-based algorithm as RCURVES-NEWTON
and the mean-shift variant as RCURVES-MS. The number of objective function
evaluations, the more expensive third derivative evaluations and the used wall
clock times (in seconds) for running these algorithms on kernel density estimates
obtained from the synthetic datasets are listed in Table 2. Here one function eval-
uation means a combined evaluation of the function value, gradient and Hessian
of the kernel density estimate. For the RCURVES-MS algorithm, computation of
the mean-shift step is also combined with the function evaluation.

RCURVES-MS RCURVES-NEWTON
Dataset #f #∇3 time #f #∇3 time
Arcs 208 929 618 12.469 18 272 618 2.251
Circle 107 059 263 2.388 9 212 263 0.300
DistortedHalfCircle 164 633 151 3.626 9 636 151 0.303
DistortedSShape 120 768 213 2.684 8 461 213 0.275
HalfCircle 175 874 179 3.888 8 999 179 0.301
Jakob 30 679 677 0.385 9 640 635 0.201
Ladder 328 057 1 999 29.596 34 218 2 013 6.924
Spiral 282 647 491 10.643 15 868 485 0.870
Spiral3d 231 018 534 9.653 11 878 534 1.070
Zigzag 108 312 216 2.773 9 118 208 0.302

Table 2: Function evaluations, third derivative evaluations and wall clock times used
by the RCURVES-MS and RCURVES-NEWTON algorithms for kernel density estimates
obtained from the synthetic test datasets.

It is evident from these results that the Newton-based RCURVES-NEWTON
algorithm has superior performance. This suggests that the proposed algorithm
is also superior to the mean-shift -based algorithms developed in [6–8] that are
comparable to the RCURVES-MS algorithm. A detailed inspection of the com-
putation times revealed that the rather dramatic performance difference is mostly
explained by the slow convergence of the mean-shift method during the mode-
finding step. This is due to the fact that the mean-shift method tends to have very
slow convergence when applied to finding modes of a density estimate having
highly elongated peaks (see e.g. [45]). As illustrated in Figure 3, this is typically
the case in applications considered in this paper.
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Another important observation from the above results is that the number of
function evaluations strongly correlates with the used computation time. This in-
dicates that the objective function evaluation dominates the total computational
cost. It is indeed expensive because evaluation of a Gaussian kernel density es-
timate and its i-th derivative take O(Nd) and O(Ndi) operations, respectively.
Especially for the expensive mode-finding step whose objective function evalu-
ations require O(N2d2) operations, the computational cost could be reduced to
O(N) by using the fast Gauss transform [31] or related methods when the data
dimension is low (say d ≤ 4). This optimization is not implemented in the pre-
liminary version of the RCURVES algorithm used in these tests, and it is left as
future work.

6 Conclusions and Discussion

Extraction of curvilinear structures from noisy data is an essential task in many
application areas such as data analysis, pattern recognition and machine vision.
This paper contributes to the field by refining and extending the earlier approaches
of [6–8] and [43] based on locally defined principal curves. In these papers, ridge
curves of the probability density estimated from the data are used to estimate
principal curves passing through the data. Building on this idea, this paper gives
a more detailed treatment to the underlying data-generating process and presents
several algorithmic enhancements to the earlier methods.

A probabilistic model describing a point set containing curvilinear structures
mixed with background clutter was considered in this paper. In the model, such
structures are concentrated around smooth generating functions with normally dis-
tributed noise, and the background clutter is assumed to be uniformly distributed.
It was shown by examples that when the data is generated from this model, ridge
curves of the marginal density induced by the model give good estimates of the
underlying generating functions. The main observation is that the model bias is
proportional to the ratio between the noise variance and curvature radii of the
generating curves. In order to make the approach feasible for a computational im-
plementation, estimation of the marginal density by using Gaussian kernels was
considered.

The main contribution of this paper is the development of a robust and effi-
cient method for tracing the ridge curve set of a Gaussian kernel density estimate.
A ridge curve of such a density estimate was formulated as the solution to a dif-
ferential equation. For tracing the solution curve set of this differential equation,
an efficient and robust predictor-corrector algorithm was developed. The algo-
rithm utilizes an efficient and provably convergent trust region Newton method
developed in [45]. As a ridge curve is a generalization of a mode (maximum)
of a density estimate, the Newton-based method is conveniently used both during
the initial mode-finding step and as a corrector. Being rigorously based on the
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mathematical theory of ridge curves, the algorithm also handles reliably differ-
ent kinds of endpoints and singularities along ridge curves. Such points typically
occur when the data contains multiple curvilinear structures.

As the proposed method is based on nonparametric density estimation, it is
applicable to a wide range of real-world tasks where no prior information on
the data-generating process is available. This was demonstrated by applying the
method to observational datasets from seismology and cosmology. Coupled with
a robust method for choosing the kernel density bandwidth, the proposed method
provides a complete framework for extraction of curvilinear structures from noisy
data.

Furthermore, due to major performance improvements over to the earlier ridge-
based principal curve methods, the proposed method is likely to be computation-
ally feasible for real-time applications such as process monitoring, traffic model-
ing and machine vision. A more extensive evaluation would, however, be needed
to completely determine the practical applicability of the method and its competi-
tiveness with other approaches based on different definitions of a principal curve.

Finally, it is worth noting that ridge- and valley- following methods have been
proposed for global optimization (see e.g. [39]). A related approach to avoid get-
ting trapped into local minima has been proposed for some optimization problems
appearing in machine vision in [48]. Since the predictor-corrector method devel-
oped in this paper is applicable to extraction of ridges from any function satisfying
the conditions of Theorem 3.1 (not necessarily a C∞-function), it could be used
in the aforementioned applications as well.
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Karmitsa for their valuable comments.

30



References
[1] CASt: Shapley galaxy dataset. http://astrostatistics.psu.

edu/datasets/Shapley_galaxy.html. visited on 28/7/2013.

[2] New Madrid Earthquake Catalog. http://www.ceri.memphis.edu/
seismic/catalogs/cat_nm.html. visited on 28/7/2013.

[3] Principal Curves. http://www.iro.umontreal.ca/˜kegl/
research/pcurves. visited on 23/5/2013.

[4] The R Project for Statistical Computing. http://www.r-project.
org. visited on 23/5/2013.

[5] J. D. Banfield and A. E. Raftery. Ice floe identification in satellite images us-
ing mathematical morphology and clustering about principal curves. Journal
of the American Statistical Association, 87(417):7–16, 1992.
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A Model Bias: a Simple Example
To investigate the bias of the model developed in Section 2, in this appendix we consider
a simple example with a generating curve on a plane. In this example, a single generating
function f : [0, 2π]→ R2 parametrizes the unit circle

f(θ) = (cos θ, sin θ).

With the assumptions of Section 2, assuming that no background clutter is present
and that the random variable Θ is uniformly distributed in the interval [0, 2π], we obtain
the marginal density

p(x) =
1

4π2σ2

2π∫
0

Gσ(x, θ)dθ, (29)

where we have introduced the short-hand notation

Gσ(x; θ) = exp

(
−(x1 − cos θ)2 + (x2 − sin θ)2

2σ2

)
.

Due to symmetry, it suffices to consider the model bias at a point lying on the x-axis. That
is, we let

x = (x1, x2), 0 < x1 < 1 and x2 = 0.

The first component of the gradient∇p(x) is given by

∂p

∂x1
(x) = − 1

4π2σ4

2π∫
0

(x1 − cos θ)Gσ(x, θ)dθ. (30)

The second component of the gradient is zero since x2 = 0 and due to the antisymmetry
of the sine function we have

∂p

∂x2
(x) = − 1

4π2σ4

2π∫
0

(x2 − sin θ)Gσ(x, θ)dθ

=
1

4π2σ4

 π∫
0

sin θ ·Gσ(x, θ)dθ −
π∫

0

sin θ ·Gσ(x, θ)dθ

 = 0. (31)

A straightforward calculation shows that the first diagonal component of the Hessian
∇2p(x) is given by

[∇2p(x)]1,1 =
1

4π2σ4

2π∫
0

[
(x1 − cos θ)2

σ2
− 1

]
Gσ(x, θ)dθ (32)

and the other components satisfy

[∇2p(x)]1,2 = [∇2p(x)]2,1 = [∇2p(x)]2,2 = 0. (33)
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It can be shown that the Hessian element [∇2p(x1, 0)]1,1 has exactly one root in the
interval [0, 1] and that [∇2p(x1, 0)]1,1 < 0 when σ ∈]0,

√
2

2 [ and x1 ∈ [x∗1, 1], where x∗1
denotes such root (we omit the proof). In view of equations (32) and (33), this implies
that the normalized eigenvectors of the Hessian∇2p(x) are

v1(x) = (0, 1) and v2(x) = (1, 0)

for all x ∈ R2 such that x1 ∈]x∗1, 1] and x2 = 0. By equations (32) and (33), the first
eigenvector v1(x) corresponds to the eigenvalue λ1(x) = 0 and the second eigenvector
v2(x) corresponds to the eigenvalue λ2(x) < 0 when x1 ∈]x∗1, 1].

Combining the above observations with equations (30) and (31) and conditions (6a)–
(6c), we make the following observation for any ridge point of p on the positive x-axis.
Namely, the x-coordinate of such point is a root of the function [∇p(x)]1 with x =
(x1, 0) such that x1 ∈]x∗1, 1]. Finding a ridge point of p then requires finding the root x∗1,
for which we cannot obtain a closed-form expression. However, by applying numerical
integration and root-finding, the root x∗1 for a given value of σ can be approximately
computed.

The dependence of the model bias relative to the noise standard deviation σ on σ
is plotted in Figures 12 and 13. The results show that the ridge curve gives quite an
accurate estimate of the actual generating function. For instance, in the interval [0, 0.35],
the distance between the ridge point and the generating curve grows linearly, and with
σ = 0.35 it is only 0.2σ. As seen from Figure 13, such a value of σ corresponds to a
rather large amount of noise.
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Figure 12: Distance between the generating curve f(θ) and the x-coordinate x∗1 of a
ridge point of the marginal density (29) relative to noise standard deviation σ in the inter-
val [0, 0.6] as a function of σ.

The conclusion is that the bias is generally small and proportional to the ratio between
the noise deviation σ and the curvature radius of the generating function. Furthermore, the
bias occurs towards the curvature center. As observed in Section 5, this property seems
to apply to more complex generating functions and also when the marginal density is
estimated by using Gaussian kernels.
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Figure 13: Circular data distributions with different values of σ, generating functions
(green) and ridge curves of the marginal density (red).

B Proofs of Technical Results
Proof of Theorem 3.2. We seek for a solution of the form

u(α,v) = α
∇p(x0)

‖∇p(x0)‖ +U(x0)v, α ∈ R, v ∈ Rd−1 (34)

to equation (19). First, we note the identity

A(x0)∇p(x0) = [∇3p(x0)∇p(x0)]∇p(x0) (35)

following from equations (10) and (15). With this identity, substituting equations (16) and
(34) into (19) and premultiplying the resulting equation by U(x0)T shows that a vector
u(α,v) of the form (34) is a solution to equation (19) if and only if

− αU(x0)T [∇3p(x)∇p(x0)]
∇p(x0)

‖∇p(x0)‖ = U(x0)TA(x0)U(x0)v. (36)

Since the matrixC(x0) = U(x0)TA(x0)U(x0) was assumed to be nonsingular, the
vector v can be solved from equation (36) for any α ∈ R. Substituting such a vector, that
we denote as v∗(α), into equation (34) and choosing α = 1 yields the vector u∗ defined
by equation (17) as a solution to equation (19). Furthermore, all solutions to (19) are of
the form u(α,v∗(α)) = αu∗. Namely, the vectors u(α,v) span Rd by the definition of
the matrix U(x0) (see equation (16)) and the vector v∗(α) yielding a solution to (36) is
uniquely determined for any scalar α.
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Proof of Theorem 3.4. As in the proof of Theorem 3.2, we seek for a solution of the form
(34) to equation (19) and utilize equation (36) for this purpose. With the definitions of
Theorem 3.4, equation (36) can be equivalently written as

−αb(x0) = WDW Tv,

and premultiplying this equation byW T yields

− αW Tb(x0) = DW Tv. (37)

The assumption that the eigenvalues λi of the matrix C(x0) satisfy the condition λi = 0
for i ∈ I implies that dii = 0 for i ∈ I . Consequently, when wT

i b(x0) 6= 0 for some
i ∈ I , equation (37) has a solution with respect to v only when α = 0. Furthermore, we
note that in this case all solutions to equation (37) are of the form v(β) =

∑
i∈I βiwi

with β ∈ R|I|. Then substituting such a vector v(β) into equation (34) and letting α = 0
gives the vector u(β) = U(x0)

∑
i∈I βiwi as a solution to (19).

On the other hand, when wT
i b = 0 for all i ∈ I , equation (37) has two solution

spaces. Since dii = 0 for all i ∈ I , the first one corresponds to the choice α = 0, in which
case the possible solution vectors v are of the form v(β) =

∑
i∈I βiwi with β ∈ R|I|.

Substituting such α and v(β) into equation (34) yields the vector u(β) (or any its scalar
multiple) defined by equation (21) as a solution to (19).

The second solution space of (37) corresponding to the choice α 6= 0 is spanned by
the vector

v(α) = −α
d−1∑
i=1
i/∈I

wT
i b(x0)

dii
wi.

This can be seen by substituting the vector

v(α) = −α
d−1∑
i=1
i/∈I

βiwi

into (37) and solving for the coefficients βi. Substituting the vector v(α) into (34) then
shows that any scalar multiple of the vector ũ defined by equation (22) is a solution to
(19). Clearly, this is also the case for any linear combination of the vectors defined by
equations (21) and (22).

Finally we prove Theorem 3.3. For this we need two auxiliary lemmata. The first one
follows from the continuity of eigenvalues of a matrix with respect to its elements (see
e.g. [42], Theorem 3.1.2) and the continuity of the Hessian∇2p when p is a C2-function.

Lemma B.1. If p ∈ C2(Rd,R), then there exist continuous functions {λi}di=1 : Rd → R
representing the eigenvalues of the Hessian∇2p.

Lemma B.2. Let p ∈ C3(Rd,R) and let x0 ∈ Rp be an isolated critical point of p. If we
define

P (x) = I − ∇p(x)∇p(x)T

‖∇p(x)‖2 = U(x)U(x)T ,
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then there exists a neighbourhoodN ofx0 such that the matrixC(x) = U(x)TA(x)U(x)
is nonsingular for all x ∈ (Rp ∩N ) \ {x0}. Furthermore, for all x ∈ (Rp ∩N ) \ {x0}
the matrix C(x) can be written as

C(x) = U(x)T [∇3p(x)∇p(x)]U(x) +

d∑
i=2

[λi(x)2 − λ1(x)λi(x)]vi(x)vi(x)T . (38)

Proof. As a symmetric matrix, the Hessian∇2p(x) admits the eigendecomposition∇2p(x) =
V (x)Λ(x)V (x)T , where

V (x) = [v1(x),v2(x), . . . ,vd(x)] ∈ Rd×d,
Λ(x) = diag[λ1(x), λ2(x), . . . , λd(x)] ∈ Rd×d

with normalized eigenvectors {vi(x)}di=1 corresponding to the eigenvalues λ1(x) ≥
λ2(x) ≥ · · · ≥ λd(x) of ∇2p(x). By using this decomposition and equations (10)
and (15) we obtain that

A(x) = ∇3p(x)∇p(x) + [∇2p(x)]2 − ∇p(x)T∇2p(x)∇p(x)

‖∇p(x)‖2 ∇2p(x)

= ∇3p(x)∇p(x) + V (x)Λ(x)2V (x)T − λ1(x)V (x)Λ(x)V (x)T

= ∇3p(x)∇p(x) + V (x)[Λ(x)2 − λ1(x)Λ(x)]V (x)T

= ∇3p(x)∇p(x) +

d∑
i=1

[λi(x)2 − λ1(x)λi(x)]vi(x)vi(x)T

(39)

for all x ∈ Rp such that∇p(x) 6= 0.
By condition (6a), the gradient ∇p(x) is orthogonal to the eigenvectors {vi(x)}di=2

of ∇2p(x) for all x ∈ Rp. We can also observe that these vectors span the d − 1-
dimensional eigenspace of the matrix P (x) corresponding to the eigenvalue one. Thus,
we may assume without loss of generality for x ∈ Rp that ui(x) = vi+1(x) for i =
1, 2, . . . , d − 1, where ui(x) denotes the i-th column of the orthogonal matrix U(x).
With this assumption and equation (39) we then have

C(x) = U(x)TA(x)U(x) =U(x)T [∇3p(x)∇p(x)]U(x)

+

d∑
i=2

[λi(x)2 − λ1(x)λi(x)]vi(x)vi(x)T
(40)

for all x ∈ Rp such that∇p(x) 6= 0.
By the assumption that x0 ∈ Rp, we have λ1(x0) > λ2(x0) and λ2(x0) < 0. Thus,

λi(x0)2 − λ1(x0)λi(x0) 6= 0 for all i = 2, 3, . . . , n. In addition, it was assumed that x0

is an isolated critical point (i.e. ∇p(x0) = 0 and we may choose the neighbourhood N
so that∇p(x) 6= 0 for all x ∈ N ) and p ∈ C3(Rd,R). This implies the limit

lim
x→x0

U(x)T [∇3p(x)∇p(x)]U(x) = 0,

and the convergence is uniform in any compact neighbourhood N of x0. From the above
observations and Lemma B.1 we conclude that the matrix C(x) is nonsingular in (Rp ∩
N ) \ {x0} for any sufficiently small neighbourhood N of x0.
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Proof of Theorem 3.3. Since p ∈ C3(Rd,R) and x0 ∈ Rp is an isolated critical point
of p, the assumptions of Lemma B.2 are satisfied. Thus, we can write the matrix C(·)
according to equation (38) in some neighbourhood (Rp∩N ) \ {x0} and it is nonsingular
in this neighbourhood. Consequently, because

lim
θ→0

U(x(θ))T [∇3p(x(θ))∇p(x(θ))]U(x(θ)) = 0

by the assumptions that p ∈ C3(Rd,R) and∇p(x0) = 0 and the fact that the columns of
the matrix U(·) are orthonormal, the limit

lim
θ→0

C(x(θ))−1 =

d∑
i=2

[λi(x0)2 − λ1(x0)λi(x0)]−1vi(x0)vi(x0)T (41)

exists by Lemma B.2.
Since condition (6a) was assumed to be satisfied for all x(θ) with θ ∈ D, there exists

an interval I ⊆ D such that

v1(x(θ)) = ± ∇p(x(θ))

‖∇p(x(θ))‖ for all θ ∈ I \ {0}. (42)

This holds because x0 was assumed to be an isolated critical point, and by Lemma B.1
and the assumption that x0 ∈ Rp we have λ1(·) > λ2(·) in some neighbourhood of
x0. Consequently, the eigenvector v1(·) is uniquely determined in such a neighbourhood.
Also, without loss of generality we may assume that the sign in equation (42) positive.

On the other hand, we have

lim
θ→0
‖b(x(θ))‖ = lim

θ→0

∥∥U(x(θ))T [∇3p(x(θ))∇p(x(θ))]v1(x(θ))
∥∥ = 0 (43)

by the assumptions that p ∈ C3(Rd,R) and ∇p(x0) = 0 and by equation (42).
By the limits (41) and (43), the second term on the right-hand side of equation (20)

converges to zero. Consequently, by using equation (42) we obtain that

lim
θ→0
‖u(θ)‖ = lim

θ→0

∥∥v1(x(θ))−U(x(θ))C(x(θ))−1b(x(θ))
∥∥ = 1.

By similar arguments we obtain that

lim
θ→0

∣∣∣∣ u(θ)T

‖u(θ)‖v1(x0)

∣∣∣∣ = lim
θ→0

∣∣∣∣v1(x(θ))T

‖u(θ)‖ v1(x0)

∣∣∣∣ = 1,

which concludes the proof.
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