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Abstract

Principal component analysis (PCA) is a well-established tool for identifying the
main sources of variation in multivariate data. However, as a linear method it can-
not describe complex nonlinear structures. To overcome this limitation, a novel
nonlinear generalization of PCA is developed in this paper. The method obtains
the nonlinear principal components from ridges of the underlying density of the
data. The density is estimated by using Gaussian kernels. Projection onto a ridge
of such a density estimate is formulated as a solution to a differential equation, and
a predictor-corrector method is developed for this purpose. The method is further
extended to time series data by applying it to the phase space representation of
the time series. This extension can be viewed as a nonlinear generalization of sin-
gular spectrum analysis (SSA). Ability of the nonlinear PCA to capture complex
nonlinear shapes and its SSA-based extension to identify periodic patterns from
time series are demonstrated on climate data.

Keywords: principal component analysis; singular spectrum analysis; nonlinear;
kernel density; nonparametric methods; ridge; predictor-corrector method
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1 Introduction

In practical applications, one is often dealing with high-dimensional data that is
confined to some low-dimensional subspace. Since its introduction by Pearson
[28], principal component analysis (PCA, e.g. [18]) has become a ubiquitous tool
for identifying such subspaces. The method uses an orthogonal transformation to
separate the directions of maximal variance. PCA and its variants have appeared in
various contexts such as empirical orthogonal functions (EOF) in climate analysis
(e.g. [39]), proper orthogonal decomposition (POD) in fluid mechanics (e.g. [3])
and the Karhunen-Loève transform (KLT) in the theory of stochastic processes
(e.g. [21]).

However, as a linear method, PCA is insufficient for describing complex non-
linear data. Several nonlinear extensions have been developed to overcome this
limitation. The most prominent of these are the neural network-based nonlinear
PCA (NLPCA, e.g. [15, 20, 24, 35]) and kernel PCA (KPCA, e.g. [36]). These
methods, however, have shortcomings. NLPCA requires a large number of user-
supplied parameters that need to be carefully tuned for the application at hand.
Furthermore, the transformation of the input data into the high-dimensional ker-
nel space in KPCA incurs a significant computational cost. A careful choice of
kernel function is also needed when using KPCA.

Some variants of PCA, where the principal components are obtained by re-
stricting the analysis to local neighbourhoods of the data points, have been devel-
oped (e.g. [8,9,19]). However, this approach leads to the problem of determining a
global coordinate system. A well-known approach to this problem is local tangent
space alignment (LTSA, [42]) that determines a coordinate system by solving an
eigenvalue problem constructed from the local principal component coordinates.
However, this method and other neighbourhood-based methods are in general sen-
sitive to noise and the choice of the neighbourhoods.

The contribution of this paper is the development of kernel density principal
component analysis (KDPCA). The proposed method builds on the idea of using
ridges of the underlying density of the data to estimate nonlinear structures [27].
This idea has later been refined in [29] and [30]. In the proposed approach, the
ridges are interpreted as nonlinear counterparts of principal component hyper-
planes. The density is estimated by using Gaussian kernels.

In the linear PCA, principal component scores (i.e. coordinates) of a given
sample point are obtained as projections along principal component axes. Gen-
eralizing the concept of a principal component axis, the projections in KDPCA
are done along curvilinear trajectories onto ridges of a Gaussian kernel density
estimate. Based on the theory of ridge sets, it is shown that such projections can
be done in a well-defined coordinate system. A projection trajectory is formu-
lated as a solution to a differential equation, and a predictor-corrector algorithm is
developed for tracing its solution curve.

A strategy for choosing the kernel bandwidth is critical for the practical ap-
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plicability of KDPCA. To this end, it will be shown that the nonlinear principal
components converge to the linear ones when the kernel bandwidth approaches
infinity. Consequently, the robustness of the linear PCA is always attained by
choosing a sufficiently large bandwidth, but there is a tradeoff between robustness
and ability to describe nonlinear structure.

Finally, KDPCA is extended to time series analysis. In analogy with the well-
known singular spectrum analysis (SSA, e.g. [11, 38]), it is applied to the phase
space representation of the time series. This approach addresses the main short-
coming of the linear SSA. That is, being based on the linear PCA, it cannot sep-
arate different components of a time series when its trajectory in the phase space
forms a closed loop. This is the case for quasiperiodic (i.e. approximately peri-
odic) time series that form an important special class appearing in many applica-
tions. Examples include climate analysis (e.g. [15, 16]) and medical applications
such as electrocardiography and electroencephalography (e.g. [31]).

The remaining of this paper is organized as follows. In Section 2 we recall the
linear PCA. Section 3 is devoted to development of KDPCA, and in Section 4 it
is extended to time series data. Test results on a simulated climate data set and
an atmospheric time series are given in Section 5. The computational complexity
of KDPCA is also analyzed and a comparison with related methods is given. Fi-
nally, Section 6 concludes this paper. The more involved proofs are deferred to
Appendix A.

2 The linear PCA
As the proposed method is a generalization of the linear PCA (e.g. [18]), we
briefly recall the theoretical background of this method in this section.

The linear PCA attempts to capture the variability of a given data

Y = [y1 y2 · · · yn]T ∈ Rn×d

by transforming the data into a new coordinate system via an orthogonal transfor-
mation. In the new coordinate system, the axes point along directions of maximal
variance.

For the formulation of PCA, we denote the mean-centered samples by

ỹi = yi − µ̂, where µ̂ =
1

n

n∑
i=1

yi. (1)

Assume that the mean-centered samples ỹi are transformed into anm-dimensional
space via the mapping

θi(A) = AT ỹi,

where A is a d × m matrix with 0 < m < d and with orthonormal columns.
Conversely, for the given coordinates θi in the m-dimensional space, the corre-
sponding reconstruction (i.e. projection onto the hyperplane spanned by the m
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first principal components) of yi in the input space is obtained as

ŷi(A) = µ̂+Aθi. (2)

With the above definitions, it can be shown that finding the matrix A that
minimizes the reconstruction error is equivalent to maximizing the variance in the
transformed coordinate system [18]. That is,

min
A∈O(d,m)

n∑
i=1

‖ŷi(A)− µ̂− ỹi‖2 = max
A∈O(d,m)

n∑
i=1

‖θi(A)‖2,

where O(d,m) denotes the set of d × m matrices having orthonormal columns.
Furthermore, any i-th principal component corresponds to the direction of the i-th
largest variance, and these directions form an orthogonal set.

The solution to the above optimization problems is the matrix

V m = [v1 v2 · · · vm]

where the column vectors vi are the (normalized) eigenvectors of the d×d sample
covariance matrix

Σ̂Y =
1

n− 1

n∑
i=1

(yi − µ̂)(yi − µ̂)T (3)

corresponding to them largest eigenvalues. Thus, projection of the mean-centered
sample set Ỹ onto them-dimensional subspace corresponding to the directions of
largest variance is given by

Θ = V T
mỸ . (4)

In statistical literature, the coordinates Θ ∈ Rd×m obtained in this way are called
principal component scores (e.g. [18]).

3 Nonlinear kernel density PCA

In this section we develop the kernel density principal component analysis (KD-
PCA). The method is based on estimation of the underlying density of the data
by Gaussian kernels. It is shown that the nonlinear principal component scores of
given sample points can be obtained one by one by successively projecting them
onto ridges of the density estimate. The projection curves are defined as a so-
lution to a differential equation, and predictor-corrector method is developed for
this purpose.
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3.1 Ridge definition
We adapt the definition of a ridge set from [30]. An r-dimensional ridge point
of a probability density is a local maximum in a subspace spanned by a subset
of the eigenvectors of its Hessian matrix. These eigenvectors correspond to the
d− r algebraically smallest eigenvalues. The one-dimensional ridge set (i.e. ridge
curve) of the density of a point set is illustrated in Figure 1.

Definition 3.1. A point x ∈ Rd belongs to the r-dimensional ridge setRr
p, where

0 ≤ r < d, of a twice differentiable probability density p : Rd → R if

∇p(x)Tvi(x) = 0, i > r, (5a)
λr+1(x) < 0, (5b)

λ1(x) > λ2(x) > · · · > λr+1(x), if r > 0, (5c)

where λ1(x) ≥ λ2(x) ≥ · · · ≥ λd(x) and {vi(x)}di=1 denote the eigenvalues and
the corresponding eigenvectors of∇2p(x), respectively.

Figure 1: Ridge curve of the density of a point set that is distributed around a curve.

The following result shows a connection between the ridge set and the linear
principal components when the underlying density of the data is normal. This
result follows trivially from the following lemma (see [27]) and the fact that the
logarithm of a normal density with mean µ and covariance Σ is a quadratic func-
tion whose gradient and Hessian are

∇ log p(x) = −Σ−1(x− µ) and ∇2 log p = −Σ−1,

respectively.

Lemma 3.1. If p : Rd → R is twice differentiable, then Rr
log p = Rr

p for all
r = 0, 1, 2, . . . , d− 1.
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Proposition 3.1. Let p : Rd → R be a d-variate normal density with mean µ and
positive definite covariance matrix Σ. Denote the eigenvalues of Σ by λ1 ≥ λ2 ≥
· · · ≥ λd and the corresponding eigenvectors by {vi}di=1. Then for any 0 ≤ r < d
such that λ1 > λ2 > · · · > λr+1 we have

Rr
p =

{
{µ}, r = 0,
{µ}+ span(v1,v2, . . . ,vr), r = 1, 2, . . . , d− 1.

Proposition 3.1 suggests an approach for estimating the principal component
scores θ of a given point having an underlying density p. The idea is to project
the point onto Rm

log p in the subspace spanned by the eigenvectors {vi}di=m+1 of
∇2 log p for some 0 < m ≤ d and then obtain projection coordinates along the
first m eigenvectors. The remaining d − m components, that are interpreted as
noise, are discarded. The point inR0

log p, that is the maximum of log p, is chosen as
the origin of the coordinate system. This idea will be generalized to the nonlinear
case in Section 3.3.

3.2 Density estimation and choice of bandwidth

Here we use Gaussian kernels to estimate the density from the given data. In
what follows, we establish a connection between ridge sets of this density and the
linear principal components. Furthermore, we show that a linear PCA hyperplane
is obtained as a special case of such a ridge set.

Definition 3.2. The Gaussian kernel density estimate p̂h obtained by drawing a
set of samples Y = {yi}ni=1 ⊂ Rd from a probability density p : Rd → R is

p̂h(x) =
1

n

n∑
i=1

Kh(x− yi), (6)

where the kernel Kh : Rd →]0,∞[ is the Gaussian function

Kh(x) =
1

(2π)
d
2hd

exp

(
−‖x‖

2

2h2

)
(7)

with bandwidth h > 0.

The following result establishes a connection between linear principal com-
ponents and ridges of a Gaussian kernel density. It essentially shows that a ridge
point lies on a locally defined principal component hyperplane. This hyperplane is
determined by a weighted sample mean and the eigenvectors of a weighted sample
covariance matrix, where the weights are Gaussian functions.

5



Theorem 3.1. Let p̂h : Rd → R be a Gaussian kernel density estimate, let 0 <
r < d and denote the eigenvectors of ∇2 log p̂h(·) corresponding to the r greatest
eigenvalues by {vi(·)}ri=1. Define

µ̃(x) =
n∑

i=1

ci(x)yi, (8)

Σ̃(x) =
n∑

i=1

ci(x)[yi − µ̃(x)][yi − µ̃(x)]T , (9)

where

ci(x) =

exp

(
−‖x− yi‖

2h2

)
n∑

j=1

exp

(
−
‖x− yj‖

2h2

) , i = 1, 2, . . . , n.

Assume that the eigenvalues of∇2 log p̂h(x) satisfy the condition λ1(x) > λ2(x) >
· · · > λr+1(x). Then

∇ log p̂h(x)Tvi(x) = 0 for all i > r

if and only if
x− µ̃(x) ∈ span(ṽ1(x), ṽ2(x), . . . , ṽr(x)),

where {ṽi(x)}ri=1 denote the eigenvectors of Σ̃(x) corresponding to the r greatest
eigenvalues.

Proof. First, we note the formulae

∇ log p̂h(x) =
∇p̂h(x)

p̂h(x)

and

∇2 log p̂h(x) =
∇2p̂h(x)

p̂h(x)
− ∇p̂h(x)∇p̂h(x)T

p̂h(x)2
.

By a straightforward calculation we then obtain that (cf. proof of Lemma A.1 in
Appendix A)

h2∇ log ph(x) = −[x− µ̃(x)] (10)

and
h4∇2 log ph(x) + h2I = Σ̃(x). (11)

By equation (11), the matrices ∇2 log p̂h and Σ̃(x) have the same eigenvectors.
Hence, by equation (10) the condition that

[x− µ̃(x)]T ṽi(x) = 0 for all i > r

is equivalent to
∇ log p̂h(x)Tvi(x) = 0 for all i > r,

from which the claim follows by the orthogonality of the eigenvectors ṽi(x).
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Ridges of a Gaussian kernel density can be used in an exploratory fashion by
adjusting the bandwidth h. As suggested by Theorem 3.1, this parameter deter-
mines the scale of the structures sought from the data.

An important special case arises when h approaches infinity. At this limit, the
r-dimensional ridge set of the density approaches the r-dimensional PCA hyper-
plane, which can be readily observed from equations (8)–(11). A rigorous proof
of this property is deferred to Appendix A. Thus, by choosing a large hwe achieve
the robustness of PCA but, on the other hand, compromise the ability to describe
nonlinear structure in the data.

Assumption 3.1. The r+ 1 greatest eigenvalues of the sample covariance matrix
Σ̂Y defined by equation (3) satisfy the conditions λ1 > λ2 > · · · > λr+1 > 0.

Theorem 3.2. Let p̂h : Rd → R be a Gaussian kernel density estimate, let 0 ≤
r < d and let Assumption 3.1 be satisfied. Define the set

Sr
∞ =

{
µ̂+

r∑
i=1

αivi | α ∈ Rr

}
,

where µ̂ denotes the sample mean (1) and {vi}ri=1 denote the eigenvectors of the
sample covariance matrix Σ̂Y corresponding to the eigenvalues {λi}ri=1. Then
for any compact set U ⊂ Rd such that U ∩ Sr

∞ 6= ∅ and ε > 0 there exists h0 > 0
such that

dist(Rr
p̂h2I
∩ U, Sr

∞) < ε,

dist(Sr
∞ ∩ U,Rr

p̂h2I
) < ε

}
for all h ≥ h0,

where
dist(S1, S2) = sup

x∈S1

inf
y∈S2

‖x− y‖.

3.3 Obtaining principal component scores from ridge sets

Based on Proposition 3.1, we now develop the theoretical basis for estimating the
first m nonlinear principal component scores of a given point set. The idea is to
obtain the scores one by one by successively projecting the points onto lower-
dimensional ridge sets of the underlying density that is estimated by Gaussian
kernels. The projections are done along eigenvector curves that are defined by a
differential equation. The arc lengths of the curves are interpreted as the principal
component scores. As a special case of this approach, we obtain an orthogonal
projection onto a linear PCA hyperplane.

For now, we assume that a given point has already been projected onto an
m-dimensional ridge set of its underlying density p with some m ≤ d. For r =
1, 2, . . . ,m, we define a projection curve γr : R→ Rd onto the r−1-dimensional
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ridge set as a solution to the initial value problem

d

dt
[P r(γr(t))∇ log p(γr(t))] = 0, t ≥ 0, (12)

γr(0) = x0, x0 ∈ Rr
log p \ Rr−1

log p,

where P r(·) = I − vr(·)vr(·)T and {vi(·)}di=1 denote the eigenvectors corre-
sponding to the eigenvalues λ1(·) ≥ λ2(·) ≥ · · · ≥ λd(·) of∇2 log p.

We begin with a special case that motivates the above definition and shows its
connection to the linear PCA projection. Namely, for any d-dimensional normal
density p, a ridge point x0 ∈ Rr

log p, where 1 ≤ r ≤ m, can be projected onto the
lower-dimensional ridge set Rr−1

log p by following the solution curve of (12) that is
a straight line parallel to the eigenvector vr. This property follows trivially from
the definitions of the normal density and the ridge set because log p is in this case
a quadratic function.

Proposition 3.2. Let p be a d-variate normal density with symmetric and positive
definite covariance matrix Σ and let 1 ≤ r ≤ d. If the eigenvalues of Σ satisfy
the condition λ1 > λ2 > · · · > λr+1, then for any solution curve γr of the initial
value problem (12) we have

γ ′r(t)/‖γ ′r(t)‖ = ±vr

for all t ≥ 0. Furthermore, if the sign of γ ′r is chosen such that

γ ′r(t)
T∇ log p(γr(t)) > 0 for all t ≥ 0,

then log p has a unique maximum point x∗ ∈ Rr−1
log p along the curve γr.

When the density p is not normal, obtaining an expression for the tangent
vector γ ′r(t) is nontrivial. However, by utilizing the formula for the derivatives of
eigenvectors (e.g. [22]), equation (12) can after some calculation be rewritten as

Ar(γr(t))γ
′
r(t) = 0, (13)

where

Ar(x) =P r(x)∇2 log p(x)− F r(x), (14)

F r(x) =vr(x)T∇ log p(x)∇vr(x)T + vr(x)∇ log p(x)T∇vr(x) (15)

and
∇vr(x) =

[
λr(x)I −∇2 log p(x)

]+∇3 log p(x)vr(x),

and the operator ”+” denotes the Moore-Penrose pseudoinverse (e.g. [10]).
For a general density p, projection onto the ridge set Rr−1

log p can still be done
by maximizing log p along the curve γr, but this requires additional justification.
To this end, we first show that when γr approaches a ridge point x∗ ∈ Rr−1

log p,
the tangent vector γ ′r becomes parallel to the eigenvector vr. Here we need a
technical assumption that will be justified later in this subsection.
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Assumption 3.2. The eigenvalues of∇2 log p satisfy the conditions

(i) λ1(γr(t)) > λ2(γr(t)) > · · · > λr+1(γr(t)),
(ii) λ1(γr(t)) < 0

for all t ≥ 0.

Proposition 3.3. Let 1 ≤ r ≤ d and let γ ′r denote the normalized tangent vector
of a solution curve of (12). If Assumption 3.2 is satisfied and

lim
t→t∗

vr(γr(t))
T∇ log p(γr(t)) = 0 (16)

for some t∗ > 0, then
lim
t→t∗
|γ ′r(t)Tvr(γr(t))| = 1. (17)

Proof. Define the set

U = {x ∈ Rd | λ1(x) < 0 and (18)
λ1(x) > λ2(x) > · · · > λr+1(x)}. (19)

The range of the matrix in the second term of F r(x) defined by equation (15),
that is

G(x) = vr(x)∇ log p(x)T∇vr(x),

is clearly spanned by the vector vr(x) for all x ∈ U . Furthermore, vr(x) is
uniquely determined by condition (19). We also note that the range of the first
term of the matrixAr(x) defined by equation (14), that is

B(x) = P r(x)∇2 log p(x),

is the set {w ∈ Rd | wTvr(x) = 0} for all x ∈ U . This follows from the defi-
nition of the matrix P r(x), the eigendecomposition of∇2 log p(x) and condition
(18) that guarantees nonsingularity of∇2 log p(x).

On the other hand, by the limit (16) the first term of the matrix F r(γr(t))
defined by equation (15), that is

vr(γ(t))T∇ log p(γr(t))∇vr(γr(t))
T

converges to zero as t approaches t∗. In view of the above observation that the
ranges of the matrices B(x) and G(x) are orthogonal for all x ∈ U , equations
(13)–(15) and Assumption 3.2 thus imply that

lim
t→t∗

B(γr(t))γ
′
r(t) = 0 and lim

t→t∗
G(γr(t))γ

′
r(t) = 0.

The claim follows from the first of the above limits because the range of the sym-
metric matrixB(x) is orthogonal to its null space.
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Proposition 3.3 implies the following properties that motivate seeking for a
lower-dimensional ridge point by maximizing log p along the curve γr.

Proposition 3.4. If γr is a solution to (12) for some 1 ≤ r ≤ d and Assumption 3.2
is satisfied, then either γr(t) ∈ Rr

log p\Rr−1
log p for all t ≥ 0 or limt→t∗ γr(t) ∈ Rr−1

log p

for some t∗ > 0. In the latter case, log p attains its local maximum along γr at
the limit point γr(t

∗).

Proof. By equation (12), the choice of x0 and the definition of the matrix P r(·),
for all i 6= r and t ≥ 0 we have

vi(γr(t))
T∇ log p(γr(t)) = ci

for some constants ci 6= 0. By Assumption 3.2 and Definition 3.1 this implies
that either γr(t) ∈ Rr

log p \ Rr−1
log p for all t ≥ 0 or limt→t∗ γr(t) ∈ Rr−1

log p for some
t∗ > 0. In the latter case we have

vr(γr(t
∗))T∇ log p(γr(t

∗)) = 0.

Thus, the limit (17) implies that

lim
t→t∗

d

dt
log p(γr(t)) = lim

t→t∗
∇ log p(γr(t))

Tγ ′r(t) = 0.

Furthermore, by condition (5b) the point γr(t
∗) is a local maximum of log p along

γr.

Recall that our aim is to use projection curves γr defined by equation (12)
to obtain the first m nonlinear principal component scores of the given sample
points yi. This will be done by using the kernel density log p̂h defined by (6) and
(7) as the objective function. Differently to the normal density in Proposition 3.2,
this density is not guaranteed to be unimodal or have connected ridge sets. For
instance, when h is too small, the density becomes multimodal.

Unimodality of the density and connectedness of its ridge sets are essential
here. This is because as in the linear PCA, our aim is to describe the data in a
single well-defined coordinate system. Hence, we assume the following.

Assumption 3.3. Define the set Uh =
⋃n

i=1 Lh
i , where

Lh
i = {x ∈ Rd | log p̂h(x) ≥ log p̂h(yi)}.

Let λ1(·) ≥ λ2(·) ≥ · · · ≥ λd(·) denote the eigenvalues of∇2 log p̂h. Assume that
for all x ∈ Uh we have

0 > λ1(x) > λ2(x) > · · · > λm+1(x) (20)

and that set Uh is connected.
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Damon [5] and Miller [23] give a rigorous treatment of ridge sets of C∞-
functions in a differential geometric framework. Under the above assumption,
their results guarantee that the r-dimensional ridge set of the density log p̂h forms
a connected manifold in the set Uh for any 1 ≤ r ≤ m. Furthermore, log p̂h is
unimodal in Uh. In addition, Assumption 3.3 implies continuity of the Hessian
eigenvectors (e.g. [26], Theorem 3.1.3), which is essential for the definition of the
initial value problem (12). Assumption 3.3 also entails Assumption 3.2 when the
curves γr lie in Uh.

Assumption 3.3 can be satisfied by choosing a sufficiently large h. The fol-
lowing result is proven in Appendix A.

Theorem 3.3. Under Assumption 3.1 for r = m, for any Gaussian kernel density
estimate p̂h there exists h0 > 0 such that Assumption 3.3 is satisfied for all h ≥ h0.

Finally, the arc length of a curve γr gives the (curvilinear) distance of its start-
ing point to the ridge set Rr−1

log p̂h
. Assume that we have projected a given sample

point yi onto the ridge set Rm
log p̂h

. Starting from such a point, computing the arc
lengths successively for r = m,m−1, . . . , 1 then yields the firstm principal com-
ponent scores of yi. When Assumption 3.3 is satisfied, imposing the conditions
(cf. Proposition 3.2)

γ ′r(t)
T∇ log p̂H(γr(t)) > 0,

‖γ ′r(t)‖ = 1

}
for all

{
r = m,m− 1, . . . , 1,
t ≥ 0

(21)

guarantees that the curves γr lie in the set Uh. This ensures that the ridge projec-
tions are well-defined.

Denote the projection of a given sample point yi onto the setRm
log p̂h

as ỹi and
the starting points of the curves γr as xr

0. The m first principal component scores
of yi are then obtained recursively as

θr = s∗r

t∗r∫
0

‖γ ′r(t)‖dt, xr
0 =

{
ỹi, r = m,
γr+1(t

∗
r+1), 1 ≤ r < m

(22)

for r = m,m− 1, . . . , 1. Here we assume that for each r there exists t∗r ≥ 0 such
that γr(t

∗
r) ∈ Rr−1

log p̂h
. The multiplier s∗r = lim

t→t∗r−
sr(t), where

sr(t) =

{
1, if γ ′r(t)

Tvr(γr(t)) > 0,
−1, otherwise, (23)

is introduced to ensure that the principal component score θr has the correct sign.

3.4 Algorithm for estimating principal component scores
Based on the theory developed in Subsection 3.3, we are now ready to develop the
algorithm for estimating the nonlinear principal component scores

Θ = [θ1 θ2 · · · θn]T ∈ Rn×m
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of a given sample set

Y = [y1 y2 · · · yn]T ∈ Rn×d

for a given 0 < m ≤ d. This amounts to first projecting the samples yi onto the
ridge setRm

log p̂h
and then successively projecting them onto the lower-dimensional

ridge sets Rr
log p̂h

until r = 0. The latter projections are done by tracing the
curves γr by using a predictor-corrector method. As a by-product, the principal
component scores are obtained from a numerical approximation of the integral
(22).

A pseudocode of the algorithm is listed as Algorithm 1. It involves the initial
projection onto the ridge set Rm

log p̂h
(lines 2 and 3), and after that m × n loops.

Each iteration for r = m,m − 1, . . . , 1 projects each of the n sample points
onto the ridge set Rr−1

log p̂h
. The intermediate projections are stored in the variables

{x∗i }ni=1. For the initial ridge projection and the corrector steps, the algorithm
utilizes the trust region Newton method developed in [30] (the GTRN algorithm).
This method is briefly described at the end of this subsection.

In the following, we describe the steps for carrying out one ridge projection
(i.e. one iteration of the loop over the index i) for a given r. The starting point x0

for γr is chosen as x∗i representing the projection of the sample point yi onto the
setRr

log p̂h
. Assuming that there exists a monotoneously increasing sequence {tk}

such that γr(tk∗) ∈ Rr−1
log p̂h

for some k∗, we introduce the notation xk = γr(tk)
for the iterates along the curve γr. With this notation, an approximation to the
integral (22) is given by

t∗r∫
0

‖γ ′r(t)‖dt ≈
k∗∑
k=1

‖γr(tk)− γr(tk−1)‖ =
k∗∑
k=1

‖xk − xk−1‖.

The algorithm uses a predictor-corrector method to generate the iterates xk. At
the predictor step (line 18), the algorithm proceeds along a tangent vector uk =
γ ′r(tk) solved from equation (13). That is,

x̃k = xk + τskuk,

where τ > 0 is some user-supplied step size, ‖uk‖ = 1 and the multiplier

sk =

{
1, if uT

k∇ log p̂h(xk) > 0,
−1, otherwise

(line 9) is introduced to impose conditions (21). To project the predictor estimate
x̃k back to the ridge setRr

log p̂h
, the algorithm takes a corrector step (line 19).

A stopping criterion is imposed to terminate the tracing of the curve γr when
a maximum of log p̂h along γr is encountered (line 11). For k > 0, the condition

sk−1u
T
k−1uksk < 0
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Algorithm 1: Nonlinear principal component scores

input : sample points Y = [y1 y2 · · · yn]T ∈ Rn×d

Gaussian kernel density estimate p̂h : Rd → R
ridge dimension 0 < m ≤ d
step size τ > 0

output: principal component scores Θ = [θ1 θ2 · · · θn]T ∈ Rn×m

1 Θ← 0
2 for i = 1, 2, . . . , n do
3 x∗i ← GTRN(p̂h,m,yi, τ, 10−5)

4 for r = m,m− 1, . . . , 1 do
5 for i = 1, 2, . . . , n do
6 x0 ← x∗i
7 for k = 0, 1, . . . do
8 Obtain the tangent vector uk from (13) such that ‖uk‖ = 1.
9 if uT

k∇ log p̂h(xk) > 0 then sk ← 1 else sk ← −1
10 if k > 0 then
11 if sk−1uT

k−1uksk < 0 then
12 x∗i ← GTRN(p̂h, r − 1, (xk−1 + xk)/2, 0.5τ, 10−5)
13 θi,r ← θi,r + ‖x∗i − xk−1‖
14 if (x∗i − xk−1)

Tvr(x
∗
i ) < 0 then θi,r ← −θi,r

15 Terminate the inner loop.
16 else
17 θi,r ← θi,r + ‖xk − xk−1‖

18 x̃k ← xk + τskuk

19 xk+1 ← GTRN(p̂h, r, x̃k, 0.5τ, 10−5)

tests whether the gradient changes sign along the curve. When this condition is
met, the algorithm projects the midpoint of the current and previous iterate onto a
nearby ridge point x∗i ∈ Rr−1

log p̂h
(line 12). At line 14, the algorithm computes the

sign s∗r for the integral (22) by approximately testing condition (23). The inner
iteration (i.e. iteration of the loop over the index k) is then terminated, and the
point x∗i is retained as a starting point for projection onto a lower-dimensional
ridge set.

The GTRN algorithm developed in [30] implements a Newton-type method for
projecting a d-dimensional point onto an r-dimensional ridge set of a probability
density. The method successively maximizes a quadratic model of the objective
function. The maximization is constrained within a trust region to guarantee con-
vergence. To obtain a ridge projection, it is done in the subspace spanned by
the Hessian eigenvectors corresponding to the d − r smallest eigenvalues. That
is, at each iteration l the next iterate zl+1 = zl + sl is obtained by solving the
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subproblem

max
s
Ql(s) s.t.

{
‖s‖ ≤ ∆l,
s ∈ span(vr+1(zl),vr+2(zl), . . . ,vd(zl)),

where Ql denotes the model function at the current iterate zl, {vi(zl)}di=r+1 de-
note the eigenvectors and ∆l ≤ ∆max denotes the current trust region radius that
is updated after each iteration. For each call of GTRN, Algorithm 1 uses the exper-
imentally chosen ∆max = 0.5τ (τ for the initial projection) and stopping criterion
threshold εpr = 10−5.

Remark 3.1. The GTRN algorithm can be viewed as an approximate solution
method to an initial value problem of the form (12), whereP r(·) =

∑r
i=1 vi(·)vi(·)T .

As Algorithm 1, GTRN yields an orthogonal projection when applied to the loga-
rithm of a normal density. Differently to Algorithm 1, projection of a d-dimensional
point onto an r-dimensional ridge set by this algorithm only requires continuity of
the first r Hessian eigenvectors. That is, when the r + 1 greatest eigenvalues are
distinct in Uh.

Remark 3.2. Tests for connectedness of the ridge sets are not included in Al-
gorithm 1 for the sake of simplicity. This can be done by testing if the traced
curve crosses a point x where λ1(x) = 0 or λi(x) = λj(x) for some i, j =
1, 2, . . . , r + 1 such that i 6= j, where λi(·) denote the eigenvalues of ∇2 log p̂h
(see [23, 29]). When either of these conditions is met, the algorithm can be
restarted with a larger h or smaller initial ridge dimension m.

Remark 3.3. A consistent orientation of the eigenvectors vr(x∗i ) at the projected
points is necessary for the principal component scores θi,r to have correct signs.
However, in practice the signs of the eigenvectors depend on the numerical algo-
rithm for computing them. Therefore, the implementation of Algorithm 1 uses an
Euclidean minimum spanning tree (e.g. [17]) to align the eigenvectors after each
iteration of the outer loop.

4 Nonlinear extension of SSA to time series data

In this section, the KDPCA method developed in Section 3 is extended to time
series data. The method, that we call KDSSA, is based on the singular spectrum
analysis (SSA) that is an extension of the linear PCA. In SSA, a time series is
embedded in a multidimensional phase space. This is done by constructing a tra-
jectory matrix from time-lagged copies of the time series. Formally, the trajectory
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matrix of a time series x = (x1, x2, . . . , xn) is defined as

Y x,L =


x1 x2 x3 · · · xL
x2 x3 x4 · · · xL+1

x3 x4 x5 · · · xL+2
...

...
... . . . ...

xn−L+1 xn−L+2 xn−L+3 · · · xn

 , (24)

where L is some user-supplied time window length.
Applying the linear PCA to the above matrix, one can obtain the principal

components and the reconstructed time series by using the formulae given by
Vautard et al. [38]. Generalizing their approach, we minimize the reconstruction
error

E(x) =
n−L+1∑
i=1

L∑
j=1

(ỹi,j − xi+j−1)
2 (25)

using the first m nonlinear principal components, where m ≤ L. Here the vectors
ỹi denote the projections of the row vectors yi of Y x,L onto the m-dimensional
ridge set of their Gaussian kernel density estimate.

A straightforward calculation shows that by equating the gradient ∇E(x) to
zero, we obtain the formulae

x∗i =



1

L

L∑
j=1

ỹi−j+1,j, L ≤ i ≤ n− L+ 1

1

i

i∑
j=1

ỹi−j+1,j, 1 ≤ i ≤ L− 1

1

n− i+ 1

L∑
j=i−n+L

ỹi−j+1,j, n− L+ 2 ≤ i ≤ n

(26)

for the elements of the reconstructed time series such that E(x∗) minimizes the
reconstruction error (25).

Remark 4.1. SSA can be extended to multivariate time series [38] and to time-
series in a two-dimensional grid [12]. As these modifications differ from the uni-
variate SSA only by the construction of the trajectory matrix and the formulae for
obtaining the reconstructed time series, we do not consider the multivariate case
here.

In this paper the nonlinear SSA is applied to quasiperiodic time series (i.e.
noisy time series having some underlying periodic pattern). The motivation is as
follows. Assuming that a time series follows the model

X(t) = f(t) + ε(t)
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for some periodic function f and ε representing the noise, it is reasonable to model
the trajectory samples (i.e. the rows of the matrix Y x,L) as a point set that is
randomly distributed around a closed curve (cf. Figure 5 in Section 5).

When the aim is to obtain a noise-free time series from a reconstructed phase
space trajectory, only an approximate projection onto the ridge curve (i.e. one-
dimensional ridge set) of the trajectory density suffices. The GTRN algorithm de-
veloped in [30] is appropriate for this purpose. On the other hand, a parametriza-
tion of the reconstructed trajectory can be obtained by the algorithm developed in
[29]. Differently to Algorithm 1, this algorithm yields a continuous parametriza-
tion even when the trajectory density is multimodal, provided that the set of its
ridge curves forms a single closed loop. Both of the aforementioned approaches
are demonstrated in the next section.

5 Practical applications
This section is devoted to practical applications of the proposed KDPCA method.
The method is applied to a climate model output that exhibits a highly nonlin-
ear behaviour. In addition, its SSA-based extension is applied to an atmospheric
time series. Finally, computational complexity analysis and comparison to related
methods is given.

5.1 Test setup
All numerical tests were done on a machine with a 3.0GHz Core 2 Duo processor
and 6GB system memory. Algorithm 1 as well as the algorithms developed in [29]
and [30] used in the tests were implemented in Fortran 95. Algorithm 1 was run
withm = d and τ = 0.05h. For the nonlinear SSA, the algorithms of [29] and [30]
were run with their default parameters, except for GTRN the parameters ∆max and
εpr were chosen as 0.25h and 10−4, respectively.

5.2 Application to simulated climate model data
In the first test, KDPCA was applied to a simulated sea surface temperature dataset.
This dataset is provided by the National Oceanic and Atmospheric Administration
(NOAA). The data was obtained from the Coupled Model Intercomparison Project
phase 3 (CMIP3) simulations of the GFDL-CM2.1 climate model [1,6]. The cho-
sen simulation output is from the pre-industrial control (picntrl) simulation
experiment. All preprocessing steps were done as in [33] and [34], where this
dataset has been analyzed in detail.

The simulated sea surface temperatures are computed on a latitude-longitude
grid. The subregion 20◦ S-20◦ N, 125◦ E-65◦ W representing the pacific ocean
was chosen from the original data. The temperatures are monthly values, and
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the length of the simulation is 500 years, starting from the first century AD. This
yields a dataset of 6000 samples. As a preprocessing step, seasonality was re-
moved from the data by subtracting the monthly mean values of the raw data for
each month. In climatological literature, such mean values are called anomalies.

To make estimation of the nonlinear principal components computationally
feasible, the high-dimensional data (d = 10073, one dimension for each ocean
grid point) was first projected onto the first ten principal components obtained
by PCA. As these principal components explain 87.3% of variance, a significant
amount of information was not lost by carrying out this preprocessing step. The
kernel bandwidth was chosen as h = 40.

The GFDL-CM2.1 dataset and its first principal component obtained by KD-
PCA are plotted in Figure 2. This figure shows cross-sections of the data and the
principal component curve along the first linear principal component axes. Projec-
tion of the GFDL-CM2.1 data onto the surface spanned by the first two principal
components obtained by KDPCA is shown in Figure 3. The corresponding prin-
cipal component scores are plotted in Figure 4.
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Figure 2: The first nonlinear principal component obtained from the GFDL-CM2.1
dataset (only a subset of the curve is drawn).
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Compared to the linear principal component projection shown in Figure 2a, it
is clear that the nonlinear principal components represent the ”unfolded” dataset
and they are better able to capture the variance in the data. Comparison of ex-
plained variances of the first eight linear and nonlinear principal components listed
in Table 1 also supports this claim. The variance explained by KDPCA is more
concentrated towards the first principal component than the variance explained by
PCA. Here the explained variances for the nonlinear principal components were
obtained from the covariance matrix of the corresponding scores.
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Figure 3: Projection of the GFDL-CM2.1 dataset onto the surface spanned by its first
two nonlinear principal components.
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Figure 4: Two first nonlinear principal component scores obtained from the GFDL-
CM2.1 dataset.
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1 2 3 4 5 6 7 8
PCA 60.0 % 10.6 % 6.1 % 2.5 % 2.1 % 1.7 % 1.3 % 1.1 %
KDPCA 66.2 % 10.4 % 3.9 % 2.1 % 1.4 % 1.1 % 0.9 % 0.8 %

Table 1: Explained variances of the eight first linear and nonlinear principal components,
GFDL-CM2.1 dataset.

A typical application of principal component analysis (and its nonlinear exten-
sions) is to explain the variance in the given data by some small set of variables.
This has been done in [33] and [34] for the GFDL-CM2.1 data, and the two main
sources of variation were identified. The first principal component correlates with
the so-called NINO3 index that is related to the El Niño Southern Oscillation
(ENSO) phenomenon. The second one correlates with the Pacific warm water
volume. The analysis done here could be carried out further, but we do not at-
tempt repeat the earlier experiments by [33] and [34], as using KDPCA would
yield similar results than the earlier nonlinear PCA extensions. Of more interest
are the differences between KDPCA and the previously proposed methods. A
discussion of potential advantages of using KDPCA is given in Subsection 5.5.

5.3 Application to atmospheric time series
The quasi-biennial oscillation (QBO) is one of the most well-studied atmospheric
phenomena. The QBO is a quasiperiodic oscillation of the equatorial zonal wind
between easterlies and westerlies in the tropical stratosphere with a mean period
of 28 to 29 months. Motivated by an earlier neural network-based nonlinear SSA
approach in [16], the nonlinear SSA (KDSSA) described in Section 4 was applied
to a QBO time series. The time series is provided by the institute of meteorology
at the University of Berlin [2]. It consists of monthly mean zonal winds between
1953-2013 constructed from balloon observations at seven different pressure lev-
els corresponding to the altitude range 20-30 km. Here we use a simplified test
setup and analyze only the observations from the 30 Hpa level, resulting to a uni-
variate time series.

The trajectory matrix (24) was obtained from the QBO time series withL = 18
months. The linear PCA was first applied in the 18-dimensional phase space so
that the first four principal components were retained. These principal compo-
nents explain 95.2 % of the variance, and thus a significant amount of information
was not lost by doing this step. The resulting samples were then projected onto
the kernel density ridges by using the GTRN algorithm described in [30]. The
bandwidth was chosen as h = 200. The reconstructed time series was obtained by
transforming the projected samples from the four-dimensional space back to the
18-dimensional phase space and using the formulae (26).

The trajectory samples and their kernel density ridge projections in the re-
duced four-dimensional phase space are plotted in Figure 5. This figure shows a
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cross-section along the first three linear principal components. Due to the under-
lying periodic structure present in the time series, its reconstructed phase space
trajectory forms a closed loop that passes through the middle of the point cloud.
The QBO time series and the reconstructed time series obtained by using the re-
constructed phase space trajectory are plotted in Figure 6. For comparison, the
reconstructed time series obtained by using the first linear SSA component and
the first and second linear components combined are also plotted in this figure.
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Figure 5: Phase space trajectory of the QBO time series and the reconstructed trajectory
curve obtained by kernel density ridge projection.

The conclusion from Figures 5 and 6 is that the nonlinear SSA is able to cap-
ture the underlying periodic structure in the QBO time series. It is clear that the
closed loop found by the nonlinear approach, as shown in Figure 5, cannot be de-
scribed by any combination of linear principal components. Consequently, it can
be seen from Figure 6 that the linear SSA reconstruction by using only the first
principal component is inadequate to describe the structure of the time series. On
the other hand, by adding more principal components in the analysis, the linear
SSA only captures noise and not the underlying periodic pattern.

In Subsection 5.3, the principal component scores (i.e. the coordinates along
the nonlinear principal components) were of main interest. Also, in the nonlinear
SSA tracking the coordinates of a time series along its reconstructed trajectory
curve in the phase space may provide useful information. Namely, when the time
series is close to periodic, anomalously short or long cycles can be identified by
carrying out such analysis. For the QBO time series, this has been done in [16] by
using the neural network-based NLPCA.

Obtaining the coordinates of a time series along its reconstructed phase space
trajectory is also possible by using the ridge-based approach. In order to demon-
strate this, an approximate parametrization of the trajectory was obtained by us-
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ing the algorithm developed in [29]. The projection coordinates were obtained for
each sample by finding the nearest point along line segments connecting the tra-
jectory points and computing its distance along the approximate curve to a point
fixed as the origin.
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Figure 6: The QBO time series at the 30 Hpa level and the reconstructed time series
obtained by using the first KDSSA component, the first linear SSA component and the
two first linear SSA components combined. The original time series is plotted in gray in
the lower figures.
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Figure 7: The first nonlinear principal component coordinate of the QBO time series (t)
and the deviation from the fitted regression line (t-anomaly).

Due to its very regular period, the QBO time series progresses along its re-
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constructed phase space trajectory at a nearly constant rate. This can be seen
from Figure 7 showing the trajectory coordinate t scaled to the interval [−π, π]
as a function of time. In addition, following the approach of [16], anomalies (i.e.
deviations from the constant rate) were calculated. This was done by fitting a re-
gression line to the t-time series obtained by concatenating the individual cycles
and then subtracting the regression line from the concatenated time series. The
normalized t-anomaly time series obtained in this way is also plotted in Figure 7.

Comparison of the t-anomaly time series to the t-time series and Figure 6
shows its relation to fluctuations from the mean period length. Namely, up- and
downward trends in the t-anomalies correspond to abnormally short and long cy-
cles, respectively. This can be seen, for instance, by comparing the long periods
during 1962-1969, 1984-1993 and 2000-2002 and the short periods during 1955-
1962, 1969-1975 and 2004-2009 to the t-anomaly time series.

5.4 Complexity Analysis
This subsection is devoted to discussion of computational complexity of KD-
PCA and comparison with existing nonlinear dimensionality reduction methods.
After the initial projection step by using the GTRN algorithm having compu-
tational cost O(n2d2 + nd3) (see [30]), the computational cost of KDPCA is
O(n2d3m+ d3nm+ n2dm), which is explained in the following paragraphs.

The main source of computational cost is the evaluation of the Gaussian kernel
density and its derivatives. For each of the m projection steps, this needs to be
done for all n sample points a number of times that depends on the chosen step
size τ . For the third derivative that dominates the computational cost, the cost
of a single evaluation is O(nd3). This makes the total complexity of evaluations
O(n2d3m). When d is small, this cost can be reduced by order of n by using the
fast Gauss transform [13] or related techniques.

Computation of the tangent vector in Algorithm 1 and obtaining the trust re-
gion step in the corrector involve eigendecomposition of a d × d matrix [30].
The cost of this operation is O(d3), and this is done O(nm) times in the algo-
rithm, making the total cost of eigendecompositions O(d3nm). Finally, the cost
of traversing the Euclidean minimum spanning tree by using a basic implementa-
tion is O(n2d). This is done m times in the algorithm, after each projection of all
the sample points, and thus the total cost of traversal of such trees is O(n2dm).

Computational efficiency of Algorithm 1 can be improved by replacing the
projection curve tangent by a Hessian eigenvector (cf. Propositions 3.2 and 3.3).
In practice, this leads to slightly worse approximations for the higher-dimensional
principal component scores (the first principal component is not affected). This
approximation reduces the evaluation cost by order of d since third derivatives are
not needed.

When only the first nonlinear principal component (i.e. principal curve) is
sought, a significant speedup can be achieved by using a specialized algorithm
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developed in [29]. Using this algorithm requires choosing the kernel bandwidth
so that the ridge curve set of the density consists of one connected curve. Under
this assumption, it suffices to use one starting point, and the total computational
cost of tracing the ridge curve is O(nd3). The principal component scores can be
obtained from projections onto the line segments forming the approximate curve
as in Subsection 5.3 at a cost of O(ndk), where k is the number of line segments.

5.5 Comparison to Other Methods
Though the neural network-based NLPCA (e.g. [15, 20, 24, 35]) has become pop-
ular particularly in climate analysis, it has several shortcomings. Some of them
are discussed below.

• NLPCA involves minimization of a complicated cost function that generally
has a large number of local minima. This problem is typically addressed by
using a large number of starting points, which may incur a high computa-
tional cost. KDPCA is not affected by this issue because it does not attempt
to minimize a single cost function. Instead, it performs local maximizations
from each sample point. The projection curves are uniquely defined when
the ridge sets are connected.

• The principal components obtained by KDPCA have a probabilistic inter-
pretation. This is not the case for NLPCA that is based on an artificially
constructed neural network. In fact, the NLPCA principal curves and sur-
faces are not guaranteed to follow regions of high concentration of the data
points. Examples of this are given in [4]. Due to this issue, drawing sta-
tistical inferences from the NLPCA output should be done with extreme
caution.

• NLPCA uses a number of artificial penalty terms to avoid overfitting. De-
spite this, the density of the data along the first nonlinear principal com-
ponent can exhibit spurious multimodality [4]. This can occur even when
the underlying density of the data is close to normal. On the other hand,
KDPCA always attains the robustness of the linear PCA when the kernel
bandwidth h is chosen sufficiently large.

• When using NLPCA, the type of the curve (open or closed) to be fitted to the
data needs to be specified a priori in the neural network structure. KDPCA
can determine this automatically when the principal curve is traced by using
the algorithm developed in [29].

• The curves fitted by NLPCA are not parametrized by arc length. This may
introduce a significant bias to the principal component scores. When draw-
ing statistical inferences from a curve fitted by NLPCA, arc length repara-
metrization should be done to remove the bias [25]. However, this approach
has not been generalized to higher dimensions. On the other hand, KDPCA
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produces an arc length parametrization for principal component curves and
surfaces of any dimension due to its construction.

KDPCA has also certain advantages compared to other commonly used non-
linear dimensionality reduction methods. This is because it seems to perform well
in the presence of noise and it operates directly in the input space.

• Graph-based methods such as Isomap [37], Hessian eigenmaps [7] and max-
imum variance unfolding [40] are based on the assumption that the data lies
directly on a low-dimensional manifold. Thus, they are sensitive to noise,
and blindly applying such methods to noisy data may lead to undesired re-
sults.

• The aforementioned methods and kernel-based methods such as KPCA do
not produce a reconstruction of the data in the original input space. This
would be a very desired feature, for instance, in climate analysis where
plots of reconstructed grid data or time series provide information about the
main sources of variation.

KDPCA has also some shortcomings that it shares with NLPCA. Namely, the
bandwidth parameter h plays a similar role to the penalty parameters in NLPCA.
KDPCA breaks down when h is too small. In this case, the ridges of the density
estimate no longer form a connected set, and the density becomes multimodal.
The issue of choosing a sufficiently large h is difficult. In the absence of a more
sophisticated method, it can be done by visual inspection of the obtained principal
components in two or three dimensions (cf. Figures 2 and 5). A possible approach
could be to use some computationally cheap plugin estimate as an initial guess for
the bandwidth.

6 Conclusions and discussion
Principal component analysis (PCA) is a well-established tool for exploratory data
analysis. However, as a linear method it cannot describe complex nonlinear struc-
ture in the given data. To address this deficiency, a novel nonlinear generalization
of the linear PCA was developed in this paper.

The proposed KDPCA method is based on the idea of using ridges of the un-
derlying density of the data to estimate nonlinear structures. It was shown that
the principal component coordinates of a given point set can be obtained by suc-
cessively projecting the points onto lower-dimensional ridge sets of the density.
Such a projection was defined as a solution to a differential equation. A predictor-
corrector method using a Newton-based corrector was developed for this purpose.

Gaussian kernels were used for estimation of the density from the data. This
choice has several advantages. First, a fundamental result was derived showing
that by letting h approach infinity, KDPCA reduces to the linear PCA and achieves
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its robustness when desired. Second, the theory of ridge sets ensures that any ridge
set of a Gaussian kernel density estimate has a well-defined coordinate system
when h is sufficiently large. Third, this choice allows automatic estimation of an
appropriate bandwidth from the data, though this approach was not pursued in this
paper.

Based on the linear singular spectrum analysis (SSA), KDPCA was extended
to time series data. It was shown that when a time series is (quasi)periodic, the
first nonlinear principal component of its phase space representation can be used
to reconstruct the underlying periodic pattern from noise. Though the period-
icity assumption is restrictive, such time series are relevant for many practical
applications. Examples include climate analysis and medical applications such as
electrocardiography and electroencephalography.

The proposed KDPCA method and its SSA-based variant were applied to a
highly nonlinear dataset obtained from a climate model and to an atmospheric
time series. The method is superior to the linear PCA in capturing the complex
nonlinear structure of the data. It also has several advantages compared to the
existing nonlinear dimensionality reduction methods. In particular, KDPCA re-
quires only one parameter, that is, the kernel bandwidth h. The bandwidth has an
intuitive interpretation as a scale parameter.

While KDPCA showed impressive results on the test datasets, its applicabil-
ity to real-world data remains to be fully confirmed. When the dataset is noisy
and sparse, which is typical for observational data, the additional information ob-
tained by KDPCA might not justify its high computational cost. However, using
the fast Gauss transform mentioned in Subsection 5.4 could significantly improve
the scalability of KDPCA to large datasets. Computational difficulties due to high
dimensionality of the input data can also be circumvented. In many situations, the
variance is confined to some low-dimensional linear subspace that can be iden-
tified by using a simpler method as a preprocessing step. Examples of this were
given in Subsections 5.2 and 5.3, where KDPCA was applied to a low-dimensional
projection obtained by the linear PCA.
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A Proofs of Technical Results
In this appendix we give proofs of Theorems 3.2 and 3.3. The proofs are carried out by
making the following simplifying assumption that can be made without loss of generality.

Assumption A.1. The sample points yi satisfy the condition
∑n

i=1 yi = 0.

First, we recall the density estimate defined by equations (6) and (7), that is,

p̂h(x) =
1

n

n∑
i=1

Kh(x− yi) =
1

(2π)
d
2hdn

n∑
i=1

exp

(
−‖x− yi‖

2

2h2

)
. (27)

The gradient and Hessian of this function are

∇p̂h(x) = − 1

h2n

n∑
i=1

(x− yi)Kh2I(x− yi) (28)

and

∇2p̂h(x) =
1

h2n

n∑
i=1

[
(x− yi)(x− yi)T

h2
− I

]
Kh2I(x− yi), (29)

respectively. For the logarithm of p̂h we have the formulae

∇ log p̂h(x) =
∇p̂h(x)

p̂h(x)
and ∇2 log p̂h(x) =

∇2p̂h(x)

p̂h(x)
− ∇p̂h(x)∇p̂h(x)T

p̂h(x)2
. (30)

In what follows, we establish limiting values for the logarithm of the Gaussian kernel
density estimate and its derivatives as the bandwidth h approaches infinity. Furthermore,
we show that convergence to these limits is uniform. To this end, we need uniform bound-
edness of the following functions and existence of a uniform Lipschitz constant.

Proposition A.1. Let p̂h : Rd → R be a Gaussian kernel density estimate, let U ⊂ Rd be
compact and let Assumption A.1 be satisfied. Then there exist constants Mi > 0 such that
for any h0 > 0 the functions

F0(x;h) = h2 log [(2π)
d
2hdp̂h(x)],

F 1(x;h) = h2∇ log p̂h(x),

F 2(x;h) = h4∇2 log p̂h(x) + h2I

satisfy the conditions
‖F i(x;h)‖ ≤Mi
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for all x ∈ U , i = 0, 1, 2 and h ≥ h0. Furthermore, there exist constants Li > 0 such
that

‖F i(x;h)− F i(y;h)‖ ≤ Li‖x− y‖

for all x,y ∈ U , i = 0, 1, 2 and h ≥ h0.

The proof of the above proposition is omitted due to space constraints. The upper bounds
Mi can be obtained by straightforward but rather tedious calculation. Likewise, the Lips-
chitz constantsLi can be obtained by showing that the derivatives of the functionsF i(·;h)
with respect to h are uniformly bounded for all h ≥ h0 > 0 in any compact set.

The following result that guarantees uniform convergence of a function sequence is a
direct extension of the Arzelà-Ascoli theorem (e.g. [32]). The original formulation of the
Arzelà-Ascoli theorem is given for equicontinuous functions, but the result of the theorem
also holds when the function sequence is Lipschitz continuous with uniformly bounded
Lipschitz constant.

Theorem A.1. Let {fk}k∈N be a sequence of functions from some set Ω ⊂ Rm to Rd

and assume that {fk} converges (pointwise) to a limit function f∗. If there exists M > 0
such that

‖fk(x)‖ ≤M

and L > 0 such that
‖fk(x)− fk(y)‖ ≤ L‖x− y‖

for all k ∈ N, x ∈ Ω and y ∈ Ω, then the sequence {fk} converges uniformly to f∗ in Ω.

Now we are ready to prove the following result that will be utilized in the subsequent
proofs.

Lemma A.1. Let p̂h : Rd → R be a Gaussian kernel density estimate and assume A.1.
Then

lim
h→∞

h2 log [(2π)
d
2hdp̂h(x)] = − 1

2n

n∑
i=1

‖x− yi‖2, (31)

lim
h→∞

h2∇ log p̂h(x) = − 1

n

n∑
i=1

(x− yi) = −x (32)

and

lim
h→∞

[
h4∇2 log p̂h(x) + h2I

]
=

1

n

n∑
i=1

yiy
T
i (33)

for all x ∈ Rd. Furthermore, convergence to these limits is uniform in any compact set.

Proof. Let x ∈ Rd. For the logarithm of a sum of Gaussians we have the limit (the proof
is omitted)

lim
h→∞

h2 log

[
1

n

n∑
i=1

exp

(
−‖x− yi‖

2

2h2

)]
= − 1

2n

n∑
i=1

‖x− yi‖2.

30



Consequently, taking the logarithm of (27) and the limit h→∞ and using the above limit
yields (31).

Substitution of equations (27) and (28) into (30) yields

∇ log p̂h(x) =
∇p̂h(x)

p̂h(x)
= − 1

h2

∑n
i=1(x− yi)Kh2I(x− yi)∑n

i=1Kh2I(x− yi)
.

The limit (32) follows from multiplying the above expression by h2, taking the limit
h→∞ and using the limit

lim
h→∞

exp

(
− r2

2h2

)
= 1 for all r ∈ R. (34)

On the other hand, from equations (27)–(29) we obtain that

∇2p̂h(x)

p̂h(x)
=

1

h2

∑n
i=1

[
(x−yi)(x−yi)

T

h2 − I
]
Kh2I(x− yi)∑n

i=1Kh2I(x− yi)

=
1

h4

∑n
i=1(x− yi)(x− yi)TKh2I(x− yi)∑n

i=1Kh2I(x− yi)
− I

h2

and

∇p̂h(x)∇p̂h(x)T

p̂h(x)2
=

1

h4
[
∑n

i=1(x− yi)Kh2I(x− yi)] [
∑n

i=1(x− yi)Kh2I(x− yi)]
T

[
∑n

i=1Kh2I(x− yi)]
2 .

Thus, by the limit (34) we obtain

lim
h→∞

[
h4
∇2p̂h(x)

p̂h(x)
+ h2I

]
=

1

n

n∑
i=1

(x− yi)(x− yi)T (35)

and

lim
h→∞

h4
∇p̂h(x)∇p̂h(x)T

p̂h(x)2
=

1

n2

[
n∑

i=1

(x− yi)

][
n∑

i=1

(x− yi)

]T
. (36)

It follows from Assumption A.1 that

1

n

n∑
i=1

(x− yi)(x− yi)T = xxT +
1

n

n∑
i=1

yiy
T
i (37)

and
1

n2

[
n∑

i=1

(x− yi)

][
n∑

i=1

(x− yi)

]T
= xxT . (38)

The limit (33) then follows by substituting (37) and (38) into (35) and (36) and using equa-
tion (30). Finally, uniform convergence to the limits (31)–(33) follows from Proposition
A.1 and Theorem A.1.

The following two lemmata facilitate the proof of Theorem 3.2.
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Lemma A.2. Let p̂h : Rd → R be a Gaussian kernel density estimate and let Assumptions
3.1 and A.1 be satisfied. Denote the eigenvalues of ∇2 log p̂h by λ1(·;h) ≥ λ2(·;h) ≥
· · · ≥ λd(·;h) and the corresponding eigenvectors by {wi(·;h)}di=1. Then for any com-
pact set U ⊂ Rd there exists h0 > 0 such that

λ1(x;h) < 0, (39)

λi(x;h) 6= λj(x;h) (40)

for all x ∈ U , h ≥ h0 and i, j = 1, 2, . . . , r + 1 such that i 6= j. Furthermore, if we
define

W (x;h) = [w1(x;h) w2(x;h) · · · wr(x;h)]

and
V = [v1 v2 · · · vr],

where {vi}ri=1 denote the eigenvectors of the matrix Σ̂Y defined by equation (3) corre-
sponding to its r greatest eigenvalues, then for all ε > 0 there exists h0 > 0 such that

‖W (x;h)− V ‖ < ε for all x ∈ U and h ≥ h0. (41)

Proof. Let λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃d denote the eigenvalues of the matrix Σ̂Y and let {hk}
be some sequence such that limk→∞ hk = ∞. By uniform convergence to the limit
(33) under Assumption A.1 and continuity of eigenvalues of a matrix as a function of its
elements (e.g. [26], Theorem 3.1.2), for all ε > 0 there exists k0 such that

|h4kλi(x;hk) + h2k −
n− 1

n
λ̃i| < ε (42)

for all i = 1, 2, . . . , r + 1, x ∈ U and k ≥ k0. Consequently, condition (39) holds
for all x ∈ U for any sufficiently large h by Assumption 3.1. It also follows from As-
sumption 3.1, condition (42) and the reverse triangle inequality that for all ε > 0 and
i, j = 1, 2, . . . , r + 1 such that i 6= j and |λ̃i − λ̃j | > ε there exists k1 such that

h4k|λi(x;hk)− λj(x;hk)| ≥
∣∣|h4kλi(x;hk)− h2k| − |h4kλj(x;hk)− h2k|

∣∣ > n− 1

n
ε

for all x ∈ U and k ≥ k1. This implies condition (40). Similarly, condition (41) fol-
lows from uniform convergence to the limit (33) under Assumption A.1, condition (40)
and continuity of eigenvectors as a function of matrix elements when the eigenvalues are
distinct (e.g. [26], Theorem 3.1.3).

Lemma A.3. Assume 3.1 and A.1 and define the function

W̃ (x;h) = I −W (x;h)W (x;h)T ,

where the function W is defined as in Lemma A.2, and the set Sr
∞ as in Theorem 3.2.

Then the limit
lim
h→∞

h2‖W̃ (x;h)∇ log p̂h(x)‖ (43)

exists for all x ∈ Rd. Furthermore, x ∈ Sr
∞ if and only if the limit (43) is zero.
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Proof. By the limits (32) and (41) the limit (43) exists for all x ∈ Rd. Furthermore, for
any x ∈ Rd, the condition that the limit (43) is zero is equivalent to the condition that

vTi x = 0 for all i = r + 1, r + 2, . . . , d,

where the vectors vi are defined as in Lemma A.2. By the orthogonality of the vectors
vi, the definition of the set Sr

∞ and Assumption A.1, this condition is equivalent to the
condition that x ∈ Sr

∞.

For the proof of Theorem 3.2, we define the set

Sr
h = {x ∈ Rd | ‖W̃ (x;h)∇ log p̂h(x)‖ = 0}, (44)

where the function W̃ is defined as in Lemma A.3. Under Assumption A.1, we prove
both claims of Theorem 3.2 by using the following two lemmata.

Lemma A.4. Let U ⊂ Rd be a compact set such that U ∩ Sr
∞ 6= ∅ for some 0 ≤ r < d.

If Assumptions 3.1 and A.1 are satisfied, then for all ε > 0 there exists h0 > 0 such that

sup
x∈Sr

h∩U
inf

y∈Sr
∞
‖x− y‖ < ε for all h ≥ h0. (45)

Proof. The proof is by contradiction. Let 0 ≤ r < d and let U ⊂ Rd be a compact set
such that U ∩ Sr

∞ 6= ∅. Assume that there exists ε1 > 0 such that for all h0 > 0 there
exists h ≥ h0 such that condition (45) is not satisfied. This implies that for all h0 > 0
there exists h ≥ h0 such that

inf
y∈Sr

∞
‖x− y‖ ≥ ε1 for some x ∈ Sr

h ∩ U. (46)

Let {xk} denote a sequence of such points x with the corresponding sequence hk. Since
the set Sr

h ∩ U is compact by the compactness of U and the continuity of W̃ (·, h) in U
for any sufficiently large h, the sequence {xk} has a convergent subsequence {zk} whose
limit point we shall denote as z∗. Clearly z∗ /∈ Sr

∞ by condition (46). Thus, by Lemma
A.3 we deduce that for some c > 0,

lim
k→∞

‖F (z∗;hk)‖ = c, where F (x;h) = h2W̃ (x;h)∇ log p̂h(x).

In view of the definition (44), the above limit implies that there exists ε2 > 0 and k0
such that for all k ≥ k0,

‖F (z∗;hk)− F (y;hk)‖ ≥ ε2 for all y ∈ Sr
hk
∩ U. (47)

On the other hand, if we define the function F ∗(x) = −(I − V V T )x, the triangle
inequality yields

‖F (z∗;hk)− F (y;hk)‖ ≤ ‖F (z∗;hk)− F ∗(z∗)‖+ ‖F (y;hk)− F ∗(z∗)‖
≤‖F (z∗;hk)− F ∗(z∗)‖+ ‖F (y;hk)− F ∗(y)‖+ ‖F ∗(y)− F ∗(z∗)‖.
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Combining this with the inequality

‖F ∗(y)− F ∗(z∗)‖ ≤ ‖I − V V T ‖‖y − z∗‖ = ‖y − z∗‖

and noting the convergence of F (·;hk) to the function F ∗ (that is uniform in U ) as k →
∞ (by Lemmata A.1 and A.2), we deduce from (47) that for all ε2 > ε3 > 0 there exists
k1 such that

‖z∗ − y‖+ ε3 ≥ ‖F (z∗;hk)− F (y;hk)‖ ≥ ε2 (48)

for all y ∈ Sr
hk
∩ U and k ≥ k1.

Condition (48) implies that for all 0 < ε3 < ε2 there exists k1 such that

inf
y∈Sr

hk
∩U
‖z∗ − y‖ ≥ ε2 − ε3 for all k ≥ k1. (49)

On the other hand, for all ε > 0 we have zk ∈ B(z∗; ε) for any sufficiently large k due
to the assumption that zk converges to z∗. If we choose 0 < ε < ε2, then the sequence
{xk}, whose subsequence is {zk}, has an element xk /∈ Sr

hk
∩U for some k by condition

(49). This leads to a contradiction with the construction of the sequence {xk}, which
states that xk ∈ Sr

hk
∩ U for all k.

Lemma A.5. Let p̂h be a Gaussian kernel density estimate, let 0 ≤ r < d, let Assumptions
3.1 and A.1 be satisfied and define the set Sr

∞ as in Theorem 3.2. Then for any compact
set U ⊂ Rd such that U ∩ Sr

∞ 6= ∅ and ε > 0 there exists h0 > 0 such that

sup
x∈Sr

∞∩U
inf

y∈Rr
log p̂h

‖x− y‖ < ε for all h ≥ h0. (50)

Proof. Let 0 ≤ r < d and let {vi}di=r+1 denote a set of orthonormal eigenvectors of the
matrix Σ̂Y corresponding to the d − r smallest eigenvalues. The vectors {vi}di=r+1 are
uniquely determined up to the choice of basis because the eigenvectors {vi}ri=1 spanning
their orthogonal complement are uniquely determined by Assumption 3.1. Define the sets

Dx,ε =

{
x+

d∑
i=r+1

αi−rvi |
r∑

i=1

α2
i ≤ ε2

}

and
Dε =

⋃
x∈Sr

∞∩U
Dx,ε

for some orthonormal eigenvectors {vi}di=r+1 spanning the orthogonal complement of
span(v1,v2, . . . ,vr).

Let {ui(·;h)}di=1 denote a set of orthonormal vectors that are orthogonal to the eigen-
vectors {wi(·;h)}ri=1 of ∇2 log p̂h corresponding to the r greatest eigenvalues. Define
the functions

F (x;h) = h2U(x;h)T∇ log p̂h(x)

and
F̃ x0(y;h) = h2U(V̄ y + x0;h)T∇ log p̂h(V̄ y + x0),
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where
U(x;h) = [u1(x;h) u2(x;h) · · · ud−r(x;h)]

and V̄ = [vr+1 vr+2 · · · vd] assuming that the orientation is chosen so that det(V̄ ) =
1. To fix the orientation of the vectors ui(x;h), we impose the constraint

U(x;h) = arg min
U ′∈Qx,h

‖U ′ − V̄ ‖F . (51)

Here ‖ · ‖F denotes the Frobenius norm,

Qx,h = {U ′ ∈ O(d, d− r) | U ′TW (x;h) = 0, det(U ′) = 1)},

O(d, d − r) denotes a d × (d − r) matrix having orthonormal columns and the matrix
W (x;h) is defined as in Lemma A.2. It can be shown that the function U(·;h) is well-
defined for any h > 0.1 Spanning the orthogonal complement of the columns ofW (·;h),
the columns of U(·;h) are also continuous in a given compact set when W (·;h) is con-
tinuous. That is, when condition (40) is satisfied in such a set by Lemma A.2.

The above definitions and condition (41) in the compact set Dε imply that for all
ε1, ε2 > 0 there exists h0 > 0 such that

‖U(x;h)− V̄ ‖ < ε2 for all x ∈ Dε1 and h ≥ h0.

Consequently, uniform convergence to the limit (32) as h → ∞ by Lemma A.3 together
with the property that

V̄
T

(V̄ y + x0) = y for all y ∈ Rd−r and x0 ∈ Sr
∞

following from Assumption A.1 implies that for all ε1, ε2 > 0 there exists h0 > 0 such
that

‖F̃ x0(y;h)− (−y)‖ < ε2 for all x0 ∈ Sr
∞ ∩ U,y ∈ D̃ε1 and h ≥ h0,

where D̃ε = {y ∈ Rd−r | ‖y‖ ≤ ε}.
By the above condition, for any 0 < ε2 < ε1 there exists h0 > 0 such that for

all h ≥ h0 and x0 ∈ Sr
∞ ∩ U we have −F̃ x0(y;h)Ty > 0 for all y ∈ ∂D̃ε1 , where

∂ denotes the boundary of a set. On the other hand, −y is the inward-pointing normal
vector of the disk D̃ε1 at any y ∈ ∂D̃ε1 . Together with the continuity of F̃ x0(·;h) in D̃ε1

when h is sufficiently large, the well-known results from topology (e.g. [41]) then imply
that F̃ x0(·;h) has at least one zero point y∗ in the interior of D̃ε1 for all x0 ∈ Sr

∞ ∩ U
and h ≥ h0. Clearly, for any such y∗ and x0 the point x∗ = V̄ y∗ + x0 lies in the set
Dx0,ε and F (x∗;h) = F̃ x0(y∗;h) = 0.

From the above we conclude that for all ε > 0 there exists h0 > 0 such that for all
x0 ∈ Sr

∞ ∩U condition (5a) holds for log p̂h at least at one point in Dx0,ε for all h ≥ h0.
On the other hand, for all ε > 0 conditions (5b) and (5c) are satisfied in the compact set
Dε for all sufficiently large h by conditions (39) and (40). Hence, we have proven that for
all ε > 0 condition (50) holds for all sufficiently large h.

1Problem (51) can be equivalently formulated as an orthogonal Procrustes problem. With the
matrices defined above, this problem has a unique solution (e.g. [14]).
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Proof of Theorem 3.2 (page 7). Follows directly from Lemmata A.4 and A.5 by the prop-
erty that Rr

p̂h
= Rr

log p̂h
⊆ Sr

h for all 0 ≤ r < d and h > 0 by Lemma 3.1 and Definition
3.1.

Next, we prove Theorem 3.3 under Assumption A.1 by using the following lemma.

Lemma A.6. Let p̂h be a Gaussian kernel density estimate, assume A.1 and define the set

Uh =
n⋃

i=1

Lhi , where Lhi = {x ∈ Rd | log p̂h(x) ≥ log p̂h(yi)}.

Then for some r > maxi=1,2,...,n ‖yi‖ there exists h0 > 0 such that Uh ⊆ B(0; r) for all
h ≥ h0.

Proof. The proof is by contradiction. Assume that for all r > r0 = maxi=1,2,...,n ‖yi‖
and h0 > 0 there exists h ≥ h0 such that x ∈ Uh \ B(0; r). Let {xk}, {rk} and {hk}
denote sequences satisfying these properties such that {rk} and {hk} are monotoneusly
increasing. This implies that

‖xk‖ > rk > r0 = max
i=1,2,...,n

‖yi‖ for all k ≥ k0 (52)

and also that for all k ≥ k0,

log p̂hk
(xk) ≥ log p̂hk

(yj) for some j ∈ {1, 2, . . . , n}. (53)

By Assumption A.1 and condition (52) we have that ‖xk−yi‖ ≥ ‖xk‖−r0 for all k ≥ k0
and i = 1, 2, . . . , n. Consequently,

h2k log

[
1

n

n∑
i=1

exp

(
−‖xk − yi‖2

2h2k

)]
≤ h2k log

[
exp

(
−(‖xk‖ − r0)2

2h2k

)]
= −(‖xk‖ − r0)2

2

for all k ≥ k0. By equation (27), this implies that

h2k[log p̂hk
(xk) + log [(2π)

d
2hdk]] ≤ −(‖xk‖ − r0)2

2
(54)

for all k ≥ k0. On the other hand, by the limit (31), Assumption A.1 and the choice of r0
we have

lim
k→∞

h2k[log p̂hk
(yj) + log [(2π)

d
2hdk]] = − 1

2n

n∑
i=1

‖yj − yi‖2

=− 1

2n

(
n∑

i=1

‖yj‖2 − 2

n∑
i=1

yTj yi +

n∑
i=1

‖yi‖2
)
≥ −r20 (55)

for all j = 1, 2, . . . , n. Plugging the limits (54) and (55) into inequality (53) then leads
to a contradiction for any sufficiently large k since limk→∞ ‖xk‖ =∞ by condition (52)
and the assumption that the sequence {rk} is monotoneusly increasing.

Proof of Theorem 3.3 (page 11). By Lemma A.6 there exists r > maxi=1,2,...,n ‖yi‖
such that Uh ⊆ B(0; r) for all sufficiently large h. Thus, condition (20) for all x ∈ Uh

and such h follows from Assumption 3.1, compactness of the set B(0; r) and Lemma
A.2. Finally, connectedness of the set Uh for all sufficiently large h follows from the strict
concavity of log p̂h in B(0; r) ⊇ Uh by condition (39).
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