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Åbo Akademi University, Department of Computer Science
Domkyrkotorget 3, 20500 Turku, Finland
vrogojin@abo.fi

Keivan Kazemi
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Abstract

Recent results in network science have demonstrated that network control
theory can lead to the development of novel therapeutic approaches for sys-
temic diseases like cancer through the computational analysis of the struc-
ture of intracellular molecular interaction networks. These networks are
a formal representation of relations between numerous components within
cells that are used as a mean for formal holistic reasoning about biological
structures. In particular, network controllability studies focus on discovering
combinations of external interventions that can drive the biological system
to a desired configuration. In practice, these studies can be translated into
finding a combined multi-drug therapy in order to achieve a desired response
from a cell. We develop a pipeline that finds a minimal set of nodes control-
ling a given set of targets within a network. The pipeline highlights those
control nodes for which there are known FDA approved drugs. The net-
work is generated automatically through quering of a number of pathway
databases. The pipeline is deployed as an online web-service. We use these
algorithms here to develop a bioinformatics pipeline and a web service that
finds a minimal set of nodes that controls all the target nodes given by the
user. Our pipeline queries a number of pathway databases and generates
automatically molecular interaction networks. Then, it finds a minimal set
of control nodes for the user-given set of target nodes. At user’s request,
the pipeline emphasizes the use of those control nodes for which there are
known FDA approved drugs. We provide here both the source code of the
pipeline as well as an online web-service based on this pipeline, with a web
interface to interact with it.

Keywords: bioinformatics pipeline, combinatorial drug discovery, auto-
matic discovery, network modeling, target network control, structural net-
work control, intracellular molecular interaction networks, FDA approved
drugs
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1 Scientific Background

Studies of biological networks by means of mathematical and computational
modeling led to the development of innovative therapies and approaches in
personalized medicine [3]. This is the reason for the high interest towards
networks science among researchers in biology and medicine, focusing on un-
derstanding the dynamics and control features of various complex biological
networks in association with matching experimental findings [5]. An efficient
method to select a minimal set of driven nodes in a network in order to reach
its full controllability (i.e., set of nodes through which via a finite number
of cascading events one can control the behaviour of all the nodes in the
network) was presented in [8]. However, it was shown through a number of
computer-based experimental tests in [8] that in biological networks one may
have to control as much as 80% of nodes of the whole gene-regulatory net-
work in order to reach the full controllability. This makes the full network
controllability impractical for biological and medical purposes. In many
cases, it is more practical to control only a certain properly selected subset
of the network’s nodes (for instance, a disease-specific set of essential genes)
in order to reach a desired overall behavior of the system [2]. This approach
may lead, for instance, to an effective combined multi-drug therapy for a
particular disease.

In particular, we focus here on directed biochemical interaction networks
in human cells, where nodes are genes or proteins and directed edges rep-
resent such biochemical interactions as directed protein-protein interactions
(activation/inhibition, phosphorylation, methylation, etc.) and gene expres-
sion regulatory interactions. Here, we consider sets of genes and proteins
that are essential for malignant cells survival and proliferation [4] to be tar-
gets for the control. Our goal is to identify combinations of drug-target
nodes that can lead to the control of these essential genes and proteins
through cascading effects in our network. The mathematical background of
this approach is based on network controlability and it is briefly explained
in Section 2.1.

We build here a data analysis pipeline and its web-based front-end in
order to provide a web-based service for automatic generation of combined
multi-drug therapies suggestions. The core of the pipeline consists of the
implementation of the algorithm proposed in [2] that for a given set of tar-
get nodes calculates a minimal set of driven nodes through which one can
control the target nodes. Based on the user’s query, the pipeline gener-
ates automatically intracellular chemical interaction networks by combining
the interactions between genes, proteins and other intracellular components
from various public pathway repositories. Then, the resulting networks are
subjected to the structural controllability analysis in order to identify the
minimal set of driven genes [2]. The data from public drug repositories is
used to maximize the use of drug-targetable genes and proteins as driven
nodes, to increase the practical applicability of the approach. The results of
this analysis are returned to the user in form of reports in PDF documents,
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XML files and files readable by Cytoscape.

2 Materials and Methods

We built a pipeline that integrates a number of different software tools such
as: pathway and drug data imports from a number of public databases, our
structural network controllability algorithm developed earlier in [2], and the
network visualization software for generating PDF files with the visual an-
notated representation of the molecular interaction network with its driven
and drug target nodes.

2.1 Mathematical setup

We consider discrete time-invariant linear dynamical systems as models of
biological entities (genes, proteins) influencing each other. Such a system
can be modeled by

xt+1 = Axt + But, yt = Cxt,

where A,B,C are matrices of size n × n, n × m, and l × n, respectively,
xt ∈ Rn, ut ∈ Rm and yt ∈ Rl are the state vectors, input vectors and
output vectors, for all t ∈ N. Matrix A describes the interactions within
the system under scrutiny, B describes the influence of the m driver nodes
over the internal nodes of the system, while C describes the l output nodes
as a function of the internal nodes of the system. We call driven node any
i ∈ {1, . . . , n} such that Bij 6= 0, for some j ∈ {1, . . . ,m}. In other words, a
driven node is any internal node linked to an external driver node through
matrix B. We say that an output vector y ∈ Rl is reachable from an initial
state x0 ∈ Rn if there exists a finite sequence of inputs u0, u1, . . . , ut ∈ Rm

such that yt = y.
In this paper, we focus on target controllability, i.e., on the case when

the focus is on controlling some selected subset of the internal nodes of the
system. To capture this case, we consider matrices C with l ≤ n and such
that on each row of matrix C there is a non-zero value; this effectively selects
the internal nodes of interest as outputs of the dynamical system. We say
that such a system is target controlable if any output vector is reachable
from any input state. It is said that a system is target controlable if and
only if

rank[CB,CAB,CA2B, . . . , CAn−1B] = l,

see [2] and references therein. A related notion is that of structural target
controllability, that refers to a system that becomes target controlable by
changing the non-zero values of A and B with some arbitrary non-zero val-
ues (we call such matrices equivalent). Moreover, a system is structurally
target controlable if and only if it is target controlable for all equivalent
matrices A and B. This allows the problem to be redefined as a graph-
theoretical problem since the target controllability depends on the structure
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of the system and not on its numerical setup (levels of interactions within
the system and levels of influence of driver nodes onto the system’s internal
nodes). Due to space restrictions we skip all these details here and refer
to [2] and references therein. We only mention that the problem may be
reduced to the following problem on directed graphs: given a directed graph
G = (V,E) with n nodes and a subset T ⊆ V with l nodes, decide if there
exists a set of l directed paths in G such that each node in T is an end point
of one such path and no two paths intersect at the same distance from their
end points, see [7]. In an additional refinement of the problem, one may
also be given a subset D ⊆ V of driven nodes and require that the directed
paths preferably start from nodes in D.

2.2 Structural network control

Our pipeline is based on the algorithm proposed in [2]. This algorithm is
aimed to minimize the size of the set of driven nodes that can be used to
control a given set of target nodes. The algorithm uses several heuristics
strategies for a more efficient exploration of the search space, which leads to
faster and better (smaller sets of driven nodes) results in comparison to [3].
The Python implementation of the algorithm is in [1].

2.3 Workflow engine: Anduril

The pipeline is developed for the Anduril workflow framework [10]. Anduril
is an open source component-based pipeline engine for scientific data anal-
ysis. Anduril defines an API that allows to integrate rapidly a vast range of
existing software analysis and simulation tools and algorithms into a single
data analysis pipeline. An Anduril pipeline represents a set of intercon-
nected executable programs (called components) through well-defined I/O
ports. Upon the termination of the execution of an Anduril component, its
output results are delivered as inputs to the other (downstream) components
by means of connecting the output port of the component to the input ports
of its downstream components.

2.4 Data: Moksiskaan, DrugBank, Cancer cell lines

Our pipeline uses the Moksiskaan platform [6] to generate molecular inter-
action networks based on the user’s query for the further analysis. Mok-
siskaan integrates pathways, protein-protein interactions, genome and liter-
ature mining data into comprehensive networks for a given list of genes and
proteins (so-called “seed nodes”). It combines the relations between genes
and proteins from different known pathways in order to address the fact that
pathways crosstalk and influence each other. In our pipeline, Moksiskaan
constructs a comprehensive network for the list of seed nodes by using and
combining all imported pathways in the following manner: it connects all
seed nodes by all known paths of length not exceeding a certain user-defined
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Figure 1: The general scheme of the NetControl4BioMed pipeline. The
pipeline consists of three parts. In the first part we perform data input and
preprocessing: we get from the user the list of seed nodes, the list of target
nodes and possibly the predefined list of essential genes for a selected cancer
cell line. Then, Moksiskaan generates the network. The second part of the
pipeline deals with the network structural controllability analysis, where a
minimal set of driven nodes is computed for the given set of target nodes.
In the third part of the pipeline the post-processing is performed and the
output is generated.

integer (so-called “gap” value). The intermediate genes and proteins from
the paths need not necessarily belong to the given set of seed nodes.

The Moksiskaan platform defines a generic database schema to store the
pathways from a number of different pathway databases and can be scaled
to include the pathway data from new sources (such as new databases and
user’s own data). Currently, Moksiskaan has built-in support for the inte-
gration of the pathway data from, among others, KEGG pathway database,
Pathway Commons, and WikiPathways.

We use in our pipeline drug-target protein data from the open source
DrugBank database. The DrugBank database combines detailed drug (i.e.
chemical, pharmacological and pharmaceutical) data with comprehensive
drug target (i.e. sequence, structure, and pathway) information from bioin-
formatics and cheminformatics resources. For drug-target identifiers we have
selected in total 1507 FDA approved drugs with known mechanisms.

In our pipeline, we provide the user with a number of predefined sets
of target genes associated to some specific cancer cell lines. These target
genes are cancer-specific essential genes. We have collected the data for all
three types of cancer from the COLT-Cancer database [4]. In particular,
we considered 29, 23 and 15 cell lines respectively for breast, pancreatic
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and ovarian cancer. The collected data follows the GARP (Gene Activity
Rank Profile) and GARP-P value of corresponding proteins mentioned in the
database. The previous studies showed that proteins with lower GARP score
are more essential and directly associated with oncogenesis [9]. Therefore, we
have selected only those essential genes whose GARP value is in the negative
range, and moreover, whose GARP-P value is less than 0.05. Following the
above criteria, we identified genes for breast, pancreatic and ovarian cancer
respectively.

2.5 Pipeline

Our pipeline currently accepts the following inputs from the user:

1. Seed genes: List of genes and proteins that will be used as seed
nodes by Moksiskaan to generate the network. This input can be any
protein/gene ID of Homo sapiens.

2. Cancer Cell Lines: A cancer cell line whose set of essential genes
will be used as target nodes for the network controllability algorithm.
These nodes can act also as seed nodes if the user decides so. The user
has also the option not to include any of the cell lines. However, in
this case the next field should not be empty.

3. Additional target genes: A set of target nodes defined in addition
to those in the “Cancer Cell Lines”. This input can be left empty if
the previous field is set to a cancer cell line. These nodes can act also
as seed nodes if the user decides so.

4. Gap: The gap parameter used by Moksiskaan to generate the network.

5. Include drug information: Should the pipeline include also the
drug target information for the driven nodes. If so, then the driven
nodes for which there exist FDA approved drugs will be specifically
highlighted in the output of the pipeline.

Our pipeline consists of the following three parts (see Figure 1):

1. DATA IMPORT: Integrate the user’s defined input into the pipeline.
Moksiskaan generates the network basing on the user’s defined input.
Target genes are imported for the specified cancer cell line if it is
defined.

2. NETWORK CONTROLLABILITY: Compute the minimal set
of driven nodes for the given target genes in the network generated by
the Moksiskaan at the previous step.

3. POSTPROCESSING AND OUTPUT: Highlight those driven
nodes that can be targeted by FDA approved drugs. Generate the
network file (GRAPHML, Cytoscape and PDF) from the original net-
work created by Moksiskaan and by adding additional annotations to
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the nodes representing selected driven genes/proteins, drug-targetable
driven genes/proteins if any and target genes. Generate CSV tables
with the information about the driven genes/proteins, if they are drug-
targetable and the list of target genes.

3 Results

The pipeline source code and the web-service based on it are available at [1].
The back-end of the service is the pipeline itself, while the front-end is its
web-interface.

Figure 2: A network view generated by the pipeline. The nodes with green
circles are “seed nodes”, light green nodes are drug target nodes which
control essential genes. Red nodes are non-drug target nodes controlling
essential genes. Purple nodes are essential genes controlled by drug-target
nodes, and yellow are the genes controlled by non-drug target nodes.

The pipeline generates as the result of the computation a zip-archive
with the following files. Table driven.csv contains the drug-targetable driven
nodes and the number of cancer essential genes they control. Table extra.csv
contains the non-targetable driven nodes (no FDA approved drug is known
to be targeting the node) and the number of cancer essential genes they
control. In details.txt the first line indicates the heuristics which was used
for obtaining the result in the file. A blank line follows, then the names
of the driven nodes, each on a separate line. After another blank line,
the control path for each target is provided. File graph.xml contains the
generated network and can be visualized in Cytoscape or Gephi. The archive
also contains visualization of controlled graph from GraphML software as a
PDF.

Figure 2 contains an example of a generated network with the drug-
targetable and non-targetable driven nodes for some defined target nodes.
We used EGF, NRG1, ERBB3 and MTOR as seed nodes to generate the net-
work. The pipeline discovered that target MTOR is controllable by AKT1,
that can be targeted by an FDA approved drug. ERBB3 is targeted by

6



NRG1, for which we have no known FDA approved drug. According to [4]
MTOR and ERBB3 are associated to a number of different cancer subtypes.

4 Conclusion

The structural network controllability approach allows to get a better in-
sight into a system represented as a directed graph: for a set of target nodes
it is possible to identify a set of driven nodes through which one can con-
trol the target nodes by an external intervention through using the internal
“wiring” of the network. We use here a recently developed algorithm [2] for
structural targeted network controllability that identifies the minimal set of
driven nodes for a user-given set of target nodes. We have demonstrated
the practical applicability of this algorithm [1] through the development of
the pipeline (that can be downloaded and installed as a stand-alone soft-
ware) and of the related online service (i.e., a publicly available web inter-
face for an instance of the pipeline installed on our servers). The pipeline
performs an automatic generation of intracellular molecular interaction net-
works (by combining publicly available pathway data) and identification of
driven nodes (that also can be targeted by FDA approved drugs) for a set
of target genes/proteins defined by the user.

In this paper we address an interesting problem of using the controlla-
bility approach for combination of data on FDA approved drug targets and
data on gene-essentiality for different types of disease. We anticipate that
further developments on our pipeline have the potential in suggesting novel
therapeutic strategies by using currently known drugs.
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