
Mauno Rönkkö | Markus Stocker | Mats Neovius |
Mikko Kolehmainen | Luigia Petre

Programming by Construction

TUCS Technical Report
No 1092, November 2013

Programming by Construction

Mauno Rönkkö
University of Eastern Finland, Department of Computer Science
Yliopistonranta 1E, 70211 Kuopio, Finland
mauno.ronkko@uef.fi

Markus Stocker
University of Eastern Finland, Department of Computer Science
Yliopistonranta 1E, 70211 Kuopio, Finland
markus.stocker@uef.fi

Mats Neovius
Åbo Akademi University, Department of Computer Science
Joukahaisenkatu 3-5A, 20520 Turku, Finland
mneovius@abo.fi

Mikko Kolehmainen
University of Eastern Finland, Department of Computer Science
Yliopistonranta 1E, 70211 Kuopio, Finland
mikko.kolehmainen@uef.fi

Luigia Petre
Åbo Akademi University, Department of Computer Science
Joukahaisenkatu 3-5A, 20520 Turku, Finland
luigia.petre@abo.fi

TUCS Technical Report

No 1092, November 2013

Abstract

Modern cloud services use standard interfacing technologies, such as SOAP and
REST. What is common to all these technologies is that they separate the service
implementation and internal data structure from the service invocation and param-
eter structure. To support interoperability, the service invocation is often described
by using XML and it is made available to the client. Because of this, the same
concepts are expressed in at least three different contexts. For instance, the pa-
rameter structure that is expressed with XML has to be replicated and represented
with a programming language, such as Java, that is used to implement the service.
The client is then free to choose the language for calling the service. Needless
to say, this means that there is an inherent synchronization issue; the XML de-
scription, the service implementation, and the client implementation must speak
of the same concepts. There are obviously tools that translate one representation
to another, such as JAXB for Java and XML. In this way, however, the transla-
tion processes not only the concepts of interest, but also other semantic artifacts
found in the source representation. Consequently, there is a significant semantical
distance between the concepts, their source representation, and their target repre-
sentation. This distance is a major source of errors in the development process.
Here, we approach this problem from a novel viewpoint. In short, we separate the
concept from its semantic context, whereby we can express the concept directly in
any given semantic context. In this way, there is no translation as described above.
To achieve this, and as the main contribution, we formalize here this approach of
programming by construction. The basis of the formalization is a grammar for a
simple language that describes the definition of concepts and contexts. We then
define the interpretation for the language, including the actual construction, which
is formalized as a term rewriting process. We also provide here an open-source
implementation of an interpreter for the language in Java. The interpreter is called
Mill, and we illustrate its use with a simple case study involving design patterns
and Java.

Keywords: Formal language, Service oriented programming, Cloud services, De-
sign patterns

TUCS Laboratory
Distributed Systems Laboratory

1 Introduction

Standard interfacing technologies, such as SOAP [1] and REST [2, 3], have largely
contributed to the emergence of web services [1] and cloud computing. These
interfacing technologies allow platform independent invocation of services with
well defined parameters and data structures. To achieve this, services and their pa-
rameters are typically described by using XML. XML provides a standard, struc-
tured representation for information. In particular, with XML, one can define
element types in a standard way by using XSD descriptions [4].

Although the use of XML, and XSD, provide the means for platform inde-
pendent descriptions, the services and the client applications need eventually be
implemented. Technically speaking, this means that the same concepts expressed
in XML and XSD documents need to be represented by using some program-
ming language. Clearly, both representations need to be synchronized. As this
synchronization is the heart of the development process, there are tools that trans-
late one representation to another. For instance, JAXB [5] supports translation of
typed structures expressed as XSD documents into classes and class structures ex-
pressed in Java language. As synchronization of the two presentations is required,
the translation process occurs whenever the XSD representation changes. In ad-
dition, as XSD describes only the structure of the data, there is usually a need for
some manual programming each time a translation occurs.

There are two main issues with the translation processes. The first issue has to
do with the semantic distance between the different representations, and the sec-
ond issue has to do with the actual intention of the translation. Together these two
issues constitute the main source for problems in the development process. From
these two, the core issue is the semantic distance. For instance, although XSD is
used for defining data structures, it differs both intentionally and methodologically
from how structures are constructed in Java. This means that translation becomes
ambiguous. Even though the XSD document defines a specific structure, it does
not define the intent of the structure that would help in determining what would be
the corresponding structure in Java. Because of this, there are alternative represen-
tations of the structure in Java, and the translation process picks one. Sometimes
the mismatch of the automatic choice is revealed only afterwards, when the sys-
tem is already in use. Then, an error reveals that the structure intended in an XSD
document did not fully match the semantics of the Java structure obtained with
the automatic translation. In the worst case, this results in manual programming
of a partial data structure, which then breaks also the synchronization between the
XSD description and the Java implementation.

Here, we approach this problem of semantic distance and lack of intention
from a alternative viewpoint. Rather than translating a concept from one repre-
sentation to another, we separate the concept from its semantic context and express
them both in a language and representation independent manner. In this way, there
can be multiple semantic contexts for any defined concept. Furthermore, the con-

1

cept can then be expressed directly in a given context. Consequently, there is no
such translation process as discussed above, and we also avoid the translational
issues discussed above.

To achieve this, and as the main contribution, we formalize here this approach
that we call “Programming by Construction”. The basis of the formalization is
a grammar [6] for a simple language that describes the definition of concepts
and contexts. This language does not restrict the target language. Consequently,
constructs can be tailored not only for any programming languages, but also for
any definition and modeling languages, such as XML and UML. With respect
to the grammar, we then define the interpretation for the language, including the
actual construction process. The construction is technically formalized as a term
rewriting process [7]. We also provide here an example implementation for the
interpreter, called Mill. Mill is written in Java, and the source code is listed as
open-source at the end of this report.

Programming by construction is related to parameterized batch processing and
code generation. Both of these have existed for a very long time, and they have
been used extensively [8]. Typically, however, code generators are designed and
implemented for fixed tasks, such as constructing and accessing databases, per-
forming unit testing, constructing user interfaces, creating specific software lay-
ers, etc. With programming by construction, there is no specific task. Instead,
contexts fully define the use case and semantics for given concepts. Programming
by construction is, thus, a radically different approach. It is, in a way, a declarative
programming approach[9].

Programming by construction is also related to use of ontologies, as they both
speak of terms, concepts, and semantics. There is, however, a clear separation
between the two in terms of intentions and use cases. Ontologies are used to for-
mally capture concepts and their relations with the intent of algorithmic deduction
and consistency checking. With ontologies, there is no intent of code generation
initially. In contrast, programming by construction solely focuses on construction
by expressing concepts in well defined contexts. Thus, the application may be
program generation, schema generation, etc. Consequently, with programming
by construction, there is no intent of deduction initially. From this point of view,
use of ontologies and programming by construction are two, very complementary
technologies that could greatly benefit from each other.

We illustrate the use of programming by construction here with a simple case
study. It involves representation of person data in two formats, XML and CSV.
Furthermore, the case study shows how the same concepts used to define these two
representations, can also be used to construct a Java program capable of translating
data between the two formats.

This technical report is organized as follows. In Section 2, we discuss in
detail, what we mean by concepts, contexts, and construction. In Section 3, we
present a grammar for the language that is used to define concepts and contexts as
well as to construct representations with them. We also define the interpretation

2

for the language in that section. In Section 4, we discuss the implementation of
interpreter for the language, called Mill. In Section 5, we present the case study.
In Section 6, we provide a conclusion with discussion. Finally, the open-source
listing for the interpreter in provided in Appendix.

2 Concepts, contexts, and construction
Programming by construction is in a way a declarative programming approach[9].
We define concepts and contexts, where contexts describe the semantic interpre-
tation for the concepts. Construction occurs, when the concepts are expressed in
some context. To make all this concrete, we discuss each of these elements in
detail, next.

2.1 Concepts
A concept is a term that describes an element of interest. It usually has some inner
structure that can be understood to be composed of sub-concepts. Thus, a concept
defines a binding between outer and inner concepts; however, this binding does
not define or imply any further semantics.

Definition 1 Concept. A concept is expressed as:

α : T

where α is a label denoting the name of the concept, and T denotes the content
of the concept. T is delimited by a white space, or it can be a string delimited by
braces, “{” and “}”.

Thus, we use “:” to express a relation between a name and a content. In the
simplest case, a concept relates a name to a content. For instance, the following
concept relates the name “age” to the content “43”:

age:43

Clearly, one could understand the content of the above concept as “43 years”,
but this interpretation is not mandated by the concept. The relation above could
equally denote “43 months”. Moreover, the concept does not express whose age
it is, if it at all refers to a human. Strictly speaking, we cannot even infer that, as
the name of the concept, “age”, has no semantics.

As mentioned in Definition 1, the content of a concept may also be delim-
ited by braces. Then, the content of a concept can have more structure to it. For
instance, the following example relates several concepts to a concept called “per-
son”:

3

person:{ age:43 hobby:reading }

In this case, the only implication that is valid is that the concepts “age” and
“hobby” are related to the concept “person”. Nothing else can be said about them.
For instance, the above could be understood that some person is of age 43 and
his/her hobby is reading. It could also refer to a class of persons, who are of age
43 and their hobby is reading, and so on. Again, the proper interpretation, the
semantics, not part of the concept, it belongs to a context.

2.2 Contexts
A context is a term that describes the semantics for concepts. Thus, a single con-
text may refer to many concepts. As there can be many ways to express semantics,
we do not address the validity of the semantics represented by the contexts. In-
stead, the binding of concepts to contexts is done by using term rewriting. For this
purpose, the context must indicate in the content where specific concepts apply.
This is done by using tags in the content. Thus, the term rewriting occurs only
within the tagged part of the content of the context.

A context may, thus, contain one or more tags. A tag consists of a label, a
separator, and a body. The label is used for matching the tag with the concept to
be applied. The separator defines how the body of the tag changes, if the rewriting
occurs more than once. The body of the tag is the content subject to rewriting with
the content of the concept.

Definition 2 Tag. A tag is expressed as:

<:τ <#C#>B :>

where τ is a label denoting the name of the tag, C is any string denoting the
separator in the tag, and B is any string denoting the body of the tag. Both C
and B may also contain matching separators of the tag denotation, “<:”, “:>”,
“< #”, and “# >”.

For instance, the following tag is identified by the name “ATTRIBUTE”. It has a
white space as a separator string, and its body string is “private TYPE NAME;”.

<:ATTRIBUTE<# #>private TYPE NAME;:>

It should be noted that anything in the body string can be subject to rewriting. In
this case, however, the intent is that “TYPE” and “NAME” are placeholders and
to be rewritten with the content of similarly named concepts.

Definition 3 Context. A context is a concept containing one or more tags.

4

For instance, the following context is called “immutable-class”, and it has two
kinds of tags: “CLASS” tags and “ATTRIBUTE” tags. In short the context de-
fines the semantics for an immutable Java class for concepts “CLASS” and “AT-
TRIBUTE”.

immutable-class : {
class <:CLASS<##>NAME:>
{

<:ATTRIBUTE<##>private TYPE NAME;
:>
public <:CLASS<##>NAME:>(<:ATTRIBUTE<#, #>TYPE NAME:>)
{
<:ATTRIBUTE<##> this.NAME=NAME;
:>}

<:ATTRIBUTE<##> public TYPE NAME() {return NAME;}
:>}

}

Below is another example of a context that is using the same tags as the
example above. However, the following context, called “xsd-type” provides an
XML type semantics for the exact same concepts as the “immutable-class” con-
text above does for Java.

xsd-type : {
<complexType name="<:CLASS<##>NAME:>Type">

<sequence>
<:ATTRIBUTE<##>

<element name="NAME" type="TYPE"></element>
:> </sequence>

</complexType>
}

2.3 Construction
Construction occurs, when concepts are expressed in contexts. We formalize the con-
struction by using term rewriting. For this purpose, we need to define first, what we mean
by textual substitution, sequential textual substitution, tag rewriting, contextual rewriting,
and tag removal.

Definition 4 Textual substitution. Consider a concept α : T and a string S. Then, we
denote the textual substitution of all the occurrences of α in S with T by

LS α : T M

The substitution takes places from left to right so that the substitution value T is never
reconsidered.

5

Thus, the textual substitution, as defined above, terminates always. As an example, con-
sider the concept A :aA and a string A B A. Then, LA B A A : aAM yields aA B aA.

Definition 5 Sequential textual substitution. We denote the sequential textual substitu-
tion by

LS α1 : T1 ... αn : TnM

It is computed as L...LS α1 : T1M ... αn : TnM.

Note that we cannot define the sequential textual substitution with Kleene star. Such a
definition would implicate the substitution taking place with respect to all possible con-
cepts in some given set of concepts. In our case, there is no such set of concepts. Instead,
in sequential textual substitution, each concept for substitution must be explicitly stated,
and the substitution is performed only with respect to those concepts in the given order.
This also means that substitution may occur multiple times with respect to the same con-
cept. In such a case, the order of appearance makes a difference.

Definition 6 Tag rewriting. Consider a tag <: τ <#C#>B :>, where τ is the name
of the tag, C is the separator string, and B is the body string as defined earlier. Also,
consider a list of concepts α1 : T1 ... αn : Tn. Then, we denote tag rewriting by

([<:τ <#C#>B :> α1 : T1 ... αn : Tn])

and it is computed as LB α1 : T1 ... αn : TnM <:τ <##>CB :>.

Thus, a tag rewrite performs a textual substitution on the body of the tag with respect to
given concepts. In addition, tag rewriting does not remove the tag; rather it duplicates and
modifies it by concatenating the separator string with the body string. In this way, the tag
rewriting may take place multiple times, and the separator string becomes active for all
subsequent tag rewrites. As an example, consider the tag:

<:ATTRIBUTE<#/**/ #>private TYPE NAME;:>

and a list of concepts (in the given order):

NAME:age TYPE:int

Then, the tag rewriting yields the outcome

private int age;<:ATTRIBUTE<##>/**/ private TYPE NAME;:>

Thus, after the rewriting occurs the modified tag remains as part of the content.

Definition 7 Contextual rewriting. Consider a string S, a tag<:τ <#C#>B :>, and
a list of concepts α1 : T1 ... αn : Tn. Then contextual rewriting of tags τ in string S with
concepts α1...αn is denoted by

JS(τ) α1 : T1 ... αn : TnK

6

and it is computed as follows:
1) If S contains no tag, the result is S as is.
2) If S contains a tag, S is of form P <:τ <#C#>B :>U , where P is the prefix

string not containing the tag, and U is the suffix string that may contain the tag.
Then, the result is computed as

P ([<:τ <#C#>B :> α1 : T1 ... αn : Tn])JU(τ) α1 : T1 ... αn : TnK

Thus, the contextual rewriting defines a sequential, but terminating application of tag
rewriting for a string. In effect, it describes the rewriting of all tags of the given form in
the string from left to right.

Definition 8 Tag removal. The removal of all tags from a string S is denoted by

TSU

and it is computed as follows:
1) If S contains no tag, the result is S as is.
2) If S contains a tag, S is of form P <:τ <#C#>B :>U , where P is the prefix

string not containing the tag, and U is the suffix string that may contain the tag.
Then, the result is computed as PTUU.

For instance, consider a string with one tag:

class Person {
private int age;<:ATTRIBUTE<##> private TYPE NAME;:>

}

After tag removal the string becomes:

class Person {
private int age;

}

Definition 9 Construction. Consider a context of form γ : S, and concepts of form
τ1 : {α1 : T1 ... αn : Tn} ... τt : {β1 : T1 ... βm : Tm}. Then the construction of the
concepts τ1...τt by using γ is denoted by

[γ τ1 : {α1 : T1 ... αn : Tn} ... τt : {β1 : T1 ... βm : Tm}]

It is computed as

T J...JS(τ1) α1 : T1 ... αn : TnK...(τt) β1 : T1 ... βm : TmK U

Consider for instance a context “class” defined as:

7

class MyClass {
<:ATTRIBUTE<##> public TYPE NAME;
:>

}

Note that the construction considers tags literally so that if we wish to construct each
concept to its own line, we need to include a line break within the tag. Therefore, above,
the tag actually extends over two lines. This causes the construction to generate also a
line break. Now, consider the following construction:

[class
ATTRIBUTE:{ TYPE:String NAME:name }
ATTRIBUTE:{ TYPE:String NAME:address }

]

By Definition 9, it unfolds to
T J Jclass MyClass {

<: ATTRIBUTE<##>public TYPE NAME;
:>

} (ATTRIBUTE) TYPE : String NAME : name
K(ATTRIBUTE) TYPE : String NAME : address

K U

After unfolding the innermost tag rewrite, it becomes:
T Jclass MyClass {

public String name;
<: ATTRIBUTE<##>public TYPE NAME;
:>

} (ATTRIBUTE) TYPE : String NAME : address
K U

After unfolding the remaining tag rewrite, it becomes:
Tclass MyClass {

public String name;
public String address;
<: ATTRIBUTE<##>public TYPE NAME;
:>

}
U

Finally, after tag removal, the construction result is:

class MyClass {
public String name;
public String address;

}

Here, each concept is cleanly constructed on its own line, due to including the line break
in the tag, in the definition of the “class” construct.

8

3 Formalization of programming by construction
We formalize the concept of programming by construction by using a formal grammar
[6]. More specifically, we use a Backus-Naur form [10] to represent the grammar that
describes definition of concepts and contexts as terms as well as construction of concepts
by using them. In the grammar, we wish to use construction as a “first class citizen”, so
that it can determine not only the content for some concept or context, but also the entire
definition of new concepts and contexts. We shall start by defining the grammar. As the
grammar defines only the syntax used in programing by construction, we then define how
each statement in the grammar interpreted. Lastly, we give some examples illustrating the
interpretation.

3.1 Formal grammar
Definition 10 Formalization of programming by construction. The concept of pro-
gramming by construction is captured by using the following formal grammar, where
each row is numbered for later reference:

<corpus> ::= <element> <corpus> (1)
| <element> (2)

<element> ::= <construction> (3)
| <definition> (4)

<construction> ::= "[:"<label> <corpus>":]" (5)
| "["<label> <corpus>"]" (6)

<definition> ::= <label> ":" <value> (7)
<value> ::= <label> (8)

| <construction> (9)
<label> ::= "{" <text> "}" (10)

| <word> (11)

The grammar of Definition 10 determines a higher-order term (string) rewriting system
[7], because it allows definition of new terms on-the-fly. Thus, in a way, it is similar to for
instance λ-calculus [11]. Furthermore, the grammar is defined recursively. This means,
for instance, that not only can a construction determine a definition, but also a definition
can determine a construction. This makes the language more expressive, but then we have
to define how a term definition behaves during recursion.

Although the grammar above defines, what kind of representations form well defined
statements in the concept of programming by construction, it does not define how to in-
terpret those statements. In particular, there is no link between the grammar and the
definitions for construction given in Section 2. Therefore, we shall now define the inter-
pretation to all statements of the grammar in a top-down manner. In doing so, we also
formally define an interpreter for the grammar.

3.2 Interpretation of the grammar
Before we can speak of the interpretation of grammar, we need to define a dictionary. It
is the heart of the interpretation process.

9

Definition 11 Dictionary. All defined terms, concepts and contexts, form a dictionary.
Dictionary can be modified by redefining a term. Changes in the dictionary are visible
only at the current level of interpretation recursion or below it.

Thus, the result of the interpretation (of the whole corpus) is a dictionary. Because the
grammar is recursive, changes in the dictionary are also recursive. This means, for in-
stance, that the terms defined within the construction element do not become visible to
the upper level recursion. This becomes apparent later, in the interpretation for the con-
struction.

Interpretation 1 Corpus. Corpus is a string to be interpreted. As defined in the rows 1
and 2 of Definition 10, a well-formed corpus can consist only of sequential, well-defined
elements. Each element is fully interpreted before considering the next element in the
corpus.

In other words, corpus is interpreted element by element until there are no elements left,
or an ill-formed element is encountered. In the latter case, the interpretation stops with a
partial result.

Interpretation 2 Element. As defined in the rows 3 and 4 of Definition 10, a well-formed
element can either be a construction result or a term definition.

Note that the construction result and the term definition have their own interpretations
that differ significantly. We shall define the interpretation for the contextual rewriting and
construction element next.

Interpretation 3 Contextual rewriting. Consider a corpus [: label < corpus >:]T ,
where T is the remainder of the corpus. Also, let R denote the result of the contextual
rewriting of the form [: label <corpus>:] as defined in the row 5 of Definition 10. Then,
the effect of the contextual rewriting is that R is prefixed to the remainder of the corpus,
T ; thus, resulting in corpus RT . Consequently, a well-formed contextual rewriting is
always of the form

Jγ τ1 : {α1 : T1 ... αn : Tn} ... τt : {β1 : T1 ... βm : Tm} K

and its result can be computed as contextual rewriting by using Definition 7. However,
although the current dictionary is fully available for the contextual rewriting, the concepts
τ1..τt, α1..αn, and β1..βm are visible only during the contextual rewriting, because the
contextual rewriting enters a deeper state of recursion.

Thus, technically speaking, the contextual rewriting only modifies the corpus at the cur-
rent location of interpretation. The contextual rewriting does not modify the current dic-
tionary in any way. That functionality is solely reserved for the term definition. Moreover,
as defined in Definition 7, contextual rewriting preserves all tags in the reconstructed re-
sult.

10

Interpretation 4 Construction. Consider a corpus of the form [label < corpus >]T ,
where T is the remainder of the corpus. Also, let R denote the result of the construction
of the form [label <corpus>] as defined in the row 6 of Definition 10. Then, the effect of
the construction is that R is prefixed to the remainder of the corpus, T ; thus, resulting in
corpus RT . Consequently, a well-formed construction is always of the form

[γ τ1 : {α1 : T1 ... αn : Tn} ... τt : {β1 : T1 ... βm : Tm}]

and its result can be computed by using Definition 9. However, although the current
dictionary is fully available for the construction, the concepts τ1..τt, α1..αn, and β1..βm
are visible only during the construction, because the construction enters a deeper state of
recursion.

Thus, the difference, between the contextual rewriting and construction is that construc-
tion removes all tags from the result, as it was defined in Definition 9.

Interpretation 5 Term definition. As defined in the row 7 of Definition 10, a well-
formed term definition is of the form < label >:<value>. Thus, a term can be either a
concept or a context depending on its content in accordance to earlier definitions 1 and 3.
A well-defined term is added to the dictionary. In case the dictionary has already a term
with the same name, it is replaced with the most recent term definition.

Note that dictionary update is visible only at the current level of recursion or below it.
This is mandated and enforced by the interpretation of the construction elements. Note
also, that the grammar of 10 does not enforce construction to take place only as value
for the term definition. In fact, the grammar does allow construction to take place as an
element of corpus. Then, if the result of the construction is a set of term definitions, those
terms will be added to the dictionary at the current level of recursion. Moreover, if the
result of the construction is merely a label, that label can be used as the name of a new
term definition. All this becomes apparent later on in this section, as we illustrate the use
of the defined language.

Interpretation 6 Value. As defined in the rows 8 and 9 of Definition 10, a well-formed
value is either a label or the result of a construction.

Note that this means if the construction appears as a value in a term definition, that the
entire result of the construction is used as the value for the term definition and none of it
flows into the corpus as new elements.

Interpretation 7 Label. As defined in the rows 10 and 11 of Definition 10, a well-formed
label is either delimited by braces, “{“ and “}”, or it is a word. The delimiters are not
considered to be part of the label, and a word cannot contain white spaces or colons.

Note that according to the interpretation, a label may well contain special characters. In
fact, as the last interpretation, we specialize the interpretation of the label to refer to files
and to the command shell.

11

Interpretation 8 @-label. A label that starts with “@” refers to a file identified by the
rest of the name of the label. A single “@” refers to the command shell.

This interpretation enforces with the following side effects:

• @file :<value> causes writing of <value> to a file named file.

• < label >: [@file < corpus>] reads the content of a file named file and uses it
as the context for the construction.

• @ :<value> causes execution of command shell with <value>.

• < label >: [@ < corpus >] uses the most recent result of the command shell
execution as the context for the construction.

3.3 Examples of interpretations
We shall now illustrate the interpretation of the defined grammar by using simple exam-
ples. A more comprehensive example is shown later as the case study.

As the first example, we consider a simple case of defining a context and using it in
constructing two concepts. Consider the following corpus:

greeting : {Hello <:person<#, #>name:>!}
@stdout : [greeting

person:{name:Mauno}
person:{name:Mats}

]

The corresponding parse tree is shown in Figure 1. As the tree shows, the corpus parses
into two definitions, from which the latter definition is determined by the construction
result. As the result is stored to a term called “@stdout”, it effectively prints the result to
the standard output:

Hello Mauno, Mats!

To illustrate the recursive nature of construction, and the fact that the construction is
a “first-class citizen” in the language, we restructure the same example differently. We
also modify the corpus so that it illustrates the recursive nature of dictionaries and term
definitions. Consider now the following corpus:

person:whoever...
people :{person:{name:Mauno} person:{name:Mats}}
greeting : {Hello <:person<#, #>name:>!}
@stdout : [greeting [people]]
@stdout : [person]

This corpus consists of five definitions. Although the term “person” is redefined in the
construction, it does not alter the original definition for the term “person”, as construc-
tion uses a recursive dictionary. Hence, the above corpus yields the following result on
standard output:

12

Figure 1: Parse tree for the corpus of the first example.

Hello Mauno, Mats!
whoever...

As the next example, we illustrate how the result of a construction element is really
prefixed to the corpus. In this case, consider the following corpus:

person:whoever...
people :{person:{name:Mauno} person:{name:Mats}}
[people]
@stdout : [person]

Now, as the result of the construction “[people]” is prefixed to the corpus, it effectively
causes the redefinition of the term “person” twice. Since only the latter definition lasts,
the corpus above yields the following output:

name:Mats

As the last example, we illustrate how the result of a construction element can be
used as a label to define a new term. Such a possibility is implicitly in the grammar as
the construction result is prefixed to the corpus. As an example, consider the following
corpus:

label:programming
[label]:{by construction}
@stdout : [programming]

This yields the following result to the standard output:

by construction

13

Figure 2: Class digram of Mill implementation.

4 Example Java implementation of programming by
construction

We have implemented an example interpreter for the language described in Section 3
in Java. The interpreter is called Mill. We shall now describe the implementation on a
general level. The actual Java source code is provided in Appendix I as open-source.

As the grammar is simple, the implementation of Mill consists of only six classes.
The classes are Console, Interpreter, Parser, Dictionary, Constructor, and Tag. In short,
the Console is the main class using the Interpreter to interpret corpus elements. The
Interpreter uses the Parser to parse elements from corpus. The Interpreter uses the Con-
structor to construct elements and it stores well-founded term definitions are stored into
the Dictionary. The Constructor uses instances of Tag for the rewriting processing.

Figure 2 shows the classes and their dependencies as a UML class diagram [12]. It
also shows the public methods of the classes that provide the core functionality. We shall
next discuss each class in more detail, and explain in particular the role of the public
methods in the classes. Note that each class consists of also private attributes and private
methods. We do not, however, discuss here the private attributes and methods to keep the
presentation concise.

Console. The main class is called Console. It has only one public method, main, that is
used to run Mill. The main method creates an instance of the Interpreter class. The main
methods then feeds the data from the standard input as a corpus to the Interpreter. To do
that, the main encapsulates the corpus in an instance of a Parser which is then passed to
the Interpreter. The main method terminates either when all data is processed from the
standard input or when the Interpreter encounters an error. The Console also supports
running Mill in an interactive mode by passing a command line parameter interactive.
Then, the main method reads one line at a time from the standard input, encapsulates it in
a Parser, and passes it to the Interpreter. In the interactive mode, the main method never
terminates; it has to be terminated forcefully.

14

Interpreter. The Interpreter class has only one constructor that takes no parameters.
The constructor creates an instance of a Dictionary and attaches it to the constructed
instance of the Interpreter. As for the methods, the Interpreter class consists of only one
public method, interpret. It takes one parameter, a Parser, that contains the corpus. The
Interpreter uses the Parser to pick one element of the corpus at a time and to process it.
If the element is a construction, the Interpreter uses an instance of the Constructor class
to obtain the construction result. The result is then injected back to the beginning of the
Parser. If, on the other hand, the element is a term definition, the Interpreter stores it to
its internal Dictionary. Prior storing it, any construction takes place by using an instance
of the Constructor class. If an element if ill-formed, the Interpreter stops interpreting and
returns back an error as an exception. The Interpreter stops also once all elements are
parsed. In all cases, the Interpreter maintains the dictionary of terms interpreted thus far.
Consequently, when the Interpreter is called the next time, the terms defined before are
available.

Parser. The Parser class has only one constructor that takes a string as a parameter.
The constructor attaches the string to the constructed instance of the Parser. The Parser
class provides three methods to inspect the state of the corpus. The isAtEnd method
returns true, if the corpus is empty. The somethingToParse method returns true, if the
corpus still contains non-white-space characters. The sample method returns a clip of
at most 50 characters from the beginning of the remaining corpus. In addition to these
methods, the Parser class consists of the main method to handle the actual parsing. The
parseNext method parses and returns the first syntactic element from the corpus, leaving
the remaining corpus intact. Although the element is syntactically well-formed, it may
still be semantically ii-formed for the Interpreter. If the element is also syntactically ill-
formed, the parseNext methods returns an error as exception. Lastly, the Parser class has
also one method to inject a string back to the beginning of the corpus. That method is
called inject and it takes as parameter the string to be injected back to the corpus.

Dictionary. The Dictionary class has two constructors: one that creates an empty dic-
tionary, and the other that creates an empty dictionary with a reference to another, existing
dictionary. The latter of the two methods is used in construction, to cerate a recursive
dictionary. In technical terms, if a dictionary is constructed with the latter method, the
newly created dictionary inherits all terms defined in parameter dictionary. In particular,
the newly created dictionary can access all the values of the parameter dictionary, but is
cannot modify any of their values. In addition to the constructors, the Dictionary class
provides three public methods. The define method defines a new term with given label
and value. It returns the previous value for the term, or null if it was not defined before.
The value method returns the value of the term with given label. If the term is not de-
fined, this method returns an empty string. Note that this method also considers any terms
inherited during the construction of the dictionary. Lastly, the substitue method performs
the sequential textual substitution, as defined earlier in Definition 5, on a string provided
as parameter by using the terms defined in the dictionary. Note that this method considers
only the terms that are defined within the current dictionary. Any terms that are inherited
during the construction of the dictionary are omitted unless they are redefined.

15

Figure 3: Original design pattern.

Constructor. The Constructor class has only one constructor with one parameter that
is the context as a string. The Constructor class has also two public methods. The rewrite
method performs the contextual rewriting on the context string, as defined earlier in Def-
inition 7, with respect to a label and dictionary provided as parameters. To do this, the
rewrite method constructs a Tag instance, and calls its rewrite method. The removeTags
method of the Constructor performs the tag removal on the context string, as defined
earlier in Definition 8, and returns the resulting context as a string.

Tag. The Tag class has only one constructor with one string parameter. The string
must start with a tag represented in the form as defined earlier in Definition 2. Note
that the string can contain multiple tags, but it must start with a tag. The Tag class has
also two public methods. The length method returns the number of characters in the tag,
including delimiters “<:” and “:>”. The rewrite method performs the tag rewriting as
defined earlier in Definition 6 with respect to a dictionary provided as a parameter. To do
this, the rewrite calls the substitute method of the parameter dictionary. It then returns the
results as a string as defined earlier in Definition 6.

5 Case study: independence of data representation
In the case study, we refactor a design pattern as depicted in Figure 3. The pattern is
a combination of a bridge pattern, a template method pattern and a factory method pat-

16

tern. The problem that the pattern solves is independence of data representation. The
way that the pattern solves the problem is that it provides two interfaces, one for reading
data elements from a string, and the other for writing data elements to a string. These
interfaces can then be specialized by classes managing a specific data representation. The
specialized classes are then used by the constructor and a writer method of the data do-
main class. To keep the presentation short, we do not go into details of the methods of
classes shown in the design pattern. Perhaps the only method that needs some further
explanation is the baseString method that appears in the StringReader and in the String-
Writer classes. Its function is merely to convert a string between Java representation and
some other representation, such as XML. Its base class implementation returns the string
as is, so for instance the XMLReader class needs to override it for converting XML string
representation into Java string representation.

Although the design pattern solves the intended problem of representation, it does
not solve the synchronization issue between the domain object classes Person and Book
and the corresponding XML schema descriptions Preson.xsd and Book.xsd. With respect
to this issue, there are no applicable design patterns, because the schemas are not in the
domain of the programming language, Java. There is also another problem that is not
directly visible in the design pattern. Namely, even the attributes of the domain object
classes need to be repeated in multiple places with proper types within each domain ob-
ject class. This is a synchronization problem internal to the domain object classes. In
theory, one could construct a factory design pattern to solve this, but then the domain ob-
ject classes would have to be dynamically typed and constructed during run-time, which
undermines the whole compile-time type checking of Java.

Both of these problems fall to the domain of programming by construction. The
problem of representing the domain objects as classes and XML schemas fall clearly to
the case of representing some specific concepts in some specific contexts. This is also the
case with the repeated representation of the attributes within the class. To solve both of
these problems, we design a generic construct that supports construction of both domain
object classes and their XML schema representations from the same concept descriptions.

The designed construct is shown in Figure 4. The domain objects are expressed as
concepts Person and Book. Similarly, the attribute types are expressed as domain specific
concepts JavaTypes and XSDTypes. The actual contexts for constructing the Java class
and the XSD description are expressed as JavaDomainObject and XSDDomainObject,
respectively. All these are glued together by the meta context Construct. We shall now
present all these concepts and contextx in detail and then illustrate the use of the meta
context, Construct.

5.1 Concepts for the domain objects
Although Java and XSD are “typed”, their type definitions are not fully compatible. This is
typically a source for problems for the beginners. In our case study, we use just two types,
an integer type and a string type. From these two types the integer type is comparable
between Java and XSD. The string type, however, is not. For one, the representation of
characters in a string differs significantly between Java and XSD. For instance, the “&”
character is represented in XSD as “&”. Another problem is the name of the type is
different in Java and in XSD. In Java it is called “String” and in XSD it is called “string”.

17

Figure 4: Constructing the domain objects.

The former of these two issues is naturally handled by the design pattern, by overriding
the implementation of the baseString function. The latter issue with the type naming,
however, is addressed naturally by concepts. For this purpose, we define the needed Java
types as:

JavaTypes : {
STRING:String
INT:int

}

Similarly, we define corresponding XSD types as:

XSDTypes : {
STRING:string
INT:int

}

These concepts can then be passed to whichever context that needs type information.
In addition to the type concepts, we also define the actual domain objects as concepts.

In our case we have two such concepts, one for capturing person details and the other for
capturing book details. We define the person details as:

Person : {
CLASS : {NAME:Person}
ATTRIBUTE : {NAME:name TYPE:[STRING]}
ATTRIBUTE : {NAME:address TYPE:[STRING]}
ATTRIBUTE : {NAME:age TYPE:[INT]}

}

18

Similarly, we define the book details as:

Book : {
CLASS : {NAME:Book}
ATTRIBUTE : {NAME:title TYPE:[STRING]}
ATTRIBUTE : {NAME:author TYPE:[STRING]}
ATTRIBUTE : {NAME:publisher TYPE:[STRING]}
ATTRIBUTE : {NAME:year TYPE:[INT]}

}

Thus, both of these concepts assume that types are defined as concepts. For instance, the
Person model defines an attribute with name “address” to be of whichever type is obtained
by constructing the concept “STRING”. In case of JavaTypes this evaluates to “String”
and in case of XSDTypes this evaluates to “string”. Note that neither of the concepts define
what is meant by “CLASS” or by “ATTRIBUTE”. These are concepts whose meaning is
determined by given contexts.

5.2 Constructs for the domain objects
There are two constructs, one for the Java domain object and the other for the XSD domain
object. The construct for the Java domain object for Java is defined as an immutable [13]
Java class:

JavaDomainObject : {

public class <:CLASS<##>NAME:>
{<:ATTRIBUTE<##>

private TYPE NAME;:>

public <:CLASS<##>NAME:>(<:ATTRIBUTE<#, #>TYPE NAME:>)
{<:ATTRIBUTE<##>

this.NAME=NAME;:>
}

public <:CLASS<##>NAME:>(StringReader reader)
throws Exception
{<:ATTRIBUTE<##>

this.NAME=reader.readTYPE("NAME");:>
}

<:ATTRIBUTE<##>
public TYPE NAME()
{ return NAME; }

:>
public StringWriter writeTo(StringWriter writer)
throws Exception
{

return writer<:ATTRIBUTE<##>
.writeTYPE("NAME",NAME):>;

}
}

}

19

Note that in the JavaDomainObject context, both the class and the attribute concepts
appear in many places with varying semantics. For instance, the first occurrence of a class
concept is at the very definition of the Java class. Then, the semantics of the class concept
is to give a name for the Java class. The next time the same class concept appear is in
the constructor of the Java class. Then, the class name is used to identify a constructor
method. This latter instance of the class concept is specific to Java language. The attribute
concept is used even more often than the class concept and its semantics is, thus, even
more versatile. Naturally, the attribute concept appears in the attribute definition with
the intention to define class attributes. It then appears as constructor parameter with the
intention to relate and assign parameter values to class attributes. Thus, the attribute
concept must also appear in the actual assignment statements as well. Lastly, the attribute
concept appears in method declaration, to define getter methods for the attributes. Note
that there are no setter methods, as the constructed class is to be immutable.

The context for the XSD domain object differs significantly from the Java domain
object. The biggest reason for this is the XSD deals with structural definition, whereas
Java considers also the dynamics or functionality in addition. The XSD domain object is
defined as:

XSDDomainObject : {
<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.org/<:CLASS<##>NAME:>"
xmlns:tns="http://www.example.org/<:CLASS<##>NAME:>"
elementFormDefault="qualified">
<complexType name="<:CLASS<##>NAME:>Type">

<sequence><:ATTRIBUTE<##>
<element name="NAME" type="TYPE"></element>:>

</sequence>
</complexType>

</schema>
}

Thus, in case of the XSD domain object, the class concept appears in many places, but
the attribute concept appears only in one place.

5.3 Meta context
The last missing context is the one that glues together the type concepts and the domain
object concepts with the domain object contexts. As this context is effectively a context
on contexts, it is technically speaking a meta context. We define the meta context as:

Construct : {
<:OBJECT<##>
[JavaTypes]
@JAVA/NAME.java : [JavaDomainObject [NAME]]
[XSDTypes]
@XSD/NAME.xsd : [XSDDomainObject [NAME]]
:>

}

20

The meta context practically binds the Java type concepts and the domain object concept
referred to as “NAME” with the Java domain object context, and stores the result into a
“JAVA” sub-folder based on the name of the domain object concept. Similarly, it binds
the XSD type concepts and the domain object concept referred to as “NAME” with the
XSD domain object context, and stores the result into a “XSD” sub-folder based on the
name of the domain object concept.

This meta context shows how the separation of concepts and contexts supports for-
mation of higher level idioms in a unified and coherent manner. In fact, the meta context
could have been split into a sub-context, where the binding of the type concept and the
domain object context would have been determined by a domain concept, thus avoiding
the repetition of the binding and construction phases for Java and XSD now apparent in
the meta context.

5.4 Construction of “Person” and “Book”
With the presented concepts and contexts, the construction of both the person and the
book domain objects, the Java files and the XSD files, can now be achieved with a single
construction line:

[Construct OBJECT:{NAME:Person} OBJECT:{NAME:Book}]

Naturally, the construction of yet another domain object can be done adding one more
“OBJECT” concept to the construction element. The constructed Java file for the person
object is:

public class Person
{

private String name;
private String address;
private int age;

public Person(String name, String address, int age)
{

this.name=name;
this.address=address;
this.age=age;

}

public Person(StringReader reader)
throws Exception
{

this.name=reader.readString("name");
this.address=reader.readString("address");
this.age=reader.readint("age");

}

public String name()
{ return name; }

21

public String address()
{ return address; }

public int age()
{ return age; }

public StringWriter writeTo(StringWriter writer)
throws Exception
{

return writer
.writeString("name",name)
.writeString("address",address)
.writeint("age",age);

}
}

The corresponding reconstructed XSD file is:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.org/Person"
xmlns:tns="http://www.example.org/Person"
elementFormDefault="qualified">
<complexType name="PersonType">

<sequence>
<element name="name" type="string"></element>
<element name="address" type="string"></element>
<element name="age" type="int"></element>

</sequence>
</complexType>

</schema>

The Java and XSD files for the book object are analogous.

6 Conclusion
In this technical report we discussed programming by construction. The idea in to sep-
arate concepts from their semantic contexts. We formalized this approach by defining
a simple grammar that captured the definition of concepts and contexts. We then gave
an interpretation for the grammar, including the construction, by formalizing it as a term
rewriting process. We also presented an example implementation of the grammar in Java.
The interpreter, called Mill, is also listed as open-source in Appendix.

We illustrated the use of programming by construction in constructing a design pattern
typical to cloud service implementation, where data needs to be represented in different
formats, causing translation from one representation to another. The simple case study
showed how effective the separation of concepts from contexts is in supporting the con-
struction of the same concepts in very different contexts. Furthermore, by defining the

22

construction process as term rewriting system, we can define meta contexts that support
automation of construction processes, where specialization is critical.

With the programming by construction approach we can achieve a uniform design
and development process that covers use of multiple, heterogeneous technologies and
services. As we can now separately express concepts and their semantic contexts, we
are free to integrate new contexts in an technology independent manner. Furthermore,
contexts can be subjected to formal reasoning, which further supports reliability studies.
Note that programming by construction is fully complementary with current representa-
tion technologies for metadata, including use of XML and ontologies. In fact, there is a
synergy advantage of mixing the use of, for instance, ontology descriptions with program-
ming by construction. We plan to explore and research the possibilities and potential of
such mixed use in future studies.

Although the grammar presented in this technical report is very expressive, it is still
very primitive. As potential future work, we plan on extending the grammar based on
needs that arise in further case studies. We plan to apply the programming by construction
approach in designing and implementing future resilient control systems. Programming
by construction bridges the gap between formal methods, ontologies, service interfaces,
and data representations. In particular, it provides a formal framework for construction of
objects based on concepts and their semantic contexts. In this respect, as a future work, we
plan to study use of programming by construction in construction of machines in Event B
and RODIN platform.

Acknowledgements.
This research is funded by the Academy of Finland project “FResCo: High-quality Mea-
surement Infrastructure for Future Resilient Control Systems” (Grant numbers 264060
and 263925).

References
[1] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web Ser-

vices Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging, and More, Prentice Hall, 2005.

[2] R. T. Fielding. Architectural Styles and the Design of Network-based Software Ar-
chitectures, Doctoral dissertation, University of California, Irvine, 2000.

[3] C. Pautasso, O. Zimmermann, F. Leymann. RESTful Web Services vs. Big Web Ser-
vices: Making the Right Architectural Decision, Proceedings of 17th International
World Wide Web Conference (WWW2008), 805-814, 2008.

[4] P. Walmsley. Definitive XML Schema, 2nd Edition, Prentice Hall, 2012.

[5] D. Vohra. Pro XML Development with Java Technology, Apress, 2006.

[6] J. E. Hopcroft , R. Motwani, J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation, 3rd Edition, Prentice Hall, 2006

23

[7] Terese. Term Rewriting Systems, Cambridge University Press, 2003.

[8] J. D. Herrington. Code Generation in Action, Manning Publications, 2003.

[9] M. L. Scott. Programming Language Pragmatics, 3r Edition, Morgan Kaufmann,
2009.

[10] J. W. Backus. The syntax and semantics of the proposed international algebraic lan-
guage of the Zurich ACM-GAMM Conference, Proceedings of the International
Conference on Information Processing, 125-131, 1960.

[11] A. Church, A set of postulates for the foundation of logic, Annals of Mathematics,
Series 2, 33, 346-366, 1932.

[12] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage, 3rd Edition, Addison-Wesley, 2003.

[13] D. Lea. Concurrent Programming in Java: Design Principles and Patterns, 2nd
Edition, Addison-Wessley, 1999.

24

Appendix I: Example implementation, Mill.
(C) Mauno Rönkkö, University of Eastern Finland, 2013

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the ”Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

public class Console
{

public static void main(String[] args) throws Exception
{

Interpreter interpreter=new Interpreter();
if (args.length>0)
{

System.out.println("**** Mill, v1.0 (C) Mauno Ronkko 2013 ****");
System.out.println("**** "+new File("").getAbsolutePath()+" ****");
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String line="";
while (true) try
{
System.out.print("\n: "); System.out.flush();
line=br.readLine();
interpreter.interpret(new Parser(line));

} catch (Exception e) {
System.out.println("\n**** ERROR:\n"+e.getMessage());

}
}
else
{

int available=System.in.available();
if (available>=0)
{
byte b[]=new byte[available];
System.in.read(b);
interpreter.interpret(new Parser(new String(b)));

}
}

}
}

25

public class Interpreter
{

private Dictionary dictionary;

private Interpreter(Dictionary dictionary)
{ this.dictionary=new Dictionary(dictionary); }

public Interpreter()
{ this.dictionary=new Dictionary(); }

private String cleanLabel(String label)
{ return label.startsWith("{") ? label.substring(1,label.length()-1) : label; }

private String readFromFile(String filename) throws Exception
{

File file=new File(filename);
int length=(int)file.length();
if (length==0) return "";
byte[] buffer = new byte[length];
FileInputStream fis = new FileInputStream(filename);
fis.read(buffer);
fis.close();
return new String(buffer);

}

private String interpretBlock(String block) throws Exception
{

block = block.substring(1,block.length()-1);
boolean retain=block.startsWith(":") && block.endsWith(":");
Parser parser=new Parser(retain ? block.substring(1,block.length()-1) : block);
String sample=parser.sample();
String label=cleanLabel(parser.parseNext());
String body=(label.startsWith("@") && label.length()>1)

? readFromFile(cleanLabel(label.substring(1)))
: dictionary.value(label);

Constructor constructor=new Constructor(body);
try
{
while (parser.somethingToParse())
{

String element=parser.parseNext();
if (element.startsWith("["))
{
parser.inject(interpretBlock(element));
//this method does not modify current dictionary

}
else
{
Interpreter interpreter=new Interpreter(dictionary);
if (!parser.parseNext().equals(":"))
throw new Exception("MISSING \":\", AFTER LABEL {"+element+"}\n");

interpreter.interpret(new Parser(cleanLabel(parser.parseNext())));
constructor.rewrite(element, interpreter.dictionary);

}
}

} catch (Exception e) {
throw new Exception(e.getMessage()+"WHILE RECONSTRUCTING ["+sample+"]\n");

}
return retain ? constructor.withTags() : constructor.removeTags();

}

26

private String execute(String command) throws Exception
{

Process p=Runtime.getRuntime().exec(command);
int status=p.waitFor();
InputStream is=p.getInputStream();
byte[] bytes=new byte[is.available()];
is.read(bytes, 0, bytes.length);
String output=new String(bytes);
is=p.getErrorStream();
bytes=new byte[is.available()];
is.read(bytes, 0, bytes.length);
if (status!=0 || bytes.length>0)
throw new Exception("FAILED EXECUTING "+command

+"\nERROR OUTPUT: "+new String(bytes));
System.out.println("OUTPUT OF "+command+": "+output);
return output;

}

private void writeToFile(String filename, String value) throws Exception
{

if (filename.equals("stdout"))
System.out.println(value);

else
{

FileWriter writer = new FileWriter(filename);
writer.write(value);
writer.close();

}
}

private void interpretTerm(String label, Parser parser) throws Exception
{

if (!parser.parseNext().equals(":"))
throw new Exception("MISSING \":\", AFTER LABEL {"+label+"}\n");

String value=cleanLabel(parser.parseNext());
if (value.startsWith("[")) value=interpretBlock(value);
if (label.startsWith("@"))

if (label.equals("@"))
dictionary.define("@", execute(value));

else
writeToFile(label.substring(1),value);

else
dictionary.define(label,value);

}

public void interpret(Parser parser) throws Exception
{

String sample=parser.sample();
try
{
while (parser.somethingToParse())
{

String element=parser.parseNext();
if (element.startsWith("["))
parser.inject(interpretBlock(element));

else
interpretTerm(cleanLabel(element), parser);

}
} catch (Exception e) {

throw new Exception(e.getMessage()+"WHILE PARSING "+sample+"\n");
}

}
}

27

public class Parser
{

private String corpus;

public Parser(String corpus)
{ this.corpus=corpus.trim(); }

public boolean isAtEnd()
{ return corpus.isEmpty(); }

private char next()
{ return isAtEnd() ? 0 : corpus.charAt(0); }

private boolean nextIsWhitespace()
{ return Character.isWhitespace(next()); }

private char getNext()
{ if (isAtEnd()) return 0;

char c=corpus.charAt(0);
corpus=corpus.substring(1);
return c;

}

private String getBlock(char start, char end) throws Exception
{ if (next()!=start) throw new Exception("MISSING "+start+"\n");

String block="" + getNext();
int depth=1;
while (!isAtEnd())
{
if (next()==start) depth++;
if (next()==end) {if (--depth<=0) break;}
block += getNext();

}
if (depth>0) throw new Exception("MISSING "+end+"\n");
return block+getNext();

}

private String getLabel()
{ String label="";

while (!isAtEnd() && !nextIsWhitespace() && next()!=’:’)
label +=getNext();

return label;
}

public boolean somethingToParse()
{ while (!isAtEnd() && nextIsWhitespace()) getNext();

return !isAtEnd();
}

public String parseNext() throws Exception
{ if (!somethingToParse()) throw new Exception("NOTHING TO PARSE!\n");

if (next()==’[’) return getBlock(’[’,’]’);
if (next()==’{’) return getBlock(’{’,’}’);
if (next()==’:’) return "" +getNext();
return getLabel();

}

public void inject(String string)
{ corpus=string+corpus; }

public String sample()
{ int cut=corpus.length();

return "\"..."+corpus.substring(0,cut>50 ? 50 : cut)+"...\"";
}

}

28

public class Constructor
{

private String construct;

public Constructor(String construct)
{ this.construct=construct; }

public void rewrite(String label, Dictionary dictionary) throws Exception
{

String header="<:"+label;
String old=construct;
construct="";
while (!old.isEmpty())
{
int at=old.indexOf(header);
if (at<0)
{

construct+=old;
old="";

}
else
{

if (at>0) {construct+=old.substring(0,at); old=old.substring(at);}
Tag tag=new Tag(old);
old=old.substring(tag.length());
construct+=tag.rewrite(dictionary);

}
}

}

public String removeTags() throws Exception
{

String old=construct;
construct="";
while (!old.isEmpty())
{

int at=old.indexOf("<:");
if (at<0)
{

construct+=old;
old="";

}
else
{

if (at>0) {construct+=old.substring(0,at); old=old.substring(at);}
old=old.substring(new Tag(old).length());

}
}
return construct;

}

public String withTags()
{ return construct; }

}

29

public class Tag
{

private String label;
private String separator;
private String body;

private String getBlock(String text, String start, String end) throws Exception
{

String block="";
if (!text.startsWith(start)) throw new Exception("MISSING \""+start+"\"\n");
int depth=0;
while (!text.isEmpty())
{
if (text.startsWith(start)) depth++;
if (text.startsWith(end)) {if (--depth<=0) break;}
block += text.charAt(0);
text = text.substring(1);

}
if (depth>0) throw new Exception("MISSING \""+end+"\"\n");
return block+end;

}

public Tag(String string) throws Exception
{

String tag=getBlock(string,"<:",":>");
tag=tag.substring(2,tag.length()-2);
int sep=tag.indexOf("<#");
if (sep<0) throw new Exception("MISSING \"<#\"\n");
label=tag.substring(0,sep);
tag=tag.substring(sep);
separator=getBlock(tag,"<#","#>");
body=tag.substring(separator.length());
separator=separator.substring(2,separator.length()-2);

}

public int length()
{ return label.length()+separator.length()+body.length()+8; }

public String rewrite(Dictionary dictionary)
{

String result=dictionary.substitute(body);
body=separator+body;
separator="";
return result+toString();

}

public String toString()
{ return "<:"+label+"<#"+separator+"#>"+body+":>"; }

}

30

public class Dictionary
{

private Dictionary original;
private Hashtable<String,String> dictionary;

private void construct(Dictionary original)
{

this.original=original;
dictionary=new Hashtable();

}

public Dictionary()
{ construct(null); }

public Dictionary(Dictionary original)
{ construct(original); }

private boolean isDefined(String label)
{

if (dictionary.containsKey(label)) return true;
if (original==null) return false;
return original.isDefined(label);

}

public String value(String label)
{

String value=dictionary.get(label);
if (value!=null) return value;
if (original==null) return "";
return original.value(label);

}

public String define(String label, String value)
{ return dictionary.put(label,value); }

private HashSet<String> labelSet()
{

HashSet<String> termSet=new HashSet<String>();
termSet.addAll(dictionary.keySet());
return termSet;

}

private String[] sortedLabels()
{

String l;
String[] labels=labelSet().toArray(new String[0]);
for (int i=0; i<labels.length-1; i++)
for (int j=i+1; j<labels.length; j++)

if (labels[i].compareTo(labels[j])>0)
{l=labels[i]; labels[i]=labels[j]; labels[j]=l;}

return labels;
}

private int firstIndex(String string, String[] sortedLabels)
{

for (int i=sortedLabels.length-1; i>=0; i--)
if (string.startsWith(sortedLabels[i]))

return i;
return -1;

}

31

public String substitute(String string)
{

String result="";
String[] sortedLabels=sortedLabels();
while (!string.isEmpty())
{
int index=firstIndex(string,sortedLabels);
if (index<0)

result += string.charAt(0);
else

result += value(sortedLabels[index]);
string=string.substring(index<0 ? 1 : sortedLabels[index].length());

}
return result;

}
}

32

Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku
Faculty of Mathematics and Natural Sciences
• Department of Information Technology
• Department of Mathematics
Turku School of Economics
• Institute of Information Systems Sciences

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

ISBN 978-952-12-2978-7
ISSN 1239-1891

